futex: Validate atomic acquisition in futex_lock_pi_atomic()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * Basic futex operation and ordering guarantees:
74  *
75  * The waiter reads the futex value in user space and calls
76  * futex_wait(). This function computes the hash bucket and acquires
77  * the hash bucket lock. After that it reads the futex user space value
78  * again and verifies that the data has not changed. If it has not changed
79  * it enqueues itself into the hash bucket, releases the hash bucket lock
80  * and schedules.
81  *
82  * The waker side modifies the user space value of the futex and calls
83  * futex_wake(). This function computes the hash bucket and acquires the
84  * hash bucket lock. Then it looks for waiters on that futex in the hash
85  * bucket and wakes them.
86  *
87  * In futex wake up scenarios where no tasks are blocked on a futex, taking
88  * the hb spinlock can be avoided and simply return. In order for this
89  * optimization to work, ordering guarantees must exist so that the waiter
90  * being added to the list is acknowledged when the list is concurrently being
91  * checked by the waker, avoiding scenarios like the following:
92  *
93  * CPU 0                               CPU 1
94  * val = *futex;
95  * sys_futex(WAIT, futex, val);
96  *   futex_wait(futex, val);
97  *   uval = *futex;
98  *                                     *futex = newval;
99  *                                     sys_futex(WAKE, futex);
100  *                                       futex_wake(futex);
101  *                                       if (queue_empty())
102  *                                         return;
103  *   if (uval == val)
104  *      lock(hash_bucket(futex));
105  *      queue();
106  *     unlock(hash_bucket(futex));
107  *     schedule();
108  *
109  * This would cause the waiter on CPU 0 to wait forever because it
110  * missed the transition of the user space value from val to newval
111  * and the waker did not find the waiter in the hash bucket queue.
112  *
113  * The correct serialization ensures that a waiter either observes
114  * the changed user space value before blocking or is woken by a
115  * concurrent waker:
116  *
117  * CPU 0                                 CPU 1
118  * val = *futex;
119  * sys_futex(WAIT, futex, val);
120  *   futex_wait(futex, val);
121  *
122  *   waiters++;
123  *   mb(); (A) <-- paired with -.
124  *                              |
125  *   lock(hash_bucket(futex));  |
126  *                              |
127  *   uval = *futex;             |
128  *                              |        *futex = newval;
129  *                              |        sys_futex(WAKE, futex);
130  *                              |          futex_wake(futex);
131  *                              |
132  *                              `------->  mb(); (B)
133  *   if (uval == val)
134  *     queue();
135  *     unlock(hash_bucket(futex));
136  *     schedule();                         if (waiters)
137  *                                           lock(hash_bucket(futex));
138  *                                           wake_waiters(futex);
139  *                                           unlock(hash_bucket(futex));
140  *
141  * Where (A) orders the waiters increment and the futex value read -- this
142  * is guaranteed by the head counter in the hb spinlock; and where (B)
143  * orders the write to futex and the waiters read -- this is done by the
144  * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
145  * depending on the futex type.
146  *
147  * This yields the following case (where X:=waiters, Y:=futex):
148  *
149  *      X = Y = 0
150  *
151  *      w[X]=1          w[Y]=1
152  *      MB              MB
153  *      r[Y]=y          r[X]=x
154  *
155  * Which guarantees that x==0 && y==0 is impossible; which translates back into
156  * the guarantee that we cannot both miss the futex variable change and the
157  * enqueue.
158  */
159
160 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
161 int __read_mostly futex_cmpxchg_enabled;
162 #endif
163
164 /*
165  * Futex flags used to encode options to functions and preserve them across
166  * restarts.
167  */
168 #define FLAGS_SHARED            0x01
169 #define FLAGS_CLOCKRT           0x02
170 #define FLAGS_HAS_TIMEOUT       0x04
171
172 /*
173  * Priority Inheritance state:
174  */
175 struct futex_pi_state {
176         /*
177          * list of 'owned' pi_state instances - these have to be
178          * cleaned up in do_exit() if the task exits prematurely:
179          */
180         struct list_head list;
181
182         /*
183          * The PI object:
184          */
185         struct rt_mutex pi_mutex;
186
187         struct task_struct *owner;
188         atomic_t refcount;
189
190         union futex_key key;
191 };
192
193 /**
194  * struct futex_q - The hashed futex queue entry, one per waiting task
195  * @list:               priority-sorted list of tasks waiting on this futex
196  * @task:               the task waiting on the futex
197  * @lock_ptr:           the hash bucket lock
198  * @key:                the key the futex is hashed on
199  * @pi_state:           optional priority inheritance state
200  * @rt_waiter:          rt_waiter storage for use with requeue_pi
201  * @requeue_pi_key:     the requeue_pi target futex key
202  * @bitset:             bitset for the optional bitmasked wakeup
203  *
204  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
205  * we can wake only the relevant ones (hashed queues may be shared).
206  *
207  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
208  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
209  * The order of wakeup is always to make the first condition true, then
210  * the second.
211  *
212  * PI futexes are typically woken before they are removed from the hash list via
213  * the rt_mutex code. See unqueue_me_pi().
214  */
215 struct futex_q {
216         struct plist_node list;
217
218         struct task_struct *task;
219         spinlock_t *lock_ptr;
220         union futex_key key;
221         struct futex_pi_state *pi_state;
222         struct rt_mutex_waiter *rt_waiter;
223         union futex_key *requeue_pi_key;
224         u32 bitset;
225 };
226
227 static const struct futex_q futex_q_init = {
228         /* list gets initialized in queue_me()*/
229         .key = FUTEX_KEY_INIT,
230         .bitset = FUTEX_BITSET_MATCH_ANY
231 };
232
233 /*
234  * Hash buckets are shared by all the futex_keys that hash to the same
235  * location.  Each key may have multiple futex_q structures, one for each task
236  * waiting on a futex.
237  */
238 struct futex_hash_bucket {
239         atomic_t waiters;
240         spinlock_t lock;
241         struct plist_head chain;
242 } ____cacheline_aligned_in_smp;
243
244 static unsigned long __read_mostly futex_hashsize;
245
246 static struct futex_hash_bucket *futex_queues;
247
248 static inline void futex_get_mm(union futex_key *key)
249 {
250         atomic_inc(&key->private.mm->mm_count);
251         /*
252          * Ensure futex_get_mm() implies a full barrier such that
253          * get_futex_key() implies a full barrier. This is relied upon
254          * as full barrier (B), see the ordering comment above.
255          */
256         smp_mb__after_atomic_inc();
257 }
258
259 /*
260  * Reflects a new waiter being added to the waitqueue.
261  */
262 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
263 {
264 #ifdef CONFIG_SMP
265         atomic_inc(&hb->waiters);
266         /*
267          * Full barrier (A), see the ordering comment above.
268          */
269         smp_mb__after_atomic_inc();
270 #endif
271 }
272
273 /*
274  * Reflects a waiter being removed from the waitqueue by wakeup
275  * paths.
276  */
277 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
278 {
279 #ifdef CONFIG_SMP
280         atomic_dec(&hb->waiters);
281 #endif
282 }
283
284 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
285 {
286 #ifdef CONFIG_SMP
287         return atomic_read(&hb->waiters);
288 #else
289         return 1;
290 #endif
291 }
292
293 /*
294  * We hash on the keys returned from get_futex_key (see below).
295  */
296 static struct futex_hash_bucket *hash_futex(union futex_key *key)
297 {
298         u32 hash = jhash2((u32*)&key->both.word,
299                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
300                           key->both.offset);
301         return &futex_queues[hash & (futex_hashsize - 1)];
302 }
303
304 /*
305  * Return 1 if two futex_keys are equal, 0 otherwise.
306  */
307 static inline int match_futex(union futex_key *key1, union futex_key *key2)
308 {
309         return (key1 && key2
310                 && key1->both.word == key2->both.word
311                 && key1->both.ptr == key2->both.ptr
312                 && key1->both.offset == key2->both.offset);
313 }
314
315 /*
316  * Take a reference to the resource addressed by a key.
317  * Can be called while holding spinlocks.
318  *
319  */
320 static void get_futex_key_refs(union futex_key *key)
321 {
322         if (!key->both.ptr)
323                 return;
324
325         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
326         case FUT_OFF_INODE:
327                 ihold(key->shared.inode); /* implies MB (B) */
328                 break;
329         case FUT_OFF_MMSHARED:
330                 futex_get_mm(key); /* implies MB (B) */
331                 break;
332         }
333 }
334
335 /*
336  * Drop a reference to the resource addressed by a key.
337  * The hash bucket spinlock must not be held.
338  */
339 static void drop_futex_key_refs(union futex_key *key)
340 {
341         if (!key->both.ptr) {
342                 /* If we're here then we tried to put a key we failed to get */
343                 WARN_ON_ONCE(1);
344                 return;
345         }
346
347         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
348         case FUT_OFF_INODE:
349                 iput(key->shared.inode);
350                 break;
351         case FUT_OFF_MMSHARED:
352                 mmdrop(key->private.mm);
353                 break;
354         }
355 }
356
357 /**
358  * get_futex_key() - Get parameters which are the keys for a futex
359  * @uaddr:      virtual address of the futex
360  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
361  * @key:        address where result is stored.
362  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
363  *              VERIFY_WRITE)
364  *
365  * Return: a negative error code or 0
366  *
367  * The key words are stored in *key on success.
368  *
369  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
370  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
371  * We can usually work out the index without swapping in the page.
372  *
373  * lock_page() might sleep, the caller should not hold a spinlock.
374  */
375 static int
376 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
377 {
378         unsigned long address = (unsigned long)uaddr;
379         struct mm_struct *mm = current->mm;
380         struct page *page, *page_head;
381         int err, ro = 0;
382
383         /*
384          * The futex address must be "naturally" aligned.
385          */
386         key->both.offset = address % PAGE_SIZE;
387         if (unlikely((address % sizeof(u32)) != 0))
388                 return -EINVAL;
389         address -= key->both.offset;
390
391         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
392                 return -EFAULT;
393
394         /*
395          * PROCESS_PRIVATE futexes are fast.
396          * As the mm cannot disappear under us and the 'key' only needs
397          * virtual address, we dont even have to find the underlying vma.
398          * Note : We do have to check 'uaddr' is a valid user address,
399          *        but access_ok() should be faster than find_vma()
400          */
401         if (!fshared) {
402                 key->private.mm = mm;
403                 key->private.address = address;
404                 get_futex_key_refs(key);  /* implies MB (B) */
405                 return 0;
406         }
407
408 again:
409         err = get_user_pages_fast(address, 1, 1, &page);
410         /*
411          * If write access is not required (eg. FUTEX_WAIT), try
412          * and get read-only access.
