futex: Add another early deadlock detection check
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * Basic futex operation and ordering guarantees:
74  *
75  * The waiter reads the futex value in user space and calls
76  * futex_wait(). This function computes the hash bucket and acquires
77  * the hash bucket lock. After that it reads the futex user space value
78  * again and verifies that the data has not changed. If it has not changed
79  * it enqueues itself into the hash bucket, releases the hash bucket lock
80  * and schedules.
81  *
82  * The waker side modifies the user space value of the futex and calls
83  * futex_wake(). This function computes the hash bucket and acquires the
84  * hash bucket lock. Then it looks for waiters on that futex in the hash
85  * bucket and wakes them.
86  *
87  * In futex wake up scenarios where no tasks are blocked on a futex, taking
88  * the hb spinlock can be avoided and simply return. In order for this
89  * optimization to work, ordering guarantees must exist so that the waiter
90  * being added to the list is acknowledged when the list is concurrently being
91  * checked by the waker, avoiding scenarios like the following:
92  *
93  * CPU 0                               CPU 1
94  * val = *futex;
95  * sys_futex(WAIT, futex, val);
96  *   futex_wait(futex, val);
97  *   uval = *futex;
98  *                                     *futex = newval;
99  *                                     sys_futex(WAKE, futex);
100  *                                       futex_wake(futex);
101  *                                       if (queue_empty())
102  *                                         return;
103  *   if (uval == val)
104  *      lock(hash_bucket(futex));
105  *      queue();
106  *     unlock(hash_bucket(futex));
107  *     schedule();
108  *
109  * This would cause the waiter on CPU 0 to wait forever because it
110  * missed the transition of the user space value from val to newval
111  * and the waker did not find the waiter in the hash bucket queue.
112  *
113  * The correct serialization ensures that a waiter either observes
114  * the changed user space value before blocking or is woken by a
115  * concurrent waker:
116  *
117  * CPU 0                                 CPU 1
118  * val = *futex;
119  * sys_futex(WAIT, futex, val);
120  *   futex_wait(futex, val);
121  *
122  *   waiters++;
123  *   mb(); (A) <-- paired with -.
124  *                              |
125  *   lock(hash_bucket(futex));  |
126  *                              |
127  *   uval = *futex;             |
128  *                              |        *futex = newval;
129  *                              |        sys_futex(WAKE, futex);
130  *                              |          futex_wake(futex);
131  *                              |
132  *                              `------->  mb(); (B)
133  *   if (uval == val)
134  *     queue();
135  *     unlock(hash_bucket(futex));
136  *     schedule();                         if (waiters)
137  *                                           lock(hash_bucket(futex));
138  *                                           wake_waiters(futex);
139  *                                           unlock(hash_bucket(futex));
140  *
141  * Where (A) orders the waiters increment and the futex value read -- this
142  * is guaranteed by the head counter in the hb spinlock; and where (B)
143  * orders the write to futex and the waiters read -- this is done by the
144  * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
145  * depending on the futex type.
146  *
147  * This yields the following case (where X:=waiters, Y:=futex):
148  *
149  *      X = Y = 0
150  *
151  *      w[X]=1          w[Y]=1
152  *      MB              MB
153  *      r[Y]=y          r[X]=x
154  *
155  * Which guarantees that x==0 && y==0 is impossible; which translates back into
156  * the guarantee that we cannot both miss the futex variable change and the
157  * enqueue.
158  */
159
160 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
161 int __read_mostly futex_cmpxchg_enabled;
162 #endif
163
164 /*
165  * Futex flags used to encode options to functions and preserve them across
166  * restarts.
167  */
168 #define FLAGS_SHARED            0x01
169 #define FLAGS_CLOCKRT           0x02
170 #define FLAGS_HAS_TIMEOUT       0x04
171
172 /*
173  * Priority Inheritance state:
174  */
175 struct futex_pi_state {
176         /*
177          * list of 'owned' pi_state instances - these have to be
178          * cleaned up in do_exit() if the task exits prematurely:
179          */
180         struct list_head list;
181
182         /*
183          * The PI object:
184          */
185         struct rt_mutex pi_mutex;
186
187         struct task_struct *owner;
188         atomic_t refcount;
189
190         union futex_key key;
191 };
192
193 /**
194  * struct futex_q - The hashed futex queue entry, one per waiting task
195  * @list:               priority-sorted list of tasks waiting on this futex
196  * @task:               the task waiting on the futex
197  * @lock_ptr:           the hash bucket lock
198  * @key:                the key the futex is hashed on
199  * @pi_state:           optional priority inheritance state
200  * @rt_waiter:          rt_waiter storage for use with requeue_pi
201  * @requeue_pi_key:     the requeue_pi target futex key
202  * @bitset:             bitset for the optional bitmasked wakeup
203  *
204  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
205  * we can wake only the relevant ones (hashed queues may be shared).
206  *
207  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
208  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
209  * The order of wakeup is always to make the first condition true, then
210  * the second.
211  *
212  * PI futexes are typically woken before they are removed from the hash list via
213  * the rt_mutex code. See unqueue_me_pi().
214  */
215 struct futex_q {
216         struct plist_node list;
217
218         struct task_struct *task;
219         spinlock_t *lock_ptr;
220         union futex_key key;
221         struct futex_pi_state *pi_state;
222         struct rt_mutex_waiter *rt_waiter;
223         union futex_key *requeue_pi_key;
224         u32 bitset;
225 };
226
227 static const struct futex_q futex_q_init = {
228         /* list gets initialized in queue_me()*/
229         .key = FUTEX_KEY_INIT,
230         .bitset = FUTEX_BITSET_MATCH_ANY
231 };
232
233 /*
234  * Hash buckets are shared by all the futex_keys that hash to the same
235  * location.  Each key may have multiple futex_q structures, one for each task
236  * waiting on a futex.
237  */
238 struct futex_hash_bucket {
239         atomic_t waiters;
240         spinlock_t lock;
241         struct plist_head chain;
242 } ____cacheline_aligned_in_smp;
243
244 static unsigned long __read_mostly futex_hashsize;
245
246 static struct futex_hash_bucket *futex_queues;
247
248 static inline void futex_get_mm(union futex_key *key)
249 {
250         atomic_inc(&key->private.mm->mm_count);
251         /*
252          * Ensure futex_get_mm() implies a full barrier such that
253          * get_futex_key() implies a full barrier. This is relied upon
254          * as full barrier (B), see the ordering comment above.
255          */
256         smp_mb__after_atomic_inc();
257 }
258
259 /*
260  * Reflects a new waiter being added to the waitqueue.
261  */
262 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
263 {
264 #ifdef CONFIG_SMP
265         atomic_inc(&hb->waiters);
266         /*
267          * Full barrier (A), see the ordering comment above.
268          */
269         smp_mb__after_atomic_inc();
270 #endif
271 }
272
273 /*
274  * Reflects a waiter being removed from the waitqueue by wakeup
275  * paths.
276  */
277 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
278 {
279 #ifdef CONFIG_SMP
280         atomic_dec(&hb->waiters);
281 #endif
282 }
283
284 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
285 {
286 #ifdef CONFIG_SMP
287         return atomic_read(&hb->waiters);
288 #else
289         return 1;
290 #endif
291 }
292
293 /*
294  * We hash on the keys returned from get_futex_key (see below).
295  */
296 static struct futex_hash_bucket *hash_futex(union futex_key *key)
297 {
298         u32 hash = jhash2((u32*)&key->both.word,
299                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
300                           key->both.offset);
301         return &futex_queues[hash & (futex_hashsize - 1)];
302 }
303
304 /*
305  * Return 1 if two futex_keys are equal, 0 otherwise.
306  */
307 static inline int match_futex(union futex_key *key1, union futex_key *key2)
308 {
309         return (key1 && key2
310                 && key1->both.word == key2->both.word
311                 && key1->both.ptr == key2->both.ptr
312                 && key1->both.offset == key2->both.offset);
313 }
314
315 /*
316  * Take a reference to the resource addressed by a key.
317  * Can be called while holding spinlocks.
318  *
319  */
320 static void get_futex_key_refs(union futex_key *key)
321 {
322         if (!key->both.ptr)
323                 return;
324
325         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
326         case FUT_OFF_INODE:
327                 ihold(key->shared.inode); /* implies MB (B) */
328                 break;
329         case FUT_OFF_MMSHARED:
330                 futex_get_mm(key); /* implies MB (B) */
331                 break;
332         }
333 }
334
335 /*
336  * Drop a reference to the resource addressed by a key.
337  * The hash bucket spinlock must not be held.
338  */
339 static void drop_futex_key_refs(union futex_key *key)
340 {
341         if (!key->both.ptr) {
342                 /* If we're here then we tried to put a key we failed to get */
343                 WARN_ON_ONCE(1);
344                 return;
345         }
346
347         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
348         case FUT_OFF_INODE:
349                 iput(key->shared.inode);
350                 break;
351         case FUT_OFF_MMSHARED:
352                 mmdrop(key->private.mm);
353                 break;
354         }
355 }
356
357 /**
358  * get_futex_key() - Get parameters which are the keys for a futex
359  * @uaddr:      virtual address of the futex
360  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
361  * @key:        address where result is stored.
362  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
363  *              VERIFY_WRITE)
364  *
365  * Return: a negative error code or 0
366  *
367  * The key words are stored in *key on success.
368  *
369  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
370  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
371  * We can usually work out the index without swapping in the page.
372  *
373  * lock_page() might sleep, the caller should not hold a spinlock.
374  */
375 static int
376 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
377 {
378         unsigned long address = (unsigned long)uaddr;
379         struct mm_struct *mm = current->mm;
380         struct page *page, *page_head;
381         int err, ro = 0;
382
383         /*
384          * The futex address must be "naturally" aligned.
385          */
386         key->both.offset = address % PAGE_SIZE;
387         if (unlikely((address % sizeof(u32)) != 0))
388                 return -EINVAL;
389         address -= key->both.offset;
390
391         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
392                 return -EFAULT;
393
394         /*
395          * PROCESS_PRIVATE futexes are fast.
396          * As the mm cannot disappear under us and the 'key' only needs
397          * virtual address, we dont even have to find the underlying vma.
398          * Note : We do have to check 'uaddr' is a valid user address,
399          *        but access_ok() should be faster than find_vma()
400          */
401         if (!fshared) {
402                 key->private.mm = mm;
403                 key->private.address = address;
404                 get_futex_key_refs(key);  /* implies MB (B) */
405                 return 0;
406         }
407
408 again:
409         err = get_user_pages_fast(address, 1, 1, &page);
410         /*
411          * If write access is not required (eg. FUTEX_WAIT), try
412          * and get read-only access.
