Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[platform/kernel/linux-rpi.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
59
60 #include <asm/futex.h>
61
62 #include "locking/rtmutex_common.h"
63
64 /*
65  * READ this before attempting to hack on futexes!
66  *
67  * Basic futex operation and ordering guarantees
68  * =============================================
69  *
70  * The waiter reads the futex value in user space and calls
71  * futex_wait(). This function computes the hash bucket and acquires
72  * the hash bucket lock. After that it reads the futex user space value
73  * again and verifies that the data has not changed. If it has not changed
74  * it enqueues itself into the hash bucket, releases the hash bucket lock
75  * and schedules.
76  *
77  * The waker side modifies the user space value of the futex and calls
78  * futex_wake(). This function computes the hash bucket and acquires the
79  * hash bucket lock. Then it looks for waiters on that futex in the hash
80  * bucket and wakes them.
81  *
82  * In futex wake up scenarios where no tasks are blocked on a futex, taking
83  * the hb spinlock can be avoided and simply return. In order for this
84  * optimization to work, ordering guarantees must exist so that the waiter
85  * being added to the list is acknowledged when the list is concurrently being
86  * checked by the waker, avoiding scenarios like the following:
87  *
88  * CPU 0                               CPU 1
89  * val = *futex;
90  * sys_futex(WAIT, futex, val);
91  *   futex_wait(futex, val);
92  *   uval = *futex;
93  *                                     *futex = newval;
94  *                                     sys_futex(WAKE, futex);
95  *                                       futex_wake(futex);
96  *                                       if (queue_empty())
97  *                                         return;
98  *   if (uval == val)
99  *      lock(hash_bucket(futex));
100  *      queue();
101  *     unlock(hash_bucket(futex));
102  *     schedule();
103  *
104  * This would cause the waiter on CPU 0 to wait forever because it
105  * missed the transition of the user space value from val to newval
106  * and the waker did not find the waiter in the hash bucket queue.
107  *
108  * The correct serialization ensures that a waiter either observes
109  * the changed user space value before blocking or is woken by a
110  * concurrent waker:
111  *
112  * CPU 0                                 CPU 1
113  * val = *futex;
114  * sys_futex(WAIT, futex, val);
115  *   futex_wait(futex, val);
116  *
117  *   waiters++; (a)
118  *   smp_mb(); (A) <-- paired with -.
119  *                                  |
120  *   lock(hash_bucket(futex));      |
121  *                                  |
122  *   uval = *futex;                 |
123  *                                  |        *futex = newval;
124  *                                  |        sys_futex(WAKE, futex);
125  *                                  |          futex_wake(futex);
126  *                                  |
127  *                                  `--------> smp_mb(); (B)
128  *   if (uval == val)
129  *     queue();
130  *     unlock(hash_bucket(futex));
131  *     schedule();                         if (waiters)
132  *                                           lock(hash_bucket(futex));
133  *   else                                    wake_waiters(futex);
134  *     waiters--; (b)                        unlock(hash_bucket(futex));
135  *
136  * Where (A) orders the waiters increment and the futex value read through
137  * atomic operations (see hb_waiters_inc) and where (B) orders the write
138  * to futex and the waiters read -- this is done by the barriers for both
139  * shared and private futexes in get_futex_key_refs().
140  *
141  * This yields the following case (where X:=waiters, Y:=futex):
142  *
143  *      X = Y = 0
144  *
145  *      w[X]=1          w[Y]=1
146  *      MB              MB
147  *      r[Y]=y          r[X]=x
148  *
149  * Which guarantees that x==0 && y==0 is impossible; which translates back into
150  * the guarantee that we cannot both miss the futex variable change and the
151  * enqueue.
152  *
153  * Note that a new waiter is accounted for in (a) even when it is possible that
154  * the wait call can return error, in which case we backtrack from it in (b).
155  * Refer to the comment in queue_lock().
156  *
157  * Similarly, in order to account for waiters being requeued on another
158  * address we always increment the waiters for the destination bucket before
159  * acquiring the lock. It then decrements them again  after releasing it -
160  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161  * will do the additional required waiter count housekeeping. This is done for
162  * double_lock_hb() and double_unlock_hb(), respectively.
163  */
164
165 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166 #define futex_cmpxchg_enabled 1
167 #else
168 static int  __read_mostly futex_cmpxchg_enabled;
169 #endif
170
171 /*
172  * Futex flags used to encode options to functions and preserve them across
173  * restarts.
174  */
175 #ifdef CONFIG_MMU
176 # define FLAGS_SHARED           0x01
177 #else
178 /*
179  * NOMMU does not have per process address space. Let the compiler optimize
180  * code away.
181  */
182 # define FLAGS_SHARED           0x00
183 #endif
184 #define FLAGS_CLOCKRT           0x02
185 #define FLAGS_HAS_TIMEOUT       0x04
186
187 /*
188  * Priority Inheritance state:
189  */
190 struct futex_pi_state {
191         /*
192          * list of 'owned' pi_state instances - these have to be
193          * cleaned up in do_exit() if the task exits prematurely:
194          */
195         struct list_head list;
196
197         /*
198          * The PI object:
199          */
200         struct rt_mutex pi_mutex;
201
202         struct task_struct *owner;
203         refcount_t refcount;
204
205         union futex_key key;
206 } __randomize_layout;
207
208 /**
209  * struct futex_q - The hashed futex queue entry, one per waiting task
210  * @list:               priority-sorted list of tasks waiting on this futex
211  * @task:               the task waiting on the futex
212  * @lock_ptr:           the hash bucket lock
213  * @key:                the key the futex is hashed on
214  * @pi_state:           optional priority inheritance state
215  * @rt_waiter:          rt_waiter storage for use with requeue_pi
216  * @requeue_pi_key:     the requeue_pi target futex key
217  * @bitset:             bitset for the optional bitmasked wakeup
218  *
219  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
220  * we can wake only the relevant ones (hashed queues may be shared).
221  *
222  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
223  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224  * The order of wakeup is always to make the first condition true, then
225  * the second.
226  *
227  * PI futexes are typically woken before they are removed from the hash list via
228  * the rt_mutex code. See unqueue_me_pi().
229  */
230 struct futex_q {
231         struct plist_node list;
232
233         struct task_struct *task;
234         spinlock_t *lock_ptr;
235         union futex_key key;
236         struct futex_pi_state *pi_state;
237         struct rt_mutex_waiter *rt_waiter;
238         union futex_key *requeue_pi_key;
239         u32 bitset;
240 } __randomize_layout;
241
242 static const struct futex_q futex_q_init = {
243         /* list gets initialized in queue_me()*/
244         .key = FUTEX_KEY_INIT,
245         .bitset = FUTEX_BITSET_MATCH_ANY
246 };
247
248 /*
249  * Hash buckets are shared by all the futex_keys that hash to the same
250  * location.  Each key may have multiple futex_q structures, one for each task
251  * waiting on a futex.
252  */
253 struct futex_hash_bucket {
254         atomic_t waiters;
255         spinlock_t lock;
256         struct plist_head chain;
257 } ____cacheline_aligned_in_smp;
258
259 /*
260  * The base of the bucket array and its size are always used together
261  * (after initialization only in hash_futex()), so ensure that they
262  * reside in the same cacheline.
263  */
264 static struct {
265         struct futex_hash_bucket *queues;
266         unsigned long            hashsize;
267 } __futex_data __read_mostly __aligned(2*sizeof(long));
268 #define futex_queues   (__futex_data.queues)
269 #define futex_hashsize (__futex_data.hashsize)
270
271
272 /*
273  * Fault injections for futexes.
274  */
275 #ifdef CONFIG_FAIL_FUTEX
276
277 static struct {
278         struct fault_attr attr;
279
280         bool ignore_private;
281 } fail_futex = {
282         .attr = FAULT_ATTR_INITIALIZER,
283         .ignore_private = false,
284 };
285
286 static int __init setup_fail_futex(char *str)
287 {
288         return setup_fault_attr(&fail_futex.attr, str);
289 }
290 __setup("fail_futex=", setup_fail_futex);
291
292 static bool should_fail_futex(bool fshared)
293 {
294         if (fail_futex.ignore_private && !fshared)
295                 return false;
296
297         return should_fail(&fail_futex.attr, 1);
298 }
299
300 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302 static int __init fail_futex_debugfs(void)
303 {
304         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305         struct dentry *dir;
306
307         dir = fault_create_debugfs_attr("fail_futex", NULL,
308                                         &fail_futex.attr);
309         if (IS_ERR(dir))
310                 return PTR_ERR(dir);
311
312         debugfs_create_bool("ignore-private", mode, dir,
313                             &fail_futex.ignore_private);
314         return 0;
315 }
316
317 late_initcall(fail_futex_debugfs);
318
319 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321 #else
322 static inline bool should_fail_futex(bool fshared)
323 {
324         return false;
325 }
326 #endif /* CONFIG_FAIL_FUTEX */
327
328 #ifdef CONFIG_COMPAT
329 static void compat_exit_robust_list(struct task_struct *curr);
330 #else
331 static inline void compat_exit_robust_list(struct task_struct *curr) { }
332 #endif
333
334 static inline void futex_get_mm(union futex_key *key)
335 {
336         mmgrab(key->private.mm);
337         /*
338          * Ensure futex_get_mm() implies a full barrier such that
339          * get_futex_key() implies a full barrier. This is relied upon
340          * as smp_mb(); (B), see the ordering comment above.
341          */
342         smp_mb__after_atomic();
343 }
344
345 /*
346  * Reflects a new waiter being added to the waitqueue.
347  */
348 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
349 {
350 #ifdef CONFIG_SMP
351         atomic_inc(&hb->waiters);
352         /*
353          * Full barrier (A), see the ordering comment above.
354          */
355         smp_mb__after_atomic();
356 #endif
357 }
358
359 /*
360  * Reflects a waiter being removed from the waitqueue by wakeup
361  * paths.
362  */
363 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
364 {
365 #ifdef CONFIG_SMP
366         atomic_dec(&hb->waiters);
367 #endif
368 }
369
370 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         return atomic_read(&hb->waiters);
374 #else
375         return 1;
376 #endif
377 }
378
379 /**
380  * hash_futex - Return the hash bucket in the global hash
381  * @key:        Pointer to the futex key for which the hash is calculated
382  *
383  * We hash on the keys returned from get_futex_key (see below) and return the
384  * corresponding hash bucket in the global hash.
385  */
386 static struct futex_hash_bucket *hash_futex(union futex_key *key)
387 {
388         u32 hash = jhash2((u32*)&key->both.word,
389                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
390                           key->both.offset);
391         return &futex_queues[hash & (futex_hashsize - 1)];
392 }
393
394
395 /**
396  * match_futex - Check whether two futex keys are equal
397  * @key1:       Pointer to key1
398  * @key2:       Pointer to key2
399  *
400  * Return 1 if two futex_keys are equal, 0 otherwise.
401  */
402 static inline int match_futex(union futex_key *key1, union futex_key *key2)
403 {
404         return (key1 && key2
405                 && key1->both.word == key2->both.word
406                 && key1->both.ptr == key2->both.ptr
407                 && key1->both.offset == key2->both.offset);
408 }
409
410 /*
411  * Take a reference to the resource addressed by a key.
412  * Can be called while holding spinlocks.
413  *
414  */
415 static void get_futex_key_refs(union futex_key *key)
416 {
417         if (!key->both.ptr)
418                 return;
419
420         /*
421          * On MMU less systems futexes are always "private" as there is no per
422          * process address space. We need the smp wmb nevertheless - yes,
423          * arch/blackfin has MMU less SMP ...
424          */
425         if (!IS_ENABLED(CONFIG_MMU)) {
426                 smp_mb(); /* explicit smp_mb(); (B) */
427                 return;
428         }
429
430         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
431         case FUT_OFF_INODE:
432                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
433                 break;
434         case FUT_OFF_MMSHARED:
435                 futex_get_mm(key); /* implies smp_mb(); (B) */
436                 break;
437         default:
438                 /*
439                  * Private futexes do not hold reference on an inode or
440                  * mm, therefore the only purpose of calling get_futex_key_refs
441                  * is because we need the barrier for the lockless waiter check.
442                  */
443                 smp_mb(); /* explicit smp_mb(); (B) */
444         }
445 }
446
447 /*
448  * Drop a reference to the resource addressed by a key.
449  * The hash bucket spinlock must not be held. This is
450  * a no-op for private futexes, see comment in the get
451  * counterpart.
452  */
453 static void drop_futex_key_refs(union futex_key *key)
454 {
455         if (!key->both.ptr) {
456                 /* If we're here then we tried to put a key we failed to get */
457                 WARN_ON_ONCE(1);
458                 return;
459         }
460
461         if (!IS_ENABLED(CONFIG_MMU))
462                 return;
463
464         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
465         case FUT_OFF_INODE:
466                 iput(key->shared.inode);
467                 break;
468         case FUT_OFF_MMSHARED:
469                 mmdrop(key->private.mm);
470                 break;
471         }
472 }
473
474 enum futex_access {
475         FUTEX_READ,
476         FUTEX_WRITE
477 };
478
479 /**
480  * futex_setup_timer - set up the sleeping hrtimer.
481  * @time:       ptr to the given timeout value
482  * @timeout:    the hrtimer_sleeper structure to be set up
483  * @flags:      futex flags
484  * @range_ns:   optional range in ns
485  *
486  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
487  *         value given
488  */
489 static inline struct hrtimer_sleeper *
490 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
491                   int flags, u64 range_ns)
492 {
493         if (!time)
494                 return NULL;
495
496         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
497                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
498                                       HRTIMER_MODE_ABS);
499         /*
500          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
501          * effectively the same as calling hrtimer_set_expires().
502          */
503         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
504
505         return timeout;
506 }
507
508 /**
509  * get_futex_key() - Get parameters which are the keys for a futex
510  * @uaddr:      virtual address of the futex
511  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
512  * @key:        address where result is stored.
513  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
514  *              FUTEX_WRITE)
515  *
516  * Return: a negative error code or 0
517  *
518  * The key words are stored in @key on success.
519  *
520  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
521  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
522  * We can usually work out the index without swapping in the page.
523  *
524  * lock_page() might sleep, the caller should not hold a spinlock.
525  */
526 static int
527 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
528 {
529         unsigned long address = (unsigned long)uaddr;
530         struct mm_struct *mm = current->mm;
531         struct page *page, *tail;
532         struct address_space *mapping;
533         int err, ro = 0;
534
535         /*
536          * The futex address must be "naturally" aligned.
537          */
538         key->both.offset = address % PAGE_SIZE;
539         if (unlikely((address % sizeof(u32)) != 0))
540                 return -EINVAL;
541         address -= key->both.offset;
542
543         if (unlikely(!access_ok(uaddr, sizeof(u32))))
544                 return -EFAULT;
545
546         if (unlikely(should_fail_futex(fshared)))
547                 return -EFAULT;
548
549         /*
550          * PROCESS_PRIVATE futexes are fast.
551          * As the mm cannot disappear under us and the 'key' only needs
552          * virtual address, we dont even have to find the underlying vma.
553          * Note : We do have to check 'uaddr' is a valid user address,
554          *        but access_ok() should be faster than find_vma()
555          */
556         if (!fshared) {
557                 key->private.mm = mm;
558                 key->private.address = address;
559                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
560                 return 0;
561         }
562
563 again:
564         /* Ignore any VERIFY_READ mapping (futex common case) */
565         if (unlikely(should_fail_futex(fshared)))
566                 return -EFAULT;
567
568         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
569         /*
570          * If write access is not required (eg. FUTEX_WAIT), try
571          * and get read-only access.