413          */
414         if (err == -EFAULT && rw == VERIFY_READ) {
415                 err = get_user_pages_fast(address, 1, 0, &page);
416                 ro = 1;
417         }
418         if (err < 0)
419                 return err;
420         else
421                 err = 0;
422
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424         page_head = page;
425         if (unlikely(PageTail(page))) {
426                 put_page(page);
427                 /* serialize against __split_huge_page_splitting() */
428                 local_irq_disable();
429                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
430                         page_head = compound_head(page);
431                         /*
432                          * page_head is valid pointer but we must pin
433                          * it before taking the PG_lock and/or
434                          * PG_compound_lock. The moment we re-enable
435                          * irqs __split_huge_page_splitting() can
436                          * return and the head page can be freed from
437                          * under us. We can't take the PG_lock and/or
438                          * PG_compound_lock on a page that could be
439                          * freed from under us.
440                          */
441                         if (page != page_head) {
442                                 get_page(page_head);
443                                 put_page(page);
444                         }
445                         local_irq_enable();
446                 } else {
447                         local_irq_enable();
448                         goto again;
449                 }
450         }
451 #else
452         page_head = compound_head(page);
453         if (page != page_head) {
454                 get_page(page_head);
455                 put_page(page);
456         }
457 #endif
458
459         lock_page(page_head);
460
461         /*
462          * If page_head->mapping is NULL, then it cannot be a PageAnon
463          * page; but it might be the ZERO_PAGE or in the gate area or
464          * in a special mapping (all cases which we are happy to fail);
465          * or it may have been a good file page when get_user_pages_fast
466          * found it, but truncated or holepunched or subjected to
467          * invalidate_complete_page2 before we got the page lock (also
468          * cases which we are happy to fail).  And we hold a reference,
469          * so refcount care in invalidate_complete_page's remove_mapping
470          * prevents drop_caches from setting mapping to NULL beneath us.
471          *
472          * The case we do have to guard against is when memory pressure made
473          * shmem_writepage move it from filecache to swapcache beneath us:
474          * an unlikely race, but we do need to retry for page_head->mapping.
475          */
476         if (!page_head->mapping) {
477                 int shmem_swizzled = PageSwapCache(page_head);
478                 unlock_page(page_head);
479                 put_page(page_head);
480                 if (shmem_swizzled)
481                         goto again;
482                 return -EFAULT;
483         }
484
485         /*
486          * Private mappings are handled in a simple way.
487          *
488          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
489          * it's a read-only handle, it's expected that futexes attach to
490          * the object not the particular process.
491          */
492         if (PageAnon(page_head)) {
493                 /*
494                  * A RO anonymous page will never change and thus doesn't make
495                  * sense for futex operations.
496                  */
497                 if (ro) {
498                         err = -EFAULT;
499                         goto out;
500                 }
501
502                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
503                 key->private.mm = mm;
504                 key->private.address = address;
505         } else {
506                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
507                 key->shared.inode = page_head->mapping->host;
508                 key->shared.pgoff = basepage_index(page);
509         }
510
511         get_futex_key_refs(key); /* implies MB (B) */
512
513 out:
514         unlock_page(page_head);
515         put_page(page_head);
516         return err;
517 }
518
519 static inline void put_futex_key(union futex_key *key)
520 {
521         drop_futex_key_refs(key);
522 }
523
524 /**
525  * fault_in_user_writeable() - Fault in user address and verify RW access
526  * @uaddr:      pointer to faulting user space address
527  *
528  * Slow path to fixup the fault we just took in the atomic write
529  * access to @uaddr.
530  *
531  * We have no generic implementation of a non-destructive write to the
532  * user address. We know that we faulted in the atomic pagefault
533  * disabled section so we can as well avoid the #PF overhead by
534  * calling get_user_pages() right away.
535  */
536 static int fault_in_user_writeable(u32 __user *uaddr)
537 {
538         struct mm_struct *mm = current->mm;
539         int ret;
540
541         down_read(&mm->mmap_sem);
542         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
543                                FAULT_FLAG_WRITE);
544         up_read(&mm->mmap_sem);
545
546         return ret < 0 ? ret : 0;
547 }
548
549 /**
550  * futex_top_waiter() - Return the highest priority waiter on a futex
551  * @hb:         the hash bucket the futex_q's reside in
552  * @key:        the futex key (to distinguish it from other futex futex_q's)
553  *
554  * Must be called with the hb lock held.
555  */
556 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
557                                         union futex_key *key)
558 {
559         struct futex_q *this;
560
561         plist_for_each_entry(this, &hb->chain, list) {
562                 if (match_futex(&this->key, key))
563                         return this;
564         }
565         return NULL;
566 }
567
568 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
569                                       u32 uval, u32 newval)
570 {
571         int ret;
572
573         pagefault_disable();
574         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
575         pagefault_enable();
576
577         return ret;
578 }
579
580 static int get_futex_value_locked(u32 *dest, u32 __user *from)
581 {
582         int ret;
583
584         pagefault_disable();
585         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
586         pagefault_enable();
587
588         return ret ? -EFAULT : 0;
589 }
590
591
592 /*
593  * PI code:
594  */
595 static int refill_pi_state_cache(void)
596 {
597         struct futex_pi_state *pi_state;
598
599         if (likely(current->pi_state_cache))
600                 return 0;
601
602         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
603
604         if (!pi_state)
605                 return -ENOMEM;
606
607         INIT_LIST_HEAD(&pi_state->list);
608         /* pi_mutex gets initialized later */
609         pi_state->owner = NULL;
610         atomic_set(&pi_state->refcount, 1);
611         pi_state->key = FUTEX_KEY_INIT;
612
613         current->pi_state_cache = pi_state;
614
615         return 0;
616 }
617
618 static struct futex_pi_state * alloc_pi_state(void)
619 {
620         struct futex_pi_state *pi_state = current->pi_state_cache;
621
622         WARN_ON(!pi_state);
623         current->pi_state_cache = NULL;
624
625         return pi_state;
626 }
627
628 static void free_pi_state(struct futex_pi_state *pi_state)
629 {
630         if (!atomic_dec_and_test(&pi_state->refcount))
631                 return;
632
633         /*
634          * If pi_state->owner is NULL, the owner is most probably dying
635          * and has cleaned up the pi_state already
636          */
637         if (pi_state->owner) {
638                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
639                 list_del_init(&pi_state->list);
640                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
641
642                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
643         }
644
645         if (current->pi_state_cache)
646                 kfree(pi_state);
647         else {
648                 /*
649                  * pi_state->list is already empty.
650                  * clear pi_state->owner.
651                  * refcount is at 0 - put it back to 1.
652                  */
653                 pi_state->owner = NULL;
654                 atomic_set(&pi_state->refcount, 1);
655                 current->pi_state_cache = pi_state;
656         }
657 }
658
659 /*
660  * Look up the task based on what TID userspace gave us.
661  * We dont trust it.
662  */
663 static struct task_struct * futex_find_get_task(pid_t pid)
664 {
665         struct task_struct *p;
666
667         rcu_read_lock();
668         p = find_task_by_vpid(pid);
669         if (p)
670                 get_task_struct(p);
671
672         rcu_read_unlock();
673
674         return p;
675 }
676
677 /*
678  * This task is holding PI mutexes at exit time => bad.
679  * Kernel cleans up PI-state, but userspace is likely hosed.
680  * (Robust-futex cleanup is separate and might save the day for userspace.)
681  */
682 void exit_pi_state_list(struct task_struct *curr)
683 {
684         struct list_head *next, *head = &curr->pi_state_list;
685         struct futex_pi_state *pi_state;
686         struct futex_hash_bucket *hb;
687         union futex_key key = FUTEX_KEY_INIT;
688
689         if (!futex_cmpxchg_enabled)
690                 return;
691         /*
692          * We are a ZOMBIE and nobody can enqueue itself on
693          * pi_state_list anymore, but we have to be careful
694          * versus waiters unqueueing themselves:
695          */
696         raw_spin_lock_irq(&curr->pi_lock);
697         while (!list_empty(head)) {
698
699                 next = head->next;
700                 pi_state = list_entry(next, struct futex_pi_state, list);
701                 key = pi_state->key;
702                 hb = hash_futex(&key);
703                 raw_spin_unlock_irq(&curr->pi_lock);
704
705                 spin_lock(&hb->lock);
706
707                 raw_spin_lock_irq(&curr->pi_lock);
708                 /*
709                  * We dropped the pi-lock, so re-check whether this
710                  * task still owns the PI-state:
711                  */
712                 if (head->next != next) {
713                         spin_unlock(&hb->lock);
714                         continue;
715                 }
716
717                 WARN_ON(pi_state->owner != curr);
718                 WARN_ON(list_empty(&pi_state->list));
719                 list_del_init(&pi_state->list);
720                 pi_state->owner = NULL;
721                 raw_spin_unlock_irq(&curr->pi_lock);
722
723                 rt_mutex_unlock(&pi_state->pi_mutex);
724
725                 spin_unlock(&hb->lock);
726
727                 raw_spin_lock_irq(&curr->pi_lock);
728         }
729         raw_spin_unlock_irq(&curr->pi_lock);
730 }
731
732 static int
733 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
734                 union futex_key *key, struct futex_pi_state **ps,
735                 struct task_struct *task)
736 {
737         struct futex_pi_state *pi_state = NULL;
738         struct futex_q *this, *next;
739         struct task_struct *p;
740         pid_t pid = uval & FUTEX_TID_MASK;
741
742         plist_for_each_entry_safe(this, next, &hb->chain, list) {
743                 if (match_futex(&this->key, key)) {
744                         /*
745                          * Another waiter already exists - bump up
746                          * the refcount and return its pi_state:
747                          */
748                         pi_state = this->pi_state;
749                         /*
750                          * Userspace might have messed up non-PI and PI futexes
751                          */
752                         if (unlikely(!pi_state))
753                                 return -EINVAL;
754
755                         WARN_ON(!atomic_read(&pi_state->refcount));
756
757                         /*
758                          * When pi_state->owner is NULL then the owner died
759                          * and another waiter is on the fly. pi_state->owner
760                          * is fixed up by the task which acquires
761                          * pi_state->rt_mutex.
762                          *
763                          * We do not check for pid == 0 which can happen when
764                          * the owner died and robust_list_exit() cleared the
765                          * TID.
766                          */
767                         if (pid && pi_state->owner) {
768                                 /*
769                                  * Bail out if user space manipulated the
770                                  * futex value.
771                                  */
772                                 if (pid != task_pid_vnr(pi_state->owner))
773                                         return -EINVAL;
774                         }
775
776                         /*
777                          * Protect against a corrupted uval. If uval
778                          * is 0x80000000 then pid is 0 and the waiter
779                          * bit is set. So the deadlock check in the
780                          * calling code has failed and we did not fall
781                          * into the check above due to !pid.