413          */
414         if (err == -EFAULT && rw == VERIFY_READ) {
415                 err = get_user_pages_fast(address, 1, 0, &page);
416                 ro = 1;
417         }
418         if (err < 0)
419                 return err;
420         else
421                 err = 0;
422
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424         page_head = page;
425         if (unlikely(PageTail(page))) {
426                 put_page(page);
427                 /* serialize against __split_huge_page_splitting() */
428                 local_irq_disable();
429                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
430                         page_head = compound_head(page);
431                         /*
432                          * page_head is valid pointer but we must pin
433                          * it before taking the PG_lock and/or
434                          * PG_compound_lock. The moment we re-enable
435                          * irqs __split_huge_page_splitting() can
436                          * return and the head page can be freed from
437                          * under us. We can't take the PG_lock and/or
438                          * PG_compound_lock on a page that could be
439                          * freed from under us.
440                          */
441                         if (page != page_head) {
442                                 get_page(page_head);
443                                 put_page(page);
444                         }
445                         local_irq_enable();
446                 } else {
447                         local_irq_enable();
448                         goto again;
449                 }
450         }
451 #else
452         page_head = compound_head(page);
453         if (page != page_head) {
454                 get_page(page_head);
455                 put_page(page);
456         }
457 #endif
458
459         lock_page(page_head);
460
461         /*
462          * If page_head->mapping is NULL, then it cannot be a PageAnon
463          * page; but it might be the ZERO_PAGE or in the gate area or
464          * in a special mapping (all cases which we are happy to fail);
465          * or it may have been a good file page when get_user_pages_fast
466          * found it, but truncated or holepunched or subjected to
467          * invalidate_complete_page2 before we got the page lock (also
468          * cases which we are happy to fail).  And we hold a reference,
469          * so refcount care in invalidate_complete_page's remove_mapping
470          * prevents drop_caches from setting mapping to NULL beneath us.
471          *
472          * The case we do have to guard against is when memory pressure made
473          * shmem_writepage move it from filecache to swapcache beneath us:
474          * an unlikely race, but we do need to retry for page_head->mapping.
475          */
476         if (!page_head->mapping) {
477                 int shmem_swizzled = PageSwapCache(page_head);
478                 unlock_page(page_head);
479                 put_page(page_head);
480                 if (shmem_swizzled)
481                         goto again;
482                 return -EFAULT;
483         }
484
485         /*
486          * Private mappings are handled in a simple way.
487          *
488          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
489          * it's a read-only handle, it's expected that futexes attach to
490          * the object not the particular process.
491          */
492         if (PageAnon(page_head)) {
493                 /*
494                  * A RO anonymous page will never change and thus doesn't make
495                  * sense for futex operations.
496                  */
497                 if (ro) {
498                         err = -EFAULT;
499                         goto out;
500                 }
501
502                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
503                 key->private.mm = mm;
504                 key->private.address = address;
505         } else {
506                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
507                 key->shared.inode = page_head->mapping->host;
508                 key->shared.pgoff = basepage_index(page);
509         }
510
511         get_futex_key_refs(key); /* implies MB (B) */
512
513 out:
514         unlock_page(page_head);
515         put_page(page_head);
516         return err;
517 }
518
519 static inline void put_futex_key(union futex_key *key)
520 {
521         drop_futex_key_refs(key);
522 }
523
524 /**
525  * fault_in_user_writeable() - Fault in user address and verify RW access
526  * @uaddr:      pointer to faulting user space address
527  *
528  * Slow path to fixup the fault we just took in the atomic write
529  * access to @uaddr.
530  *
531  * We have no generic implementation of a non-destructive write to the
532  * user address. We know that we faulted in the atomic pagefault
533  * disabled section so we can as well avoid the #PF overhead by
534  * calling get_user_pages() right away.
535  */
536 static int fault_in_user_writeable(u32 __user *uaddr)
537 {
538         struct mm_struct *mm = current->mm;
539         int ret;
540
541         down_read(&mm->mmap_sem);
542         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
543                                FAULT_FLAG_WRITE);
544         up_read(&mm->mmap_sem);
545
546         return ret < 0 ? ret : 0;
547 }
548
549 /**
550  * futex_top_waiter() - Return the highest priority waiter on a futex
551  * @hb:         the hash bucket the futex_q's reside in
552  * @key:        the futex key (to distinguish it from other futex futex_q's)
553  *
554  * Must be called with the hb lock held.
555  */
556 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
557                                         union futex_key *key)
558 {
559         struct futex_q *this;
560
561         plist_for_each_entry(this, &hb->chain, list) {
562                 if (match_futex(&this->key, key))
563                         return this;
564         }
565         return NULL;
566 }
567
568 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
569                                       u32 uval, u32 newval)
570 {
571         int ret;
572
573         pagefault_disable();
574         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
575         pagefault_enable();
576
577         return ret;
578 }
579
580 static int get_futex_value_locked(u32 *dest, u32 __user *from)
581 {
582         int ret;
583
584         pagefault_disable();
585         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
586         pagefault_enable();
587
588         return ret ? -EFAULT : 0;
589 }
590
591
592 /*
593  * PI code:
594  */
595 static int refill_pi_state_cache(void)
596 {
597         struct futex_pi_state *pi_state;
598
599         if (likely(current->pi_state_cache))
600                 return 0;
601
602         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
603
604         if (!pi_state)
605                 return -ENOMEM;
606
607         INIT_LIST_HEAD(&pi_state->list);
608         /* pi_mutex gets initialized later */
609         pi_state->owner = NULL;
610         atomic_set(&pi_state->refcount, 1);
611         pi_state->key = FUTEX_KEY_INIT;
612
613         current->pi_state_cache = pi_state;
614
615         return 0;
616 }
617
618 static struct futex_pi_state * alloc_pi_state(void)
619 {
620         struct futex_pi_state *pi_state = current->pi_state_cache;
621
622         WARN_ON(!pi_state);
623         current->pi_state_cache = NULL;
624
625         return pi_state;
626 }
627
628 static void free_pi_state(struct futex_pi_state *pi_state)
629 {
630         if (!atomic_dec_and_test(&pi_state->refcount))
631                 return;
632
633         /*
634          * If pi_state->owner is NULL, the owner is most probably dying
635          * and has cleaned up the pi_state already
636          */
637         if (pi_state->owner) {
638                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
639                 list_del_init(&pi_state->list);
640                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
641
642                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
643         }
644
645         if (current->pi_state_cache)
646                 kfree(pi_state);
647         else {
648                 /*
649                  * pi_state->list is already empty.
650                  * clear pi_state->owner.
651                  * refcount is at 0 - put it back to 1.
652                  */
653                 pi_state->owner = NULL;
654                 atomic_set(&pi_state->refcount, 1);
655                 current->pi_state_cache = pi_state;
656         }
657 }
658
659 /*
660  * Look up the task based on what TID userspace gave us.
661  * We dont trust it.
662  */
663 static struct task_struct * futex_find_get_task(pid_t pid)
664 {
665         struct task_struct *p;
666
667         rcu_read_lock();
668         p = find_task_by_vpid(pid);
669         if (p)
670                 get_task_struct(p);
671
672         rcu_read_unlock();
673
674         return p;
675 }
676
677 /*
678  * This task is holding PI mutexes at exit time => bad.
679  * Kernel cleans up PI-state, but userspace is likely hosed.
680  * (Robust-futex cleanup is separate and might save the day for userspace.)
681  */
682 void exit_pi_state_list(struct task_struct *curr)
683 {
684         struct list_head *next, *head = &curr->pi_state_list;
685         struct futex_pi_state *pi_state;
686         struct futex_hash_bucket *hb;
687         union futex_key key = FUTEX_KEY_INIT;
688
689         if (!futex_cmpxchg_enabled)
690                 return;
691         /*
692          * We are a ZOMBIE and nobody can enqueue itself on
693          * pi_state_list anymore, but we have to be careful
694          * versus waiters unqueueing themselves:
695          */
696         raw_spin_lock_irq(&curr->pi_lock);
697         while (!list_empty(head)) {
698
699                 next = head->next;
700                 pi_state = list_entry(next, struct futex_pi_state, list);
701                 key = pi_state->key;
702                 hb = hash_futex(&key);
703                 raw_spin_unlock_irq(&curr->pi_lock);
704
705                 spin_lock(&hb->lock);
706
707                 raw_spin_lock_irq(&curr->pi_lock);
708                 /*
709                  * We dropped the pi-lock, so re-check whether this
710                  * task still owns the PI-state:
711                  */
712                 if (head->next != next) {
713                         spin_unlock(&hb->lock);
714                         continue;
715                 }
716
717                 WARN_ON(pi_state->owner != curr);
718                 WARN_ON(list_empty(&pi_state->list));
719                 list_del_init(&pi_state->list);
720                 pi_state->owner = NULL;
721                 raw_spin_unlock_irq(&curr->pi_lock);
722
723                 rt_mutex_unlock(&pi_state->pi_mutex);
724
725                 spin_unlock(&hb->lock);
726
727                 raw_spin_lock_irq(&curr->pi_lock);
728         }
729         raw_spin_unlock_irq(&curr->pi_lock);
730 }
731
732 static int
733 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
734                 union futex_key *key, struct futex_pi_state **ps,
735                 struct task_struct *task)
736 {
737         struct futex_pi_state *pi_state = NULL;
738         struct futex_q *this, *next;
739         struct task_struct *p;
740         pid_t pid = uval & FUTEX_TID_MASK;
741
742         plist_for_each_entry_safe(this, next, &hb->chain, list) {
743                 if (match_futex(&this->key, key)) {
744                         /*
745                          * Another waiter already exists - bump up
746                          * the refcount and return its pi_state:
747                          */
748                         pi_state = this->pi_state;
749                         /*
750                          * Userspace might have messed up non-PI and PI futexes
751                          */
752                         if (unlikely(!pi_state))
753                                 return -EINVAL;
754
755                         WARN_ON(!atomic_read(&pi_state->refcount));
756
757                         /*
758                          * When pi_state->owner is NULL then the owner died
759                          * and another waiter is on the fly. pi_state->owner
760                          * is fixed up by the task which acquires
761                          * pi_state->rt_mutex.
762                          *
763                          * We do not check for pid == 0 which can happen when
764                          * the owner died and robust_list_exit() cleared the
765                          * TID.
766                          */
767                         if (pid && pi_state->owner) {
768                                 /*
769                                  * Bail out if user space manipulated the
770                                  * futex value.
771                                  */
772                                 if (pid != task_pid_vnr(pi_state->owner))
773                                         return -EINVAL;
774                         }
775
776                         /*
777                          * Protect against a corrupted uval. If uval
778                          * is 0x80000000 then pid is 0 and the waiter
779                          * bit is set. So the deadlock check in the
780                          * calling code has failed and we did not fall
781                          * into the check above due to !pid.
