2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
43 #include <linux/slab.h>
44 #include <linux/poll.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
59 #include <asm/futex.h>
61 #include "rtmutex_common.h"
63 int __read_mostly futex_cmpxchg_enabled;
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
68 * Priority Inheritance state:
70 struct futex_pi_state {
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
75 struct list_head list;
80 struct rt_mutex pi_mutex;
82 struct task_struct *owner;
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiters, then make the second condition true.
98 struct plist_node list;
99 wait_queue_head_t waiters;
101 /* Which hash list lock to use: */
102 spinlock_t *lock_ptr;
104 /* Key which the futex is hashed on: */
107 /* For fd, sigio sent using these: */
111 /* Optional priority inheritance state: */
112 struct futex_pi_state *pi_state;
113 struct task_struct *task;
115 /* Bitset for the optional bitmasked wakeup */
120 * Split the global futex_lock into every hash list lock.
122 struct futex_hash_bucket {
124 struct plist_head chain;
127 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
129 /* Futex-fs vfsmount entry: */
130 static struct vfsmount *futex_mnt;
133 * Take mm->mmap_sem, when futex is shared
135 static inline void futex_lock_mm(struct rw_semaphore *fshared)
142 * Release mm->mmap_sem, when the futex is shared
144 static inline void futex_unlock_mm(struct rw_semaphore *fshared)
151 * We hash on the keys returned from get_futex_key (see below).
153 static struct futex_hash_bucket *hash_futex(union futex_key *key)
155 u32 hash = jhash2((u32*)&key->both.word,
156 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
158 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
162 * Return 1 if two futex_keys are equal, 0 otherwise.
164 static inline int match_futex(union futex_key *key1, union futex_key *key2)
166 return (key1->both.word == key2->both.word
167 && key1->both.ptr == key2->both.ptr
168 && key1->both.offset == key2->both.offset);
172 * get_futex_key - Get parameters which are the keys for a futex.
173 * @uaddr: virtual address of the futex
174 * @shared: NULL for a PROCESS_PRIVATE futex,
175 * ¤t->mm->mmap_sem for a PROCESS_SHARED futex
176 * @key: address where result is stored.
178 * Returns a negative error code or 0
179 * The key words are stored in *key on success.
181 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
182 * offset_within_page). For private mappings, it's (uaddr, current->mm).
183 * We can usually work out the index without swapping in the page.
185 * fshared is NULL for PROCESS_PRIVATE futexes
186 * For other futexes, it points to ¤t->mm->mmap_sem and
187 * caller must have taken the reader lock. but NOT any spinlocks.
189 static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
190 union futex_key *key)
192 unsigned long address = (unsigned long)uaddr;
193 struct mm_struct *mm = current->mm;
194 struct vm_area_struct *vma;
199 * The futex address must be "naturally" aligned.
201 key->both.offset = address % PAGE_SIZE;
202 if (unlikely((address % sizeof(u32)) != 0))
204 address -= key->both.offset;
207 * PROCESS_PRIVATE futexes are fast.
208 * As the mm cannot disappear under us and the 'key' only needs
209 * virtual address, we dont even have to find the underlying vma.
210 * Note : We do have to check 'uaddr' is a valid user address,
211 * but access_ok() should be faster than find_vma()
214 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
216 key->private.mm = mm;
217 key->private.address = address;
221 * The futex is hashed differently depending on whether
222 * it's in a shared or private mapping. So check vma first.
224 vma = find_extend_vma(mm, address);
231 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
232 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
235 * Private mappings are handled in a simple way.
237 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
238 * it's a read-only handle, it's expected that futexes attach to
239 * the object not the particular process. Therefore we use
240 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
241 * mappings of _writable_ handles.
243 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
244 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
245 key->private.mm = mm;
246 key->private.address = address;
251 * Linear file mappings are also simple.
253 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
254 key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
255 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
256 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
262 * We could walk the page table to read the non-linear
263 * pte, and get the page index without fetching the page
264 * from swap. But that's a lot of code to duplicate here
265 * for a rare case, so we simply fetch the page.
267 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
270 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
278 * Take a reference to the resource addressed by a key.
279 * Can be called while holding spinlocks.
282 static void get_futex_key_refs(union futex_key *key)
284 if (key->both.ptr == NULL)
286 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
288 atomic_inc(&key->shared.inode->i_count);
290 case FUT_OFF_MMSHARED:
291 atomic_inc(&key->private.mm->mm_count);
297 * Drop a reference to the resource addressed by a key.