782                          */
783                         if (task && pi_state->owner == task)
784                                 return -EDEADLK;
785
786                         atomic_inc(&pi_state->refcount);
787                         *ps = pi_state;
788
789                         return 0;
790                 }
791         }
792
793         /*
794          * We are the first waiter - try to look up the real owner and attach
795          * the new pi_state to it, but bail out when TID = 0
796          */
797         if (!pid)
798                 return -ESRCH;
799         p = futex_find_get_task(pid);
800         if (!p)
801                 return -ESRCH;
802
803         if (!p->mm) {
804                 put_task_struct(p);
805                 return -EPERM;
806         }
807
808         /*
809          * We need to look at the task state flags to figure out,
810          * whether the task is exiting. To protect against the do_exit
811          * change of the task flags, we do this protected by
812          * p->pi_lock:
813          */
814         raw_spin_lock_irq(&p->pi_lock);
815         if (unlikely(p->flags & PF_EXITING)) {
816                 /*
817                  * The task is on the way out. When PF_EXITPIDONE is
818                  * set, we know that the task has finished the
819                  * cleanup:
820                  */
821                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
822
823                 raw_spin_unlock_irq(&p->pi_lock);
824                 put_task_struct(p);
825                 return ret;
826         }
827
828         pi_state = alloc_pi_state();
829
830         /*
831          * Initialize the pi_mutex in locked state and make 'p'
832          * the owner of it:
833          */
834         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
835
836         /* Store the key for possible exit cleanups: */
837         pi_state->key = *key;
838
839         WARN_ON(!list_empty(&pi_state->list));
840         list_add(&pi_state->list, &p->pi_state_list);
841         pi_state->owner = p;
842         raw_spin_unlock_irq(&p->pi_lock);
843
844         put_task_struct(p);
845
846         *ps = pi_state;
847
848         return 0;
849 }
850
851 /**
852  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
853  * @uaddr:              the pi futex user address
854  * @hb:                 the pi futex hash bucket
855  * @key:                the futex key associated with uaddr and hb
856  * @ps:                 the pi_state pointer where we store the result of the
857  *                      lookup
858  * @task:               the task to perform the atomic lock work for.  This will
859  *                      be "current" except in the case of requeue pi.
860  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
861  *
862  * Return:
863  *  0 - ready to wait;
864  *  1 - acquired the lock;
865  * <0 - error
866  *
867  * The hb->lock and futex_key refs shall be held by the caller.
868  */
869 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
870                                 union futex_key *key,
871                                 struct futex_pi_state **ps,
872                                 struct task_struct *task, int set_waiters)
873 {
874         int lock_taken, ret, force_take = 0;
875         u32 uval, newval, curval, vpid = task_pid_vnr(task);
876
877 retry:
878         ret = lock_taken = 0;
879
880         /*
881          * To avoid races, we attempt to take the lock here again
882          * (by doing a 0 -> TID atomic cmpxchg), while holding all
883          * the locks. It will most likely not succeed.
884          */
885         newval = vpid;
886         if (set_waiters)
887                 newval |= FUTEX_WAITERS;
888
889         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
890                 return -EFAULT;
891
892         /*
893          * Detect deadlocks.
894          */
895         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
896                 return -EDEADLK;
897
898         /*
899          * Surprise - we got the lock, but we do not trust user space at all.
900          */
901         if (unlikely(!curval)) {
902                 /*
903                  * We verify whether there is kernel state for this
904                  * futex. If not, we can safely assume, that the 0 ->
905                  * TID transition is correct. If state exists, we do
906                  * not bother to fixup the user space state as it was
907                  * corrupted already.
908                  */
909                 return futex_top_waiter(hb, key) ? -EINVAL : 1;
910         }
911
912         uval = curval;
913
914         /*
915          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
916          * to wake at the next unlock.
917          */
918         newval = curval | FUTEX_WAITERS;
919
920         /*
921          * Should we force take the futex? See below.
922          */
923         if (unlikely(force_take)) {
924                 /*
925                  * Keep the OWNER_DIED and the WAITERS bit and set the
926                  * new TID value.
927                  */
928                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
929                 force_take = 0;
930                 lock_taken = 1;
931         }
932
933         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
934                 return -EFAULT;
935         if (unlikely(curval != uval))
936                 goto retry;
937
938         /*
939          * We took the lock due to forced take over.
940          */
941         if (unlikely(lock_taken))
942                 return 1;
943
944         /*
945          * We dont have the lock. Look up the PI state (or create it if
946          * we are the first waiter):
947          */
948         ret = lookup_pi_state(uval, hb, key, ps, task);
949
950         if (unlikely(ret)) {
951                 switch (ret) {
952                 case -ESRCH:
953                         /*
954                          * We failed to find an owner for this
955                          * futex. So we have no pi_state to block
956                          * on. This can happen in two cases:
957                          *
958                          * 1) The owner died
959                          * 2) A stale FUTEX_WAITERS bit
960                          *
961                          * Re-read the futex value.
962                          */
963                         if (get_futex_value_locked(&curval, uaddr))
964                                 return -EFAULT;
965
966                         /*
967                          * If the owner died or we have a stale
968                          * WAITERS bit the owner TID in the user space
969                          * futex is 0.
970                          */
971                         if (!(curval & FUTEX_TID_MASK)) {
972                                 force_take = 1;
973                                 goto retry;
974                         }
975                 default:
976                         break;
977                 }
978         }
979
980         return ret;
981 }
982
983 /**
984  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
985  * @q:  The futex_q to unqueue
986  *
987  * The q->lock_ptr must not be NULL and must be held by the caller.
988  */
989 static void __unqueue_futex(struct futex_q *q)
990 {
991         struct futex_hash_bucket *hb;
992
993         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
994             || WARN_ON(plist_node_empty(&q->list)))
995                 return;
996
997         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
998         plist_del(&q->list, &hb->chain);
999         hb_waiters_dec(hb);
1000 }
1001
1002 /*
1003  * The hash bucket lock must be held when this is called.
1004  * Afterwards, the futex_q must not be accessed.
1005  */
1006 static void wake_futex(struct futex_q *q)
1007 {
1008         struct task_struct *p = q->task;
1009
1010         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1011                 return;
1012
1013         /*
1014          * We set q->lock_ptr = NULL _before_ we wake up the task. If
1015          * a non-futex wake up happens on another CPU then the task
1016          * might exit and p would dereference a non-existing task
1017          * struct. Prevent this by holding a reference on p across the
1018          * wake up.
1019          */
1020         get_task_struct(p);
1021
1022         __unqueue_futex(q);
1023         /*
1024          * The waiting task can free the futex_q as soon as
1025          * q->lock_ptr = NULL is written, without taking any locks. A
1026          * memory barrier is required here to prevent the following
1027          * store to lock_ptr from getting ahead of the plist_del.
1028          */
1029         smp_wmb();
1030         q->lock_ptr = NULL;
1031
1032         wake_up_state(p, TASK_NORMAL);
1033         put_task_struct(p);
1034 }
1035
1036 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1037 {
1038         struct task_struct *new_owner;
1039         struct futex_pi_state *pi_state = this->pi_state;
1040         u32 uninitialized_var(curval), newval;
1041
1042         if (!pi_state)
1043                 return -EINVAL;
1044
1045         /*
1046          * If current does not own the pi_state then the futex is
1047          * inconsistent and user space fiddled with the futex value.
1048          */
1049         if (pi_state->owner != current)
1050                 return -EINVAL;
1051
1052         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1053         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1054
1055         /*
1056          * It is possible that the next waiter (the one that brought
1057          * this owner to the kernel) timed out and is no longer
1058          * waiting on the lock.
1059          */
1060         if (!new_owner)
1061                 new_owner = this->task;
1062
1063         /*
1064          * We pass it to the next owner. (The WAITERS bit is always
1065          * kept enabled while there is PI state around. We must also
1066          * preserve the owner died bit.)
1067          */
1068         if (!(uval & FUTEX_OWNER_DIED)) {
1069                 int ret = 0;
1070
1071                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1072
1073                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1074                         ret = -EFAULT;
1075                 else if (curval != uval)
1076                         ret = -EINVAL;
1077                 if (ret) {
1078                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1079                         return ret;
1080                 }
1081         }
1082
1083         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1084         WARN_ON(list_empty(&pi_state->list));
1085         list_del_init(&pi_state->list);
1086         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1087
1088         raw_spin_lock_irq(&new_owner->pi_lock);
1089         WARN_ON(!list_empty(&pi_state->list));
1090         list_add(&pi_state->list, &new_owner->pi_state_list);
1091         pi_state->owner = new_owner;
1092         raw_spin_unlock_irq(&new_owner->pi_lock);
1093
1094         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1095         rt_mutex_unlock(&pi_state->pi_mutex);
1096
1097         return 0;
1098 }
1099
1100 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1101 {
1102         u32 uninitialized_var(oldval);
1103
1104         /*
1105          * There is no waiter, so we unlock the futex. The owner died
1106          * bit has not to be preserved here. We are the owner:
1107          */
1108         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1109                 return -EFAULT;
1110         if (oldval != uval)
1111                 return -EAGAIN;
1112
1113         return 0;
1114 }
1115
1116 /*
1117  * Express the locking dependencies for lockdep:
1118  */
1119 static inline void
1120 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1121 {
1122         if (hb1 <= hb2) {
1123                 spin_lock(&hb1->lock);
1124                 if (hb1 < hb2)
1125                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1126         } else { /* hb1 > hb2 */
1127                 spin_lock(&hb2->lock);
1128                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1129         }
1130 }
1131
1132 static inline void
1133 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1134 {
1135         spin_unlock(&hb1->lock);
1136         if (hb1 != hb2)
1137                 spin_unlock(&hb2->lock);
1138 }
1139
1140 /*
1141  * Wake up waiters matching bitset queued on this futex (uaddr).