782                          */
783                         if (task && pi_state->owner == task)
784                                 return -EDEADLK;
785
786                         atomic_inc(&pi_state->refcount);
787                         *ps = pi_state;
788
789                         return 0;
790                 }
791         }
792
793         /*
794          * We are the first waiter - try to look up the real owner and attach
795          * the new pi_state to it, but bail out when TID = 0
796          */
797         if (!pid)
798                 return -ESRCH;
799         p = futex_find_get_task(pid);
800         if (!p)
801                 return -ESRCH;
802
803         /*
804          * We need to look at the task state flags to figure out,
805          * whether the task is exiting. To protect against the do_exit
806          * change of the task flags, we do this protected by
807          * p->pi_lock:
808          */
809         raw_spin_lock_irq(&p->pi_lock);
810         if (unlikely(p->flags & PF_EXITING)) {
811                 /*
812                  * The task is on the way out. When PF_EXITPIDONE is
813                  * set, we know that the task has finished the
814                  * cleanup:
815                  */
816                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
817
818                 raw_spin_unlock_irq(&p->pi_lock);
819                 put_task_struct(p);
820                 return ret;
821         }
822
823         pi_state = alloc_pi_state();
824
825         /*
826          * Initialize the pi_mutex in locked state and make 'p'
827          * the owner of it:
828          */
829         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
830
831         /* Store the key for possible exit cleanups: */
832         pi_state->key = *key;
833
834         WARN_ON(!list_empty(&pi_state->list));
835         list_add(&pi_state->list, &p->pi_state_list);
836         pi_state->owner = p;
837         raw_spin_unlock_irq(&p->pi_lock);
838
839         put_task_struct(p);
840
841         *ps = pi_state;
842
843         return 0;
844 }
845
846 /**
847  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
848  * @uaddr:              the pi futex user address
849  * @hb:                 the pi futex hash bucket
850  * @key:                the futex key associated with uaddr and hb
851  * @ps:                 the pi_state pointer where we store the result of the
852  *                      lookup
853  * @task:               the task to perform the atomic lock work for.  This will
854  *                      be "current" except in the case of requeue pi.
855  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
856  *
857  * Return:
858  *  0 - ready to wait;
859  *  1 - acquired the lock;
860  * <0 - error
861  *
862  * The hb->lock and futex_key refs shall be held by the caller.
863  */
864 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
865                                 union futex_key *key,
866                                 struct futex_pi_state **ps,
867                                 struct task_struct *task, int set_waiters)
868 {
869         int lock_taken, ret, force_take = 0;
870         u32 uval, newval, curval, vpid = task_pid_vnr(task);
871
872 retry:
873         ret = lock_taken = 0;
874
875         /*
876          * To avoid races, we attempt to take the lock here again
877          * (by doing a 0 -> TID atomic cmpxchg), while holding all
878          * the locks. It will most likely not succeed.
879          */
880         newval = vpid;
881         if (set_waiters)
882                 newval |= FUTEX_WAITERS;
883
884         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
885                 return -EFAULT;
886
887         /*
888          * Detect deadlocks.
889          */
890         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
891                 return -EDEADLK;
892
893         /*
894          * Surprise - we got the lock. Just return to userspace:
895          */
896         if (unlikely(!curval))
897                 return 1;
898
899         uval = curval;
900
901         /*
902          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
903          * to wake at the next unlock.
904          */
905         newval = curval | FUTEX_WAITERS;
906
907         /*
908          * Should we force take the futex? See below.
909          */
910         if (unlikely(force_take)) {
911                 /*
912                  * Keep the OWNER_DIED and the WAITERS bit and set the
913                  * new TID value.
914                  */
915                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
916                 force_take = 0;
917                 lock_taken = 1;
918         }
919
920         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
921                 return -EFAULT;
922         if (unlikely(curval != uval))
923                 goto retry;
924
925         /*
926          * We took the lock due to forced take over.
927          */
928         if (unlikely(lock_taken))
929                 return 1;
930
931         /*
932          * We dont have the lock. Look up the PI state (or create it if
933          * we are the first waiter):
934          */
935         ret = lookup_pi_state(uval, hb, key, ps, task);
936
937         if (unlikely(ret)) {
938                 switch (ret) {
939                 case -ESRCH:
940                         /*
941                          * We failed to find an owner for this
942                          * futex. So we have no pi_state to block
943                          * on. This can happen in two cases:
944                          *
945                          * 1) The owner died
946                          * 2) A stale FUTEX_WAITERS bit
947                          *
948                          * Re-read the futex value.
949                          */
950                         if (get_futex_value_locked(&curval, uaddr))
951                                 return -EFAULT;
952
953                         /*
954                          * If the owner died or we have a stale
955                          * WAITERS bit the owner TID in the user space
956                          * futex is 0.
957                          */
958                         if (!(curval & FUTEX_TID_MASK)) {
959                                 force_take = 1;
960                                 goto retry;
961                         }
962                 default:
963                         break;
964                 }
965         }
966
967         return ret;
968 }
969
970 /**
971  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
972  * @q:  The futex_q to unqueue
973  *
974  * The q->lock_ptr must not be NULL and must be held by the caller.
975  */
976 static void __unqueue_futex(struct futex_q *q)
977 {
978         struct futex_hash_bucket *hb;
979
980         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
981             || WARN_ON(plist_node_empty(&q->list)))
982                 return;
983
984         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
985         plist_del(&q->list, &hb->chain);
986         hb_waiters_dec(hb);
987 }
988
989 /*
990  * The hash bucket lock must be held when this is called.
991  * Afterwards, the futex_q must not be accessed.
992  */
993 static void wake_futex(struct futex_q *q)
994 {
995         struct task_struct *p = q->task;
996
997         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
998                 return;
999
1000         /*
1001          * We set q->lock_ptr = NULL _before_ we wake up the task. If
1002          * a non-futex wake up happens on another CPU then the task
1003          * might exit and p would dereference a non-existing task
1004          * struct. Prevent this by holding a reference on p across the
1005          * wake up.
1006          */
1007         get_task_struct(p);
1008
1009         __unqueue_futex(q);
1010         /*
1011          * The waiting task can free the futex_q as soon as
1012          * q->lock_ptr = NULL is written, without taking any locks. A
1013          * memory barrier is required here to prevent the following
1014          * store to lock_ptr from getting ahead of the plist_del.
1015          */
1016         smp_wmb();
1017         q->lock_ptr = NULL;
1018
1019         wake_up_state(p, TASK_NORMAL);
1020         put_task_struct(p);
1021 }
1022
1023 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1024 {
1025         struct task_struct *new_owner;
1026         struct futex_pi_state *pi_state = this->pi_state;
1027         u32 uninitialized_var(curval), newval;
1028
1029         if (!pi_state)
1030                 return -EINVAL;
1031
1032         /*
1033          * If current does not own the pi_state then the futex is
1034          * inconsistent and user space fiddled with the futex value.
1035          */
1036         if (pi_state->owner != current)
1037                 return -EINVAL;
1038
1039         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1040         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1041
1042         /*
1043          * It is possible that the next waiter (the one that brought
1044          * this owner to the kernel) timed out and is no longer
1045          * waiting on the lock.
1046          */
1047         if (!new_owner)
1048                 new_owner = this->task;
1049
1050         /*
1051          * We pass it to the next owner. (The WAITERS bit is always
1052          * kept enabled while there is PI state around. We must also
1053          * preserve the owner died bit.)
1054          */
1055         if (!(uval & FUTEX_OWNER_DIED)) {
1056                 int ret = 0;
1057
1058                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1059
1060                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1061                         ret = -EFAULT;
1062                 else if (curval != uval)
1063                         ret = -EINVAL;
1064                 if (ret) {
1065                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1066                         return ret;
1067                 }
1068         }
1069
1070         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1071         WARN_ON(list_empty(&pi_state->list));
1072         list_del_init(&pi_state->list);
1073         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1074
1075         raw_spin_lock_irq(&new_owner->pi_lock);
1076         WARN_ON(!list_empty(&pi_state->list));
1077         list_add(&pi_state->list, &new_owner->pi_state_list);
1078         pi_state->owner = new_owner;
1079         raw_spin_unlock_irq(&new_owner->pi_lock);
1080
1081         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1082         rt_mutex_unlock(&pi_state->pi_mutex);
1083
1084         return 0;
1085 }
1086
1087 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1088 {
1089         u32 uninitialized_var(oldval);
1090
1091         /*
1092          * There is no waiter, so we unlock the futex. The owner died
1093          * bit has not to be preserved here. We are the owner:
1094          */
1095         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1096                 return -EFAULT;
1097         if (oldval != uval)
1098                 return -EAGAIN;
1099
1100         return 0;
1101 }
1102
1103 /*
1104  * Express the locking dependencies for lockdep:
1105  */
1106 static inline void
1107 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1108 {
1109         if (hb1 <= hb2) {
1110                 spin_lock(&hb1->lock);
1111                 if (hb1 < hb2)
1112                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1113         } else { /* hb1 > hb2 */
1114                 spin_lock(&hb2->lock);
1115                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1116         }
1117 }
1118
1119 static inline void
1120 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1121 {
1122         spin_unlock(&hb1->lock);
1123         if (hb1 != hb2)
1124                 spin_unlock(&hb2->lock);
1125 }
1126
1127 /*
1128  * Wake up waiters matching bitset queued on this futex (uaddr).