572          */
573         if (err == -EFAULT && rw == FUTEX_READ) {
574                 err = get_user_pages_fast(address, 1, 0, &page);
575                 ro = 1;
576         }
577         if (err < 0)
578                 return err;
579         else
580                 err = 0;
581
582         /*
583          * The treatment of mapping from this point on is critical. The page
584          * lock protects many things but in this context the page lock
585          * stabilizes mapping, prevents inode freeing in the shared
586          * file-backed region case and guards against movement to swap cache.
587          *
588          * Strictly speaking the page lock is not needed in all cases being
589          * considered here and page lock forces unnecessarily serialization
590          * From this point on, mapping will be re-verified if necessary and
591          * page lock will be acquired only if it is unavoidable
592          *
593          * Mapping checks require the head page for any compound page so the
594          * head page and mapping is looked up now. For anonymous pages, it
595          * does not matter if the page splits in the future as the key is
596          * based on the address. For filesystem-backed pages, the tail is
597          * required as the index of the page determines the key. For
598          * base pages, there is no tail page and tail == page.
599          */
600         tail = page;
601         page = compound_head(page);
602         mapping = READ_ONCE(page->mapping);
603
604         /*
605          * If page->mapping is NULL, then it cannot be a PageAnon
606          * page; but it might be the ZERO_PAGE or in the gate area or
607          * in a special mapping (all cases which we are happy to fail);
608          * or it may have been a good file page when get_user_pages_fast
609          * found it, but truncated or holepunched or subjected to
610          * invalidate_complete_page2 before we got the page lock (also
611          * cases which we are happy to fail).  And we hold a reference,
612          * so refcount care in invalidate_complete_page's remove_mapping
613          * prevents drop_caches from setting mapping to NULL beneath us.
614          *
615          * The case we do have to guard against is when memory pressure made
616          * shmem_writepage move it from filecache to swapcache beneath us:
617          * an unlikely race, but we do need to retry for page->mapping.
618          */
619         if (unlikely(!mapping)) {
620                 int shmem_swizzled;
621
622                 /*
623                  * Page lock is required to identify which special case above
624                  * applies. If this is really a shmem page then the page lock
625                  * will prevent unexpected transitions.
626                  */
627                 lock_page(page);
628                 shmem_swizzled = PageSwapCache(page) || page->mapping;
629                 unlock_page(page);
630                 put_page(page);
631
632                 if (shmem_swizzled)
633                         goto again;
634
635                 return -EFAULT;
636         }
637
638         /*
639          * Private mappings are handled in a simple way.
640          *
641          * If the futex key is stored on an anonymous page, then the associated
642          * object is the mm which is implicitly pinned by the calling process.
643          *
644          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
645          * it's a read-only handle, it's expected that futexes attach to
646          * the object not the particular process.
647          */
648         if (PageAnon(page)) {
649                 /*
650                  * A RO anonymous page will never change and thus doesn't make
651                  * sense for futex operations.
652                  */
653                 if (unlikely(should_fail_futex(fshared)) || ro) {
654                         err = -EFAULT;
655                         goto out;
656                 }
657
658                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
659                 key->private.mm = mm;
660                 key->private.address = address;
661
662                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
663
664         } else {
665                 struct inode *inode;
666
667                 /*
668                  * The associated futex object in this case is the inode and
669                  * the page->mapping must be traversed. Ordinarily this should
670                  * be stabilised under page lock but it's not strictly
671                  * necessary in this case as we just want to pin the inode, not
672                  * update the radix tree or anything like that.
673                  *
674                  * The RCU read lock is taken as the inode is finally freed
675                  * under RCU. If the mapping still matches expectations then the
676                  * mapping->host can be safely accessed as being a valid inode.
677                  */
678                 rcu_read_lock();
679
680                 if (READ_ONCE(page->mapping) != mapping) {
681                         rcu_read_unlock();
682                         put_page(page);
683
684                         goto again;
685                 }
686
687                 inode = READ_ONCE(mapping->host);
688                 if (!inode) {
689                         rcu_read_unlock();
690                         put_page(page);
691
692                         goto again;
693                 }
694
695                 /*
696                  * Take a reference unless it is about to be freed. Previously
697                  * this reference was taken by ihold under the page lock
698                  * pinning the inode in place so i_lock was unnecessary. The
699                  * only way for this check to fail is if the inode was
700                  * truncated in parallel which is almost certainly an
701                  * application bug. In such a case, just retry.
702                  *
703                  * We are not calling into get_futex_key_refs() in file-backed
704                  * cases, therefore a successful atomic_inc return below will
705                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
706                  */
707                 if (!atomic_inc_not_zero(&inode->i_count)) {
708                         rcu_read_unlock();
709                         put_page(page);
710
711                         goto again;
712                 }
713
714                 /* Should be impossible but lets be paranoid for now */
715                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
716                         err = -EFAULT;
717                         rcu_read_unlock();
718                         iput(inode);
719
720                         goto out;
721                 }
722
723                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
724                 key->shared.inode = inode;
725                 key->shared.pgoff = basepage_index(tail);
726                 rcu_read_unlock();
727         }
728
729 out:
730         put_page(page);
731         return err;
732 }
733
734 static inline void put_futex_key(union futex_key *key)
735 {
736         drop_futex_key_refs(key);
737 }
738
739 /**
740  * fault_in_user_writeable() - Fault in user address and verify RW access
741  * @uaddr:      pointer to faulting user space address
742  *
743  * Slow path to fixup the fault we just took in the atomic write
744  * access to @uaddr.
745  *
746  * We have no generic implementation of a non-destructive write to the
747  * user address. We know that we faulted in the atomic pagefault
748  * disabled section so we can as well avoid the #PF overhead by
749  * calling get_user_pages() right away.
750  */
751 static int fault_in_user_writeable(u32 __user *uaddr)
752 {
753         struct mm_struct *mm = current->mm;
754         int ret;
755
756         down_read(&mm->mmap_sem);
757         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
758                                FAULT_FLAG_WRITE, NULL);
759         up_read(&mm->mmap_sem);
760
761         return ret < 0 ? ret : 0;
762 }
763
764 /**
765  * futex_top_waiter() - Return the highest priority waiter on a futex
766  * @hb:         the hash bucket the futex_q's reside in
767  * @key:        the futex key (to distinguish it from other futex futex_q's)
768  *
769  * Must be called with the hb lock held.
770  */
771 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
772                                         union futex_key *key)
773 {
774         struct futex_q *this;
775
776         plist_for_each_entry(this, &hb->chain, list) {
777                 if (match_futex(&this->key, key))
778                         return this;
779         }
780         return NULL;
781 }
782
783 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
784                                       u32 uval, u32 newval)
785 {
786         int ret;
787
788         pagefault_disable();
789         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
790         pagefault_enable();
791
792         return ret;
793 }
794
795 static int get_futex_value_locked(u32 *dest, u32 __user *from)
796 {
797         int ret;
798
799         pagefault_disable();
800         ret = __get_user(*dest, from);
801         pagefault_enable();
802
803         return ret ? -EFAULT : 0;
804 }
805
806
807 /*
808  * PI code:
809  */
810 static int refill_pi_state_cache(void)
811 {
812         struct futex_pi_state *pi_state;
813
814         if (likely(current->pi_state_cache))
815                 return 0;
816
817         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
818
819         if (!pi_state)
820                 return -ENOMEM;
821
822         INIT_LIST_HEAD(&pi_state->list);
823         /* pi_mutex gets initialized later */
824         pi_state->owner = NULL;
825         refcount_set(&pi_state->refcount, 1);
826         pi_state->key = FUTEX_KEY_INIT;
827
828         current->pi_state_cache = pi_state;
829
830         return 0;
831 }
832
833 static struct futex_pi_state *alloc_pi_state(void)
834 {
835         struct futex_pi_state *pi_state = current->pi_state_cache;
836
837         WARN_ON(!pi_state);
838         current->pi_state_cache = NULL;
839
840         return pi_state;
841 }
842
843 static void get_pi_state(struct futex_pi_state *pi_state)
844 {
845         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
846 }
847
848 /*
849  * Drops a reference to the pi_state object and frees or caches it
850  * when the last reference is gone.
851  */
852 static void put_pi_state(struct futex_pi_state *pi_state)
853 {
854         if (!pi_state)
855                 return;
856
857         if (!refcount_dec_and_test(&pi_state->refcount))
858                 return;
859
860         /*
861          * If pi_state->owner is NULL, the owner is most probably dying
862          * and has cleaned up the pi_state already
863          */
864         if (pi_state->owner) {
865                 struct task_struct *owner;
866
867                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
868                 owner = pi_state->owner;
869                 if (owner) {
870                         raw_spin_lock(&owner->pi_lock);
871                         list_del_init(&pi_state->list);
872                         raw_spin_unlock(&owner->pi_lock);
873                 }
874                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
875                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
876         }
877
878         if (current->pi_state_cache) {
879                 kfree(pi_state);
880         } else {
881                 /*
882                  * pi_state->list is already empty.
883                  * clear pi_state->owner.
884                  * refcount is at 0 - put it back to 1.
885                  */
886                 pi_state->owner = NULL;
887                 refcount_set(&pi_state->refcount, 1);
888                 current->pi_state_cache = pi_state;
889         }
890 }
891
892 #ifdef CONFIG_FUTEX_PI
893
894 /*
895  * This task is holding PI mutexes at exit time => bad.
896  * Kernel cleans up PI-state, but userspace is likely hosed.
897  * (Robust-futex cleanup is separate and might save the day for userspace.)
898  */
899 static void exit_pi_state_list(struct task_struct *curr)
900 {
901         struct list_head *next, *head = &curr->pi_state_list;
902         struct futex_pi_state *pi_state;
903         struct futex_hash_bucket *hb;
904         union futex_key key = FUTEX_KEY_INIT;
905
906         if (!futex_cmpxchg_enabled)
907                 return;
908         /*
909          * We are a ZOMBIE and nobody can enqueue itself on
910          * pi_state_list anymore, but we have to be careful
911          * versus waiters unqueueing themselves:
912          */
913         raw_spin_lock_irq(&curr->pi_lock);
914         while (!list_empty(head)) {
915                 next = head->next;
916                 pi_state = list_entry(next, struct futex_pi_state, list);
917                 key = pi_state->key;
918                 hb = hash_futex(&key);
919
920                 /*
921                  * We can race against put_pi_state() removing itself from the
922                  * list (a waiter going away). put_pi_state() will first
923                  * decrement the reference count and then modify the list, so
924                  * its possible to see the list entry but fail this reference
925                  * acquire.
926                  *
927                  * In that case; drop the locks to let put_pi_state() make
928                  * progress and retry the loop.
929                  */
930                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
931                         raw_spin_unlock_irq(&curr->pi_lock);
932                         cpu_relax();
933                         raw_spin_lock_irq(&curr->pi_lock);
934                         continue;
935                 }
936                 raw_spin_unlock_irq(&curr->pi_lock);
937
938                 spin_lock(&hb->lock);
939                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
940                 raw_spin_lock(&curr->pi_lock);
941                 /*
942                  * We dropped the pi-lock, so re-check whether this
943                  * task still owns the PI-state:
944                  */
945                 if (head->next != next) {
946                         /* retain curr->pi_lock for the loop invariant */
947                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
948                         spin_unlock(&hb->lock);
949                         put_pi_state(pi_state);
950                         continue;
951                 }
952
953                 WARN_ON(pi_state->owner != curr);
954                 WARN_ON(list_empty(&pi_state->list));
955                 list_del_init(&pi_state->list);
956                 pi_state->owner = NULL;
957
958                 raw_spin_unlock(&curr->pi_lock);
959                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
960                 spin_unlock(&hb->lock);
961
962                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
963                 put_pi_state(pi_state);
964
965                 raw_spin_lock_irq(&curr->pi_lock);
966         }
967         raw_spin_unlock_irq(&curr->pi_lock);
968 }
969 #else
970 static inline void exit_pi_state_list(struct task_struct *curr) { }
971 #endif
972
973 /*
974  * We need to check the following states:
975  *
976  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
977  *
978  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
979  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
980  *
981  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
982  *
983  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
984  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
985  *
986  * [6]  Found  | Found    | task      | 0         | 1      | Valid
987  *
988  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
989  *
990  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
991  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
992  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
993  *
994  * [1]  Indicates that the kernel can acquire the futex atomically. We
995  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
996  *
997  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
998  *      thread is found then it indicates that the owner TID has died.
999  *
1000  * [3]  Invalid. The waiter is queued on a non PI futex
1001  *
1002  * [4]  Valid state after exit_robust_list(), which sets the user space
1003  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1004  *
1005  * [5]  The user space value got manipulated between exit_robust_list()
1006  *      and exit_pi_state_list()
1007  *
1008  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1009  *      the pi_state but cannot access the user space value.
1010  *
1011  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1012  *
1013  * [8]  Owner and user space value match
1014  *
1015  * [9]  There is no transient state which sets the user space TID to 0
1016  *      except exit_robust_list(), but this is indicated by the
1017  *      FUTEX_OWNER_DIED bit. See [4]
1018  *
1019  * [10] There is no transient state which leaves owner and user space
1020  *      TID out of sync.
1021  *
1022  *
1023  * Serialization and lifetime rules:
1024  *
1025  * hb->lock:
1026  *
1027  *      hb -> futex_q, relation
1028  *      futex_q -> pi_state, relation
1029  *
1030  *      (cannot be raw because hb can contain arbitrary amount
1031  *       of futex_q's)
1032  *
1033  * pi_mutex->wait_lock:
1034  *
1035  *      {uval, pi_state}
1036  *
1037  *      (and pi_mutex 'obviously')
1038  *
1039  * p->pi_lock:
1040  *
1041  *      p->pi_state_list -> pi_state->list, relation
1042  *
1043  * pi_state->refcount:
1044  *
1045  *      pi_state lifetime
1046  *
1047  *
1048  * Lock order:
1049  *
1050  *   hb->lock
1051  *     pi_mutex->wait_lock
1052  *       p->pi_lock
1053  *
1054  */
1055
1056 /*
1057  * Validate that the existing waiter has a pi_state and sanity check
1058  * the pi_state against the user space value. If correct, attach to
1059  * it.
1060  */
1061 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062                               struct futex_pi_state *pi_state,
1063                               struct futex_pi_state **ps)
1064 {
1065         pid_t pid = uval & FUTEX_TID_MASK;
1066         u32 uval2;
1067         int ret;
1068
1069         /*
1070          * Userspace might have messed up non-PI and PI futexes [3]
1071          */
1072         if (unlikely(!pi_state))
1073                 return -EINVAL;
1074
1075         /*
1076          * We get here with hb->lock held, and having found a
1077          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079          * which in turn means that futex_lock_pi() still has a reference on
1080          * our pi_state.
1081          *
1082          * The waiter holding a reference on @pi_state also protects against
1083          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085          * free pi_state before we can take a reference ourselves.
1086          */
1087         WARN_ON(!refcount_read(&pi_state->refcount));
1088
1089         /*
1090          * Now that we have a pi_state, we can acquire wait_lock
1091          * and do the state validation.
1092          */
1093         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094
1095         /*
1096          * Since {uval, pi_state} is serialized by wait_lock, and our current
1097          * uval was read without holding it, it can have changed. Verify it
1098          * still is what we expect it to be, otherwise retry the entire
1099          * operation.
1100          */
1101         if (get_futex_value_locked(&uval2, uaddr))
1102                 goto out_efault;
1103
1104         if (uval != uval2)
1105                 goto out_eagain;
1106
1107         /*
1108          * Handle the owner died case:
1109          */
1110         if (uval & FUTEX_OWNER_DIED) {
1111                 /*
1112                  * exit_pi_state_list sets owner to NULL and wakes the
1113                  * topmost waiter. The task which acquires the
1114                  * pi_state->rt_mutex will fixup owner.