1142  */
1143 static int
1144 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1145 {
1146         struct futex_hash_bucket *hb;
1147         struct futex_q *this, *next;
1148         union futex_key key = FUTEX_KEY_INIT;
1149         int ret;
1150
1151         if (!bitset)
1152                 return -EINVAL;
1153
1154         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1155         if (unlikely(ret != 0))
1156                 goto out;
1157
1158         hb = hash_futex(&key);
1159
1160         /* Make sure we really have tasks to wakeup */
1161         if (!hb_waiters_pending(hb))
1162                 goto out_put_key;
1163
1164         spin_lock(&hb->lock);
1165
1166         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1167                 if (match_futex (&this->key, &key)) {
1168                         if (this->pi_state || this->rt_waiter) {
1169                                 ret = -EINVAL;
1170                                 break;
1171                         }
1172
1173                         /* Check if one of the bits is set in both bitsets */
1174                         if (!(this->bitset & bitset))
1175                                 continue;
1176
1177                         wake_futex(this);
1178                         if (++ret >= nr_wake)
1179                                 break;
1180                 }
1181         }
1182
1183         spin_unlock(&hb->lock);
1184 out_put_key:
1185         put_futex_key(&key);
1186 out:
1187         return ret;
1188 }
1189
1190 /*
1191  * Wake up all waiters hashed on the physical page that is mapped
1192  * to this virtual address:
1193  */
1194 static int
1195 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1196               int nr_wake, int nr_wake2, int op)
1197 {
1198         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1199         struct futex_hash_bucket *hb1, *hb2;
1200         struct futex_q *this, *next;
1201         int ret, op_ret;
1202
1203 retry:
1204         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1205         if (unlikely(ret != 0))
1206                 goto out;
1207         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1208         if (unlikely(ret != 0))
1209                 goto out_put_key1;
1210
1211         hb1 = hash_futex(&key1);
1212         hb2 = hash_futex(&key2);
1213
1214 retry_private:
1215         double_lock_hb(hb1, hb2);
1216         op_ret = futex_atomic_op_inuser(op, uaddr2);
1217         if (unlikely(op_ret < 0)) {
1218
1219                 double_unlock_hb(hb1, hb2);
1220
1221 #ifndef CONFIG_MMU
1222                 /*
1223                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1224                  * but we might get them from range checking
1225                  */
1226                 ret = op_ret;
1227                 goto out_put_keys;
1228 #endif
1229
1230                 if (unlikely(op_ret != -EFAULT)) {
1231                         ret = op_ret;
1232                         goto out_put_keys;
1233                 }
1234
1235                 ret = fault_in_user_writeable(uaddr2);
1236                 if (ret)
1237                         goto out_put_keys;
1238
1239                 if (!(flags & FLAGS_SHARED))
1240                         goto retry_private;
1241
1242                 put_futex_key(&key2);
1243                 put_futex_key(&key1);
1244                 goto retry;
1245         }
1246
1247         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1248                 if (match_futex (&this->key, &key1)) {
1249                         if (this->pi_state || this->rt_waiter) {
1250                                 ret = -EINVAL;
1251                                 goto out_unlock;
1252                         }
1253                         wake_futex(this);
1254                         if (++ret >= nr_wake)
1255                                 break;
1256                 }
1257         }
1258
1259         if (op_ret > 0) {
1260                 op_ret = 0;
1261                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1262                         if (match_futex (&this->key, &key2)) {
1263                                 if (this->pi_state || this->rt_waiter) {
1264                                         ret = -EINVAL;
1265                                         goto out_unlock;
1266                                 }
1267                                 wake_futex(this);
1268                                 if (++op_ret >= nr_wake2)
1269                                         break;
1270                         }
1271                 }
1272                 ret += op_ret;
1273         }
1274
1275 out_unlock:
1276         double_unlock_hb(hb1, hb2);
1277 out_put_keys:
1278         put_futex_key(&key2);
1279 out_put_key1:
1280         put_futex_key(&key1);
1281 out:
1282         return ret;
1283 }
1284
1285 /**
1286  * requeue_futex() - Requeue a futex_q from one hb to another
1287  * @q:          the futex_q to requeue
1288  * @hb1:        the source hash_bucket
1289  * @hb2:        the target hash_bucket
1290  * @key2:       the new key for the requeued futex_q
1291  */
1292 static inline
1293 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1294                    struct futex_hash_bucket *hb2, union futex_key *key2)
1295 {
1296
1297         /*
1298          * If key1 and key2 hash to the same bucket, no need to
1299          * requeue.
1300          */
1301         if (likely(&hb1->chain != &hb2->chain)) {
1302                 plist_del(&q->list, &hb1->chain);
1303                 hb_waiters_dec(hb1);
1304                 plist_add(&q->list, &hb2->chain);
1305                 hb_waiters_inc(hb2);
1306                 q->lock_ptr = &hb2->lock;
1307         }
1308         get_futex_key_refs(key2);
1309         q->key = *key2;
1310 }
1311
1312 /**
1313  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1314  * @q:          the futex_q
1315  * @key:        the key of the requeue target futex
1316  * @hb:         the hash_bucket of the requeue target futex
1317  *
1318  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1319  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1320  * to the requeue target futex so the waiter can detect the wakeup on the right
1321  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1322  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1323  * to protect access to the pi_state to fixup the owner later.  Must be called
1324  * with both q->lock_ptr and hb->lock held.
1325  */
1326 static inline
1327 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1328                            struct futex_hash_bucket *hb)
1329 {
1330         get_futex_key_refs(key);
1331         q->key = *key;
1332
1333         __unqueue_futex(q);
1334
1335         WARN_ON(!q->rt_waiter);
1336         q->rt_waiter = NULL;
1337
1338         q->lock_ptr = &hb->lock;
1339
1340         wake_up_state(q->task, TASK_NORMAL);
1341 }
1342
1343 /**
1344  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1345  * @pifutex:            the user address of the to futex
1346  * @hb1:                the from futex hash bucket, must be locked by the caller
1347  * @hb2:                the to futex hash bucket, must be locked by the caller
1348  * @key1:               the from futex key
1349  * @key2:               the to futex key
1350  * @ps:                 address to store the pi_state pointer
1351  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1352  *
1353  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1354  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1355  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1356  * hb1 and hb2 must be held by the caller.
1357  *
1358  * Return:
1359  *  0 - failed to acquire the lock atomically;
1360  * >0 - acquired the lock, return value is vpid of the top_waiter
1361  * <0 - error
1362  */
1363 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1364                                  struct futex_hash_bucket *hb1,
1365                                  struct futex_hash_bucket *hb2,
1366                                  union futex_key *key1, union futex_key *key2,
1367                                  struct futex_pi_state **ps, int set_waiters)
1368 {
1369         struct futex_q *top_waiter = NULL;
1370         u32 curval;
1371         int ret, vpid;
1372
1373         if (get_futex_value_locked(&curval, pifutex))
1374                 return -EFAULT;
1375
1376         /*
1377          * Find the top_waiter and determine if there are additional waiters.
1378          * If the caller intends to requeue more than 1 waiter to pifutex,
1379          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1380          * as we have means to handle the possible fault.  If not, don't set
1381          * the bit unecessarily as it will force the subsequent unlock to enter
1382          * the kernel.
1383          */
1384         top_waiter = futex_top_waiter(hb1, key1);
1385
1386         /* There are no waiters, nothing for us to do. */
1387         if (!top_waiter)
1388                 return 0;
1389
1390         /* Ensure we requeue to the expected futex. */
1391         if (!match_futex(top_waiter->requeue_pi_key, key2))
1392                 return -EINVAL;
1393
1394         /*
1395          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1396          * the contended case or if set_waiters is 1.  The pi_state is returned
1397          * in ps in contended cases.
1398          */
1399         vpid = task_pid_vnr(top_waiter->task);
1400         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1401                                    set_waiters);
1402         if (ret == 1) {
1403                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1404                 return vpid;
1405         }
1406         return ret;
1407 }
1408
1409 /**
1410  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1411  * @uaddr1:     source futex user address
1412  * @flags:      futex flags (FLAGS_SHARED, etc.)
1413  * @uaddr2:     target futex user address
1414  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1415  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1416  * @cmpval:     @uaddr1 expected value (or %NULL)
1417  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1418  *              pi futex (pi to pi requeue is not supported)
1419  *
1420  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1421  * uaddr2 atomically on behalf of the top waiter.
1422  *
1423  * Return:
1424  * >=0 - on success, the number of tasks requeued or woken;
1425  *  <0 - on error
1426  */
1427 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1428                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1429                          u32 *cmpval, int requeue_pi)
1430 {
1431         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1432         int drop_count = 0, task_count = 0, ret;
1433         struct futex_pi_state *pi_state = NULL;
1434         struct futex_hash_bucket *hb1, *hb2;
1435         struct futex_q *this, *next;
1436
1437         if (requeue_pi) {
1438                 /*
1439                  * Requeue PI only works on two distinct uaddrs. This
1440                  * check is only valid for private futexes. See below.
1441                  */
1442                 if (uaddr1 == uaddr2)
1443                         return -EINVAL;
1444
1445                 /*
1446                  * requeue_pi requires a pi_state, try to allocate it now
1447                  * without any locks in case it fails.
1448                  */
1449                 if (refill_pi_state_cache())
1450                         return -ENOMEM;
1451                 /*
1452                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1453                  * + nr_requeue, since it acquires the rt_mutex prior to
1454                  * returning to userspace, so as to not leave the rt_mutex with
1455                  * waiters and no owner.  However, second and third wake-ups
1456                  * cannot be predicted as they involve race conditions with the
1457                  * first wake and a fault while looking up the pi_state.  Both
1458                  * pthread_cond_signal() and pthread_cond_broadcast() should
1459                  * use nr_wake=1.
1460                  */
1461                 if (nr_wake != 1)
1462                         return -EINVAL;
1463         }
1464
1465 retry:
1466         if (pi_state != NULL) {
1467                 /*
1468                  * We will have to lookup the pi_state again, so free this one
1469                  * to keep the accounting correct.
1470                  */
1471                 free_pi_state(pi_state);
1472                 pi_state = NULL;
1473         }
1474
1475         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1476         if (unlikely(ret != 0))
1477                 goto out;
1478         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1479                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1480         if (unlikely(ret != 0))
1481                 goto out_put_key1;
1482
1483         /*
1484          * The check above which compares uaddrs is not sufficient for
1485          * shared futexes. We need to compare the keys:
1486          */
1487         if (requeue_pi && match_futex(&key1, &key2)) {
1488                 ret = -EINVAL;
1489                 goto out_put_keys;
1490         }
1491
1492         hb1 = hash_futex(&key1);
1493         hb2 = hash_futex(&key2);
1494
1495 retry_private:
1496         hb_waiters_inc(hb2);
1497         double_lock_hb(hb1, hb2);
1498
1499         if (likely(cmpval != NULL)) {
1500                 u32 curval;
1501
1502                 ret = get_futex_value_locked(&curval, uaddr1);
1503
1504                 if (unlikely(ret)) {
1505                         double_unlock_hb(hb1, hb2);
1506                         hb_waiters_dec(hb2);
1507
1508                         ret = get_user(curval, uaddr1);
1509                         if (ret)
1510                                 goto out_put_keys;
1511
1512                         if (!(flags & FLAGS_SHARED))
1513                                 goto retry_private;
1514
1515                         put_futex_key(&key2);
1516                         put_futex_key(&key1);
1517                         goto retry;
1518                 }
1519                 if (curval != *cmpval) {
1520                         ret = -EAGAIN;
1521                         goto out_unlock;
1522                 }
1523         }
1524
1525         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1526                 /*
1527                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1528                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1529                  * bit.  We force this here where we are able to easily handle
1530                  * faults rather in the requeue loop below.
1531                  */
1532                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1533                                                  &key2, &pi_state, nr_requeue);
1534
1535                 /*
1536                  * At this point the top_waiter has either taken uaddr2 or is
1537                  * waiting on it.  If the former, then the pi_state will not
1538                  * exist yet, look it up one more time to ensure we have a
1539                  * reference to it. If the lock was taken, ret contains the
1540                  * vpid of the top waiter task.
1541                  */
1542                 if (ret > 0) {
1543                         WARN_ON(pi_state);
1544                         drop_count++;
1545                         task_count++;
1546                         /*
1547                          * If we acquired the lock, then the user
1548                          * space value of uaddr2 should be vpid. It
1549                          * cannot be changed by the top waiter as it
1550                          * is blocked on hb2 lock if it tries to do
1551                          * so. If something fiddled with it behind our
1552                          * back the pi state lookup might unearth
1553                          * it. So we rather use the known value than
1554                          * rereading and handing potential crap to
1555                          * lookup_pi_state.