1129  */
1130 static int
1131 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1132 {
1133         struct futex_hash_bucket *hb;
1134         struct futex_q *this, *next;
1135         union futex_key key = FUTEX_KEY_INIT;
1136         int ret;
1137
1138         if (!bitset)
1139                 return -EINVAL;
1140
1141         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1142         if (unlikely(ret != 0))
1143                 goto out;
1144
1145         hb = hash_futex(&key);
1146
1147         /* Make sure we really have tasks to wakeup */
1148         if (!hb_waiters_pending(hb))
1149                 goto out_put_key;
1150
1151         spin_lock(&hb->lock);
1152
1153         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1154                 if (match_futex (&this->key, &key)) {
1155                         if (this->pi_state || this->rt_waiter) {
1156                                 ret = -EINVAL;
1157                                 break;
1158                         }
1159
1160                         /* Check if one of the bits is set in both bitsets */
1161                         if (!(this->bitset & bitset))
1162                                 continue;
1163
1164                         wake_futex(this);
1165                         if (++ret >= nr_wake)
1166                                 break;
1167                 }
1168         }
1169
1170         spin_unlock(&hb->lock);
1171 out_put_key:
1172         put_futex_key(&key);
1173 out:
1174         return ret;
1175 }
1176
1177 /*
1178  * Wake up all waiters hashed on the physical page that is mapped
1179  * to this virtual address:
1180  */
1181 static int
1182 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1183               int nr_wake, int nr_wake2, int op)
1184 {
1185         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1186         struct futex_hash_bucket *hb1, *hb2;
1187         struct futex_q *this, *next;
1188         int ret, op_ret;
1189
1190 retry:
1191         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1192         if (unlikely(ret != 0))
1193                 goto out;
1194         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1195         if (unlikely(ret != 0))
1196                 goto out_put_key1;
1197
1198         hb1 = hash_futex(&key1);
1199         hb2 = hash_futex(&key2);
1200
1201 retry_private:
1202         double_lock_hb(hb1, hb2);
1203         op_ret = futex_atomic_op_inuser(op, uaddr2);
1204         if (unlikely(op_ret < 0)) {
1205
1206                 double_unlock_hb(hb1, hb2);
1207
1208 #ifndef CONFIG_MMU
1209                 /*
1210                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1211                  * but we might get them from range checking
1212                  */
1213                 ret = op_ret;
1214                 goto out_put_keys;
1215 #endif
1216
1217                 if (unlikely(op_ret != -EFAULT)) {
1218                         ret = op_ret;
1219                         goto out_put_keys;
1220                 }
1221
1222                 ret = fault_in_user_writeable(uaddr2);
1223                 if (ret)
1224                         goto out_put_keys;
1225
1226                 if (!(flags & FLAGS_SHARED))
1227                         goto retry_private;
1228
1229                 put_futex_key(&key2);
1230                 put_futex_key(&key1);
1231                 goto retry;
1232         }
1233
1234         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1235                 if (match_futex (&this->key, &key1)) {
1236                         if (this->pi_state || this->rt_waiter) {
1237                                 ret = -EINVAL;
1238                                 goto out_unlock;
1239                         }
1240                         wake_futex(this);
1241                         if (++ret >= nr_wake)
1242                                 break;
1243                 }
1244         }
1245
1246         if (op_ret > 0) {
1247                 op_ret = 0;
1248                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1249                         if (match_futex (&this->key, &key2)) {
1250                                 if (this->pi_state || this->rt_waiter) {
1251                                         ret = -EINVAL;
1252                                         goto out_unlock;
1253                                 }
1254                                 wake_futex(this);
1255                                 if (++op_ret >= nr_wake2)
1256                                         break;
1257                         }
1258                 }
1259                 ret += op_ret;
1260         }
1261
1262 out_unlock:
1263         double_unlock_hb(hb1, hb2);
1264 out_put_keys:
1265         put_futex_key(&key2);
1266 out_put_key1:
1267         put_futex_key(&key1);
1268 out:
1269         return ret;
1270 }
1271
1272 /**
1273  * requeue_futex() - Requeue a futex_q from one hb to another
1274  * @q:          the futex_q to requeue
1275  * @hb1:        the source hash_bucket
1276  * @hb2:        the target hash_bucket
1277  * @key2:       the new key for the requeued futex_q
1278  */
1279 static inline
1280 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1281                    struct futex_hash_bucket *hb2, union futex_key *key2)
1282 {
1283
1284         /*
1285          * If key1 and key2 hash to the same bucket, no need to
1286          * requeue.
1287          */
1288         if (likely(&hb1->chain != &hb2->chain)) {
1289                 plist_del(&q->list, &hb1->chain);
1290                 hb_waiters_dec(hb1);
1291                 plist_add(&q->list, &hb2->chain);
1292                 hb_waiters_inc(hb2);
1293                 q->lock_ptr = &hb2->lock;
1294         }
1295         get_futex_key_refs(key2);
1296         q->key = *key2;
1297 }
1298
1299 /**
1300  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1301  * @q:          the futex_q
1302  * @key:        the key of the requeue target futex
1303  * @hb:         the hash_bucket of the requeue target futex
1304  *
1305  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1306  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1307  * to the requeue target futex so the waiter can detect the wakeup on the right
1308  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1309  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1310  * to protect access to the pi_state to fixup the owner later.  Must be called
1311  * with both q->lock_ptr and hb->lock held.
1312  */
1313 static inline
1314 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1315                            struct futex_hash_bucket *hb)
1316 {
1317         get_futex_key_refs(key);
1318         q->key = *key;
1319
1320         __unqueue_futex(q);
1321
1322         WARN_ON(!q->rt_waiter);
1323         q->rt_waiter = NULL;
1324
1325         q->lock_ptr = &hb->lock;
1326
1327         wake_up_state(q->task, TASK_NORMAL);
1328 }
1329
1330 /**
1331  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1332  * @pifutex:            the user address of the to futex
1333  * @hb1:                the from futex hash bucket, must be locked by the caller
1334  * @hb2:                the to futex hash bucket, must be locked by the caller
1335  * @key1:               the from futex key
1336  * @key2:               the to futex key
1337  * @ps:                 address to store the pi_state pointer
1338  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1339  *
1340  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1341  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1342  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1343  * hb1 and hb2 must be held by the caller.
1344  *
1345  * Return:
1346  *  0 - failed to acquire the lock atomically;
1347  * >0 - acquired the lock, return value is vpid of the top_waiter
1348  * <0 - error
1349  */
1350 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1351                                  struct futex_hash_bucket *hb1,
1352                                  struct futex_hash_bucket *hb2,
1353                                  union futex_key *key1, union futex_key *key2,
1354                                  struct futex_pi_state **ps, int set_waiters)
1355 {
1356         struct futex_q *top_waiter = NULL;
1357         u32 curval;
1358         int ret, vpid;
1359
1360         if (get_futex_value_locked(&curval, pifutex))
1361                 return -EFAULT;
1362
1363         /*
1364          * Find the top_waiter and determine if there are additional waiters.
1365          * If the caller intends to requeue more than 1 waiter to pifutex,
1366          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1367          * as we have means to handle the possible fault.  If not, don't set
1368          * the bit unecessarily as it will force the subsequent unlock to enter
1369          * the kernel.
1370          */
1371         top_waiter = futex_top_waiter(hb1, key1);
1372
1373         /* There are no waiters, nothing for us to do. */
1374         if (!top_waiter)
1375                 return 0;
1376
1377         /* Ensure we requeue to the expected futex. */
1378         if (!match_futex(top_waiter->requeue_pi_key, key2))
1379                 return -EINVAL;
1380
1381         /*
1382          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1383          * the contended case or if set_waiters is 1.  The pi_state is returned
1384          * in ps in contended cases.
1385          */
1386         vpid = task_pid_vnr(top_waiter->task);
1387         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1388                                    set_waiters);
1389         if (ret == 1) {
1390                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1391                 return vpid;
1392         }
1393         return ret;
1394 }
1395
1396 /**
1397  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1398  * @uaddr1:     source futex user address
1399  * @flags:      futex flags (FLAGS_SHARED, etc.)
1400  * @uaddr2:     target futex user address
1401  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1402  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1403  * @cmpval:     @uaddr1 expected value (or %NULL)
1404  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1405  *              pi futex (pi to pi requeue is not supported)
1406  *
1407  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1408  * uaddr2 atomically on behalf of the top waiter.
1409  *
1410  * Return:
1411  * >=0 - on success, the number of tasks requeued or woken;
1412  *  <0 - on error
1413  */
1414 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1415                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1416                          u32 *cmpval, int requeue_pi)
1417 {
1418         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1419         int drop_count = 0, task_count = 0, ret;
1420         struct futex_pi_state *pi_state = NULL;
1421         struct futex_hash_bucket *hb1, *hb2;
1422         struct futex_q *this, *next;
1423
1424         if (requeue_pi) {
1425                 /*
1426                  * requeue_pi requires a pi_state, try to allocate it now
1427                  * without any locks in case it fails.
1428                  */
1429                 if (refill_pi_state_cache())
1430                         return -ENOMEM;
1431                 /*
1432                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1433                  * + nr_requeue, since it acquires the rt_mutex prior to
1434                  * returning to userspace, so as to not leave the rt_mutex with
1435                  * waiters and no owner.  However, second and third wake-ups
1436                  * cannot be predicted as they involve race conditions with the
1437                  * first wake and a fault while looking up the pi_state.  Both
1438                  * pthread_cond_signal() and pthread_cond_broadcast() should
1439                  * use nr_wake=1.
1440                  */
1441                 if (nr_wake != 1)
1442                         return -EINVAL;
1443         }
1444
1445 retry:
1446         if (pi_state != NULL) {
1447                 /*
1448                  * We will have to lookup the pi_state again, so free this one
1449                  * to keep the accounting correct.
1450                  */
1451                 free_pi_state(pi_state);
1452                 pi_state = NULL;
1453         }
1454
1455         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1456         if (unlikely(ret != 0))
1457                 goto out;
1458         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1459                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1460         if (unlikely(ret != 0))
1461                 goto out_put_key1;
1462
1463         hb1 = hash_futex(&key1);
1464         hb2 = hash_futex(&key2);
1465
1466 retry_private:
1467         hb_waiters_inc(hb2);
1468         double_lock_hb(hb1, hb2);
1469
1470         if (likely(cmpval != NULL)) {
1471                 u32 curval;
1472
1473                 ret = get_futex_value_locked(&curval, uaddr1);
1474
1475                 if (unlikely(ret)) {
1476                         double_unlock_hb(hb1, hb2);
1477                         hb_waiters_dec(hb2);
1478
1479                         ret = get_user(curval, uaddr1);
1480                         if (ret)
1481                                 goto out_put_keys;
1482
1483                         if (!(flags & FLAGS_SHARED))
1484                                 goto retry_private;
1485
1486                         put_futex_key(&key2);
1487                         put_futex_key(&key1);
1488                         goto retry;
1489                 }
1490                 if (curval != *cmpval) {
1491                         ret = -EAGAIN;
1492                         goto out_unlock;
1493                 }
1494         }
1495
1496         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1497                 /*
1498                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1499                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1500                  * bit.  We force this here where we are able to easily handle
1501                  * faults rather in the requeue loop below.
1502                  */
1503                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1504                                                  &key2, &pi_state, nr_requeue);
1505
1506                 /*
1507                  * At this point the top_waiter has either taken uaddr2 or is
1508                  * waiting on it.  If the former, then the pi_state will not
1509                  * exist yet, look it up one more time to ensure we have a
1510                  * reference to it. If the lock was taken, ret contains the
1511                  * vpid of the top waiter task.
1512                  */
1513                 if (ret > 0) {
1514                         WARN_ON(pi_state);
1515                         drop_count++;
1516                         task_count++;
1517                         /*
1518                          * If we acquired the lock, then the user
1519                          * space value of uaddr2 should be vpid. It
1520                          * cannot be changed by the top waiter as it
1521                          * is blocked on hb2 lock if it tries to do
1522                          * so. If something fiddled with it behind our
1523                          * back the pi state lookup might unearth
1524                          * it. So we rather use the known value than
1525                          * rereading and handing potential crap to
1526                          * lookup_pi_state.
1527                          */
1528                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1529                 }
1530
1531                 switch (ret) {
1532                 case 0:
1533                         break;
1534                 case -EFAULT:
1535                         double_unlock_hb(hb1, hb2);
1536                         hb_waiters_dec(hb2);
1537                         put_futex_key(&key2);
1538                         put_futex_key(&key1);
1539                         ret = fault_in_user_writeable(uaddr2);
1540                         if (!ret)
1541                                 goto retry;
1542                         goto out;
1543                 case -EAGAIN:
1544                         /* The owner was exiting, try again. */
1545                         double_unlock_hb(hb1, hb2);
1546                         hb_waiters_dec(hb2);
1547                         put_futex_key(&key2);
1548                         put_futex_key(&key1);
1549                         cond_resched();
1550                         goto retry;
1551                 default:
1552                         goto out_unlock;
1553                 }
1554         }
1555
1556         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1557                 if (task_count - nr_wake >= nr_requeue)
1558                         break;
1559
1560                 if (!match_futex(&this->key, &key1))
1561                         continue;
1562
1563                 /*
1564                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1565                  * be paired with each other and no other futex ops.