1115                  */
1116                 if (!pi_state->owner) {
1117                         /*
1118                          * No pi state owner, but the user space TID
1119                          * is not 0. Inconsistent state. [5]
1120                          */
1121                         if (pid)
1122                                 goto out_einval;
1123                         /*
1124                          * Take a ref on the state and return success. [4]
1125                          */
1126                         goto out_attach;
1127                 }
1128
1129                 /*
1130                  * If TID is 0, then either the dying owner has not
1131                  * yet executed exit_pi_state_list() or some waiter
1132                  * acquired the rtmutex in the pi state, but did not
1133                  * yet fixup the TID in user space.
1134                  *
1135                  * Take a ref on the state and return success. [6]
1136                  */
1137                 if (!pid)
1138                         goto out_attach;
1139         } else {
1140                 /*
1141                  * If the owner died bit is not set, then the pi_state
1142                  * must have an owner. [7]
1143                  */
1144                 if (!pi_state->owner)
1145                         goto out_einval;
1146         }
1147
1148         /*
1149          * Bail out if user space manipulated the futex value. If pi
1150          * state exists then the owner TID must be the same as the
1151          * user space TID. [9/10]
1152          */
1153         if (pid != task_pid_vnr(pi_state->owner))
1154                 goto out_einval;
1155
1156 out_attach:
1157         get_pi_state(pi_state);
1158         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1159         *ps = pi_state;
1160         return 0;
1161
1162 out_einval:
1163         ret = -EINVAL;
1164         goto out_error;
1165
1166 out_eagain:
1167         ret = -EAGAIN;
1168         goto out_error;
1169
1170 out_efault:
1171         ret = -EFAULT;
1172         goto out_error;
1173
1174 out_error:
1175         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176         return ret;
1177 }
1178
1179 /**
1180  * wait_for_owner_exiting - Block until the owner has exited
1181  * @exiting:    Pointer to the exiting task
1182  *
1183  * Caller must hold a refcount on @exiting.
1184  */
1185 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1186 {
1187         if (ret != -EBUSY) {
1188                 WARN_ON_ONCE(exiting);
1189                 return;
1190         }
1191
1192         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1193                 return;
1194
1195         mutex_lock(&exiting->futex_exit_mutex);
1196         /*
1197          * No point in doing state checking here. If the waiter got here
1198          * while the task was in exec()->exec_futex_release() then it can
1199          * have any FUTEX_STATE_* value when the waiter has acquired the
1200          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1201          * already. Highly unlikely and not a problem. Just one more round
1202          * through the futex maze.
1203          */
1204         mutex_unlock(&exiting->futex_exit_mutex);
1205
1206         put_task_struct(exiting);
1207 }
1208
1209 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1210                             struct task_struct *tsk)
1211 {
1212         u32 uval2;
1213
1214         /*
1215          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1216          * caller that the alleged owner is busy.
1217          */
1218         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1219                 return -EBUSY;
1220
1221         /*
1222          * Reread the user space value to handle the following situation:
1223          *
1224          * CPU0                         CPU1
1225          *
1226          * sys_exit()                   sys_futex()
1227          *  do_exit()                    futex_lock_pi()
1228          *                                futex_lock_pi_atomic()
1229          *   exit_signals(tsk)              No waiters:
1230          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1231          *  mm_release(tsk)                 Set waiter bit
1232          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1233          *      Set owner died              attach_to_pi_owner() {
1234          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1235          *   }                               if (!tsk->flags & PF_EXITING) {
1236          *  ...                                attach();
1237          *  tsk->futex_state =               } else {
1238          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1239          *                                        FUTEX_STATE_DEAD)
1240          *                                       return -EAGAIN;
1241          *                                     return -ESRCH; <--- FAIL
1242          *                                   }
1243          *
1244          * Returning ESRCH unconditionally is wrong here because the
1245          * user space value has been changed by the exiting task.
1246          *
1247          * The same logic applies to the case where the exiting task is
1248          * already gone.
1249          */
1250         if (get_futex_value_locked(&uval2, uaddr))
1251                 return -EFAULT;
1252
1253         /* If the user space value has changed, try again. */
1254         if (uval2 != uval)
1255                 return -EAGAIN;
1256
1257         /*
1258          * The exiting task did not have a robust list, the robust list was
1259          * corrupted or the user space value in *uaddr is simply bogus.
1260          * Give up and tell user space.
1261          */
1262         return -ESRCH;
1263 }
1264
1265 /*
1266  * Lookup the task for the TID provided from user space and attach to
1267  * it after doing proper sanity checks.
1268  */
1269 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1270                               struct futex_pi_state **ps,
1271                               struct task_struct **exiting)
1272 {
1273         pid_t pid = uval & FUTEX_TID_MASK;
1274         struct futex_pi_state *pi_state;
1275         struct task_struct *p;
1276
1277         /*
1278          * We are the first waiter - try to look up the real owner and attach
1279          * the new pi_state to it, but bail out when TID = 0 [1]
1280          *
1281          * The !pid check is paranoid. None of the call sites should end up
1282          * with pid == 0, but better safe than sorry. Let the caller retry
1283          */
1284         if (!pid)
1285                 return -EAGAIN;
1286         p = find_get_task_by_vpid(pid);
1287         if (!p)
1288                 return handle_exit_race(uaddr, uval, NULL);
1289
1290         if (unlikely(p->flags & PF_KTHREAD)) {
1291                 put_task_struct(p);
1292                 return -EPERM;
1293         }
1294
1295         /*
1296          * We need to look at the task state to figure out, whether the
1297          * task is exiting. To protect against the change of the task state
1298          * in futex_exit_release(), we do this protected by p->pi_lock:
1299          */
1300         raw_spin_lock_irq(&p->pi_lock);
1301         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1302                 /*
1303                  * The task is on the way out. When the futex state is
1304                  * FUTEX_STATE_DEAD, we know that the task has finished
1305                  * the cleanup:
1306                  */
1307                 int ret = handle_exit_race(uaddr, uval, p);
1308
1309                 raw_spin_unlock_irq(&p->pi_lock);
1310                 /*
1311                  * If the owner task is between FUTEX_STATE_EXITING and
1312                  * FUTEX_STATE_DEAD then store the task pointer and keep
1313                  * the reference on the task struct. The calling code will
1314                  * drop all locks, wait for the task to reach
1315                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1316                  * required to prevent a live lock when the current task
1317                  * preempted the exiting task between the two states.
1318                  */
1319                 if (ret == -EBUSY)
1320                         *exiting = p;
1321                 else
1322                         put_task_struct(p);
1323                 return ret;
1324         }
1325
1326         /*
1327          * No existing pi state. First waiter. [2]
1328          *
1329          * This creates pi_state, we have hb->lock held, this means nothing can
1330          * observe this state, wait_lock is irrelevant.
1331          */
1332         pi_state = alloc_pi_state();
1333
1334         /*
1335          * Initialize the pi_mutex in locked state and make @p
1336          * the owner of it:
1337          */
1338         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1339
1340         /* Store the key for possible exit cleanups: */
1341         pi_state->key = *key;
1342
1343         WARN_ON(!list_empty(&pi_state->list));
1344         list_add(&pi_state->list, &p->pi_state_list);
1345         /*
1346          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1347          * because there is no concurrency as the object is not published yet.
1348          */
1349         pi_state->owner = p;
1350         raw_spin_unlock_irq(&p->pi_lock);
1351
1352         put_task_struct(p);
1353
1354         *ps = pi_state;
1355
1356         return 0;
1357 }
1358
1359 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1360                            struct futex_hash_bucket *hb,
1361                            union futex_key *key, struct futex_pi_state **ps,
1362                            struct task_struct **exiting)
1363 {
1364         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1365
1366         /*
1367          * If there is a waiter on that futex, validate it and
1368          * attach to the pi_state when the validation succeeds.
1369          */
1370         if (top_waiter)
1371                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1372
1373         /*
1374          * We are the first waiter - try to look up the owner based on
1375          * @uval and attach to it.
1376          */
1377         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1378 }
1379
1380 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1381 {
1382         int err;
1383         u32 uninitialized_var(curval);
1384
1385         if (unlikely(should_fail_futex(true)))
1386                 return -EFAULT;
1387
1388         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1389         if (unlikely(err))
1390                 return err;
1391
1392         /* If user space value changed, let the caller retry */
1393         return curval != uval ? -EAGAIN : 0;
1394 }
1395
1396 /**
1397  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1398  * @uaddr:              the pi futex user address
1399  * @hb:                 the pi futex hash bucket
1400  * @key:                the futex key associated with uaddr and hb
1401  * @ps:                 the pi_state pointer where we store the result of the
1402  *                      lookup
1403  * @task:               the task to perform the atomic lock work for.  This will
1404  *                      be "current" except in the case of requeue pi.
1405  * @exiting:            Pointer to store the task pointer of the owner task
1406  *                      which is in the middle of exiting
1407  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1408  *
1409  * Return:
1410  *  -  0 - ready to wait;
1411  *  -  1 - acquired the lock;
1412  *  - <0 - error
1413  *
1414  * The hb->lock and futex_key refs shall be held by the caller.
1415  *
1416  * @exiting is only set when the return value is -EBUSY. If so, this holds
1417  * a refcount on the exiting task on return and the caller needs to drop it
1418  * after waiting for the exit to complete.
1419  */
1420 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1421                                 union futex_key *key,
1422                                 struct futex_pi_state **ps,
1423                                 struct task_struct *task,
1424                                 struct task_struct **exiting,
1425                                 int set_waiters)
1426 {
1427         u32 uval, newval, vpid = task_pid_vnr(task);
1428         struct futex_q *top_waiter;
1429         int ret;
1430
1431         /*
1432          * Read the user space value first so we can validate a few
1433          * things before proceeding further.
1434          */
1435         if (get_futex_value_locked(&uval, uaddr))
1436                 return -EFAULT;
1437
1438         if (unlikely(should_fail_futex(true)))
1439                 return -EFAULT;
1440
1441         /*
1442          * Detect deadlocks.
1443          */
1444         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1445                 return -EDEADLK;
1446
1447         if ((unlikely(should_fail_futex(true))))
1448                 return -EDEADLK;
1449
1450         /*
1451          * Lookup existing state first. If it exists, try to attach to
1452          * its pi_state.
1453          */
1454         top_waiter = futex_top_waiter(hb, key);
1455         if (top_waiter)
1456                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1457
1458         /*
1459          * No waiter and user TID is 0. We are here because the
1460          * waiters or the owner died bit is set or called from
1461          * requeue_cmp_pi or for whatever reason something took the
1462          * syscall.
1463          */
1464         if (!(uval & FUTEX_TID_MASK)) {
1465                 /*
1466                  * We take over the futex. No other waiters and the user space
1467                  * TID is 0. We preserve the owner died bit.
1468                  */
1469                 newval = uval & FUTEX_OWNER_DIED;
1470                 newval |= vpid;
1471
1472                 /* The futex requeue_pi code can enforce the waiters bit */
1473                 if (set_waiters)
1474                         newval |= FUTEX_WAITERS;
1475
1476                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1477                 /* If the take over worked, return 1 */
1478                 return ret < 0 ? ret : 1;
1479         }
1480
1481         /*
1482          * First waiter. Set the waiters bit before attaching ourself to
1483          * the owner. If owner tries to unlock, it will be forced into
1484          * the kernel and blocked on hb->lock.
1485          */
1486         newval = uval | FUTEX_WAITERS;
1487         ret = lock_pi_update_atomic(uaddr, uval, newval);
1488         if (ret)
1489                 return ret;
1490         /*
1491          * If the update of the user space value succeeded, we try to
1492          * attach to the owner. If that fails, no harm done, we only
1493          * set the FUTEX_WAITERS bit in the user space variable.
1494          */
1495         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1496 }
1497
1498 /**
1499  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1500  * @q:  The futex_q to unqueue
1501  *
1502  * The q->lock_ptr must not be NULL and must be held by the caller.
1503  */
1504 static void __unqueue_futex(struct futex_q *q)
1505 {
1506         struct futex_hash_bucket *hb;
1507
1508         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1509                 return;
1510         lockdep_assert_held(q->lock_ptr);
1511
1512         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1513         plist_del(&q->list, &hb->chain);
1514         hb_waiters_dec(hb);
1515 }
1516
1517 /*
1518  * The hash bucket lock must be held when this is called.
1519  * Afterwards, the futex_q must not be accessed. Callers
1520  * must ensure to later call wake_up_q() for the actual
1521  * wakeups to occur.
1522  */
1523 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1524 {
1525         struct task_struct *p = q->task;
1526
1527         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1528                 return;
1529
1530         get_task_struct(p);
1531         __unqueue_futex(q);
1532         /*
1533          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1534          * is written, without taking any locks. This is possible in the event
1535          * of a spurious wakeup, for example. A memory barrier is required here
1536          * to prevent the following store to lock_ptr from getting ahead of the
1537          * plist_del in __unqueue_futex().
1538          */
1539         smp_store_release(&q->lock_ptr, NULL);
1540
1541         /*
1542          * Queue the task for later wakeup for after we've released
1543          * the hb->lock.
1544          */
1545         wake_q_add_safe(wake_q, p);
1546 }
1547
1548 /*
1549  * Caller must hold a reference on @pi_state.
1550  */
1551 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1552 {
1553         u32 uninitialized_var(curval), newval;
1554         struct task_struct *new_owner;
1555         bool postunlock = false;
1556         DEFINE_WAKE_Q(wake_q);
1557         int ret = 0;
1558
1559         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1560         if (WARN_ON_ONCE(!new_owner)) {
1561                 /*
1562                  * As per the comment in futex_unlock_pi() this should not happen.
1563                  *
1564                  * When this happens, give up our locks and try again, giving
1565                  * the futex_lock_pi() instance time to complete, either by
1566                  * waiting on the rtmutex or removing itself from the futex
1567                  * queue.
1568                  */
1569                 ret = -EAGAIN;
1570                 goto out_unlock;
1571         }
1572
1573         /*
1574          * We pass it to the next owner. The WAITERS bit is always kept
1575          * enabled while there is PI state around. We cleanup the owner
1576          * died bit, because we are the owner.
1577          */
1578         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1579
1580         if (unlikely(should_fail_futex(true)))
1581                 ret = -EFAULT;
1582
1583         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1584         if (!ret && (curval != uval)) {
1585                 /*
1586                  * If a unconditional UNLOCK_PI operation (user space did not
1587                  * try the TID->0 transition) raced with a waiter setting the
1588                  * FUTEX_WAITERS flag between get_user() and locking the hash
1589                  * bucket lock, retry the operation.
1590                  */
1591                 if ((FUTEX_TID_MASK & curval) == uval)
1592                         ret = -EAGAIN;
1593                 else
1594                         ret = -EINVAL;
1595         }
1596
1597         if (ret)
1598                 goto out_unlock;
1599
1600         /*
1601          * This is a point of no return; once we modify the uval there is no
1602          * going back and subsequent operations must not fail.
1603          */
1604
1605         raw_spin_lock(&pi_state->owner->pi_lock);
1606         WARN_ON(list_empty(&pi_state->list));
1607         list_del_init(&pi_state->list);
1608         raw_spin_unlock(&pi_state->owner->pi_lock);
1609
1610         raw_spin_lock(&new_owner->pi_lock);
1611         WARN_ON(!list_empty(&pi_state->list));
1612         list_add(&pi_state->list, &new_owner->pi_state_list);
1613         pi_state->owner = new_owner;
1614         raw_spin_unlock(&new_owner->pi_lock);
1615
1616         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1617
1618 out_unlock:
1619         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1620
1621         if (postunlock)
1622                 rt_mutex_postunlock(&wake_q);
1623
1624         return ret;
1625 }
1626
1627 /*
1628  * Express the locking dependencies for lockdep:
1629  */
1630 static inline void
1631 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1632 {
1633         if (hb1 <= hb2) {
1634                 spin_lock(&hb1->lock);
1635                 if (hb1 < hb2)
1636                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1637         } else { /* hb1 > hb2 */
1638                 spin_lock(&hb2->lock);
1639                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1640         }
1641 }
1642
1643 static inline void
1644 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1645 {
1646         spin_unlock(&hb1->lock);
1647         if (hb1 != hb2)
1648                 spin_unlock(&hb2->lock);
1649 }
1650
1651 /*
1652  * Wake up waiters matching bitset queued on this futex (uaddr).