1556                          */
1557                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1558                 }
1559
1560                 switch (ret) {
1561                 case 0:
1562                         break;
1563                 case -EFAULT:
1564                         double_unlock_hb(hb1, hb2);
1565                         hb_waiters_dec(hb2);
1566                         put_futex_key(&key2);
1567                         put_futex_key(&key1);
1568                         ret = fault_in_user_writeable(uaddr2);
1569                         if (!ret)
1570                                 goto retry;
1571                         goto out;
1572                 case -EAGAIN:
1573                         /* The owner was exiting, try again. */
1574                         double_unlock_hb(hb1, hb2);
1575                         hb_waiters_dec(hb2);
1576                         put_futex_key(&key2);
1577                         put_futex_key(&key1);
1578                         cond_resched();
1579                         goto retry;
1580                 default:
1581                         goto out_unlock;
1582                 }
1583         }
1584
1585         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1586                 if (task_count - nr_wake >= nr_requeue)
1587                         break;
1588
1589                 if (!match_futex(&this->key, &key1))
1590                         continue;
1591
1592                 /*
1593                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1594                  * be paired with each other and no other futex ops.
1595                  *
1596                  * We should never be requeueing a futex_q with a pi_state,
1597                  * which is awaiting a futex_unlock_pi().
1598                  */
1599                 if ((requeue_pi && !this->rt_waiter) ||
1600                     (!requeue_pi && this->rt_waiter) ||
1601                     this->pi_state) {
1602                         ret = -EINVAL;
1603                         break;
1604                 }
1605
1606                 /*
1607                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1608                  * lock, we already woke the top_waiter.  If not, it will be
1609                  * woken by futex_unlock_pi().
1610                  */
1611                 if (++task_count <= nr_wake && !requeue_pi) {
1612                         wake_futex(this);
1613                         continue;
1614                 }
1615
1616                 /* Ensure we requeue to the expected futex for requeue_pi. */
1617                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1618                         ret = -EINVAL;
1619                         break;
1620                 }
1621
1622                 /*
1623                  * Requeue nr_requeue waiters and possibly one more in the case
1624                  * of requeue_pi if we couldn't acquire the lock atomically.
1625                  */
1626                 if (requeue_pi) {
1627                         /* Prepare the waiter to take the rt_mutex. */
1628                         atomic_inc(&pi_state->refcount);
1629                         this->pi_state = pi_state;
1630                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1631                                                         this->rt_waiter,
1632                                                         this->task, 1);
1633                         if (ret == 1) {
1634                                 /* We got the lock. */
1635                                 requeue_pi_wake_futex(this, &key2, hb2);
1636                                 drop_count++;
1637                                 continue;
1638                         } else if (ret) {
1639                                 /* -EDEADLK */
1640                                 this->pi_state = NULL;
1641                                 free_pi_state(pi_state);
1642                                 goto out_unlock;
1643                         }
1644                 }
1645                 requeue_futex(this, hb1, hb2, &key2);
1646                 drop_count++;
1647         }
1648
1649 out_unlock:
1650         double_unlock_hb(hb1, hb2);
1651         hb_waiters_dec(hb2);
1652
1653         /*
1654          * drop_futex_key_refs() must be called outside the spinlocks. During
1655          * the requeue we moved futex_q's from the hash bucket at key1 to the
1656          * one at key2 and updated their key pointer.  We no longer need to
1657          * hold the references to key1.
1658          */
1659         while (--drop_count >= 0)
1660                 drop_futex_key_refs(&key1);
1661
1662 out_put_keys:
1663         put_futex_key(&key2);
1664 out_put_key1:
1665         put_futex_key(&key1);
1666 out:
1667         if (pi_state != NULL)
1668                 free_pi_state(pi_state);
1669         return ret ? ret : task_count;
1670 }
1671
1672 /* The key must be already stored in q->key. */
1673 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1674         __acquires(&hb->lock)
1675 {
1676         struct futex_hash_bucket *hb;
1677
1678         hb = hash_futex(&q->key);
1679
1680         /*
1681          * Increment the counter before taking the lock so that
1682          * a potential waker won't miss a to-be-slept task that is
1683          * waiting for the spinlock. This is safe as all queue_lock()
1684          * users end up calling queue_me(). Similarly, for housekeeping,
1685          * decrement the counter at queue_unlock() when some error has
1686          * occurred and we don't end up adding the task to the list.
1687          */
1688         hb_waiters_inc(hb);
1689
1690         q->lock_ptr = &hb->lock;
1691
1692         spin_lock(&hb->lock); /* implies MB (A) */
1693         return hb;
1694 }
1695
1696 static inline void
1697 queue_unlock(struct futex_hash_bucket *hb)
1698         __releases(&hb->lock)
1699 {
1700         spin_unlock(&hb->lock);
1701         hb_waiters_dec(hb);
1702 }
1703
1704 /**
1705  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1706  * @q:  The futex_q to enqueue
1707  * @hb: The destination hash bucket
1708  *
1709  * The hb->lock must be held by the caller, and is released here. A call to
1710  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1711  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1712  * or nothing if the unqueue is done as part of the wake process and the unqueue
1713  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1714  * an example).
1715  */
1716 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1717         __releases(&hb->lock)
1718 {
1719         int prio;
1720
1721         /*
1722          * The priority used to register this element is
1723          * - either the real thread-priority for the real-time threads
1724          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1725          * - or MAX_RT_PRIO for non-RT threads.
1726          * Thus, all RT-threads are woken first in priority order, and
1727          * the others are woken last, in FIFO order.
1728          */
1729         prio = min(current->normal_prio, MAX_RT_PRIO);
1730
1731         plist_node_init(&q->list, prio);
1732         plist_add(&q->list, &hb->chain);
1733         q->task = current;
1734         spin_unlock(&hb->lock);
1735 }
1736
1737 /**
1738  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1739  * @q:  The futex_q to unqueue
1740  *
1741  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1742  * be paired with exactly one earlier call to queue_me().
1743  *
1744  * Return:
1745  *   1 - if the futex_q was still queued (and we removed unqueued it);
1746  *   0 - if the futex_q was already removed by the waking thread
1747  */
1748 static int unqueue_me(struct futex_q *q)
1749 {
1750         spinlock_t *lock_ptr;
1751         int ret = 0;
1752
1753         /* In the common case we don't take the spinlock, which is nice. */
1754 retry:
1755         lock_ptr = q->lock_ptr;
1756         barrier();
1757         if (lock_ptr != NULL) {
1758                 spin_lock(lock_ptr);
1759                 /*
1760                  * q->lock_ptr can change between reading it and
1761                  * spin_lock(), causing us to take the wrong lock.  This
1762                  * corrects the race condition.
1763                  *
1764                  * Reasoning goes like this: if we have the wrong lock,
1765                  * q->lock_ptr must have changed (maybe several times)
1766                  * between reading it and the spin_lock().  It can
1767                  * change again after the spin_lock() but only if it was
1768                  * already changed before the spin_lock().  It cannot,
1769                  * however, change back to the original value.  Therefore
1770                  * we can detect whether we acquired the correct lock.
1771                  */
1772                 if (unlikely(lock_ptr != q->lock_ptr)) {
1773                         spin_unlock(lock_ptr);
1774                         goto retry;
1775                 }
1776                 __unqueue_futex(q);
1777
1778                 BUG_ON(q->pi_state);
1779
1780                 spin_unlock(lock_ptr);
1781                 ret = 1;
1782         }
1783
1784         drop_futex_key_refs(&q->key);
1785         return ret;
1786 }
1787
1788 /*
1789  * PI futexes can not be requeued and must remove themself from the
1790  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1791  * and dropped here.
1792  */
1793 static void unqueue_me_pi(struct futex_q *q)
1794         __releases(q->lock_ptr)
1795 {
1796         __unqueue_futex(q);
1797
1798         BUG_ON(!q->pi_state);
1799         free_pi_state(q->pi_state);
1800         q->pi_state = NULL;
1801
1802         spin_unlock(q->lock_ptr);
1803 }
1804
1805 /*
1806  * Fixup the pi_state owner with the new owner.
1807  *
1808  * Must be called with hash bucket lock held and mm->sem held for non
1809  * private futexes.
1810  */
1811 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1812                                 struct task_struct *newowner)
1813 {
1814         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1815         struct futex_pi_state *pi_state = q->pi_state;
1816         struct task_struct *oldowner = pi_state->owner;
1817         u32 uval, uninitialized_var(curval), newval;
1818         int ret;
1819
1820         /* Owner died? */
1821         if (!pi_state->owner)
1822                 newtid |= FUTEX_OWNER_DIED;
1823
1824         /*
1825          * We are here either because we stole the rtmutex from the
1826          * previous highest priority waiter or we are the highest priority
1827          * waiter but failed to get the rtmutex the first time.
1828          * We have to replace the newowner TID in the user space variable.
1829          * This must be atomic as we have to preserve the owner died bit here.
1830          *
1831          * Note: We write the user space value _before_ changing the pi_state
1832          * because we can fault here. Imagine swapped out pages or a fork
1833          * that marked all the anonymous memory readonly for cow.
1834          *
1835          * Modifying pi_state _before_ the user space value would
1836          * leave the pi_state in an inconsistent state when we fault
1837          * here, because we need to drop the hash bucket lock to
1838          * handle the fault. This might be observed in the PID check
1839          * in lookup_pi_state.
1840          */
1841 retry:
1842         if (get_futex_value_locked(&uval, uaddr))
1843                 goto handle_fault;
1844
1845         while (1) {
1846                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1847
1848                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1849                         goto handle_fault;
1850                 if (curval == uval)
1851                         break;
1852                 uval = curval;
1853         }
1854
1855         /*
1856          * We fixed up user space. Now we need to fix the pi_state
1857          * itself.
1858          */
1859         if (pi_state->owner != NULL) {
1860                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1861                 WARN_ON(list_empty(&pi_state->list));
1862                 list_del_init(&pi_state->list);
1863                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1864         }
1865
1866         pi_state->owner = newowner;
1867
1868         raw_spin_lock_irq(&newowner->pi_lock);
1869         WARN_ON(!list_empty(&pi_state->list));
1870         list_add(&pi_state->list, &newowner->pi_state_list);
1871         raw_spin_unlock_irq(&newowner->pi_lock);
1872         return 0;
1873
1874         /*
1875          * To handle the page fault we need to drop the hash bucket
1876          * lock here. That gives the other task (either the highest priority
1877          * waiter itself or the task which stole the rtmutex) the
1878          * chance to try the fixup of the pi_state. So once we are
1879          * back from handling the fault we need to check the pi_state
1880          * after reacquiring the hash bucket lock and before trying to
1881          * do another fixup. When the fixup has been done already we
1882          * simply return.
1883          */
1884 handle_fault:
1885         spin_unlock(q->lock_ptr);
1886
1887         ret = fault_in_user_writeable(uaddr);
1888
1889         spin_lock(q->lock_ptr);
1890
1891         /*
1892          * Check if someone else fixed it for us:
1893          */
1894         if (pi_state->owner != oldowner)
1895                 return 0;
1896
1897         if (ret)
1898                 return ret;
1899
1900         goto retry;
1901 }
1902
1903 static long futex_wait_restart(struct restart_block *restart);
1904
1905 /**
1906  * fixup_owner() - Post lock pi_state and corner case management
1907  * @uaddr:      user address of the futex
1908  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1909  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1910  *
1911  * After attempting to lock an rt_mutex, this function is called to cleanup
1912  * the pi_state owner as well as handle race conditions that may allow us to
1913  * acquire the lock. Must be called with the hb lock held.