1566                  *
1567                  * We should never be requeueing a futex_q with a pi_state,
1568                  * which is awaiting a futex_unlock_pi().
1569                  */
1570                 if ((requeue_pi && !this->rt_waiter) ||
1571                     (!requeue_pi && this->rt_waiter) ||
1572                     this->pi_state) {
1573                         ret = -EINVAL;
1574                         break;
1575                 }
1576
1577                 /*
1578                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1579                  * lock, we already woke the top_waiter.  If not, it will be
1580                  * woken by futex_unlock_pi().
1581                  */
1582                 if (++task_count <= nr_wake && !requeue_pi) {
1583                         wake_futex(this);
1584                         continue;
1585                 }
1586
1587                 /* Ensure we requeue to the expected futex for requeue_pi. */
1588                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1589                         ret = -EINVAL;
1590                         break;
1591                 }
1592
1593                 /*
1594                  * Requeue nr_requeue waiters and possibly one more in the case
1595                  * of requeue_pi if we couldn't acquire the lock atomically.
1596                  */
1597                 if (requeue_pi) {
1598                         /* Prepare the waiter to take the rt_mutex. */
1599                         atomic_inc(&pi_state->refcount);
1600                         this->pi_state = pi_state;
1601                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1602                                                         this->rt_waiter,
1603                                                         this->task, 1);
1604                         if (ret == 1) {
1605                                 /* We got the lock. */
1606                                 requeue_pi_wake_futex(this, &key2, hb2);
1607                                 drop_count++;
1608                                 continue;
1609                         } else if (ret) {
1610                                 /* -EDEADLK */
1611                                 this->pi_state = NULL;
1612                                 free_pi_state(pi_state);
1613                                 goto out_unlock;
1614                         }
1615                 }
1616                 requeue_futex(this, hb1, hb2, &key2);
1617                 drop_count++;
1618         }
1619
1620 out_unlock:
1621         double_unlock_hb(hb1, hb2);
1622         hb_waiters_dec(hb2);
1623
1624         /*
1625          * drop_futex_key_refs() must be called outside the spinlocks. During
1626          * the requeue we moved futex_q's from the hash bucket at key1 to the
1627          * one at key2 and updated their key pointer.  We no longer need to
1628          * hold the references to key1.
1629          */
1630         while (--drop_count >= 0)
1631                 drop_futex_key_refs(&key1);
1632
1633 out_put_keys:
1634         put_futex_key(&key2);
1635 out_put_key1:
1636         put_futex_key(&key1);
1637 out:
1638         if (pi_state != NULL)
1639                 free_pi_state(pi_state);
1640         return ret ? ret : task_count;
1641 }
1642
1643 /* The key must be already stored in q->key. */
1644 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1645         __acquires(&hb->lock)
1646 {
1647         struct futex_hash_bucket *hb;
1648
1649         hb = hash_futex(&q->key);
1650
1651         /*
1652          * Increment the counter before taking the lock so that
1653          * a potential waker won't miss a to-be-slept task that is
1654          * waiting for the spinlock. This is safe as all queue_lock()
1655          * users end up calling queue_me(). Similarly, for housekeeping,
1656          * decrement the counter at queue_unlock() when some error has
1657          * occurred and we don't end up adding the task to the list.
1658          */
1659         hb_waiters_inc(hb);
1660
1661         q->lock_ptr = &hb->lock;
1662
1663         spin_lock(&hb->lock); /* implies MB (A) */
1664         return hb;
1665 }
1666
1667 static inline void
1668 queue_unlock(struct futex_hash_bucket *hb)
1669         __releases(&hb->lock)
1670 {
1671         spin_unlock(&hb->lock);
1672         hb_waiters_dec(hb);
1673 }
1674
1675 /**
1676  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1677  * @q:  The futex_q to enqueue
1678  * @hb: The destination hash bucket
1679  *
1680  * The hb->lock must be held by the caller, and is released here. A call to
1681  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1682  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1683  * or nothing if the unqueue is done as part of the wake process and the unqueue
1684  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1685  * an example).
1686  */
1687 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1688         __releases(&hb->lock)
1689 {
1690         int prio;
1691
1692         /*
1693          * The priority used to register this element is
1694          * - either the real thread-priority for the real-time threads
1695          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1696          * - or MAX_RT_PRIO for non-RT threads.
1697          * Thus, all RT-threads are woken first in priority order, and
1698          * the others are woken last, in FIFO order.
1699          */
1700         prio = min(current->normal_prio, MAX_RT_PRIO);
1701
1702         plist_node_init(&q->list, prio);
1703         plist_add(&q->list, &hb->chain);
1704         q->task = current;
1705         spin_unlock(&hb->lock);
1706 }
1707
1708 /**
1709  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1710  * @q:  The futex_q to unqueue
1711  *
1712  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1713  * be paired with exactly one earlier call to queue_me().
1714  *
1715  * Return:
1716  *   1 - if the futex_q was still queued (and we removed unqueued it);
1717  *   0 - if the futex_q was already removed by the waking thread
1718  */
1719 static int unqueue_me(struct futex_q *q)
1720 {
1721         spinlock_t *lock_ptr;
1722         int ret = 0;
1723
1724         /* In the common case we don't take the spinlock, which is nice. */
1725 retry:
1726         lock_ptr = q->lock_ptr;
1727         barrier();
1728         if (lock_ptr != NULL) {
1729                 spin_lock(lock_ptr);
1730                 /*
1731                  * q->lock_ptr can change between reading it and
1732                  * spin_lock(), causing us to take the wrong lock.  This
1733                  * corrects the race condition.
1734                  *
1735                  * Reasoning goes like this: if we have the wrong lock,
1736                  * q->lock_ptr must have changed (maybe several times)
1737                  * between reading it and the spin_lock().  It can
1738                  * change again after the spin_lock() but only if it was
1739                  * already changed before the spin_lock().  It cannot,
1740                  * however, change back to the original value.  Therefore
1741                  * we can detect whether we acquired the correct lock.
1742                  */
1743                 if (unlikely(lock_ptr != q->lock_ptr)) {
1744                         spin_unlock(lock_ptr);
1745                         goto retry;
1746                 }
1747                 __unqueue_futex(q);
1748
1749                 BUG_ON(q->pi_state);
1750
1751                 spin_unlock(lock_ptr);
1752                 ret = 1;
1753         }
1754
1755         drop_futex_key_refs(&q->key);
1756         return ret;
1757 }
1758
1759 /*
1760  * PI futexes can not be requeued and must remove themself from the
1761  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1762  * and dropped here.
1763  */
1764 static void unqueue_me_pi(struct futex_q *q)
1765         __releases(q->lock_ptr)
1766 {
1767         __unqueue_futex(q);
1768
1769         BUG_ON(!q->pi_state);
1770         free_pi_state(q->pi_state);
1771         q->pi_state = NULL;
1772
1773         spin_unlock(q->lock_ptr);
1774 }
1775
1776 /*
1777  * Fixup the pi_state owner with the new owner.
1778  *
1779  * Must be called with hash bucket lock held and mm->sem held for non
1780  * private futexes.
1781  */
1782 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1783                                 struct task_struct *newowner)
1784 {
1785         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1786         struct futex_pi_state *pi_state = q->pi_state;
1787         struct task_struct *oldowner = pi_state->owner;
1788         u32 uval, uninitialized_var(curval), newval;
1789         int ret;
1790
1791         /* Owner died? */
1792         if (!pi_state->owner)
1793                 newtid |= FUTEX_OWNER_DIED;
1794
1795         /*
1796          * We are here either because we stole the rtmutex from the
1797          * previous highest priority waiter or we are the highest priority
1798          * waiter but failed to get the rtmutex the first time.
1799          * We have to replace the newowner TID in the user space variable.
1800          * This must be atomic as we have to preserve the owner died bit here.
1801          *
1802          * Note: We write the user space value _before_ changing the pi_state
1803          * because we can fault here. Imagine swapped out pages or a fork
1804          * that marked all the anonymous memory readonly for cow.
1805          *
1806          * Modifying pi_state _before_ the user space value would
1807          * leave the pi_state in an inconsistent state when we fault
1808          * here, because we need to drop the hash bucket lock to
1809          * handle the fault. This might be observed in the PID check
1810          * in lookup_pi_state.
1811          */
1812 retry:
1813         if (get_futex_value_locked(&uval, uaddr))
1814                 goto handle_fault;
1815
1816         while (1) {
1817                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1818
1819                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1820                         goto handle_fault;
1821                 if (curval == uval)
1822                         break;
1823                 uval = curval;
1824         }
1825
1826         /*
1827          * We fixed up user space. Now we need to fix the pi_state
1828          * itself.
1829          */
1830         if (pi_state->owner != NULL) {
1831                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1832                 WARN_ON(list_empty(&pi_state->list));
1833                 list_del_init(&pi_state->list);
1834                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1835         }
1836
1837         pi_state->owner = newowner;
1838
1839         raw_spin_lock_irq(&newowner->pi_lock);
1840         WARN_ON(!list_empty(&pi_state->list));
1841         list_add(&pi_state->list, &newowner->pi_state_list);
1842         raw_spin_unlock_irq(&newowner->pi_lock);
1843         return 0;
1844
1845         /*
1846          * To handle the page fault we need to drop the hash bucket
1847          * lock here. That gives the other task (either the highest priority
1848          * waiter itself or the task which stole the rtmutex) the
1849          * chance to try the fixup of the pi_state. So once we are
1850          * back from handling the fault we need to check the pi_state
1851          * after reacquiring the hash bucket lock and before trying to
1852          * do another fixup. When the fixup has been done already we
1853          * simply return.
1854          */
1855 handle_fault:
1856         spin_unlock(q->lock_ptr);
1857
1858         ret = fault_in_user_writeable(uaddr);
1859
1860         spin_lock(q->lock_ptr);
1861
1862         /*
1863          * Check if someone else fixed it for us:
1864          */
1865         if (pi_state->owner != oldowner)
1866                 return 0;
1867
1868         if (ret)
1869                 return ret;
1870
1871         goto retry;
1872 }
1873
1874 static long futex_wait_restart(struct restart_block *restart);
1875
1876 /**
1877  * fixup_owner() - Post lock pi_state and corner case management
1878  * @uaddr:      user address of the futex
1879  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1880  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1881  *
1882  * After attempting to lock an rt_mutex, this function is called to cleanup
1883  * the pi_state owner as well as handle race conditions that may allow us to
1884  * acquire the lock. Must be called with the hb lock held.