298 * The hash bucket spinlock must not be held.
300 static void drop_futex_key_refs(union futex_key *key)
304 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
306 iput(key->shared.inode);
308 case FUT_OFF_MMSHARED:
309 mmdrop(key->private.mm);
314 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
319 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
325 static int get_futex_value_locked(u32 *dest, u32 __user *from)
330 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
333 return ret ? -EFAULT : 0;
338 * if fshared is non NULL, current->mm->mmap_sem is already held
340 static int futex_handle_fault(unsigned long address,
341 struct rw_semaphore *fshared, int attempt)
343 struct vm_area_struct * vma;
344 struct mm_struct *mm = current->mm;
351 down_read(&mm->mmap_sem);
352 vma = find_vma(mm, address);
353 if (vma && address >= vma->vm_start &&
354 (vma->vm_flags & VM_WRITE)) {
356 fault = handle_mm_fault(mm, vma, address, 1);
357 if (unlikely((fault & VM_FAULT_ERROR))) {
359 /* XXX: let's do this when we verify it is OK */
360 if (ret & VM_FAULT_OOM)
365 if (fault & VM_FAULT_MAJOR)
372 up_read(&mm->mmap_sem);
379 static int refill_pi_state_cache(void)
381 struct futex_pi_state *pi_state;
383 if (likely(current->pi_state_cache))
386 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
391 INIT_LIST_HEAD(&pi_state->list);
392 /* pi_mutex gets initialized later */
393 pi_state->owner = NULL;
394 atomic_set(&pi_state->refcount, 1);
396 current->pi_state_cache = pi_state;
401 static struct futex_pi_state * alloc_pi_state(void)
403 struct futex_pi_state *pi_state = current->pi_state_cache;
406 current->pi_state_cache = NULL;
411 static void free_pi_state(struct futex_pi_state *pi_state)
413 if (!atomic_dec_and_test(&pi_state->refcount))
417 * If pi_state->owner is NULL, the owner is most probably dying
418 * and has cleaned up the pi_state already
420 if (pi_state->owner) {
421 spin_lock_irq(&pi_state->owner->pi_lock);
422 list_del_init(&pi_state->list);
423 spin_unlock_irq(&pi_state->owner->pi_lock);
425 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
428 if (current->pi_state_cache)
432 * pi_state->list is already empty.
433 * clear pi_state->owner.
434 * refcount is at 0 - put it back to 1.
436 pi_state->owner = NULL;
437 atomic_set(&pi_state->refcount, 1);
438 current->pi_state_cache = pi_state;
443 * Look up the task based on what TID userspace gave us.
446 static struct task_struct * futex_find_get_task(pid_t pid)
448 struct task_struct *p;
451 p = find_task_by_vpid(pid);
452 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
463 * This task is holding PI mutexes at exit time => bad.
464 * Kernel cleans up PI-state, but userspace is likely hosed.
465 * (Robust-futex cleanup is separate and might save the day for userspace.)
467 void exit_pi_state_list(struct task_struct *curr)
469 struct list_head *next, *head = &curr->pi_state_list;
470 struct futex_pi_state *pi_state;
471 struct futex_hash_bucket *hb;
474 if (!futex_cmpxchg_enabled)
477 * We are a ZOMBIE and nobody can enqueue itself on
478 * pi_state_list anymore, but we have to be careful
479 * versus waiters unqueueing themselves:
481 spin_lock_irq(&curr->pi_lock);
482 while (!list_empty(head)) {
485 pi_state = list_entry(next, struct futex_pi_state, list);
487 hb = hash_futex(&key);
488 spin_unlock_irq(&curr->pi_lock);
490 spin_lock(&hb->lock);
492 spin_lock_irq(&curr->pi_lock);
494 * We dropped the pi-lock, so re-check whether this
495 * task still owns the PI-state:
497 if (head->next != next) {
498 spin_unlock(&hb->lock);
502 WARN_ON(pi_state->owner != curr);
503 WARN_ON(list_empty(&pi_state->list));
504 list_del_init(&pi_state->list);
505 pi_state->owner = NULL;
506 spin_unlock_irq(&curr->pi_lock);
508 rt_mutex_unlock(&pi_state->pi_mutex);
510 spin_unlock(&hb->lock);
512 spin_lock_irq(&curr->pi_lock);
514 spin_unlock_irq(&curr->pi_lock);
518 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
519 union futex_key *key, struct futex_pi_state **ps)
521 struct futex_pi_state *pi_state = NULL;
522 struct futex_q *this, *next;
523 struct plist_head *head;