1914  *
1915  * Return:
1916  *  1 - success, lock taken;
1917  *  0 - success, lock not taken;
1918  * <0 - on error (-EFAULT)
1919  */
1920 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1921 {
1922         struct task_struct *owner;
1923         int ret = 0;
1924
1925         if (locked) {
1926                 /*
1927                  * Got the lock. We might not be the anticipated owner if we
1928                  * did a lock-steal - fix up the PI-state in that case:
1929                  */
1930                 if (q->pi_state->owner != current)
1931                         ret = fixup_pi_state_owner(uaddr, q, current);
1932                 goto out;
1933         }
1934
1935         /*
1936          * Catch the rare case, where the lock was released when we were on the
1937          * way back before we locked the hash bucket.
1938          */
1939         if (q->pi_state->owner == current) {
1940                 /*
1941                  * Try to get the rt_mutex now. This might fail as some other
1942                  * task acquired the rt_mutex after we removed ourself from the
1943                  * rt_mutex waiters list.
1944                  */
1945                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1946                         locked = 1;
1947                         goto out;
1948                 }
1949
1950                 /*
1951                  * pi_state is incorrect, some other task did a lock steal and
1952                  * we returned due to timeout or signal without taking the
1953                  * rt_mutex. Too late.
1954                  */
1955                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1956                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1957                 if (!owner)
1958                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1959                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1960                 ret = fixup_pi_state_owner(uaddr, q, owner);
1961                 goto out;
1962         }
1963
1964         /*
1965          * Paranoia check. If we did not take the lock, then we should not be
1966          * the owner of the rt_mutex.
1967          */
1968         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1969                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1970                                 "pi-state %p\n", ret,
1971                                 q->pi_state->pi_mutex.owner,
1972                                 q->pi_state->owner);
1973
1974 out:
1975         return ret ? ret : locked;
1976 }
1977
1978 /**
1979  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1980  * @hb:         the futex hash bucket, must be locked by the caller
1981  * @q:          the futex_q to queue up on
1982  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1983  */
1984 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1985                                 struct hrtimer_sleeper *timeout)
1986 {
1987         /*
1988          * The task state is guaranteed to be set before another task can
1989          * wake it. set_current_state() is implemented using set_mb() and
1990          * queue_me() calls spin_unlock() upon completion, both serializing
1991          * access to the hash list and forcing another memory barrier.
1992          */
1993         set_current_state(TASK_INTERRUPTIBLE);
1994         queue_me(q, hb);
1995
1996         /* Arm the timer */
1997         if (timeout) {
1998                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1999                 if (!hrtimer_active(&timeout->timer))
2000                         timeout->task = NULL;
2001         }
2002
2003         /*
2004          * If we have been removed from the hash list, then another task
2005          * has tried to wake us, and we can skip the call to schedule().
2006          */
2007         if (likely(!plist_node_empty(&q->list))) {
2008                 /*
2009                  * If the timer has already expired, current will already be
2010                  * flagged for rescheduling. Only call schedule if there
2011                  * is no timeout, or if it has yet to expire.
2012                  */
2013                 if (!timeout || timeout->task)
2014                         freezable_schedule();
2015         }
2016         __set_current_state(TASK_RUNNING);
2017 }
2018
2019 /**
2020  * futex_wait_setup() - Prepare to wait on a futex
2021  * @uaddr:      the futex userspace address
2022  * @val:        the expected value
2023  * @flags:      futex flags (FLAGS_SHARED, etc.)
2024  * @q:          the associated futex_q
2025  * @hb:         storage for hash_bucket pointer to be returned to caller
2026  *
2027  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2028  * compare it with the expected value.  Handle atomic faults internally.
2029  * Return with the hb lock held and a q.key reference on success, and unlocked
2030  * with no q.key reference on failure.
2031  *
2032  * Return:
2033  *  0 - uaddr contains val and hb has been locked;
2034  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2035  */
2036 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2037                            struct futex_q *q, struct futex_hash_bucket **hb)
2038 {
2039         u32 uval;
2040         int ret;
2041
2042         /*
2043          * Access the page AFTER the hash-bucket is locked.
2044          * Order is important:
2045          *
2046          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2047          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2048          *
2049          * The basic logical guarantee of a futex is that it blocks ONLY
2050          * if cond(var) is known to be true at the time of blocking, for
2051          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2052          * would open a race condition where we could block indefinitely with
2053          * cond(var) false, which would violate the guarantee.
2054          *
2055          * On the other hand, we insert q and release the hash-bucket only
2056          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2057          * absorb a wakeup if *uaddr does not match the desired values
2058          * while the syscall executes.
2059          */
2060 retry:
2061         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2062         if (unlikely(ret != 0))
2063                 return ret;
2064
2065 retry_private:
2066         *hb = queue_lock(q);
2067
2068         ret = get_futex_value_locked(&uval, uaddr);
2069
2070         if (ret) {
2071                 queue_unlock(*hb);
2072
2073                 ret = get_user(uval, uaddr);
2074                 if (ret)
2075                         goto out;
2076
2077                 if (!(flags & FLAGS_SHARED))
2078                         goto retry_private;
2079
2080                 put_futex_key(&q->key);
2081                 goto retry;
2082         }
2083
2084         if (uval != val) {
2085                 queue_unlock(*hb);
2086                 ret = -EWOULDBLOCK;
2087         }
2088
2089 out:
2090         if (ret)
2091                 put_futex_key(&q->key);
2092         return ret;
2093 }
2094
2095 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2096                       ktime_t *abs_time, u32 bitset)
2097 {
2098         struct hrtimer_sleeper timeout, *to = NULL;
2099         struct restart_block *restart;
2100         struct futex_hash_bucket *hb;
2101         struct futex_q q = futex_q_init;
2102         int ret;
2103
2104         if (!bitset)
2105                 return -EINVAL;
2106         q.bitset = bitset;
2107
2108         if (abs_time) {
2109                 to = &timeout;
2110
2111                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2112                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2113                                       HRTIMER_MODE_ABS);
2114                 hrtimer_init_sleeper(to, current);
2115                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2116                                              current->timer_slack_ns);
2117         }
2118
2119 retry:
2120         /*
2121          * Prepare to wait on uaddr. On success, holds hb lock and increments
2122          * q.key refs.
2123          */
2124         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2125         if (ret)
2126                 goto out;
2127
2128         /* queue_me and wait for wakeup, timeout, or a signal. */
2129         futex_wait_queue_me(hb, &q, to);
2130
2131         /* If we were woken (and unqueued), we succeeded, whatever. */
2132         ret = 0;
2133         /* unqueue_me() drops q.key ref */
2134         if (!unqueue_me(&q))
2135                 goto out;
2136         ret = -ETIMEDOUT;
2137         if (to && !to->task)
2138                 goto out;
2139
2140         /*
2141          * We expect signal_pending(current), but we might be the
2142          * victim of a spurious wakeup as well.
2143          */
2144         if (!signal_pending(current))
2145                 goto retry;
2146
2147         ret = -ERESTARTSYS;
2148         if (!abs_time)
2149                 goto out;
2150
2151         restart = &current_thread_info()->restart_block;
2152         restart->fn = futex_wait_restart;
2153         restart->futex.uaddr = uaddr;
2154         restart->futex.val = val;
2155         restart->futex.time = abs_time->tv64;
2156         restart->futex.bitset = bitset;
2157         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2158
2159         ret = -ERESTART_RESTARTBLOCK;
2160
2161 out:
2162         if (to) {
2163                 hrtimer_cancel(&to->timer);
2164                 destroy_hrtimer_on_stack(&to->timer);
2165         }
2166         return ret;
2167 }
2168
2169
2170 static long futex_wait_restart(struct restart_block *restart)
2171 {
2172         u32 __user *uaddr = restart->futex.uaddr;
2173         ktime_t t, *tp = NULL;
2174
2175         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2176                 t.tv64 = restart->futex.time;
2177                 tp = &t;
2178         }
2179         restart->fn = do_no_restart_syscall;
2180
2181         return (long)futex_wait(uaddr, restart->futex.flags,
2182                                 restart->futex.val, tp, restart->futex.bitset);
2183 }
2184
2185
2186 /*
2187  * Userspace tried a 0 -> TID atomic transition of the futex value
2188  * and failed. The kernel side here does the whole locking operation:
2189  * if there are waiters then it will block, it does PI, etc. (Due to
2190  * races the kernel might see a 0 value of the futex too.)
2191  */
2192 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2193                          ktime_t *time, int trylock)
2194 {
2195         struct hrtimer_sleeper timeout, *to = NULL;
2196         struct futex_hash_bucket *hb;
2197         struct futex_q q = futex_q_init;
2198         int res, ret;
2199
2200         if (refill_pi_state_cache())
2201                 return -ENOMEM;
2202
2203         if (time) {
2204                 to = &timeout;
2205                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2206                                       HRTIMER_MODE_ABS);
2207                 hrtimer_init_sleeper(to, current);
2208                 hrtimer_set_expires(&to->timer, *time);
2209         }
2210
2211 retry:
2212         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2213         if (unlikely(ret != 0))
2214                 goto out;
2215
2216 retry_private:
2217         hb = queue_lock(&q);
2218
2219         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2220         if (unlikely(ret)) {
2221                 switch (ret) {
2222                 case 1:
2223                         /* We got the lock. */
2224                         ret = 0;
2225                         goto out_unlock_put_key;
2226                 case -EFAULT:
2227                         goto uaddr_faulted;
2228                 case -EAGAIN:
2229                         /*
2230                          * Task is exiting and we just wait for the
2231                          * exit to complete.
2232                          */
2233                         queue_unlock(hb);
2234                         put_futex_key(&q.key);
2235                         cond_resched();
2236                         goto retry;
2237                 default:
2238                         goto out_unlock_put_key;
2239                 }
2240         }
2241
2242         /*
2243          * Only actually queue now that the atomic ops are done:
2244          */
2245         queue_me(&q, hb);
2246
2247         WARN_ON(!q.pi_state);
2248         /*
2249          * Block on the PI mutex:
2250          */
2251         if (!trylock)
2252                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2253         else {
2254                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2255                 /* Fixup the trylock return value: */
2256                 ret = ret ? 0 : -EWOULDBLOCK;
2257         }
2258
2259         spin_lock(q.lock_ptr);
2260         /*
2261          * Fixup the pi_state owner and possibly acquire the lock if we
2262          * haven't already.
2263          */
2264         res = fixup_owner(uaddr, &q, !ret);
2265         /*
2266          * If fixup_owner() returned an error, proprogate that.  If it acquired
2267          * the lock, clear our -ETIMEDOUT or -EINTR.
2268          */
2269         if (res)
2270                 ret = (res < 0) ? res : 0;
2271
2272         /*
2273          * If fixup_owner() faulted and was unable to handle the fault, unlock
2274          * it and return the fault to userspace.