1885  *
1886  * Return:
1887  *  1 - success, lock taken;
1888  *  0 - success, lock not taken;
1889  * <0 - on error (-EFAULT)
1890  */
1891 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1892 {
1893         struct task_struct *owner;
1894         int ret = 0;
1895
1896         if (locked) {
1897                 /*
1898                  * Got the lock. We might not be the anticipated owner if we
1899                  * did a lock-steal - fix up the PI-state in that case:
1900                  */
1901                 if (q->pi_state->owner != current)
1902                         ret = fixup_pi_state_owner(uaddr, q, current);
1903                 goto out;
1904         }
1905
1906         /*
1907          * Catch the rare case, where the lock was released when we were on the
1908          * way back before we locked the hash bucket.
1909          */
1910         if (q->pi_state->owner == current) {
1911                 /*
1912                  * Try to get the rt_mutex now. This might fail as some other
1913                  * task acquired the rt_mutex after we removed ourself from the
1914                  * rt_mutex waiters list.
1915                  */
1916                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1917                         locked = 1;
1918                         goto out;
1919                 }
1920
1921                 /*
1922                  * pi_state is incorrect, some other task did a lock steal and
1923                  * we returned due to timeout or signal without taking the
1924                  * rt_mutex. Too late.
1925                  */
1926                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1927                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1928                 if (!owner)
1929                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1930                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1931                 ret = fixup_pi_state_owner(uaddr, q, owner);
1932                 goto out;
1933         }
1934
1935         /*
1936          * Paranoia check. If we did not take the lock, then we should not be
1937          * the owner of the rt_mutex.
1938          */
1939         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1940                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1941                                 "pi-state %p\n", ret,
1942                                 q->pi_state->pi_mutex.owner,
1943                                 q->pi_state->owner);
1944
1945 out:
1946         return ret ? ret : locked;
1947 }
1948
1949 /**
1950  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1951  * @hb:         the futex hash bucket, must be locked by the caller
1952  * @q:          the futex_q to queue up on
1953  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1954  */
1955 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1956                                 struct hrtimer_sleeper *timeout)
1957 {
1958         /*
1959          * The task state is guaranteed to be set before another task can
1960          * wake it. set_current_state() is implemented using set_mb() and
1961          * queue_me() calls spin_unlock() upon completion, both serializing
1962          * access to the hash list and forcing another memory barrier.
1963          */
1964         set_current_state(TASK_INTERRUPTIBLE);
1965         queue_me(q, hb);
1966
1967         /* Arm the timer */
1968         if (timeout) {
1969                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1970                 if (!hrtimer_active(&timeout->timer))
1971                         timeout->task = NULL;
1972         }
1973
1974         /*
1975          * If we have been removed from the hash list, then another task
1976          * has tried to wake us, and we can skip the call to schedule().
1977          */
1978         if (likely(!plist_node_empty(&q->list))) {
1979                 /*
1980                  * If the timer has already expired, current will already be
1981                  * flagged for rescheduling. Only call schedule if there
1982                  * is no timeout, or if it has yet to expire.
1983                  */
1984                 if (!timeout || timeout->task)
1985                         freezable_schedule();
1986         }
1987         __set_current_state(TASK_RUNNING);
1988 }
1989
1990 /**
1991  * futex_wait_setup() - Prepare to wait on a futex
1992  * @uaddr:      the futex userspace address
1993  * @val:        the expected value
1994  * @flags:      futex flags (FLAGS_SHARED, etc.)
1995  * @q:          the associated futex_q
1996  * @hb:         storage for hash_bucket pointer to be returned to caller
1997  *
1998  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1999  * compare it with the expected value.  Handle atomic faults internally.
2000  * Return with the hb lock held and a q.key reference on success, and unlocked
2001  * with no q.key reference on failure.
2002  *
2003  * Return:
2004  *  0 - uaddr contains val and hb has been locked;
2005  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2006  */
2007 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2008                            struct futex_q *q, struct futex_hash_bucket **hb)
2009 {
2010         u32 uval;
2011         int ret;
2012
2013         /*
2014          * Access the page AFTER the hash-bucket is locked.
2015          * Order is important:
2016          *
2017          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2018          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2019          *
2020          * The basic logical guarantee of a futex is that it blocks ONLY
2021          * if cond(var) is known to be true at the time of blocking, for
2022          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2023          * would open a race condition where we could block indefinitely with
2024          * cond(var) false, which would violate the guarantee.
2025          *
2026          * On the other hand, we insert q and release the hash-bucket only
2027          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2028          * absorb a wakeup if *uaddr does not match the desired values
2029          * while the syscall executes.
2030          */
2031 retry:
2032         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2033         if (unlikely(ret != 0))
2034                 return ret;
2035
2036 retry_private:
2037         *hb = queue_lock(q);
2038
2039         ret = get_futex_value_locked(&uval, uaddr);
2040
2041         if (ret) {
2042                 queue_unlock(*hb);
2043
2044                 ret = get_user(uval, uaddr);
2045                 if (ret)
2046                         goto out;
2047
2048                 if (!(flags & FLAGS_SHARED))
2049                         goto retry_private;
2050
2051                 put_futex_key(&q->key);
2052                 goto retry;
2053         }
2054
2055         if (uval != val) {
2056                 queue_unlock(*hb);
2057                 ret = -EWOULDBLOCK;
2058         }
2059
2060 out:
2061         if (ret)
2062                 put_futex_key(&q->key);
2063         return ret;
2064 }
2065
2066 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2067                       ktime_t *abs_time, u32 bitset)
2068 {
2069         struct hrtimer_sleeper timeout, *to = NULL;
2070         struct restart_block *restart;
2071         struct futex_hash_bucket *hb;
2072         struct futex_q q = futex_q_init;
2073         int ret;
2074
2075         if (!bitset)
2076                 return -EINVAL;
2077         q.bitset = bitset;
2078
2079         if (abs_time) {
2080                 to = &timeout;
2081
2082                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2083                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2084                                       HRTIMER_MODE_ABS);
2085                 hrtimer_init_sleeper(to, current);
2086                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2087                                              current->timer_slack_ns);
2088         }
2089
2090 retry:
2091         /*
2092          * Prepare to wait on uaddr. On success, holds hb lock and increments
2093          * q.key refs.
2094          */
2095         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2096         if (ret)
2097                 goto out;
2098
2099         /* queue_me and wait for wakeup, timeout, or a signal. */
2100         futex_wait_queue_me(hb, &q, to);
2101
2102         /* If we were woken (and unqueued), we succeeded, whatever. */
2103         ret = 0;
2104         /* unqueue_me() drops q.key ref */
2105         if (!unqueue_me(&q))
2106                 goto out;
2107         ret = -ETIMEDOUT;
2108         if (to && !to->task)
2109                 goto out;
2110
2111         /*
2112          * We expect signal_pending(current), but we might be the
2113          * victim of a spurious wakeup as well.
2114          */
2115         if (!signal_pending(current))
2116                 goto retry;
2117
2118         ret = -ERESTARTSYS;
2119         if (!abs_time)
2120                 goto out;
2121
2122         restart = &current_thread_info()->restart_block;
2123         restart->fn = futex_wait_restart;
2124         restart->futex.uaddr = uaddr;
2125         restart->futex.val = val;
2126         restart->futex.time = abs_time->tv64;
2127         restart->futex.bitset = bitset;
2128         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2129
2130         ret = -ERESTART_RESTARTBLOCK;
2131
2132 out:
2133         if (to) {
2134                 hrtimer_cancel(&to->timer);
2135                 destroy_hrtimer_on_stack(&to->timer);
2136         }
2137         return ret;
2138 }
2139
2140
2141 static long futex_wait_restart(struct restart_block *restart)
2142 {
2143         u32 __user *uaddr = restart->futex.uaddr;
2144         ktime_t t, *tp = NULL;
2145
2146         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2147                 t.tv64 = restart->futex.time;
2148                 tp = &t;
2149         }
2150         restart->fn = do_no_restart_syscall;
2151
2152         return (long)futex_wait(uaddr, restart->futex.flags,
2153                                 restart->futex.val, tp, restart->futex.bitset);
2154 }
2155
2156
2157 /*
2158  * Userspace tried a 0 -> TID atomic transition of the futex value
2159  * and failed. The kernel side here does the whole locking operation:
2160  * if there are waiters then it will block, it does PI, etc. (Due to
2161  * races the kernel might see a 0 value of the futex too.)
2162  */
2163 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2164                          ktime_t *time, int trylock)
2165 {
2166         struct hrtimer_sleeper timeout, *to = NULL;
2167         struct futex_hash_bucket *hb;
2168         struct futex_q q = futex_q_init;
2169         int res, ret;
2170
2171         if (refill_pi_state_cache())
2172                 return -ENOMEM;
2173
2174         if (time) {
2175                 to = &timeout;
2176                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2177                                       HRTIMER_MODE_ABS);
2178                 hrtimer_init_sleeper(to, current);
2179                 hrtimer_set_expires(&to->timer, *time);
2180         }
2181
2182 retry:
2183         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2184         if (unlikely(ret != 0))
2185                 goto out;
2186
2187 retry_private:
2188         hb = queue_lock(&q);
2189
2190         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2191         if (unlikely(ret)) {
2192                 switch (ret) {
2193                 case 1:
2194                         /* We got the lock. */
2195                         ret = 0;
2196                         goto out_unlock_put_key;
2197                 case -EFAULT:
2198                         goto uaddr_faulted;
2199                 case -EAGAIN:
2200                         /*
2201                          * Task is exiting and we just wait for the
2202                          * exit to complete.
2203                          */
2204                         queue_unlock(hb);
2205                         put_futex_key(&q.key);
2206                         cond_resched();
2207                         goto retry;
2208                 default:
2209                         goto out_unlock_put_key;
2210                 }
2211         }
2212
2213         /*
2214          * Only actually queue now that the atomic ops are done:
2215          */
2216         queue_me(&q, hb);
2217
2218         WARN_ON(!q.pi_state);
2219         /*
2220          * Block on the PI mutex:
2221          */
2222         if (!trylock)
2223                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2224         else {
2225                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2226                 /* Fixup the trylock return value: */
2227                 ret = ret ? 0 : -EWOULDBLOCK;
2228         }
2229
2230         spin_lock(q.lock_ptr);
2231         /*
2232          * Fixup the pi_state owner and possibly acquire the lock if we
2233          * haven't already.
2234          */
2235         res = fixup_owner(uaddr, &q, !ret);
2236         /*
2237          * If fixup_owner() returned an error, proprogate that.  If it acquired
2238          * the lock, clear our -ETIMEDOUT or -EINTR.
2239          */
2240         if (res)
2241                 ret = (res < 0) ? res : 0;
2242
2243         /*
2244          * If fixup_owner() faulted and was unable to handle the fault, unlock
2245          * it and return the fault to userspace.