1653  */
1654 static int
1655 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1656 {
1657         struct futex_hash_bucket *hb;
1658         struct futex_q *this, *next;
1659         union futex_key key = FUTEX_KEY_INIT;
1660         int ret;
1661         DEFINE_WAKE_Q(wake_q);
1662
1663         if (!bitset)
1664                 return -EINVAL;
1665
1666         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1667         if (unlikely(ret != 0))
1668                 goto out;
1669
1670         hb = hash_futex(&key);
1671
1672         /* Make sure we really have tasks to wakeup */
1673         if (!hb_waiters_pending(hb))
1674                 goto out_put_key;
1675
1676         spin_lock(&hb->lock);
1677
1678         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1679                 if (match_futex (&this->key, &key)) {
1680                         if (this->pi_state || this->rt_waiter) {
1681                                 ret = -EINVAL;
1682                                 break;
1683                         }
1684
1685                         /* Check if one of the bits is set in both bitsets */
1686                         if (!(this->bitset & bitset))
1687                                 continue;
1688
1689                         mark_wake_futex(&wake_q, this);
1690                         if (++ret >= nr_wake)
1691                                 break;
1692                 }
1693         }
1694
1695         spin_unlock(&hb->lock);
1696         wake_up_q(&wake_q);
1697 out_put_key:
1698         put_futex_key(&key);
1699 out:
1700         return ret;
1701 }
1702
1703 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1704 {
1705         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1706         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1707         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1708         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1709         int oldval, ret;
1710
1711         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1712                 if (oparg < 0 || oparg > 31) {
1713                         char comm[sizeof(current->comm)];
1714                         /*
1715                          * kill this print and return -EINVAL when userspace
1716                          * is sane again
1717                          */
1718                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1719                                         get_task_comm(comm, current), oparg);
1720                         oparg &= 31;
1721                 }
1722                 oparg = 1 << oparg;
1723         }
1724
1725         if (!access_ok(uaddr, sizeof(u32)))
1726                 return -EFAULT;
1727
1728         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1729         if (ret)
1730                 return ret;
1731
1732         switch (cmp) {
1733         case FUTEX_OP_CMP_EQ:
1734                 return oldval == cmparg;
1735         case FUTEX_OP_CMP_NE:
1736                 return oldval != cmparg;
1737         case FUTEX_OP_CMP_LT:
1738                 return oldval < cmparg;
1739         case FUTEX_OP_CMP_GE:
1740                 return oldval >= cmparg;
1741         case FUTEX_OP_CMP_LE:
1742                 return oldval <= cmparg;
1743         case FUTEX_OP_CMP_GT:
1744                 return oldval > cmparg;
1745         default:
1746                 return -ENOSYS;
1747         }
1748 }
1749
1750 /*
1751  * Wake up all waiters hashed on the physical page that is mapped
1752  * to this virtual address:
1753  */
1754 static int
1755 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1756               int nr_wake, int nr_wake2, int op)
1757 {
1758         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1759         struct futex_hash_bucket *hb1, *hb2;
1760         struct futex_q *this, *next;
1761         int ret, op_ret;
1762         DEFINE_WAKE_Q(wake_q);
1763
1764 retry:
1765         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1766         if (unlikely(ret != 0))
1767                 goto out;
1768         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1769         if (unlikely(ret != 0))
1770                 goto out_put_key1;
1771
1772         hb1 = hash_futex(&key1);
1773         hb2 = hash_futex(&key2);
1774
1775 retry_private:
1776         double_lock_hb(hb1, hb2);
1777         op_ret = futex_atomic_op_inuser(op, uaddr2);
1778         if (unlikely(op_ret < 0)) {
1779                 double_unlock_hb(hb1, hb2);
1780
1781                 if (!IS_ENABLED(CONFIG_MMU) ||
1782                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1783                         /*
1784                          * we don't get EFAULT from MMU faults if we don't have
1785                          * an MMU, but we might get them from range checking
1786                          */
1787                         ret = op_ret;
1788                         goto out_put_keys;
1789                 }
1790
1791                 if (op_ret == -EFAULT) {
1792                         ret = fault_in_user_writeable(uaddr2);
1793                         if (ret)
1794                                 goto out_put_keys;
1795                 }
1796
1797                 if (!(flags & FLAGS_SHARED)) {
1798                         cond_resched();
1799                         goto retry_private;
1800                 }
1801
1802                 put_futex_key(&key2);
1803                 put_futex_key(&key1);
1804                 cond_resched();
1805                 goto retry;
1806         }
1807
1808         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1809                 if (match_futex (&this->key, &key1)) {
1810                         if (this->pi_state || this->rt_waiter) {
1811                                 ret = -EINVAL;
1812                                 goto out_unlock;
1813                         }
1814                         mark_wake_futex(&wake_q, this);
1815                         if (++ret >= nr_wake)
1816                                 break;
1817                 }
1818         }
1819
1820         if (op_ret > 0) {
1821                 op_ret = 0;
1822                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1823                         if (match_futex (&this->key, &key2)) {
1824                                 if (this->pi_state || this->rt_waiter) {
1825                                         ret = -EINVAL;
1826                                         goto out_unlock;
1827                                 }
1828                                 mark_wake_futex(&wake_q, this);
1829                                 if (++op_ret >= nr_wake2)
1830                                         break;
1831                         }
1832                 }
1833                 ret += op_ret;
1834         }
1835
1836 out_unlock:
1837         double_unlock_hb(hb1, hb2);
1838         wake_up_q(&wake_q);
1839 out_put_keys:
1840         put_futex_key(&key2);
1841 out_put_key1:
1842         put_futex_key(&key1);
1843 out:
1844         return ret;
1845 }
1846
1847 /**
1848  * requeue_futex() - Requeue a futex_q from one hb to another
1849  * @q:          the futex_q to requeue
1850  * @hb1:        the source hash_bucket
1851  * @hb2:        the target hash_bucket
1852  * @key2:       the new key for the requeued futex_q
1853  */
1854 static inline
1855 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1856                    struct futex_hash_bucket *hb2, union futex_key *key2)
1857 {
1858
1859         /*
1860          * If key1 and key2 hash to the same bucket, no need to
1861          * requeue.
1862          */
1863         if (likely(&hb1->chain != &hb2->chain)) {
1864                 plist_del(&q->list, &hb1->chain);
1865                 hb_waiters_dec(hb1);
1866                 hb_waiters_inc(hb2);
1867                 plist_add(&q->list, &hb2->chain);
1868                 q->lock_ptr = &hb2->lock;
1869         }
1870         get_futex_key_refs(key2);
1871         q->key = *key2;
1872 }
1873
1874 /**
1875  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1876  * @q:          the futex_q
1877  * @key:        the key of the requeue target futex
1878  * @hb:         the hash_bucket of the requeue target futex
1879  *
1880  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1881  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1882  * to the requeue target futex so the waiter can detect the wakeup on the right
1883  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1884  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1885  * to protect access to the pi_state to fixup the owner later.  Must be called
1886  * with both q->lock_ptr and hb->lock held.
1887  */
1888 static inline
1889 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1890                            struct futex_hash_bucket *hb)
1891 {
1892         get_futex_key_refs(key);
1893         q->key = *key;
1894
1895         __unqueue_futex(q);
1896
1897         WARN_ON(!q->rt_waiter);
1898         q->rt_waiter = NULL;
1899
1900         q->lock_ptr = &hb->lock;
1901
1902         wake_up_state(q->task, TASK_NORMAL);
1903 }
1904
1905 /**
1906  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1907  * @pifutex:            the user address of the to futex
1908  * @hb1:                the from futex hash bucket, must be locked by the caller
1909  * @hb2:                the to futex hash bucket, must be locked by the caller
1910  * @key1:               the from futex key
1911  * @key2:               the to futex key
1912  * @ps:                 address to store the pi_state pointer
1913  * @exiting:            Pointer to store the task pointer of the owner task
1914  *                      which is in the middle of exiting
1915  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1916  *
1917  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1918  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1919  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1920  * hb1 and hb2 must be held by the caller.
1921  *
1922  * @exiting is only set when the return value is -EBUSY. If so, this holds
1923  * a refcount on the exiting task on return and the caller needs to drop it
1924  * after waiting for the exit to complete.
1925  *
1926  * Return:
1927  *  -  0 - failed to acquire the lock atomically;
1928  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1929  *  - <0 - error
1930  */
1931 static int
1932 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1933                            struct futex_hash_bucket *hb2, union futex_key *key1,
1934                            union futex_key *key2, struct futex_pi_state **ps,
1935                            struct task_struct **exiting, int set_waiters)
1936 {
1937         struct futex_q *top_waiter = NULL;
1938         u32 curval;
1939         int ret, vpid;
1940
1941         if (get_futex_value_locked(&curval, pifutex))
1942                 return -EFAULT;
1943
1944         if (unlikely(should_fail_futex(true)))
1945                 return -EFAULT;
1946
1947         /*
1948          * Find the top_waiter and determine if there are additional waiters.
1949          * If the caller intends to requeue more than 1 waiter to pifutex,
1950          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1951          * as we have means to handle the possible fault.  If not, don't set
1952          * the bit unecessarily as it will force the subsequent unlock to enter
1953          * the kernel.
1954          */
1955         top_waiter = futex_top_waiter(hb1, key1);
1956
1957         /* There are no waiters, nothing for us to do. */
1958         if (!top_waiter)
1959                 return 0;
1960
1961         /* Ensure we requeue to the expected futex. */
1962         if (!match_futex(top_waiter->requeue_pi_key, key2))
1963                 return -EINVAL;
1964
1965         /*
1966          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1967          * the contended case or if set_waiters is 1.  The pi_state is returned
1968          * in ps in contended cases.
1969          */
1970         vpid = task_pid_vnr(top_waiter->task);
1971         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1972                                    exiting, set_waiters);
1973         if (ret == 1) {
1974                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1975                 return vpid;
1976         }
1977         return ret;
1978 }
1979
1980 /**
1981  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1982  * @uaddr1:     source futex user address
1983  * @flags:      futex flags (FLAGS_SHARED, etc.)
1984  * @uaddr2:     target futex user address
1985  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1986  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1987  * @cmpval:     @uaddr1 expected value (or %NULL)
1988  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1989  *              pi futex (pi to pi requeue is not supported)
1990  *
1991  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1992  * uaddr2 atomically on behalf of the top waiter.
1993  *
1994  * Return:
1995  *  - >=0 - on success, the number of tasks requeued or woken;
1996  *  -  <0 - on error
1997  */
1998 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1999                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
2000                          u32 *cmpval, int requeue_pi)
2001 {
2002         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2003         int drop_count = 0, task_count = 0, ret;
2004         struct futex_pi_state *pi_state = NULL;
2005         struct futex_hash_bucket *hb1, *hb2;
2006         struct futex_q *this, *next;
2007         DEFINE_WAKE_Q(wake_q);
2008
2009         if (nr_wake < 0 || nr_requeue < 0)
2010                 return -EINVAL;
2011
2012         /*
2013          * When PI not supported: return -ENOSYS if requeue_pi is true,
2014          * consequently the compiler knows requeue_pi is always false past
2015          * this point which will optimize away all the conditional code
2016          * further down.
2017          */
2018         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2019                 return -ENOSYS;
2020
2021         if (requeue_pi) {
2022                 /*
2023                  * Requeue PI only works on two distinct uaddrs. This
2024                  * check is only valid for private futexes. See below.
2025                  */
2026                 if (uaddr1 == uaddr2)
2027                         return -EINVAL;
2028
2029                 /*
2030                  * requeue_pi requires a pi_state, try to allocate it now
2031                  * without any locks in case it fails.
2032                  */
2033                 if (refill_pi_state_cache())
2034                         return -ENOMEM;
2035                 /*
2036                  * requeue_pi must wake as many tasks as it can, up to nr_wake
2037                  * + nr_requeue, since it acquires the rt_mutex prior to
2038                  * returning to userspace, so as to not leave the rt_mutex with
2039                  * waiters and no owner.  However, second and third wake-ups
2040                  * cannot be predicted as they involve race conditions with the
2041                  * first wake and a fault while looking up the pi_state.  Both
2042                  * pthread_cond_signal() and pthread_cond_broadcast() should
2043                  * use nr_wake=1.
2044                  */
2045                 if (nr_wake != 1)
2046                         return -EINVAL;
2047         }
2048
2049 retry:
2050         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
2051         if (unlikely(ret != 0))
2052                 goto out;
2053         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2054                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
2055         if (unlikely(ret != 0))
2056                 goto out_put_key1;
2057
2058         /*
2059          * The check above which compares uaddrs is not sufficient for
2060          * shared futexes. We need to compare the keys:
2061          */
2062         if (requeue_pi && match_futex(&key1, &key2)) {
2063                 ret = -EINVAL;
2064                 goto out_put_keys;
2065         }
2066
2067         hb1 = hash_futex(&key1);
2068         hb2 = hash_futex(&key2);
2069
2070 retry_private:
2071         hb_waiters_inc(hb2);
2072         double_lock_hb(hb1, hb2);
2073
2074         if (likely(cmpval != NULL)) {
2075                 u32 curval;
2076
2077                 ret = get_futex_value_locked(&curval, uaddr1);
2078
2079                 if (unlikely(ret)) {
2080                         double_unlock_hb(hb1, hb2);
2081                         hb_waiters_dec(hb2);
2082
2083                         ret = get_user(curval, uaddr1);
2084                         if (ret)
2085                                 goto out_put_keys;
2086
2087                         if (!(flags & FLAGS_SHARED))
2088                                 goto retry_private;
2089
2090                         put_futex_key(&key2);
2091                         put_futex_key(&key1);
2092                         goto retry;
2093                 }
2094                 if (curval != *cmpval) {
2095                         ret = -EAGAIN;
2096                         goto out_unlock;
2097                 }
2098         }
2099
2100         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2101                 struct task_struct *exiting = NULL;
2102
2103                 /*
2104                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2105                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2106                  * bit.  We force this here where we are able to easily handle
2107                  * faults rather in the requeue loop below.
2108                  */
2109                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2110                                                  &key2, &pi_state,
2111                                                  &exiting, nr_requeue);
2112
2113                 /*
2114                  * At this point the top_waiter has either taken uaddr2 or is
2115                  * waiting on it.  If the former, then the pi_state will not
2116                  * exist yet, look it up one more time to ensure we have a
2117                  * reference to it. If the lock was taken, ret contains the
2118                  * vpid of the top waiter task.
2119                  * If the lock was not taken, we have pi_state and an initial
2120                  * refcount on it. In case of an error we have nothing.
2121                  */
2122                 if (ret > 0) {
2123                         WARN_ON(pi_state);
2124                         drop_count++;
2125                         task_count++;
2126                         /*
2127                          * If we acquired the lock, then the user space value
2128                          * of uaddr2 should be vpid. It cannot be changed by
2129                          * the top waiter as it is blocked on hb2 lock if it
2130                          * tries to do so. If something fiddled with it behind
2131                          * our back the pi state lookup might unearth it. So
2132                          * we rather use the known value than rereading and
2133                          * handing potential crap to lookup_pi_state.