2275          */
2276         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2277                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2278
2279         /* Unqueue and drop the lock */
2280         unqueue_me_pi(&q);
2281
2282         goto out_put_key;
2283
2284 out_unlock_put_key:
2285         queue_unlock(hb);
2286
2287 out_put_key:
2288         put_futex_key(&q.key);
2289 out:
2290         if (to)
2291                 destroy_hrtimer_on_stack(&to->timer);
2292         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2293
2294 uaddr_faulted:
2295         queue_unlock(hb);
2296
2297         ret = fault_in_user_writeable(uaddr);
2298         if (ret)
2299                 goto out_put_key;
2300
2301         if (!(flags & FLAGS_SHARED))
2302                 goto retry_private;
2303
2304         put_futex_key(&q.key);
2305         goto retry;
2306 }
2307
2308 /*
2309  * Userspace attempted a TID -> 0 atomic transition, and failed.
2310  * This is the in-kernel slowpath: we look up the PI state (if any),
2311  * and do the rt-mutex unlock.
2312  */
2313 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2314 {
2315         struct futex_hash_bucket *hb;
2316         struct futex_q *this, *next;
2317         union futex_key key = FUTEX_KEY_INIT;
2318         u32 uval, vpid = task_pid_vnr(current);
2319         int ret;
2320
2321 retry:
2322         if (get_user(uval, uaddr))
2323                 return -EFAULT;
2324         /*
2325          * We release only a lock we actually own:
2326          */
2327         if ((uval & FUTEX_TID_MASK) != vpid)
2328                 return -EPERM;
2329
2330         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2331         if (unlikely(ret != 0))
2332                 goto out;
2333
2334         hb = hash_futex(&key);
2335         spin_lock(&hb->lock);
2336
2337         /*
2338          * To avoid races, try to do the TID -> 0 atomic transition
2339          * again. If it succeeds then we can return without waking
2340          * anyone else up:
2341          */
2342         if (!(uval & FUTEX_OWNER_DIED) &&
2343             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2344                 goto pi_faulted;
2345         /*
2346          * Rare case: we managed to release the lock atomically,
2347          * no need to wake anyone else up:
2348          */
2349         if (unlikely(uval == vpid))
2350                 goto out_unlock;
2351
2352         /*
2353          * Ok, other tasks may need to be woken up - check waiters
2354          * and do the wakeup if necessary:
2355          */
2356         plist_for_each_entry_safe(this, next, &hb->chain, list) {
2357                 if (!match_futex (&this->key, &key))
2358                         continue;
2359                 ret = wake_futex_pi(uaddr, uval, this);
2360                 /*
2361                  * The atomic access to the futex value
2362                  * generated a pagefault, so retry the
2363                  * user-access and the wakeup:
2364                  */
2365                 if (ret == -EFAULT)
2366                         goto pi_faulted;
2367                 goto out_unlock;
2368         }
2369         /*
2370          * No waiters - kernel unlocks the futex:
2371          */
2372         if (!(uval & FUTEX_OWNER_DIED)) {
2373                 ret = unlock_futex_pi(uaddr, uval);
2374                 if (ret == -EFAULT)
2375                         goto pi_faulted;
2376         }
2377
2378 out_unlock:
2379         spin_unlock(&hb->lock);
2380         put_futex_key(&key);
2381
2382 out:
2383         return ret;
2384
2385 pi_faulted:
2386         spin_unlock(&hb->lock);
2387         put_futex_key(&key);
2388
2389         ret = fault_in_user_writeable(uaddr);
2390         if (!ret)
2391                 goto retry;
2392
2393         return ret;
2394 }
2395
2396 /**
2397  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2398  * @hb:         the hash_bucket futex_q was original enqueued on
2399  * @q:          the futex_q woken while waiting to be requeued
2400  * @key2:       the futex_key of the requeue target futex
2401  * @timeout:    the timeout associated with the wait (NULL if none)
2402  *
2403  * Detect if the task was woken on the initial futex as opposed to the requeue
2404  * target futex.  If so, determine if it was a timeout or a signal that caused
2405  * the wakeup and return the appropriate error code to the caller.  Must be
2406  * called with the hb lock held.
2407  *
2408  * Return:
2409  *  0 = no early wakeup detected;
2410  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2411  */
2412 static inline
2413 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2414                                    struct futex_q *q, union futex_key *key2,
2415                                    struct hrtimer_sleeper *timeout)
2416 {
2417         int ret = 0;
2418
2419         /*
2420          * With the hb lock held, we avoid races while we process the wakeup.
2421          * We only need to hold hb (and not hb2) to ensure atomicity as the
2422          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2423          * It can't be requeued from uaddr2 to something else since we don't
2424          * support a PI aware source futex for requeue.
2425          */
2426         if (!match_futex(&q->key, key2)) {
2427                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2428                 /*
2429                  * We were woken prior to requeue by a timeout or a signal.
2430                  * Unqueue the futex_q and determine which it was.
2431                  */
2432                 plist_del(&q->list, &hb->chain);
2433                 hb_waiters_dec(hb);
2434
2435                 /* Handle spurious wakeups gracefully */
2436                 ret = -EWOULDBLOCK;
2437                 if (timeout && !timeout->task)
2438                         ret = -ETIMEDOUT;
2439                 else if (signal_pending(current))
2440                         ret = -ERESTARTNOINTR;
2441         }
2442         return ret;
2443 }
2444
2445 /**
2446  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2447  * @uaddr:      the futex we initially wait on (non-pi)
2448  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2449  *              the same type, no requeueing from private to shared, etc.
2450  * @val:        the expected value of uaddr
2451  * @abs_time:   absolute timeout
2452  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2453  * @uaddr2:     the pi futex we will take prior to returning to user-space
2454  *
2455  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2456  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2457  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2458  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2459  * without one, the pi logic would not know which task to boost/deboost, if
2460  * there was a need to.
2461  *
2462  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2463  * via the following--
2464  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2465  * 2) wakeup on uaddr2 after a requeue
2466  * 3) signal
2467  * 4) timeout
2468  *
2469  * If 3, cleanup and return -ERESTARTNOINTR.
2470  *
2471  * If 2, we may then block on trying to take the rt_mutex and return via:
2472  * 5) successful lock
2473  * 6) signal
2474  * 7) timeout
2475  * 8) other lock acquisition failure
2476  *
2477  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2478  *
2479  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2480  *
2481  * Return:
2482  *  0 - On success;
2483  * <0 - On error
2484  */
2485 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2486                                  u32 val, ktime_t *abs_time, u32 bitset,
2487                                  u32 __user *uaddr2)
2488 {
2489         struct hrtimer_sleeper timeout, *to = NULL;
2490         struct rt_mutex_waiter rt_waiter;
2491         struct rt_mutex *pi_mutex = NULL;
2492         struct futex_hash_bucket *hb;
2493         union futex_key key2 = FUTEX_KEY_INIT;
2494         struct futex_q q = futex_q_init;
2495         int res, ret;
2496
2497         if (uaddr == uaddr2)
2498                 return -EINVAL;
2499
2500         if (!bitset)
2501                 return -EINVAL;
2502
2503         if (abs_time) {
2504                 to = &timeout;
2505                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2506                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2507                                       HRTIMER_MODE_ABS);
2508                 hrtimer_init_sleeper(to, current);
2509                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2510                                              current->timer_slack_ns);
2511         }
2512
2513         /*
2514          * The waiter is allocated on our stack, manipulated by the requeue
2515          * code while we sleep on uaddr.
2516          */
2517         debug_rt_mutex_init_waiter(&rt_waiter);
2518         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2519         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2520         rt_waiter.task = NULL;
2521
2522         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2523         if (unlikely(ret != 0))
2524                 goto out;
2525
2526         q.bitset = bitset;
2527         q.rt_waiter = &rt_waiter;
2528         q.requeue_pi_key = &key2;
2529
2530         /*
2531          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2532          * count.
2533          */
2534         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2535         if (ret)
2536                 goto out_key2;
2537
2538         /*
2539          * The check above which compares uaddrs is not sufficient for
2540          * shared futexes. We need to compare the keys:
2541          */
2542         if (match_futex(&q.key, &key2)) {
2543                 ret = -EINVAL;
2544                 goto out_put_keys;
2545         }
2546
2547         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2548         futex_wait_queue_me(hb, &q, to);
2549
2550         spin_lock(&hb->lock);
2551         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2552         spin_unlock(&hb->lock);
2553         if (ret)
2554                 goto out_put_keys;
2555
2556         /*
2557          * In order for us to be here, we know our q.key == key2, and since
2558          * we took the hb->lock above, we also know that futex_requeue() has
2559          * completed and we no longer have to concern ourselves with a wakeup
2560          * race with the atomic proxy lock acquisition by the requeue code. The
2561          * futex_requeue dropped our key1 reference and incremented our key2
2562          * reference count.
2563          */
2564
2565         /* Check if the requeue code acquired the second futex for us. */
2566         if (!q.rt_waiter) {
2567                 /*
2568                  * Got the lock. We might not be the anticipated owner if we
2569                  * did a lock-steal - fix up the PI-state in that case.
2570                  */
2571                 if (q.pi_state && (q.pi_state->owner != current)) {
2572                         spin_lock(q.lock_ptr);
2573                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2574                         spin_unlock(q.lock_ptr);
2575                 }
2576         } else {
2577                 /*
2578                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2579                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2580                  * the pi_state.
2581                  */
2582                 WARN_ON(!q.pi_state);
2583                 pi_mutex = &q.pi_state->pi_mutex;
2584                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2585                 debug_rt_mutex_free_waiter(&rt_waiter);
2586
2587                 spin_lock(q.lock_ptr);
2588                 /*
2589                  * Fixup the pi_state owner and possibly acquire the lock if we
2590                  * haven't already.
2591                  */
2592                 res = fixup_owner(uaddr2, &q, !ret);
2593                 /*
2594                  * If fixup_owner() returned an error, proprogate that.  If it
2595                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2596                  */
2597                 if (res)
2598                         ret = (res < 0) ? res : 0;
2599
2600                 /* Unqueue and drop the lock. */
2601                 unqueue_me_pi(&q);
2602         }
2603
2604         /*
2605          * If fixup_pi_state_owner() faulted and was unable to handle the
2606          * fault, unlock the rt_mutex and return the fault to userspace.
2607          */
2608         if (ret == -EFAULT) {
2609                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2610                         rt_mutex_unlock(pi_mutex);
2611         } else if (ret == -EINTR) {
2612                 /*
2613                  * We've already been requeued, but cannot restart by calling
2614                  * futex_lock_pi() directly. We could restart this syscall, but
2615                  * it would detect that the user space "val" changed and return
2616                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2617                  * -EWOULDBLOCK directly.
2618                  */
2619                 ret = -EWOULDBLOCK;
2620         }
2621
2622 out_put_keys:
2623         put_futex_key(&q.key);
2624 out_key2:
2625         put_futex_key(&key2);
2626
2627 out:
2628         if (to) {
2629                 hrtimer_cancel(&to->timer);
2630                 destroy_hrtimer_on_stack(&to->timer);
2631         }
2632         return ret;
2633 }
2634
2635 /*
2636  * Support for robust futexes: the kernel cleans up held futexes at
2637  * thread exit time.