2246          */
2247         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2248                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2249
2250         /* Unqueue and drop the lock */
2251         unqueue_me_pi(&q);
2252
2253         goto out_put_key;
2254
2255 out_unlock_put_key:
2256         queue_unlock(hb);
2257
2258 out_put_key:
2259         put_futex_key(&q.key);
2260 out:
2261         if (to)
2262                 destroy_hrtimer_on_stack(&to->timer);
2263         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2264
2265 uaddr_faulted:
2266         queue_unlock(hb);
2267
2268         ret = fault_in_user_writeable(uaddr);
2269         if (ret)
2270                 goto out_put_key;
2271
2272         if (!(flags & FLAGS_SHARED))
2273                 goto retry_private;
2274
2275         put_futex_key(&q.key);
2276         goto retry;
2277 }
2278
2279 /*
2280  * Userspace attempted a TID -> 0 atomic transition, and failed.
2281  * This is the in-kernel slowpath: we look up the PI state (if any),
2282  * and do the rt-mutex unlock.
2283  */
2284 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2285 {
2286         struct futex_hash_bucket *hb;
2287         struct futex_q *this, *next;
2288         union futex_key key = FUTEX_KEY_INIT;
2289         u32 uval, vpid = task_pid_vnr(current);
2290         int ret;
2291
2292 retry:
2293         if (get_user(uval, uaddr))
2294                 return -EFAULT;
2295         /*
2296          * We release only a lock we actually own:
2297          */
2298         if ((uval & FUTEX_TID_MASK) != vpid)
2299                 return -EPERM;
2300
2301         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2302         if (unlikely(ret != 0))
2303                 goto out;
2304
2305         hb = hash_futex(&key);
2306         spin_lock(&hb->lock);
2307
2308         /*
2309          * To avoid races, try to do the TID -> 0 atomic transition
2310          * again. If it succeeds then we can return without waking
2311          * anyone else up:
2312          */
2313         if (!(uval & FUTEX_OWNER_DIED) &&
2314             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2315                 goto pi_faulted;
2316         /*
2317          * Rare case: we managed to release the lock atomically,
2318          * no need to wake anyone else up:
2319          */
2320         if (unlikely(uval == vpid))
2321                 goto out_unlock;
2322
2323         /*
2324          * Ok, other tasks may need to be woken up - check waiters
2325          * and do the wakeup if necessary:
2326          */
2327         plist_for_each_entry_safe(this, next, &hb->chain, list) {
2328                 if (!match_futex (&this->key, &key))
2329                         continue;
2330                 ret = wake_futex_pi(uaddr, uval, this);
2331                 /*
2332                  * The atomic access to the futex value
2333                  * generated a pagefault, so retry the
2334                  * user-access and the wakeup:
2335                  */
2336                 if (ret == -EFAULT)
2337                         goto pi_faulted;
2338                 goto out_unlock;
2339         }
2340         /*
2341          * No waiters - kernel unlocks the futex:
2342          */
2343         if (!(uval & FUTEX_OWNER_DIED)) {
2344                 ret = unlock_futex_pi(uaddr, uval);
2345                 if (ret == -EFAULT)
2346                         goto pi_faulted;
2347         }
2348
2349 out_unlock:
2350         spin_unlock(&hb->lock);
2351         put_futex_key(&key);
2352
2353 out:
2354         return ret;
2355
2356 pi_faulted:
2357         spin_unlock(&hb->lock);
2358         put_futex_key(&key);
2359
2360         ret = fault_in_user_writeable(uaddr);
2361         if (!ret)
2362                 goto retry;
2363
2364         return ret;
2365 }
2366
2367 /**
2368  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2369  * @hb:         the hash_bucket futex_q was original enqueued on
2370  * @q:          the futex_q woken while waiting to be requeued
2371  * @key2:       the futex_key of the requeue target futex
2372  * @timeout:    the timeout associated with the wait (NULL if none)
2373  *
2374  * Detect if the task was woken on the initial futex as opposed to the requeue
2375  * target futex.  If so, determine if it was a timeout or a signal that caused
2376  * the wakeup and return the appropriate error code to the caller.  Must be
2377  * called with the hb lock held.
2378  *
2379  * Return:
2380  *  0 = no early wakeup detected;
2381  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2382  */
2383 static inline
2384 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2385                                    struct futex_q *q, union futex_key *key2,
2386                                    struct hrtimer_sleeper *timeout)
2387 {
2388         int ret = 0;
2389
2390         /*
2391          * With the hb lock held, we avoid races while we process the wakeup.
2392          * We only need to hold hb (and not hb2) to ensure atomicity as the
2393          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2394          * It can't be requeued from uaddr2 to something else since we don't
2395          * support a PI aware source futex for requeue.
2396          */
2397         if (!match_futex(&q->key, key2)) {
2398                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2399                 /*
2400                  * We were woken prior to requeue by a timeout or a signal.
2401                  * Unqueue the futex_q and determine which it was.
2402                  */
2403                 plist_del(&q->list, &hb->chain);
2404                 hb_waiters_dec(hb);
2405
2406                 /* Handle spurious wakeups gracefully */
2407                 ret = -EWOULDBLOCK;
2408                 if (timeout && !timeout->task)
2409                         ret = -ETIMEDOUT;
2410                 else if (signal_pending(current))
2411                         ret = -ERESTARTNOINTR;
2412         }
2413         return ret;
2414 }
2415
2416 /**
2417  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2418  * @uaddr:      the futex we initially wait on (non-pi)
2419  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2420  *              the same type, no requeueing from private to shared, etc.
2421  * @val:        the expected value of uaddr
2422  * @abs_time:   absolute timeout
2423  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2424  * @uaddr2:     the pi futex we will take prior to returning to user-space
2425  *
2426  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2427  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2428  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2429  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2430  * without one, the pi logic would not know which task to boost/deboost, if
2431  * there was a need to.
2432  *
2433  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2434  * via the following--
2435  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2436  * 2) wakeup on uaddr2 after a requeue
2437  * 3) signal
2438  * 4) timeout
2439  *
2440  * If 3, cleanup and return -ERESTARTNOINTR.
2441  *
2442  * If 2, we may then block on trying to take the rt_mutex and return via:
2443  * 5) successful lock
2444  * 6) signal
2445  * 7) timeout
2446  * 8) other lock acquisition failure
2447  *
2448  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2449  *
2450  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2451  *
2452  * Return:
2453  *  0 - On success;
2454  * <0 - On error
2455  */
2456 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2457                                  u32 val, ktime_t *abs_time, u32 bitset,
2458                                  u32 __user *uaddr2)
2459 {
2460         struct hrtimer_sleeper timeout, *to = NULL;
2461         struct rt_mutex_waiter rt_waiter;
2462         struct rt_mutex *pi_mutex = NULL;
2463         struct futex_hash_bucket *hb;
2464         union futex_key key2 = FUTEX_KEY_INIT;
2465         struct futex_q q = futex_q_init;
2466         int res, ret;
2467
2468         if (uaddr == uaddr2)
2469                 return -EINVAL;
2470
2471         if (!bitset)
2472                 return -EINVAL;
2473
2474         if (abs_time) {
2475                 to = &timeout;
2476                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2477                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2478                                       HRTIMER_MODE_ABS);
2479                 hrtimer_init_sleeper(to, current);
2480                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2481                                              current->timer_slack_ns);
2482         }
2483
2484         /*
2485          * The waiter is allocated on our stack, manipulated by the requeue
2486          * code while we sleep on uaddr.
2487          */
2488         debug_rt_mutex_init_waiter(&rt_waiter);
2489         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2490         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2491         rt_waiter.task = NULL;
2492
2493         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2494         if (unlikely(ret != 0))
2495                 goto out;
2496
2497         q.bitset = bitset;
2498         q.rt_waiter = &rt_waiter;
2499         q.requeue_pi_key = &key2;
2500
2501         /*
2502          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2503          * count.
2504          */
2505         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2506         if (ret)
2507                 goto out_key2;
2508
2509         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2510         futex_wait_queue_me(hb, &q, to);
2511
2512         spin_lock(&hb->lock);
2513         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2514         spin_unlock(&hb->lock);
2515         if (ret)
2516                 goto out_put_keys;
2517
2518         /*
2519          * In order for us to be here, we know our q.key == key2, and since
2520          * we took the hb->lock above, we also know that futex_requeue() has
2521          * completed and we no longer have to concern ourselves with a wakeup
2522          * race with the atomic proxy lock acquisition by the requeue code. The
2523          * futex_requeue dropped our key1 reference and incremented our key2
2524          * reference count.
2525          */
2526
2527         /* Check if the requeue code acquired the second futex for us. */
2528         if (!q.rt_waiter) {
2529                 /*
2530                  * Got the lock. We might not be the anticipated owner if we
2531                  * did a lock-steal - fix up the PI-state in that case.
2532                  */
2533                 if (q.pi_state && (q.pi_state->owner != current)) {
2534                         spin_lock(q.lock_ptr);
2535                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2536                         spin_unlock(q.lock_ptr);
2537                 }
2538         } else {
2539                 /*
2540                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2541                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2542                  * the pi_state.
2543                  */
2544                 WARN_ON(!q.pi_state);
2545                 pi_mutex = &q.pi_state->pi_mutex;
2546                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2547                 debug_rt_mutex_free_waiter(&rt_waiter);
2548
2549                 spin_lock(q.lock_ptr);
2550                 /*
2551                  * Fixup the pi_state owner and possibly acquire the lock if we
2552                  * haven't already.
2553                  */
2554                 res = fixup_owner(uaddr2, &q, !ret);
2555                 /*
2556                  * If fixup_owner() returned an error, proprogate that.  If it
2557                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2558                  */
2559                 if (res)
2560                         ret = (res < 0) ? res : 0;
2561
2562                 /* Unqueue and drop the lock. */
2563                 unqueue_me_pi(&q);
2564         }
2565
2566         /*
2567          * If fixup_pi_state_owner() faulted and was unable to handle the
2568          * fault, unlock the rt_mutex and return the fault to userspace.
2569          */
2570         if (ret == -EFAULT) {
2571                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2572                         rt_mutex_unlock(pi_mutex);
2573         } else if (ret == -EINTR) {
2574                 /*
2575                  * We've already been requeued, but cannot restart by calling
2576                  * futex_lock_pi() directly. We could restart this syscall, but
2577                  * it would detect that the user space "val" changed and return
2578                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2579                  * -EWOULDBLOCK directly.
2580                  */
2581                 ret = -EWOULDBLOCK;
2582         }
2583
2584 out_put_keys:
2585         put_futex_key(&q.key);
2586 out_key2:
2587         put_futex_key(&key2);
2588
2589 out:
2590         if (to) {
2591                 hrtimer_cancel(&to->timer);
2592                 destroy_hrtimer_on_stack(&to->timer);
2593         }
2594         return ret;
2595 }
2596
2597 /*
2598  * Support for robust futexes: the kernel cleans up held futexes at
2599  * thread exit time.