2134                          *
2135                          * If that call succeeds then we have pi_state and an
2136                          * initial refcount on it.
2137                          */
2138                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2139                                               &pi_state, &exiting);
2140                 }
2141
2142                 switch (ret) {
2143                 case 0:
2144                         /* We hold a reference on the pi state. */
2145                         break;
2146
2147                         /* If the above failed, then pi_state is NULL */
2148                 case -EFAULT:
2149                         double_unlock_hb(hb1, hb2);
2150                         hb_waiters_dec(hb2);
2151                         put_futex_key(&key2);
2152                         put_futex_key(&key1);
2153                         ret = fault_in_user_writeable(uaddr2);
2154                         if (!ret)
2155                                 goto retry;
2156                         goto out;
2157                 case -EBUSY:
2158                 case -EAGAIN:
2159                         /*
2160                          * Two reasons for this:
2161                          * - EBUSY: Owner is exiting and we just wait for the
2162                          *   exit to complete.
2163                          * - EAGAIN: The user space value changed.
2164                          */
2165                         double_unlock_hb(hb1, hb2);
2166                         hb_waiters_dec(hb2);
2167                         put_futex_key(&key2);
2168                         put_futex_key(&key1);
2169                         /*
2170                          * Handle the case where the owner is in the middle of
2171                          * exiting. Wait for the exit to complete otherwise
2172                          * this task might loop forever, aka. live lock.
2173                          */
2174                         wait_for_owner_exiting(ret, exiting);
2175                         cond_resched();
2176                         goto retry;
2177                 default:
2178                         goto out_unlock;
2179                 }
2180         }
2181
2182         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2183                 if (task_count - nr_wake >= nr_requeue)
2184                         break;
2185
2186                 if (!match_futex(&this->key, &key1))
2187                         continue;
2188
2189                 /*
2190                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2191                  * be paired with each other and no other futex ops.
2192                  *
2193                  * We should never be requeueing a futex_q with a pi_state,
2194                  * which is awaiting a futex_unlock_pi().
2195                  */
2196                 if ((requeue_pi && !this->rt_waiter) ||
2197                     (!requeue_pi && this->rt_waiter) ||
2198                     this->pi_state) {
2199                         ret = -EINVAL;
2200                         break;
2201                 }
2202
2203                 /*
2204                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2205                  * lock, we already woke the top_waiter.  If not, it will be
2206                  * woken by futex_unlock_pi().
2207                  */
2208                 if (++task_count <= nr_wake && !requeue_pi) {
2209                         mark_wake_futex(&wake_q, this);
2210                         continue;
2211                 }
2212
2213                 /* Ensure we requeue to the expected futex for requeue_pi. */
2214                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2215                         ret = -EINVAL;
2216                         break;
2217                 }
2218
2219                 /*
2220                  * Requeue nr_requeue waiters and possibly one more in the case
2221                  * of requeue_pi if we couldn't acquire the lock atomically.
2222                  */
2223                 if (requeue_pi) {
2224                         /*
2225                          * Prepare the waiter to take the rt_mutex. Take a
2226                          * refcount on the pi_state and store the pointer in
2227                          * the futex_q object of the waiter.
2228                          */
2229                         get_pi_state(pi_state);
2230                         this->pi_state = pi_state;
2231                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2232                                                         this->rt_waiter,
2233                                                         this->task);
2234                         if (ret == 1) {
2235                                 /*
2236                                  * We got the lock. We do neither drop the
2237                                  * refcount on pi_state nor clear
2238                                  * this->pi_state because the waiter needs the
2239                                  * pi_state for cleaning up the user space
2240                                  * value. It will drop the refcount after
2241                                  * doing so.
2242                                  */
2243                                 requeue_pi_wake_futex(this, &key2, hb2);
2244                                 drop_count++;
2245                                 continue;
2246                         } else if (ret) {
2247                                 /*
2248                                  * rt_mutex_start_proxy_lock() detected a
2249                                  * potential deadlock when we tried to queue
2250                                  * that waiter. Drop the pi_state reference
2251                                  * which we took above and remove the pointer
2252                                  * to the state from the waiters futex_q
2253                                  * object.
2254                                  */
2255                                 this->pi_state = NULL;
2256                                 put_pi_state(pi_state);
2257                                 /*
2258                                  * We stop queueing more waiters and let user
2259                                  * space deal with the mess.
2260                                  */
2261                                 break;
2262                         }
2263                 }
2264                 requeue_futex(this, hb1, hb2, &key2);
2265                 drop_count++;
2266         }
2267
2268         /*
2269          * We took an extra initial reference to the pi_state either
2270          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2271          * need to drop it here again.
2272          */
2273         put_pi_state(pi_state);
2274
2275 out_unlock:
2276         double_unlock_hb(hb1, hb2);
2277         wake_up_q(&wake_q);
2278         hb_waiters_dec(hb2);
2279
2280         /*
2281          * drop_futex_key_refs() must be called outside the spinlocks. During
2282          * the requeue we moved futex_q's from the hash bucket at key1 to the
2283          * one at key2 and updated their key pointer.  We no longer need to
2284          * hold the references to key1.
2285          */
2286         while (--drop_count >= 0)
2287                 drop_futex_key_refs(&key1);
2288
2289 out_put_keys:
2290         put_futex_key(&key2);
2291 out_put_key1:
2292         put_futex_key(&key1);
2293 out:
2294         return ret ? ret : task_count;
2295 }
2296
2297 /* The key must be already stored in q->key. */
2298 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2299         __acquires(&hb->lock)
2300 {
2301         struct futex_hash_bucket *hb;
2302
2303         hb = hash_futex(&q->key);
2304
2305         /*
2306          * Increment the counter before taking the lock so that
2307          * a potential waker won't miss a to-be-slept task that is
2308          * waiting for the spinlock. This is safe as all queue_lock()
2309          * users end up calling queue_me(). Similarly, for housekeeping,
2310          * decrement the counter at queue_unlock() when some error has
2311          * occurred and we don't end up adding the task to the list.
2312          */
2313         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2314
2315         q->lock_ptr = &hb->lock;
2316
2317         spin_lock(&hb->lock);
2318         return hb;
2319 }
2320
2321 static inline void
2322 queue_unlock(struct futex_hash_bucket *hb)
2323         __releases(&hb->lock)
2324 {
2325         spin_unlock(&hb->lock);
2326         hb_waiters_dec(hb);
2327 }
2328
2329 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2330 {
2331         int prio;
2332
2333         /*
2334          * The priority used to register this element is
2335          * - either the real thread-priority for the real-time threads
2336          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2337          * - or MAX_RT_PRIO for non-RT threads.
2338          * Thus, all RT-threads are woken first in priority order, and
2339          * the others are woken last, in FIFO order.
2340          */
2341         prio = min(current->normal_prio, MAX_RT_PRIO);
2342
2343         plist_node_init(&q->list, prio);
2344         plist_add(&q->list, &hb->chain);
2345         q->task = current;
2346 }
2347
2348 /**
2349  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2350  * @q:  The futex_q to enqueue
2351  * @hb: The destination hash bucket
2352  *
2353  * The hb->lock must be held by the caller, and is released here. A call to
2354  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2355  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2356  * or nothing if the unqueue is done as part of the wake process and the unqueue
2357  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2358  * an example).
2359  */
2360 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2361         __releases(&hb->lock)
2362 {
2363         __queue_me(q, hb);
2364         spin_unlock(&hb->lock);
2365 }
2366
2367 /**
2368  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2369  * @q:  The futex_q to unqueue
2370  *
2371  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2372  * be paired with exactly one earlier call to queue_me().
2373  *
2374  * Return:
2375  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2376  *  - 0 - if the futex_q was already removed by the waking thread
2377  */
2378 static int unqueue_me(struct futex_q *q)
2379 {
2380         spinlock_t *lock_ptr;
2381         int ret = 0;
2382
2383         /* In the common case we don't take the spinlock, which is nice. */
2384 retry:
2385         /*
2386          * q->lock_ptr can change between this read and the following spin_lock.
2387          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2388          * optimizing lock_ptr out of the logic below.
2389          */
2390         lock_ptr = READ_ONCE(q->lock_ptr);
2391         if (lock_ptr != NULL) {
2392                 spin_lock(lock_ptr);
2393                 /*
2394                  * q->lock_ptr can change between reading it and
2395                  * spin_lock(), causing us to take the wrong lock.  This
2396                  * corrects the race condition.
2397                  *
2398                  * Reasoning goes like this: if we have the wrong lock,
2399                  * q->lock_ptr must have changed (maybe several times)
2400                  * between reading it and the spin_lock().  It can
2401                  * change again after the spin_lock() but only if it was
2402                  * already changed before the spin_lock().  It cannot,
2403                  * however, change back to the original value.  Therefore
2404                  * we can detect whether we acquired the correct lock.
2405                  */
2406                 if (unlikely(lock_ptr != q->lock_ptr)) {
2407                         spin_unlock(lock_ptr);
2408                         goto retry;
2409                 }
2410                 __unqueue_futex(q);
2411
2412                 BUG_ON(q->pi_state);
2413
2414                 spin_unlock(lock_ptr);
2415                 ret = 1;
2416         }
2417
2418         drop_futex_key_refs(&q->key);
2419         return ret;
2420 }
2421
2422 /*
2423  * PI futexes can not be requeued and must remove themself from the
2424  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2425  * and dropped here.
2426  */
2427 static void unqueue_me_pi(struct futex_q *q)
2428         __releases(q->lock_ptr)
2429 {
2430         __unqueue_futex(q);
2431
2432         BUG_ON(!q->pi_state);
2433         put_pi_state(q->pi_state);
2434         q->pi_state = NULL;
2435
2436         spin_unlock(q->lock_ptr);
2437 }
2438
2439 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2440                                 struct task_struct *argowner)
2441 {
2442         struct futex_pi_state *pi_state = q->pi_state;
2443         u32 uval, uninitialized_var(curval), newval;
2444         struct task_struct *oldowner, *newowner;
2445         u32 newtid;
2446         int ret, err = 0;
2447
2448         lockdep_assert_held(q->lock_ptr);
2449
2450         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2451
2452         oldowner = pi_state->owner;
2453
2454         /*
2455          * We are here because either:
2456          *
2457          *  - we stole the lock and pi_state->owner needs updating to reflect
2458          *    that (@argowner == current),
2459          *
2460          * or:
2461          *
2462          *  - someone stole our lock and we need to fix things to point to the
2463          *    new owner (@argowner == NULL).
2464          *
2465          * Either way, we have to replace the TID in the user space variable.
2466          * This must be atomic as we have to preserve the owner died bit here.
2467          *
2468          * Note: We write the user space value _before_ changing the pi_state
2469          * because we can fault here. Imagine swapped out pages or a fork
2470          * that marked all the anonymous memory readonly for cow.
2471          *
2472          * Modifying pi_state _before_ the user space value would leave the
2473          * pi_state in an inconsistent state when we fault here, because we
2474          * need to drop the locks to handle the fault. This might be observed
2475          * in the PID check in lookup_pi_state.
2476          */
2477 retry:
2478         if (!argowner) {
2479                 if (oldowner != current) {
2480                         /*
2481                          * We raced against a concurrent self; things are
2482                          * already fixed up. Nothing to do.
2483                          */
2484                         ret = 0;
2485                         goto out_unlock;
2486                 }
2487
2488                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2489                         /* We got the lock after all, nothing to fix. */
2490                         ret = 0;
2491                         goto out_unlock;
2492                 }
2493
2494                 /*
2495                  * Since we just failed the trylock; there must be an owner.
2496                  */
2497                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2498                 BUG_ON(!newowner);
2499         } else {
2500                 WARN_ON_ONCE(argowner != current);
2501                 if (oldowner == current) {
2502                         /*
2503                          * We raced against a concurrent self; things are
2504                          * already fixed up. Nothing to do.
2505                          */
2506                         ret = 0;
2507                         goto out_unlock;
2508                 }
2509                 newowner = argowner;
2510         }
2511
2512         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2513         /* Owner died? */
2514         if (!pi_state->owner)
2515                 newtid |= FUTEX_OWNER_DIED;
2516
2517         err = get_futex_value_locked(&uval, uaddr);
2518         if (err)
2519                 goto handle_err;
2520
2521         for (;;) {
2522                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2523
2524                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2525                 if (err)
2526                         goto handle_err;
2527
2528                 if (curval == uval)
2529                         break;
2530                 uval = curval;
2531         }
2532
2533         /*
2534          * We fixed up user space. Now we need to fix the pi_state
2535          * itself.
2536          */
2537         if (pi_state->owner != NULL) {
2538                 raw_spin_lock(&pi_state->owner->pi_lock);
2539                 WARN_ON(list_empty(&pi_state->list));
2540                 list_del_init(&pi_state->list);
2541                 raw_spin_unlock(&pi_state->owner->pi_lock);
2542         }
2543
2544         pi_state->owner = newowner;
2545
2546         raw_spin_lock(&newowner->pi_lock);
2547         WARN_ON(!list_empty(&pi_state->list));
2548         list_add(&pi_state->list, &newowner->pi_state_list);
2549         raw_spin_unlock(&newowner->pi_lock);
2550         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2551
2552         return 0;
2553
2554         /*
2555          * In order to reschedule or handle a page fault, we need to drop the
2556          * locks here. In the case of a fault, this gives the other task
2557          * (either the highest priority waiter itself or the task which stole
2558          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2559          * are back from handling the fault we need to check the pi_state after
2560          * reacquiring the locks and before trying to do another fixup. When
2561          * the fixup has been done already we simply return.
2562          *
2563          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2564          * drop hb->lock since the caller owns the hb -> futex_q relation.
2565          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2566          */
2567 handle_err:
2568         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2569         spin_unlock(q->lock_ptr);
2570
2571         switch (err) {
2572         case -EFAULT:
2573                 ret = fault_in_user_writeable(uaddr);
2574                 break;
2575
2576         case -EAGAIN:
2577                 cond_resched();
2578                 ret = 0;
2579                 break;
2580
2581         default:
2582                 WARN_ON_ONCE(1);
2583                 ret = err;
2584                 break;
2585         }
2586
2587         spin_lock(q->lock_ptr);
2588         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2589
2590         /*
2591          * Check if someone else fixed it for us:
2592          */
2593         if (pi_state->owner != oldowner) {
2594                 ret = 0;
2595                 goto out_unlock;
2596         }
2597
2598         if (ret)
2599                 goto out_unlock;
2600
2601         goto retry;
2602
2603 out_unlock:
2604         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2605         return ret;
2606 }
2607
2608 static long futex_wait_restart(struct restart_block *restart);
2609
2610 /**
2611  * fixup_owner() - Post lock pi_state and corner case management
2612  * @uaddr:      user address of the futex
2613  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2614  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2615  *
2616  * After attempting to lock an rt_mutex, this function is called to cleanup
2617  * the pi_state owner as well as handle race conditions that may allow us to
2618  * acquire the lock. Must be called with the hb lock held.
2619  *
2620  * Return:
2621  *  -  1 - success, lock taken;
2622  *  -  0 - success, lock not taken;
2623  *  - <0 - on error (-EFAULT)
2624  */
2625 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2626 {
2627         int ret = 0;
2628
2629         if (locked) {
2630                 /*
2631                  * Got the lock. We might not be the anticipated owner if we
2632                  * did a lock-steal - fix up the PI-state in that case:
2633                  *
2634                  * Speculative pi_state->owner read (we don't hold wait_lock);
2635                  * since we own the lock pi_state->owner == current is the
2636                  * stable state, anything else needs more attention.
2637                  */
2638                 if (q->pi_state->owner != current)
2639                         ret = fixup_pi_state_owner(uaddr, q, current);
2640                 goto out;
2641         }
2642
2643         /*
2644          * If we didn't get the lock; check if anybody stole it from us. In
2645          * that case, we need to fix up the uval to point to them instead of
2646          * us, otherwise bad things happen. [10]
2647          *
2648          * Another speculative read; pi_state->owner == current is unstable
2649          * but needs our attention.