524 struct task_struct *p;
525 pid_t pid = uval & FUTEX_TID_MASK;
529 plist_for_each_entry_safe(this, next, head, list) {
530 if (match_futex(&this->key, key)) {
532 * Another waiter already exists - bump up
533 * the refcount and return its pi_state:
535 pi_state = this->pi_state;
537 * Userspace might have messed up non PI and PI futexes
539 if (unlikely(!pi_state))
542 WARN_ON(!atomic_read(&pi_state->refcount));
543 WARN_ON(pid && pi_state->owner &&
544 pi_state->owner->pid != pid);
546 atomic_inc(&pi_state->refcount);
554 * We are the first waiter - try to look up the real owner and attach
555 * the new pi_state to it, but bail out when TID = 0
559 p = futex_find_get_task(pid);
564 * We need to look at the task state flags to figure out,
565 * whether the task is exiting. To protect against the do_exit
566 * change of the task flags, we do this protected by
569 spin_lock_irq(&p->pi_lock);
570 if (unlikely(p->flags & PF_EXITING)) {
572 * The task is on the way out. When PF_EXITPIDONE is
573 * set, we know that the task has finished the
576 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
578 spin_unlock_irq(&p->pi_lock);
583 pi_state = alloc_pi_state();
586 * Initialize the pi_mutex in locked state and make 'p'
589 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
591 /* Store the key for possible exit cleanups: */
592 pi_state->key = *key;
594 WARN_ON(!list_empty(&pi_state->list));
595 list_add(&pi_state->list, &p->pi_state_list);
597 spin_unlock_irq(&p->pi_lock);
607 * The hash bucket lock must be held when this is called.
608 * Afterwards, the futex_q must not be accessed.
610 static void wake_futex(struct futex_q *q)
612 plist_del(&q->list, &q->list.plist);
614 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
616 * The lock in wake_up_all() is a crucial memory barrier after the
617 * plist_del() and also before assigning to q->lock_ptr.
619 wake_up_all(&q->waiters);
621 * The waiting task can free the futex_q as soon as this is written,
622 * without taking any locks. This must come last.
624 * A memory barrier is required here to prevent the following store
625 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
626 * at the end of wake_up_all() does not prevent this store from
633 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
635 struct task_struct *new_owner;
636 struct futex_pi_state *pi_state = this->pi_state;
642 spin_lock(&pi_state->pi_mutex.wait_lock);
643 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
646 * This happens when we have stolen the lock and the original
647 * pending owner did not enqueue itself back on the rt_mutex.
648 * Thats not a tragedy. We know that way, that a lock waiter
649 * is on the fly. We make the futex_q waiter the pending owner.
652 new_owner = this->task;
655 * We pass it to the next owner. (The WAITERS bit is always
656 * kept enabled while there is PI state around. We must also
657 * preserve the owner died bit.)
659 if (!(uval & FUTEX_OWNER_DIED)) {
662 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
664 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
666 if (curval == -EFAULT)
668 else if (curval != uval)
671 spin_unlock(&pi_state->pi_mutex.wait_lock);
676 spin_lock_irq(&pi_state->owner->pi_lock);
677 WARN_ON(list_empty(&pi_state->list));
678 list_del_init(&pi_state->list);
679 spin_unlock_irq(&pi_state->owner->pi_lock);
681 spin_lock_irq(&new_owner->pi_lock);
682 WARN_ON(!list_empty(&pi_state->list));
683 list_add(&pi_state->list, &new_owner->pi_state_list);
684 pi_state->owner = new_owner;
685 spin_unlock_irq(&new_owner->pi_lock);
687 spin_unlock(&pi_state->pi_mutex.wait_lock);
688 rt_mutex_unlock(&pi_state->pi_mutex);
693 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
698 * There is no waiter, so we unlock the futex. The owner died
699 * bit has not to be preserved here. We are the owner:
701 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
703 if (oldval == -EFAULT)
712 * Express the locking dependencies for lockdep:
715 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
718 spin_lock(&hb1->lock);