2638  *
2639  * Implementation: user-space maintains a per-thread list of locks it
2640  * is holding. Upon do_exit(), the kernel carefully walks this list,
2641  * and marks all locks that are owned by this thread with the
2642  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2643  * always manipulated with the lock held, so the list is private and
2644  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2645  * field, to allow the kernel to clean up if the thread dies after
2646  * acquiring the lock, but just before it could have added itself to
2647  * the list. There can only be one such pending lock.
2648  */
2649
2650 /**
2651  * sys_set_robust_list() - Set the robust-futex list head of a task
2652  * @head:       pointer to the list-head
2653  * @len:        length of the list-head, as userspace expects
2654  */
2655 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2656                 size_t, len)
2657 {
2658         if (!futex_cmpxchg_enabled)
2659                 return -ENOSYS;
2660         /*
2661          * The kernel knows only one size for now:
2662          */
2663         if (unlikely(len != sizeof(*head)))
2664                 return -EINVAL;
2665
2666         current->robust_list = head;
2667
2668         return 0;
2669 }
2670
2671 /**
2672  * sys_get_robust_list() - Get the robust-futex list head of a task
2673  * @pid:        pid of the process [zero for current task]
2674  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2675  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2676  */
2677 SYSCALL_DEFINE3(get_robust_list, int, pid,
2678                 struct robust_list_head __user * __user *, head_ptr,
2679                 size_t __user *, len_ptr)
2680 {
2681         struct robust_list_head __user *head;
2682         unsigned long ret;
2683         struct task_struct *p;
2684
2685         if (!futex_cmpxchg_enabled)
2686                 return -ENOSYS;
2687
2688         rcu_read_lock();
2689
2690         ret = -ESRCH;
2691         if (!pid)
2692                 p = current;
2693         else {
2694                 p = find_task_by_vpid(pid);
2695                 if (!p)
2696                         goto err_unlock;
2697         }
2698
2699         ret = -EPERM;
2700         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2701                 goto err_unlock;
2702
2703         head = p->robust_list;
2704         rcu_read_unlock();
2705
2706         if (put_user(sizeof(*head), len_ptr))
2707                 return -EFAULT;
2708         return put_user(head, head_ptr);
2709
2710 err_unlock:
2711         rcu_read_unlock();
2712
2713         return ret;
2714 }
2715
2716 /*
2717  * Process a futex-list entry, check whether it's owned by the
2718  * dying task, and do notification if so:
2719  */
2720 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2721 {
2722         u32 uval, uninitialized_var(nval), mval;
2723
2724 retry:
2725         if (get_user(uval, uaddr))
2726                 return -1;
2727
2728         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2729                 /*
2730                  * Ok, this dying thread is truly holding a futex
2731                  * of interest. Set the OWNER_DIED bit atomically
2732                  * via cmpxchg, and if the value had FUTEX_WAITERS
2733                  * set, wake up a waiter (if any). (We have to do a
2734                  * futex_wake() even if OWNER_DIED is already set -
2735                  * to handle the rare but possible case of recursive
2736                  * thread-death.) The rest of the cleanup is done in
2737                  * userspace.
2738                  */
2739                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2740                 /*
2741                  * We are not holding a lock here, but we want to have
2742                  * the pagefault_disable/enable() protection because
2743                  * we want to handle the fault gracefully. If the
2744                  * access fails we try to fault in the futex with R/W
2745                  * verification via get_user_pages. get_user() above
2746                  * does not guarantee R/W access. If that fails we
2747                  * give up and leave the futex locked.
2748                  */
2749                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2750                         if (fault_in_user_writeable(uaddr))
2751                                 return -1;
2752                         goto retry;
2753                 }
2754                 if (nval != uval)
2755                         goto retry;
2756
2757                 /*
2758                  * Wake robust non-PI futexes here. The wakeup of
2759                  * PI futexes happens in exit_pi_state():
2760                  */
2761                 if (!pi && (uval & FUTEX_WAITERS))
2762                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2763         }
2764         return 0;
2765 }
2766
2767 /*
2768  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2769  */
2770 static inline int fetch_robust_entry(struct robust_list __user **entry,
2771                                      struct robust_list __user * __user *head,
2772                                      unsigned int *pi)
2773 {
2774         unsigned long uentry;
2775
2776         if (get_user(uentry, (unsigned long __user *)head))
2777                 return -EFAULT;
2778
2779         *entry = (void __user *)(uentry & ~1UL);
2780         *pi = uentry & 1;
2781
2782         return 0;
2783 }
2784
2785 /*
2786  * Walk curr->robust_list (very carefully, it's a userspace list!)
2787  * and mark any locks found there dead, and notify any waiters.
2788  *
2789  * We silently return on any sign of list-walking problem.
2790  */
2791 void exit_robust_list(struct task_struct *curr)
2792 {
2793         struct robust_list_head __user *head = curr->robust_list;
2794         struct robust_list __user *entry, *next_entry, *pending;
2795         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2796         unsigned int uninitialized_var(next_pi);
2797         unsigned long futex_offset;
2798         int rc;
2799
2800         if (!futex_cmpxchg_enabled)
2801                 return;
2802
2803         /*
2804          * Fetch the list head (which was registered earlier, via
2805          * sys_set_robust_list()):
2806          */
2807         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2808                 return;
2809         /*
2810          * Fetch the relative futex offset:
2811          */
2812         if (get_user(futex_offset, &head->futex_offset))
2813                 return;
2814         /*
2815          * Fetch any possibly pending lock-add first, and handle it
2816          * if it exists:
2817          */
2818         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2819                 return;
2820
2821         next_entry = NULL;      /* avoid warning with gcc */
2822         while (entry != &head->list) {
2823                 /*
2824                  * Fetch the next entry in the list before calling
2825                  * handle_futex_death:
2826                  */
2827                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2828                 /*
2829                  * A pending lock might already be on the list, so
2830                  * don't process it twice:
2831                  */
2832                 if (entry != pending)
2833                         if (handle_futex_death((void __user *)entry + futex_offset,
2834                                                 curr, pi))
2835                                 return;
2836                 if (rc)
2837                         return;
2838                 entry = next_entry;
2839                 pi = next_pi;
2840                 /*
2841                  * Avoid excessively long or circular lists:
2842                  */
2843                 if (!--limit)
2844                         break;
2845
2846                 cond_resched();
2847         }
2848
2849         if (pending)
2850                 handle_futex_death((void __user *)pending + futex_offset,
2851                                    curr, pip);
2852 }
2853
2854 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2855                 u32 __user *uaddr2, u32 val2, u32 val3)
2856 {
2857         int cmd = op & FUTEX_CMD_MASK;
2858         unsigned int flags = 0;
2859
2860         if (!(op & FUTEX_PRIVATE_FLAG))
2861                 flags |= FLAGS_SHARED;
2862
2863         if (op & FUTEX_CLOCK_REALTIME) {
2864                 flags |= FLAGS_CLOCKRT;
2865                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2866                         return -ENOSYS;
2867         }
2868
2869         switch (cmd) {
2870         case FUTEX_LOCK_PI:
2871         case FUTEX_UNLOCK_PI:
2872         case FUTEX_TRYLOCK_PI:
2873         case FUTEX_WAIT_REQUEUE_PI:
2874         case FUTEX_CMP_REQUEUE_PI:
2875                 if (!futex_cmpxchg_enabled)
2876                         return -ENOSYS;
2877         }
2878
2879         switch (cmd) {
2880         case FUTEX_WAIT:
2881                 val3 = FUTEX_BITSET_MATCH_ANY;
2882         case FUTEX_WAIT_BITSET:
2883                 return futex_wait(uaddr, flags, val, timeout, val3);
2884         case FUTEX_WAKE:
2885                 val3 = FUTEX_BITSET_MATCH_ANY;
2886         case FUTEX_WAKE_BITSET:
2887                 return futex_wake(uaddr, flags, val, val3);
2888         case FUTEX_REQUEUE:
2889                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2890         case FUTEX_CMP_REQUEUE:
2891                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2892         case FUTEX_WAKE_OP:
2893                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2894         case FUTEX_LOCK_PI:
2895                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2896         case FUTEX_UNLOCK_PI:
2897                 return futex_unlock_pi(uaddr, flags);
2898         case FUTEX_TRYLOCK_PI:
2899                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2900         case FUTEX_WAIT_REQUEUE_PI:
2901                 val3 = FUTEX_BITSET_MATCH_ANY;
2902                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2903                                              uaddr2);
2904         case FUTEX_CMP_REQUEUE_PI:
2905                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2906         }
2907         return -ENOSYS;
2908 }
2909
2910
2911 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2912                 struct timespec __user *, utime, u32 __user *, uaddr2,
2913                 u32, val3)
2914 {
2915         struct timespec ts;
2916         ktime_t t, *tp = NULL;
2917         u32 val2 = 0;
2918         int cmd = op & FUTEX_CMD_MASK;
2919
2920         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2921                       cmd == FUTEX_WAIT_BITSET ||
2922                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2923                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2924                         return -EFAULT;
2925                 if (!timespec_valid(&ts))
2926                         return -EINVAL;
2927
2928                 t = timespec_to_ktime(ts);
2929                 if (cmd == FUTEX_WAIT)
2930                         t = ktime_add_safe(ktime_get(), t);
2931                 tp = &t;
2932         }
2933         /*
2934          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2935          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2936          */
2937         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2938             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2939                 val2 = (u32) (unsigned long) utime;
2940
2941         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2942 }
2943
2944 static void __init futex_detect_cmpxchg(void)
2945 {
2946 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2947         u32 curval;
2948
2949         /*
2950          * This will fail and we want it. Some arch implementations do
2951          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2952          * functionality. We want to know that before we call in any
2953          * of the complex code paths. Also we want to prevent
2954          * registration of robust lists in that case. NULL is
2955          * guaranteed to fault and we get -EFAULT on functional
2956          * implementation, the non-functional ones will return
2957          * -ENOSYS.
2958          */
2959         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2960                 futex_cmpxchg_enabled = 1;
2961 #endif
2962 }
2963
2964 static int __init futex_init(void)
2965 {
2966         unsigned int futex_shift;
2967         unsigned long i;
2968
2969 #if CONFIG_BASE_SMALL
2970         futex_hashsize = 16;
2971 #else
2972         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2973 #endif
2974
2975         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2976                                                futex_hashsize, 0,
2977                                                futex_hashsize < 256 ? HASH_SMALL : 0,
2978                                                &futex_shift, NULL,
2979                                                futex_hashsize, futex_hashsize);
2980         futex_hashsize = 1UL << futex_shift;
2981
2982         futex_detect_cmpxchg();
2983
2984         for (i = 0; i < futex_hashsize; i++) {
2985                 atomic_set(&futex_queues[i].waiters, 0);
2986                 plist_head_init(&futex_queues[i].chain);
2987                 spin_lock_init(&futex_queues[i].lock);
2988         }
2989
2990         return 0;
2991 }
2992 __initcall(futex_init);