2650          */
2651         if (q->pi_state->owner == current) {
2652                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2653                 goto out;
2654         }
2655
2656         /*
2657          * Paranoia check. If we did not take the lock, then we should not be
2658          * the owner of the rt_mutex.
2659          */
2660         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2661                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2662                                 "pi-state %p\n", ret,
2663                                 q->pi_state->pi_mutex.owner,
2664                                 q->pi_state->owner);
2665         }
2666
2667 out:
2668         return ret ? ret : locked;
2669 }
2670
2671 /**
2672  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2673  * @hb:         the futex hash bucket, must be locked by the caller
2674  * @q:          the futex_q to queue up on
2675  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2676  */
2677 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2678                                 struct hrtimer_sleeper *timeout)
2679 {
2680         /*
2681          * The task state is guaranteed to be set before another task can
2682          * wake it. set_current_state() is implemented using smp_store_mb() and
2683          * queue_me() calls spin_unlock() upon completion, both serializing
2684          * access to the hash list and forcing another memory barrier.
2685          */
2686         set_current_state(TASK_INTERRUPTIBLE);
2687         queue_me(q, hb);
2688
2689         /* Arm the timer */
2690         if (timeout)
2691                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2692
2693         /*
2694          * If we have been removed from the hash list, then another task
2695          * has tried to wake us, and we can skip the call to schedule().
2696          */
2697         if (likely(!plist_node_empty(&q->list))) {
2698                 /*
2699                  * If the timer has already expired, current will already be
2700                  * flagged for rescheduling. Only call schedule if there
2701                  * is no timeout, or if it has yet to expire.
2702                  */
2703                 if (!timeout || timeout->task)
2704                         freezable_schedule();
2705         }
2706         __set_current_state(TASK_RUNNING);
2707 }
2708
2709 /**
2710  * futex_wait_setup() - Prepare to wait on a futex
2711  * @uaddr:      the futex userspace address
2712  * @val:        the expected value
2713  * @flags:      futex flags (FLAGS_SHARED, etc.)
2714  * @q:          the associated futex_q
2715  * @hb:         storage for hash_bucket pointer to be returned to caller
2716  *
2717  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2718  * compare it with the expected value.  Handle atomic faults internally.
2719  * Return with the hb lock held and a q.key reference on success, and unlocked
2720  * with no q.key reference on failure.
2721  *
2722  * Return:
2723  *  -  0 - uaddr contains val and hb has been locked;
2724  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2725  */
2726 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2727                            struct futex_q *q, struct futex_hash_bucket **hb)
2728 {
2729         u32 uval;
2730         int ret;
2731
2732         /*
2733          * Access the page AFTER the hash-bucket is locked.
2734          * Order is important:
2735          *
2736          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2737          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2738          *
2739          * The basic logical guarantee of a futex is that it blocks ONLY
2740          * if cond(var) is known to be true at the time of blocking, for
2741          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2742          * would open a race condition where we could block indefinitely with
2743          * cond(var) false, which would violate the guarantee.
2744          *
2745          * On the other hand, we insert q and release the hash-bucket only
2746          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2747          * absorb a wakeup if *uaddr does not match the desired values
2748          * while the syscall executes.
2749          */
2750 retry:
2751         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2752         if (unlikely(ret != 0))
2753                 return ret;
2754
2755 retry_private:
2756         *hb = queue_lock(q);
2757
2758         ret = get_futex_value_locked(&uval, uaddr);
2759
2760         if (ret) {
2761                 queue_unlock(*hb);
2762
2763                 ret = get_user(uval, uaddr);
2764                 if (ret)
2765                         goto out;
2766
2767                 if (!(flags & FLAGS_SHARED))
2768                         goto retry_private;
2769
2770                 put_futex_key(&q->key);
2771                 goto retry;
2772         }
2773
2774         if (uval != val) {
2775                 queue_unlock(*hb);
2776                 ret = -EWOULDBLOCK;
2777         }
2778
2779 out:
2780         if (ret)
2781                 put_futex_key(&q->key);
2782         return ret;
2783 }
2784
2785 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2786                       ktime_t *abs_time, u32 bitset)
2787 {
2788         struct hrtimer_sleeper timeout, *to;
2789         struct restart_block *restart;
2790         struct futex_hash_bucket *hb;
2791         struct futex_q q = futex_q_init;
2792         int ret;
2793
2794         if (!bitset)
2795                 return -EINVAL;
2796         q.bitset = bitset;
2797
2798         to = futex_setup_timer(abs_time, &timeout, flags,
2799                                current->timer_slack_ns);
2800 retry:
2801         /*
2802          * Prepare to wait on uaddr. On success, holds hb lock and increments
2803          * q.key refs.
2804          */
2805         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2806         if (ret)
2807                 goto out;
2808
2809         /* queue_me and wait for wakeup, timeout, or a signal. */
2810         futex_wait_queue_me(hb, &q, to);
2811
2812         /* If we were woken (and unqueued), we succeeded, whatever. */
2813         ret = 0;
2814         /* unqueue_me() drops q.key ref */
2815         if (!unqueue_me(&q))
2816                 goto out;
2817         ret = -ETIMEDOUT;
2818         if (to && !to->task)
2819                 goto out;
2820
2821         /*
2822          * We expect signal_pending(current), but we might be the
2823          * victim of a spurious wakeup as well.
2824          */
2825         if (!signal_pending(current))
2826                 goto retry;
2827
2828         ret = -ERESTARTSYS;
2829         if (!abs_time)
2830                 goto out;
2831
2832         restart = &current->restart_block;
2833         restart->fn = futex_wait_restart;
2834         restart->futex.uaddr = uaddr;
2835         restart->futex.val = val;
2836         restart->futex.time = *abs_time;
2837         restart->futex.bitset = bitset;
2838         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2839
2840         ret = -ERESTART_RESTARTBLOCK;
2841
2842 out:
2843         if (to) {
2844                 hrtimer_cancel(&to->timer);
2845                 destroy_hrtimer_on_stack(&to->timer);
2846         }
2847         return ret;
2848 }
2849
2850
2851 static long futex_wait_restart(struct restart_block *restart)
2852 {
2853         u32 __user *uaddr = restart->futex.uaddr;
2854         ktime_t t, *tp = NULL;
2855
2856         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2857                 t = restart->futex.time;
2858                 tp = &t;
2859         }
2860         restart->fn = do_no_restart_syscall;
2861
2862         return (long)futex_wait(uaddr, restart->futex.flags,
2863                                 restart->futex.val, tp, restart->futex.bitset);
2864 }
2865
2866
2867 /*
2868  * Userspace tried a 0 -> TID atomic transition of the futex value
2869  * and failed. The kernel side here does the whole locking operation:
2870  * if there are waiters then it will block as a consequence of relying
2871  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2872  * a 0 value of the futex too.).
2873  *
2874  * Also serves as futex trylock_pi()'ing, and due semantics.
2875  */
2876 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2877                          ktime_t *time, int trylock)
2878 {
2879         struct hrtimer_sleeper timeout, *to;
2880         struct futex_pi_state *pi_state = NULL;
2881         struct task_struct *exiting = NULL;
2882         struct rt_mutex_waiter rt_waiter;
2883         struct futex_hash_bucket *hb;
2884         struct futex_q q = futex_q_init;
2885         int res, ret;
2886
2887         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2888                 return -ENOSYS;
2889
2890         if (refill_pi_state_cache())
2891                 return -ENOMEM;
2892
2893         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2894
2895 retry:
2896         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2897         if (unlikely(ret != 0))
2898                 goto out;
2899
2900 retry_private:
2901         hb = queue_lock(&q);
2902
2903         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2904                                    &exiting, 0);
2905         if (unlikely(ret)) {
2906                 /*
2907                  * Atomic work succeeded and we got the lock,
2908                  * or failed. Either way, we do _not_ block.
2909                  */
2910                 switch (ret) {
2911                 case 1:
2912                         /* We got the lock. */
2913                         ret = 0;
2914                         goto out_unlock_put_key;
2915                 case -EFAULT:
2916                         goto uaddr_faulted;
2917                 case -EBUSY:
2918                 case -EAGAIN:
2919                         /*
2920                          * Two reasons for this:
2921                          * - EBUSY: Task is exiting and we just wait for the
2922                          *   exit to complete.
2923                          * - EAGAIN: The user space value changed.
2924                          */
2925                         queue_unlock(hb);
2926                         put_futex_key(&q.key);
2927                         /*
2928                          * Handle the case where the owner is in the middle of
2929                          * exiting. Wait for the exit to complete otherwise
2930                          * this task might loop forever, aka. live lock.
2931                          */
2932                         wait_for_owner_exiting(ret, exiting);
2933                         cond_resched();
2934                         goto retry;
2935                 default:
2936                         goto out_unlock_put_key;
2937                 }
2938         }
2939
2940         WARN_ON(!q.pi_state);
2941
2942         /*
2943          * Only actually queue now that the atomic ops are done:
2944          */
2945         __queue_me(&q, hb);
2946
2947         if (trylock) {
2948                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2949                 /* Fixup the trylock return value: */
2950                 ret = ret ? 0 : -EWOULDBLOCK;
2951                 goto no_block;
2952         }
2953
2954         rt_mutex_init_waiter(&rt_waiter);
2955
2956         /*
2957          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2958          * hold it while doing rt_mutex_start_proxy(), because then it will
2959          * include hb->lock in the blocking chain, even through we'll not in
2960          * fact hold it while blocking. This will lead it to report -EDEADLK
2961          * and BUG when futex_unlock_pi() interleaves with this.
2962          *
2963          * Therefore acquire wait_lock while holding hb->lock, but drop the
2964          * latter before calling __rt_mutex_start_proxy_lock(). This
2965          * interleaves with futex_unlock_pi() -- which does a similar lock
2966          * handoff -- such that the latter can observe the futex_q::pi_state
2967          * before __rt_mutex_start_proxy_lock() is done.
2968          */
2969         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2970         spin_unlock(q.lock_ptr);
2971         /*
2972          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2973          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2974          * it sees the futex_q::pi_state.
2975          */
2976         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2977         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2978
2979         if (ret) {
2980                 if (ret == 1)
2981                         ret = 0;
2982                 goto cleanup;
2983         }
2984
2985         if (unlikely(to))
2986                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2987
2988         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2989
2990 cleanup:
2991         spin_lock(q.lock_ptr);
2992         /*
2993          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2994          * first acquire the hb->lock before removing the lock from the
2995          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2996          * lists consistent.
2997          *
2998          * In particular; it is important that futex_unlock_pi() can not
2999          * observe this inconsistency.
3000          */
3001         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3002                 ret = 0;
3003
3004 no_block:
3005         /*
3006          * Fixup the pi_state owner and possibly acquire the lock if we
3007          * haven't already.
3008          */
3009         res = fixup_owner(uaddr, &q, !ret);
3010         /*
3011          * If fixup_owner() returned an error, proprogate that.  If it acquired
3012          * the lock, clear our -ETIMEDOUT or -EINTR.
3013          */
3014         if (res)
3015                 ret = (res < 0) ? res : 0;
3016
3017         /*
3018          * If fixup_owner() faulted and was unable to handle the fault, unlock
3019          * it and return the fault to userspace.
3020          */
3021         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
3022                 pi_state = q.pi_state;
3023                 get_pi_state(pi_state);
3024         }
3025
3026         /* Unqueue and drop the lock */
3027         unqueue_me_pi(&q);
3028
3029         if (pi_state) {
3030                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3031                 put_pi_state(pi_state);
3032         }
3033
3034         goto out_put_key;
3035
3036 out_unlock_put_key:
3037         queue_unlock(hb);
3038
3039 out_put_key:
3040         put_futex_key(&q.key);
3041 out:
3042         if (to) {
3043                 hrtimer_cancel(&to->timer);
3044                 destroy_hrtimer_on_stack(&to->timer);
3045         }
3046         return ret != -EINTR ? ret : -ERESTARTNOINTR;
3047
3048 uaddr_faulted:
3049         queue_unlock(hb);
3050
3051         ret = fault_in_user_writeable(uaddr);
3052         if (ret)
3053                 goto out_put_key;
3054
3055         if (!(flags & FLAGS_SHARED))
3056                 goto retry_private;
3057
3058         put_futex_key(&q.key);
3059         goto retry;
3060 }
3061
3062 /*
3063  * Userspace attempted a TID -> 0 atomic transition, and failed.
3064  * This is the in-kernel slowpath: we look up the PI state (if any),
3065  * and do the rt-mutex unlock.
3066  */
3067 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3068 {
3069         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3070         union futex_key key = FUTEX_KEY_INIT;
3071         struct futex_hash_bucket *hb;
3072         struct futex_q *top_waiter;
3073         int ret;
3074
3075         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3076                 return -ENOSYS;
3077
3078 retry:
3079         if (get_user(uval, uaddr))
3080                 return -EFAULT;
3081         /*
3082          * We release only a lock we actually own:
3083          */
3084         if ((uval & FUTEX_TID_MASK) != vpid)
3085                 return -EPERM;
3086
3087         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3088         if (ret)
3089                 return ret;
3090
3091         hb = hash_futex(&key);
3092         spin_lock(&hb->lock);
3093
3094         /*
3095          * Check waiters first. We do not trust user space values at
3096          * all and we at least want to know if user space fiddled
3097          * with the futex value instead of blindly unlocking.
3098          */
3099         top_waiter = futex_top_waiter(hb, &key);
3100         if (top_waiter) {
3101                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3102
3103                 ret = -EINVAL;
3104                 if (!pi_state)
3105                         goto out_unlock;
3106
3107                 /*
3108                  * If current does not own the pi_state then the futex is
3109                  * inconsistent and user space fiddled with the futex value.
3110                  */
3111                 if (pi_state->owner != current)
3112                         goto out_unlock;
3113
3114                 get_pi_state(pi_state);
3115                 /*
3116                  * By taking wait_lock while still holding hb->lock, we ensure
3117                  * there is no point where we hold neither; and therefore
3118                  * wake_futex_pi() must observe a state consistent with what we
3119                  * observed.
3120                  *
3121                  * In particular; this forces __rt_mutex_start_proxy() to
3122                  * complete such that we're guaranteed to observe the
3123                  * rt_waiter. Also see the WARN in wake_futex_pi().
3124                  */
3125                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3126                 spin_unlock(&hb->lock);
3127
3128                 /* drops pi_state->pi_mutex.wait_lock */
3129                 ret = wake_futex_pi(uaddr, uval, pi_state);
3130
3131                 put_pi_state(pi_state);
3132
3133                 /*
3134                  * Success, we're done! No tricky corner cases.
3135                  */
3136                 if (!ret)
3137                         goto out_putkey;
3138                 /*
3139                  * The atomic access to the futex value generated a
3140                  * pagefault, so retry the user-access and the wakeup:
3141                  */
3142                 if (ret == -EFAULT)
3143                         goto pi_faulted;
3144                 /*
3145                  * A unconditional UNLOCK_PI op raced against a waiter
3146                  * setting the FUTEX_WAITERS bit. Try again.
3147                  */
3148                 if (ret == -EAGAIN)
3149                         goto pi_retry;
3150                 /*
3151                  * wake_futex_pi has detected invalid state. Tell user
3152                  * space.
3153                  */
3154                 goto out_putkey;
3155         }
3156
3157         /*
3158          * We have no kernel internal state, i.e. no waiters in the
3159          * kernel. Waiters which are about to queue themselves are stuck
3160          * on hb->lock. So we can safely ignore them. We do neither
3161          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3162          * owner.