2600  *
2601  * Implementation: user-space maintains a per-thread list of locks it
2602  * is holding. Upon do_exit(), the kernel carefully walks this list,
2603  * and marks all locks that are owned by this thread with the
2604  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2605  * always manipulated with the lock held, so the list is private and
2606  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2607  * field, to allow the kernel to clean up if the thread dies after
2608  * acquiring the lock, but just before it could have added itself to
2609  * the list. There can only be one such pending lock.
2610  */
2611
2612 /**
2613  * sys_set_robust_list() - Set the robust-futex list head of a task
2614  * @head:       pointer to the list-head
2615  * @len:        length of the list-head, as userspace expects
2616  */
2617 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2618                 size_t, len)
2619 {
2620         if (!futex_cmpxchg_enabled)
2621                 return -ENOSYS;
2622         /*
2623          * The kernel knows only one size for now:
2624          */
2625         if (unlikely(len != sizeof(*head)))
2626                 return -EINVAL;
2627
2628         current->robust_list = head;
2629
2630         return 0;
2631 }
2632
2633 /**
2634  * sys_get_robust_list() - Get the robust-futex list head of a task
2635  * @pid:        pid of the process [zero for current task]
2636  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2637  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2638  */
2639 SYSCALL_DEFINE3(get_robust_list, int, pid,
2640                 struct robust_list_head __user * __user *, head_ptr,
2641                 size_t __user *, len_ptr)
2642 {
2643         struct robust_list_head __user *head;
2644         unsigned long ret;
2645         struct task_struct *p;
2646
2647         if (!futex_cmpxchg_enabled)
2648                 return -ENOSYS;
2649
2650         rcu_read_lock();
2651
2652         ret = -ESRCH;
2653         if (!pid)
2654                 p = current;
2655         else {
2656                 p = find_task_by_vpid(pid);
2657                 if (!p)
2658                         goto err_unlock;
2659         }
2660
2661         ret = -EPERM;
2662         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2663                 goto err_unlock;
2664
2665         head = p->robust_list;
2666         rcu_read_unlock();
2667
2668         if (put_user(sizeof(*head), len_ptr))
2669                 return -EFAULT;
2670         return put_user(head, head_ptr);
2671
2672 err_unlock:
2673         rcu_read_unlock();
2674
2675         return ret;
2676 }
2677
2678 /*
2679  * Process a futex-list entry, check whether it's owned by the
2680  * dying task, and do notification if so:
2681  */
2682 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2683 {
2684         u32 uval, uninitialized_var(nval), mval;
2685
2686 retry:
2687         if (get_user(uval, uaddr))
2688                 return -1;
2689
2690         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2691                 /*
2692                  * Ok, this dying thread is truly holding a futex
2693                  * of interest. Set the OWNER_DIED bit atomically
2694                  * via cmpxchg, and if the value had FUTEX_WAITERS
2695                  * set, wake up a waiter (if any). (We have to do a
2696                  * futex_wake() even if OWNER_DIED is already set -
2697                  * to handle the rare but possible case of recursive
2698                  * thread-death.) The rest of the cleanup is done in
2699                  * userspace.
2700                  */
2701                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2702                 /*
2703                  * We are not holding a lock here, but we want to have
2704                  * the pagefault_disable/enable() protection because
2705                  * we want to handle the fault gracefully. If the
2706                  * access fails we try to fault in the futex with R/W
2707                  * verification via get_user_pages. get_user() above
2708                  * does not guarantee R/W access. If that fails we
2709                  * give up and leave the futex locked.
2710                  */
2711                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2712                         if (fault_in_user_writeable(uaddr))
2713                                 return -1;
2714                         goto retry;
2715                 }
2716                 if (nval != uval)
2717                         goto retry;
2718
2719                 /*
2720                  * Wake robust non-PI futexes here. The wakeup of
2721                  * PI futexes happens in exit_pi_state():
2722                  */
2723                 if (!pi && (uval & FUTEX_WAITERS))
2724                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2725         }
2726         return 0;
2727 }
2728
2729 /*
2730  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2731  */
2732 static inline int fetch_robust_entry(struct robust_list __user **entry,
2733                                      struct robust_list __user * __user *head,
2734                                      unsigned int *pi)
2735 {
2736         unsigned long uentry;
2737
2738         if (get_user(uentry, (unsigned long __user *)head))
2739                 return -EFAULT;
2740
2741         *entry = (void __user *)(uentry & ~1UL);
2742         *pi = uentry & 1;
2743
2744         return 0;
2745 }
2746
2747 /*
2748  * Walk curr->robust_list (very carefully, it's a userspace list!)
2749  * and mark any locks found there dead, and notify any waiters.
2750  *
2751  * We silently return on any sign of list-walking problem.
2752  */
2753 void exit_robust_list(struct task_struct *curr)
2754 {
2755         struct robust_list_head __user *head = curr->robust_list;
2756         struct robust_list __user *entry, *next_entry, *pending;
2757         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2758         unsigned int uninitialized_var(next_pi);
2759         unsigned long futex_offset;
2760         int rc;
2761
2762         if (!futex_cmpxchg_enabled)
2763                 return;
2764
2765         /*
2766          * Fetch the list head (which was registered earlier, via
2767          * sys_set_robust_list()):
2768          */
2769         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2770                 return;
2771         /*
2772          * Fetch the relative futex offset:
2773          */
2774         if (get_user(futex_offset, &head->futex_offset))
2775                 return;
2776         /*
2777          * Fetch any possibly pending lock-add first, and handle it
2778          * if it exists:
2779          */
2780         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2781                 return;
2782
2783         next_entry = NULL;      /* avoid warning with gcc */
2784         while (entry != &head->list) {
2785                 /*
2786                  * Fetch the next entry in the list before calling
2787                  * handle_futex_death:
2788                  */
2789                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2790                 /*
2791                  * A pending lock might already be on the list, so
2792                  * don't process it twice:
2793                  */
2794                 if (entry != pending)
2795                         if (handle_futex_death((void __user *)entry + futex_offset,
2796                                                 curr, pi))
2797                                 return;
2798                 if (rc)
2799                         return;
2800                 entry = next_entry;
2801                 pi = next_pi;
2802                 /*
2803                  * Avoid excessively long or circular lists:
2804                  */
2805                 if (!--limit)
2806                         break;
2807
2808                 cond_resched();
2809         }
2810
2811         if (pending)
2812                 handle_futex_death((void __user *)pending + futex_offset,
2813                                    curr, pip);
2814 }
2815
2816 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2817                 u32 __user *uaddr2, u32 val2, u32 val3)
2818 {
2819         int cmd = op & FUTEX_CMD_MASK;
2820         unsigned int flags = 0;
2821
2822         if (!(op & FUTEX_PRIVATE_FLAG))
2823                 flags |= FLAGS_SHARED;
2824
2825         if (op & FUTEX_CLOCK_REALTIME) {
2826                 flags |= FLAGS_CLOCKRT;
2827                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2828                         return -ENOSYS;
2829         }
2830
2831         switch (cmd) {
2832         case FUTEX_LOCK_PI:
2833         case FUTEX_UNLOCK_PI:
2834         case FUTEX_TRYLOCK_PI:
2835         case FUTEX_WAIT_REQUEUE_PI:
2836         case FUTEX_CMP_REQUEUE_PI:
2837                 if (!futex_cmpxchg_enabled)
2838                         return -ENOSYS;
2839         }
2840
2841         switch (cmd) {
2842         case FUTEX_WAIT:
2843                 val3 = FUTEX_BITSET_MATCH_ANY;
2844         case FUTEX_WAIT_BITSET:
2845                 return futex_wait(uaddr, flags, val, timeout, val3);
2846         case FUTEX_WAKE:
2847                 val3 = FUTEX_BITSET_MATCH_ANY;
2848         case FUTEX_WAKE_BITSET:
2849                 return futex_wake(uaddr, flags, val, val3);
2850         case FUTEX_REQUEUE:
2851                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2852         case FUTEX_CMP_REQUEUE:
2853                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2854         case FUTEX_WAKE_OP:
2855                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2856         case FUTEX_LOCK_PI:
2857                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2858         case FUTEX_UNLOCK_PI:
2859                 return futex_unlock_pi(uaddr, flags);
2860         case FUTEX_TRYLOCK_PI:
2861                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2862         case FUTEX_WAIT_REQUEUE_PI:
2863                 val3 = FUTEX_BITSET_MATCH_ANY;
2864                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2865                                              uaddr2);
2866         case FUTEX_CMP_REQUEUE_PI:
2867                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2868         }
2869         return -ENOSYS;
2870 }
2871
2872
2873 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2874                 struct timespec __user *, utime, u32 __user *, uaddr2,
2875                 u32, val3)
2876 {
2877         struct timespec ts;
2878         ktime_t t, *tp = NULL;
2879         u32 val2 = 0;
2880         int cmd = op & FUTEX_CMD_MASK;
2881
2882         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2883                       cmd == FUTEX_WAIT_BITSET ||
2884                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2885                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2886                         return -EFAULT;
2887                 if (!timespec_valid(&ts))
2888                         return -EINVAL;
2889
2890                 t = timespec_to_ktime(ts);
2891                 if (cmd == FUTEX_WAIT)
2892                         t = ktime_add_safe(ktime_get(), t);
2893                 tp = &t;
2894         }
2895         /*
2896          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2897          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2898          */
2899         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2900             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2901                 val2 = (u32) (unsigned long) utime;
2902
2903         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2904 }
2905
2906 static void __init futex_detect_cmpxchg(void)
2907 {
2908 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2909         u32 curval;
2910
2911         /*
2912          * This will fail and we want it. Some arch implementations do
2913          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2914          * functionality. We want to know that before we call in any
2915          * of the complex code paths. Also we want to prevent
2916          * registration of robust lists in that case. NULL is
2917          * guaranteed to fault and we get -EFAULT on functional
2918          * implementation, the non-functional ones will return
2919          * -ENOSYS.
2920          */
2921         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2922                 futex_cmpxchg_enabled = 1;
2923 #endif
2924 }
2925
2926 static int __init futex_init(void)
2927 {
2928         unsigned int futex_shift;
2929         unsigned long i;
2930
2931 #if CONFIG_BASE_SMALL
2932         futex_hashsize = 16;
2933 #else
2934         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2935 #endif
2936
2937         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2938                                                futex_hashsize, 0,
2939                                                futex_hashsize < 256 ? HASH_SMALL : 0,
2940                                                &futex_shift, NULL,
2941                                                futex_hashsize, futex_hashsize);
2942         futex_hashsize = 1UL << futex_shift;
2943
2944         futex_detect_cmpxchg();
2945
2946         for (i = 0; i < futex_hashsize; i++) {
2947                 atomic_set(&futex_queues[i].waiters, 0);
2948                 plist_head_init(&futex_queues[i].chain);
2949                 spin_lock_init(&futex_queues[i].lock);
2950         }
2951
2952         return 0;
2953 }
2954 __initcall(futex_init);