3163          */
3164         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3165                 spin_unlock(&hb->lock);
3166                 switch (ret) {
3167                 case -EFAULT:
3168                         goto pi_faulted;
3169
3170                 case -EAGAIN:
3171                         goto pi_retry;
3172
3173                 default:
3174                         WARN_ON_ONCE(1);
3175                         goto out_putkey;
3176                 }
3177         }
3178
3179         /*
3180          * If uval has changed, let user space handle it.
3181          */
3182         ret = (curval == uval) ? 0 : -EAGAIN;
3183
3184 out_unlock:
3185         spin_unlock(&hb->lock);
3186 out_putkey:
3187         put_futex_key(&key);
3188         return ret;
3189
3190 pi_retry:
3191         put_futex_key(&key);
3192         cond_resched();
3193         goto retry;
3194
3195 pi_faulted:
3196         put_futex_key(&key);
3197
3198         ret = fault_in_user_writeable(uaddr);
3199         if (!ret)
3200                 goto retry;
3201
3202         return ret;
3203 }
3204
3205 /**
3206  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3207  * @hb:         the hash_bucket futex_q was original enqueued on
3208  * @q:          the futex_q woken while waiting to be requeued
3209  * @key2:       the futex_key of the requeue target futex
3210  * @timeout:    the timeout associated with the wait (NULL if none)
3211  *
3212  * Detect if the task was woken on the initial futex as opposed to the requeue
3213  * target futex.  If so, determine if it was a timeout or a signal that caused
3214  * the wakeup and return the appropriate error code to the caller.  Must be
3215  * called with the hb lock held.
3216  *
3217  * Return:
3218  *  -  0 = no early wakeup detected;
3219  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3220  */
3221 static inline
3222 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3223                                    struct futex_q *q, union futex_key *key2,
3224                                    struct hrtimer_sleeper *timeout)
3225 {
3226         int ret = 0;
3227
3228         /*
3229          * With the hb lock held, we avoid races while we process the wakeup.
3230          * We only need to hold hb (and not hb2) to ensure atomicity as the
3231          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3232          * It can't be requeued from uaddr2 to something else since we don't
3233          * support a PI aware source futex for requeue.
3234          */
3235         if (!match_futex(&q->key, key2)) {
3236                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3237                 /*
3238                  * We were woken prior to requeue by a timeout or a signal.
3239                  * Unqueue the futex_q and determine which it was.
3240                  */
3241                 plist_del(&q->list, &hb->chain);
3242                 hb_waiters_dec(hb);
3243
3244                 /* Handle spurious wakeups gracefully */
3245                 ret = -EWOULDBLOCK;
3246                 if (timeout && !timeout->task)
3247                         ret = -ETIMEDOUT;
3248                 else if (signal_pending(current))
3249                         ret = -ERESTARTNOINTR;
3250         }
3251         return ret;
3252 }
3253
3254 /**
3255  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3256  * @uaddr:      the futex we initially wait on (non-pi)
3257  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3258  *              the same type, no requeueing from private to shared, etc.
3259  * @val:        the expected value of uaddr
3260  * @abs_time:   absolute timeout
3261  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3262  * @uaddr2:     the pi futex we will take prior to returning to user-space
3263  *
3264  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3265  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3266  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3267  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3268  * without one, the pi logic would not know which task to boost/deboost, if
3269  * there was a need to.
3270  *
3271  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3272  * via the following--
3273  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3274  * 2) wakeup on uaddr2 after a requeue
3275  * 3) signal
3276  * 4) timeout
3277  *
3278  * If 3, cleanup and return -ERESTARTNOINTR.
3279  *
3280  * If 2, we may then block on trying to take the rt_mutex and return via:
3281  * 5) successful lock
3282  * 6) signal
3283  * 7) timeout
3284  * 8) other lock acquisition failure
3285  *
3286  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3287  *
3288  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3289  *
3290  * Return:
3291  *  -  0 - On success;
3292  *  - <0 - On error
3293  */
3294 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3295                                  u32 val, ktime_t *abs_time, u32 bitset,
3296                                  u32 __user *uaddr2)
3297 {
3298         struct hrtimer_sleeper timeout, *to;
3299         struct futex_pi_state *pi_state = NULL;
3300         struct rt_mutex_waiter rt_waiter;
3301         struct futex_hash_bucket *hb;
3302         union futex_key key2 = FUTEX_KEY_INIT;
3303         struct futex_q q = futex_q_init;
3304         int res, ret;
3305
3306         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3307                 return -ENOSYS;
3308
3309         if (uaddr == uaddr2)
3310                 return -EINVAL;
3311
3312         if (!bitset)
3313                 return -EINVAL;
3314
3315         to = futex_setup_timer(abs_time, &timeout, flags,
3316                                current->timer_slack_ns);
3317
3318         /*
3319          * The waiter is allocated on our stack, manipulated by the requeue
3320          * code while we sleep on uaddr.
3321          */
3322         rt_mutex_init_waiter(&rt_waiter);
3323
3324         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3325         if (unlikely(ret != 0))
3326                 goto out;
3327
3328         q.bitset = bitset;
3329         q.rt_waiter = &rt_waiter;
3330         q.requeue_pi_key = &key2;
3331
3332         /*
3333          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3334          * count.
3335          */
3336         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3337         if (ret)
3338                 goto out_key2;
3339
3340         /*
3341          * The check above which compares uaddrs is not sufficient for
3342          * shared futexes. We need to compare the keys:
3343          */
3344         if (match_futex(&q.key, &key2)) {
3345                 queue_unlock(hb);
3346                 ret = -EINVAL;
3347                 goto out_put_keys;
3348         }
3349
3350         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3351         futex_wait_queue_me(hb, &q, to);
3352
3353         spin_lock(&hb->lock);
3354         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3355         spin_unlock(&hb->lock);
3356         if (ret)
3357                 goto out_put_keys;
3358
3359         /*
3360          * In order for us to be here, we know our q.key == key2, and since
3361          * we took the hb->lock above, we also know that futex_requeue() has
3362          * completed and we no longer have to concern ourselves with a wakeup
3363          * race with the atomic proxy lock acquisition by the requeue code. The
3364          * futex_requeue dropped our key1 reference and incremented our key2
3365          * reference count.
3366          */
3367
3368         /* Check if the requeue code acquired the second futex for us. */
3369         if (!q.rt_waiter) {
3370                 /*
3371                  * Got the lock. We might not be the anticipated owner if we
3372                  * did a lock-steal - fix up the PI-state in that case.
3373                  */
3374                 if (q.pi_state && (q.pi_state->owner != current)) {
3375                         spin_lock(q.lock_ptr);
3376                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3377                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3378                                 pi_state = q.pi_state;
3379                                 get_pi_state(pi_state);
3380                         }
3381                         /*
3382                          * Drop the reference to the pi state which
3383                          * the requeue_pi() code acquired for us.
3384                          */
3385                         put_pi_state(q.pi_state);
3386                         spin_unlock(q.lock_ptr);
3387                 }
3388         } else {
3389                 struct rt_mutex *pi_mutex;
3390
3391                 /*
3392                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3393                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3394                  * the pi_state.
3395                  */
3396                 WARN_ON(!q.pi_state);
3397                 pi_mutex = &q.pi_state->pi_mutex;
3398                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3399
3400                 spin_lock(q.lock_ptr);
3401                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3402                         ret = 0;
3403
3404                 debug_rt_mutex_free_waiter(&rt_waiter);
3405                 /*
3406                  * Fixup the pi_state owner and possibly acquire the lock if we
3407                  * haven't already.
3408                  */
3409                 res = fixup_owner(uaddr2, &q, !ret);
3410                 /*
3411                  * If fixup_owner() returned an error, proprogate that.  If it
3412                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3413                  */
3414                 if (res)
3415                         ret = (res < 0) ? res : 0;
3416
3417                 /*
3418                  * If fixup_pi_state_owner() faulted and was unable to handle
3419                  * the fault, unlock the rt_mutex and return the fault to
3420                  * userspace.
3421                  */
3422                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3423                         pi_state = q.pi_state;
3424                         get_pi_state(pi_state);
3425                 }
3426
3427                 /* Unqueue and drop the lock. */
3428                 unqueue_me_pi(&q);
3429         }
3430
3431         if (pi_state) {
3432                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3433                 put_pi_state(pi_state);
3434         }
3435
3436         if (ret == -EINTR) {
3437                 /*
3438                  * We've already been requeued, but cannot restart by calling
3439                  * futex_lock_pi() directly. We could restart this syscall, but
3440                  * it would detect that the user space "val" changed and return
3441                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3442                  * -EWOULDBLOCK directly.
3443                  */
3444                 ret = -EWOULDBLOCK;
3445         }
3446
3447 out_put_keys:
3448         put_futex_key(&q.key);
3449 out_key2:
3450         put_futex_key(&key2);
3451
3452 out:
3453         if (to) {
3454                 hrtimer_cancel(&to->timer);
3455                 destroy_hrtimer_on_stack(&to->timer);
3456         }
3457         return ret;
3458 }
3459
3460 /*
3461  * Support for robust futexes: the kernel cleans up held futexes at
3462  * thread exit time.
3463  *
3464  * Implementation: user-space maintains a per-thread list of locks it
3465  * is holding. Upon do_exit(), the kernel carefully walks this list,
3466  * and marks all locks that are owned by this thread with the
3467  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3468  * always manipulated with the lock held, so the list is private and
3469  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3470  * field, to allow the kernel to clean up if the thread dies after
3471  * acquiring the lock, but just before it could have added itself to
3472  * the list. There can only be one such pending lock.
3473  */
3474
3475 /**
3476  * sys_set_robust_list() - Set the robust-futex list head of a task
3477  * @head:       pointer to the list-head
3478  * @len:        length of the list-head, as userspace expects
3479  */
3480 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3481                 size_t, len)
3482 {
3483         if (!futex_cmpxchg_enabled)
3484                 return -ENOSYS;
3485         /*
3486          * The kernel knows only one size for now:
3487          */
3488         if (unlikely(len != sizeof(*head)))
3489                 return -EINVAL;
3490
3491         current->robust_list = head;
3492
3493         return 0;
3494 }
3495
3496 /**
3497  * sys_get_robust_list() - Get the robust-futex list head of a task
3498  * @pid:        pid of the process [zero for current task]
3499  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3500  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3501  */
3502 SYSCALL_DEFINE3(get_robust_list, int, pid,
3503                 struct robust_list_head __user * __user *, head_ptr,
3504                 size_t __user *, len_ptr)
3505 {
3506         struct robust_list_head __user *head;
3507         unsigned long ret;
3508         struct task_struct *p;
3509
3510         if (!futex_cmpxchg_enabled)
3511                 return -ENOSYS;
3512
3513         rcu_read_lock();
3514
3515         ret = -ESRCH;
3516         if (!pid)
3517                 p = current;
3518         else {
3519                 p = find_task_by_vpid(pid);
3520                 if (!p)
3521                         goto err_unlock;
3522         }
3523
3524         ret = -EPERM;
3525         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3526                 goto err_unlock;
3527
3528         head = p->robust_list;
3529         rcu_read_unlock();
3530
3531         if (put_user(sizeof(*head), len_ptr))
3532                 return -EFAULT;
3533         return put_user(head, head_ptr);
3534
3535 err_unlock:
3536         rcu_read_unlock();
3537
3538         return ret;
3539 }
3540
3541 /* Constants for the pending_op argument of handle_futex_death */
3542 #define HANDLE_DEATH_PENDING    true
3543 #define HANDLE_DEATH_LIST       false
3544
3545 /*
3546  * Process a futex-list entry, check whether it's owned by the
3547  * dying task, and do notification if so:
3548  */
3549 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3550                               bool pi, bool pending_op)
3551 {
3552         u32 uval, uninitialized_var(nval), mval;
3553         int err;
3554
3555         /* Futex address must be 32bit aligned */
3556         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3557                 return -1;
3558
3559 retry:
3560         if (get_user(uval, uaddr))
3561                 return -1;
3562
3563         /*
3564          * Special case for regular (non PI) futexes. The unlock path in
3565          * user space has two race scenarios:
3566          *
3567          * 1. The unlock path releases the user space futex value and
3568          *    before it can execute the futex() syscall to wake up
3569          *    waiters it is killed.
3570          *
3571          * 2. A woken up waiter is killed before it can acquire the
3572          *    futex in user space.
3573          *
3574          * In both cases the TID validation below prevents a wakeup of
3575          * potential waiters which can cause these waiters to block
3576          * forever.
3577          *
3578          * In both cases the following conditions are met:
3579          *
3580          *      1) task->robust_list->list_op_pending != NULL
3581          *         @pending_op == true
3582          *      2) User space futex value == 0
3583          *      3) Regular futex: @pi == false
3584          *
3585          * If these conditions are met, it is safe to attempt waking up a
3586          * potential waiter without touching the user space futex value and
3587          * trying to set the OWNER_DIED bit. The user space futex value is
3588          * uncontended and the rest of the user space mutex state is
3589          * consistent, so a woken waiter will just take over the
3590          * uncontended futex. Setting the OWNER_DIED bit would create
3591          * inconsistent state and malfunction of the user space owner died
3592          * handling.
3593          */
3594         if (pending_op && !pi && !uval) {
3595                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3596                 return 0;
3597         }
3598
3599         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3600                 return 0;
3601
3602         /*
3603          * Ok, this dying thread is truly holding a futex
3604          * of interest. Set the OWNER_DIED bit atomically
3605          * via cmpxchg, and if the value had FUTEX_WAITERS
3606          * set, wake up a waiter (if any). (We have to do a
3607          * futex_wake() even if OWNER_DIED is already set -
3608          * to handle the rare but possible case of recursive
3609          * thread-death.) The rest of the cleanup is done in
3610          * userspace.
3611          */
3612         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3613
3614         /*
3615          * We are not holding a lock here, but we want to have
3616          * the pagefault_disable/enable() protection because
3617          * we want to handle the fault gracefully. If the
3618          * access fails we try to fault in the futex with R/W
3619          * verification via get_user_pages. get_user() above
3620          * does not guarantee R/W access. If that fails we
3621          * give up and leave the futex locked.
3622          */
3623         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3624                 switch (err) {
3625                 case -EFAULT:
3626                         if (fault_in_user_writeable(uaddr))
3627                                 return -1;
3628                         goto retry;
3629
3630                 case -EAGAIN:
3631                         cond_resched();
3632                         goto retry;
3633
3634                 default:
3635                         WARN_ON_ONCE(1);
3636                         return err;
3637                 }
3638         }
3639
3640         if (nval != uval)
3641                 goto retry;
3642
3643         /*
3644          * Wake robust non-PI futexes here. The wakeup of
3645          * PI futexes happens in exit_pi_state():
3646          */
3647         if (!pi && (uval & FUTEX_WAITERS))
3648                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3649
3650         return 0;
3651 }
3652
3653 /*
3654  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3655  */
3656 static inline int fetch_robust_entry(struct robust_list __user **entry,
3657                                      struct robust_list __user * __user *head,
3658                                      unsigned int *pi)
3659 {
3660         unsigned long uentry;
3661
3662         if (get_user(uentry, (unsigned long __user *)head))
3663                 return -EFAULT;
3664
3665         *entry = (void __user *)(uentry & ~1UL);
3666         *pi = uentry & 1;
3667
3668         return 0;
3669 }
3670
3671 /*
3672  * Walk curr->robust_list (very carefully, it's a userspace list!)
3673  * and mark any locks found there dead, and notify any waiters.
3674  *
3675  * We silently return on any sign of list-walking problem.
3676  */
3677 static void exit_robust_list(struct task_struct *curr)
3678 {
3679         struct robust_list_head __user *head = curr->robust_list;
3680         struct robust_list __user *entry, *next_entry, *pending;
3681         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3682         unsigned int uninitialized_var(next_pi);
3683         unsigned long futex_offset;
3684         int rc;
3685
3686         if (!futex_cmpxchg_enabled)
3687                 return;
3688
3689         /*
3690          * Fetch the list head (which was registered earlier, via
3691          * sys_set_robust_list()):
3692          */
3693         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3694                 return;
3695         /*
3696          * Fetch the relative futex offset:
3697          */
3698         if (get_user(futex_offset, &head->futex_offset))
3699                 return;
3700         /*
3701          * Fetch any possibly pending lock-add first, and handle it
3702          * if it exists:
3703          */
3704         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3705                 return;
3706
3707         next_entry = NULL;      /* avoid warning with gcc */
3708         while (entry != &head->list) {
3709                 /*
3710                  * Fetch the next entry in the list before calling
3711                  * handle_futex_death:
3712                  */
3713                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3714                 /*
3715                  * A pending lock might already be on the list, so
3716                  * don't process it twice:
3717                  */
3718                 if (entry != pending) {
3719                         if (handle_futex_death((void __user *)entry + futex_offset,
3720                                                 curr, pi, HANDLE_DEATH_LIST))
3721                                 return;
3722                 }
3723                 if (rc)
3724                         return;
3725                 entry = next_entry;
3726                 pi = next_pi;
3727                 /*
3728                  * Avoid excessively long or circular lists:
3729                  */
3730                 if (!--limit)
3731                         break;
3732
3733                 cond_resched();
3734         }
3735
3736         if (pending) {
3737                 handle_futex_death((void __user *)pending + futex_offset,
3738                                    curr, pip, HANDLE_DEATH_PENDING);
3739         }
3740 }
3741
3742 static void futex_cleanup(struct task_struct *tsk)
3743 {
3744         if (unlikely(tsk->robust_list)) {
3745                 exit_robust_list(tsk);
3746                 tsk->robust_list = NULL;
3747         }
3748
3749 #ifdef CONFIG_COMPAT
3750         if (unlikely(tsk->compat_robust_list)) {
3751                 compat_exit_robust_list(tsk);
3752                 tsk->compat_robust_list = NULL;
3753         }
3754 #endif
3755
3756         if (unlikely(!list_empty(&tsk->pi_state_list)))
3757                 exit_pi_state_list(tsk);
3758 }
3759
3760 /**
3761  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3762  * @tsk:        task to set the state on
3763  *
3764  * Set the futex exit state of the task lockless. The futex waiter code
3765  * observes that state when a task is exiting and loops until the task has
3766  * actually finished the futex cleanup. The worst case for this is that the
3767  * waiter runs through the wait loop until the state becomes visible.
3768  *
3769  * This is called from the recursive fault handling path in do_exit().
3770  *
3771  * This is best effort. Either the futex exit code has run already or
3772  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3773  * take it over. If not, the problem is pushed back to user space. If the
3774  * futex exit code did not run yet, then an already queued waiter might
3775  * block forever, but there is nothing which can be done about that.
3776  */
3777 void futex_exit_recursive(struct task_struct *tsk)
3778 {
3779         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3780         if (tsk->futex_state == FUTEX_STATE_EXITING)
3781                 mutex_unlock(&tsk->futex_exit_mutex);
3782         tsk->futex_state = FUTEX_STATE_DEAD;
3783 }
3784
3785 static void futex_cleanup_begin(struct task_struct *tsk)
3786 {
3787         /*
3788          * Prevent various race issues against a concurrent incoming waiter
3789          * including live locks by forcing the waiter to block on
3790          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3791          * attach_to_pi_owner().
3792          */
3793         mutex_lock(&tsk->futex_exit_mutex);
3794
3795         /*
3796          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3797          *
3798          * This ensures that all subsequent checks of tsk->futex_state in
3799          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3800          * tsk->pi_lock held.
3801          *
3802          * It guarantees also that a pi_state which was queued right before
3803          * the state change under tsk->pi_lock by a concurrent waiter must
3804          * be observed in exit_pi_state_list().
3805          */
3806         raw_spin_lock_irq(&tsk->pi_lock);
3807         tsk->futex_state = FUTEX_STATE_EXITING;
3808         raw_spin_unlock_irq(&tsk->pi_lock);
3809 }
3810
3811 static void futex_cleanup_end(struct task_struct *tsk, int state)
3812 {
3813         /*
3814          * Lockless store. The only side effect is that an observer might
3815          * take another loop until it becomes visible.
3816          */
3817         tsk->futex_state = state;
3818         /*
3819          * Drop the exit protection. This unblocks waiters which observed
3820          * FUTEX_STATE_EXITING to reevaluate the state.
3821          */
3822         mutex_unlock(&tsk->futex_exit_mutex);
3823 }
3824
3825 void futex_exec_release(struct task_struct *tsk)
3826 {
3827         /*
3828          * The state handling is done for consistency, but in the case of
3829          * exec() there is no way to prevent futher damage as the PID stays
3830          * the same. But for the unlikely and arguably buggy case that a
3831          * futex is held on exec(), this provides at least as much state
3832          * consistency protection which is possible.
3833          */
3834         futex_cleanup_begin(tsk);
3835         futex_cleanup(tsk);
3836         /*
3837          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3838          * exec a new binary.
3839          */
3840         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3841 }
3842
3843 void futex_exit_release(struct task_struct *tsk)
3844 {
3845         futex_cleanup_begin(tsk);
3846         futex_cleanup(tsk);
3847         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3848 }
3849
3850 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3851                 u32 __user *uaddr2, u32 val2, u32 val3)
3852 {
3853         int cmd = op & FUTEX_CMD_MASK;
3854         unsigned int flags = 0;
3855
3856         if (!(op & FUTEX_PRIVATE_FLAG))
3857                 flags |= FLAGS_SHARED;
3858
3859         if (op & FUTEX_CLOCK_REALTIME) {
3860                 flags |= FLAGS_CLOCKRT;
3861                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3862                     cmd != FUTEX_WAIT_REQUEUE_PI)
3863                         return -ENOSYS;
3864         }
3865
3866         switch (cmd) {
3867         case FUTEX_LOCK_PI:
3868         case FUTEX_UNLOCK_PI:
3869         case FUTEX_TRYLOCK_PI:
3870         case FUTEX_WAIT_REQUEUE_PI:
3871         case FUTEX_CMP_REQUEUE_PI:
3872                 if (!futex_cmpxchg_enabled)
3873                         return -ENOSYS;
3874         }
3875
3876         switch (cmd) {
3877         case FUTEX_WAIT:
3878                 val3 = FUTEX_BITSET_MATCH_ANY;
3879                 /* fall through */
3880         case FUTEX_WAIT_BITSET:
3881                 return futex_wait(uaddr, flags, val, timeout, val3);
3882         case FUTEX_WAKE:
3883                 val3 = FUTEX_BITSET_MATCH_ANY;
3884                 /* fall through */
3885         case FUTEX_WAKE_BITSET:
3886                 return futex_wake(uaddr, flags, val, val3);
3887         case FUTEX_REQUEUE:
3888                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3889         case FUTEX_CMP_REQUEUE:
3890                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3891         case FUTEX_WAKE_OP:
3892                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3893         case FUTEX_LOCK_PI:
3894                 return futex_lock_pi(uaddr, flags, timeout, 0);
3895         case FUTEX_UNLOCK_PI:
3896                 return futex_unlock_pi(uaddr, flags);
3897         case FUTEX_TRYLOCK_PI:
3898                 return futex_lock_pi(uaddr, flags, NULL, 1);
3899         case FUTEX_WAIT_REQUEUE_PI:
3900                 val3 = FUTEX_BITSET_MATCH_ANY;
3901                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3902                                              uaddr2);
3903         case FUTEX_CMP_REQUEUE_PI:
3904                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3905         }
3906         return -ENOSYS;
3907 }
3908
3909
3910 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3911                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3912                 u32, val3)
3913 {
3914         struct timespec64 ts;
3915         ktime_t t, *tp = NULL;
3916         u32 val2 = 0;
3917         int cmd = op & FUTEX_CMD_MASK;
3918
3919         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3920                       cmd == FUTEX_WAIT_BITSET ||
3921                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3922                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3923                         return -EFAULT;
3924                 if (get_timespec64(&ts, utime))
3925                         return -EFAULT;
3926                 if (!timespec64_valid(&ts))
3927                         return -EINVAL;
3928
3929                 t = timespec64_to_ktime(ts);
3930                 if (cmd == FUTEX_WAIT)
3931                         t = ktime_add_safe(ktime_get(), t);
3932                 tp = &t;
3933         }
3934         /*
3935          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3936          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3937          */
3938         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3939             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3940                 val2 = (u32) (unsigned long) utime;
3941
3942         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3943 }
3944
3945 #ifdef CONFIG_COMPAT
3946 /*
3947  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3948  */
3949 static inline int
3950 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3951                    compat_uptr_t __user *head, unsigned int *pi)
3952 {
3953         if (get_user(*uentry, head))
3954                 return -EFAULT;
3955
3956         *entry = compat_ptr((*uentry) & ~1);
3957         *pi = (unsigned int)(*uentry) & 1;
3958
3959         return 0;
3960 }
3961
3962 static void __user *futex_uaddr(struct robust_list __user *entry,
3963                                 compat_long_t futex_offset)
3964 {
3965         compat_uptr_t base = ptr_to_compat(entry);
3966         void __user *uaddr = compat_ptr(base + futex_offset);
3967
3968         return uaddr;
3969 }
3970
3971 /*
3972  * Walk curr->robust_list (very carefully, it's a userspace list!)
3973  * and mark any locks found there dead, and notify any waiters.
3974  *
3975  * We silently return on any sign of list-walking problem.
3976  */
3977 static void compat_exit_robust_list(struct task_struct *curr)
3978 {
3979         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3980         struct robust_list __user *entry, *next_entry, *pending;
3981         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3982         unsigned int uninitialized_var(next_pi);
3983         compat_uptr_t uentry, next_uentry, upending;
3984         compat_long_t futex_offset;
3985         int rc;
3986
3987         if (!futex_cmpxchg_enabled)
3988                 return;
3989
3990         /*
3991          * Fetch the list head (which was registered earlier, via
3992          * sys_set_robust_list()):
3993          */
3994         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3995                 return;
3996         /*
3997          * Fetch the relative futex offset:
3998          */
3999         if (get_user(futex_offset, &head->futex_offset))
4000                 return;
4001         /*
4002          * Fetch any possibly pending lock-add first, and handle it
4003          * if it exists:
4004          */
4005         if (compat_fetch_robust_entry(&upending, &pending,
4006                                &head->list_op_pending, &pip))
4007                 return;
4008
4009         next_entry = NULL;      /* avoid warning with gcc */
4010         while (entry != (struct robust_list __user *) &head->list) {
4011                 /*
4012                  * Fetch the next entry in the list before calling
4013                  * handle_futex_death:
4014                  */
4015                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4016                         (compat_uptr_t __user *)&entry->next, &next_pi);
4017                 /*
4018                  * A pending lock might already be on the list, so
4019                  * dont process it twice:
4020                  */
4021                 if (entry != pending) {
4022                         void __user *uaddr = futex_uaddr(entry, futex_offset);
4023
4024                         if (handle_futex_death(uaddr, curr, pi,
4025                                                HANDLE_DEATH_LIST))
4026                                 return;
4027                 }
4028                 if (rc)
4029                         return;
4030                 uentry = next_uentry;
4031                 entry = next_entry;
4032                 pi = next_pi;
4033                 /*
4034                  * Avoid excessively long or circular lists:
4035                  */
4036                 if (!--limit)
4037                         break;
4038
4039                 cond_resched();
4040         }
4041         if (pending) {
4042                 void __user *uaddr = futex_uaddr(pending, futex_offset);
4043
4044                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4045         }
4046 }
4047
4048 COMPAT_SYSCALL_DEFINE2(set_robust_list,
4049                 struct compat_robust_list_head __user *, head,
4050                 compat_size_t, len)
4051 {
4052         if (!futex_cmpxchg_enabled)
4053                 return -ENOSYS;
4054
4055         if (unlikely(len != sizeof(*head)))
4056                 return -EINVAL;
4057
4058         current->compat_robust_list = head;
4059
4060         return 0;
4061 }
4062
4063 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4064                         compat_uptr_t __user *, head_ptr,
4065                         compat_size_t __user *, len_ptr)
4066 {
4067         struct compat_robust_list_head __user *head;
4068         unsigned long ret;
4069         struct task_struct *p;
4070
4071         if (!futex_cmpxchg_enabled)
4072                 return -ENOSYS;
4073
4074         rcu_read_lock();
4075
4076         ret = -ESRCH;
4077         if (!pid)
4078                 p = current;
4079         else {
4080                 p = find_task_by_vpid(pid);
4081                 if (!p)
4082                         goto err_unlock;
4083         }
4084
4085         ret = -EPERM;
4086         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4087                 goto err_unlock;
4088
4089         head = p->compat_robust_list;
4090         rcu_read_unlock();
4091
4092         if (put_user(sizeof(*head), len_ptr))
4093                 return -EFAULT;
4094         return put_user(ptr_to_compat(head), head_ptr);
4095
4096 err_unlock:
4097         rcu_read_unlock();
4098
4099         return ret;
4100 }
4101 #endif /* CONFIG_COMPAT */
4102
4103 #ifdef CONFIG_COMPAT_32BIT_TIME
4104 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4105                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4106                 u32, val3)
4107 {
4108         struct timespec64 ts;
4109         ktime_t t, *tp = NULL;
4110         int val2 = 0;
4111         int cmd = op & FUTEX_CMD_MASK;
4112
4113         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4114                       cmd == FUTEX_WAIT_BITSET ||
4115                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
4116                 if (get_old_timespec32(&ts, utime))
4117                         return -EFAULT;
4118                 if (!timespec64_valid(&ts))
4119                         return -EINVAL;
4120
4121                 t = timespec64_to_ktime(ts);
4122                 if (cmd == FUTEX_WAIT)
4123                         t = ktime_add_safe(ktime_get(), t);
4124                 tp = &t;
4125         }
4126         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4127             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4128                 val2 = (int) (unsigned long) utime;
4129
4130         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4131 }
4132 #endif /* CONFIG_COMPAT_32BIT_TIME */
4133
4134 static void __init futex_detect_cmpxchg(void)
4135 {
4136 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4137         u32 curval;
4138
4139         /*
4140          * This will fail and we want it. Some arch implementations do
4141          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4142          * functionality. We want to know that before we call in any
4143          * of the complex code paths. Also we want to prevent
4144          * registration of robust lists in that case. NULL is
4145          * guaranteed to fault and we get -EFAULT on functional
4146          * implementation, the non-functional ones will return
4147          * -ENOSYS.
4148          */
4149         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4150                 futex_cmpxchg_enabled = 1;
4151 #endif
4152 }
4153
4154 static int __init futex_init(void)
4155 {
4156         unsigned int futex_shift;
4157         unsigned long i;
4158
4159 #if CONFIG_BASE_SMALL
4160         futex_hashsize = 16;
4161 #else
4162         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4163 #endif
4164
4165         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4166                                                futex_hashsize, 0,
4167                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4168                                                &futex_shift, NULL,
4169                                                futex_hashsize, futex_hashsize);
4170         futex_hashsize = 1UL << futex_shift;
4171
4172         futex_detect_cmpxchg();
4173
4174         for (i = 0; i < futex_hashsize; i++) {
4175                 atomic_set(&futex_queues[i].waiters, 0);
4176                 plist_head_init(&futex_queues[i].chain);
4177                 spin_lock_init(&futex_queues[i].lock);
4178         }
4179
4180         return 0;
4181 }
4182 core_initcall(futex_init);