720 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
721 } else { /* hb1 > hb2 */
722 spin_lock(&hb2->lock);
723 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
728 * Wake up all waiters hashed on the physical page that is mapped
729 * to this virtual address:
731 static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
732 int nr_wake, u32 bitset)
734 struct futex_hash_bucket *hb;
735 struct futex_q *this, *next;
736 struct plist_head *head;
743 futex_lock_mm(fshared);
745 ret = get_futex_key(uaddr, fshared, &key);
746 if (unlikely(ret != 0))
749 hb = hash_futex(&key);
750 spin_lock(&hb->lock);
753 plist_for_each_entry_safe(this, next, head, list) {
754 if (match_futex (&this->key, &key)) {
755 if (this->pi_state) {
760 /* Check if one of the bits is set in both bitsets */
761 if (!(this->bitset & bitset))
765 if (++ret >= nr_wake)
770 spin_unlock(&hb->lock);
772 futex_unlock_mm(fshared);
777 * Wake up all waiters hashed on the physical page that is mapped
778 * to this virtual address:
781 futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
783 int nr_wake, int nr_wake2, int op)
785 union futex_key key1, key2;
786 struct futex_hash_bucket *hb1, *hb2;
787 struct plist_head *head;
788 struct futex_q *this, *next;
789 int ret, op_ret, attempt = 0;
792 futex_lock_mm(fshared);
794 ret = get_futex_key(uaddr1, fshared, &key1);
795 if (unlikely(ret != 0))
797 ret = get_futex_key(uaddr2, fshared, &key2);
798 if (unlikely(ret != 0))
801 hb1 = hash_futex(&key1);
802 hb2 = hash_futex(&key2);
805 double_lock_hb(hb1, hb2);
807 op_ret = futex_atomic_op_inuser(op, uaddr2);
808 if (unlikely(op_ret < 0)) {
811 spin_unlock(&hb1->lock);
813 spin_unlock(&hb2->lock);
817 * we don't get EFAULT from MMU faults if we don't have an MMU,
818 * but we might get them from range checking
824 if (unlikely(op_ret != -EFAULT)) {
830 * futex_atomic_op_inuser needs to both read and write
831 * *(int __user *)uaddr2, but we can't modify it
832 * non-atomically. Therefore, if get_user below is not
833 * enough, we need to handle the fault ourselves, while
834 * still holding the mmap_sem.
837 ret = futex_handle_fault((unsigned long)uaddr2,
845 * If we would have faulted, release mmap_sem,
846 * fault it in and start all over again.
848 futex_unlock_mm(fshared);
850 ret = get_user(dummy, uaddr2);
859 plist_for_each_entry_safe(this, next, head, list) {
860 if (match_futex (&this->key, &key1)) {
862 if (++ret >= nr_wake)
871 plist_for_each_entry_safe(this, next, head, list) {
872 if (match_futex (&this->key, &key2)) {
874 if (++op_ret >= nr_wake2)
881 spin_unlock(&hb1->lock);
883 spin_unlock(&hb2->lock);
885 futex_unlock_mm(fshared);
891 * Requeue all waiters hashed on one physical page to another
894 static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
896 int nr_wake, int nr_requeue, u32 *cmpval)
898 union futex_key key1, key2;
899 struct futex_hash_bucket *hb1, *hb2;
900 struct plist_head *head1;
901 struct futex_q *this, *next;
902 int ret, drop_count = 0;
905 futex_lock_mm(fshared);
907 ret = get_futex_key(uaddr1, fshared, &key1);
908 if (unlikely(ret != 0))
910 ret = get_futex_key(uaddr2, fshared, &key2);
911 if (unlikely(ret != 0))
914 hb1 = hash_futex(&key1);
915 hb2 = hash_futex(&key2);
917 double_lock_hb(hb1, hb2);
919 if (likely(cmpval != NULL)) {
922 ret = get_futex_value_locked(&curval, uaddr1);
925 spin_unlock(&hb1->lock);
927 spin_unlock(&hb2->lock);
930 * If we would have faulted, release mmap_sem, fault
931 * it in and start all over again.
933 futex_unlock_mm(fshared);
935 ret = get_user(curval, uaddr1);
942 if (curval != *cmpval) {
949 plist_for_each_entry_safe(this, next, head1, list) {
950 if (!match_futex (&this->key, &key1))
952 if (++ret <= nr_wake) {
956 * If key1 and key2 hash to the same bucket, no need to
959 if (likely(head1 != &hb2->chain)) {
960 plist_del(&this->list, &hb1->chain);
961 plist_add(&this->list, &hb2->chain);
962 this->lock_ptr = &hb2->lock;
963 #ifdef CONFIG_DEBUG_PI_LIST
964 this->list.plist.lock = &hb2->lock;
968 get_futex_key_refs(&key2);
971 if (ret - nr_wake >= nr_requeue)
977 spin_unlock(&hb1->lock);
979 spin_unlock(&hb2->lock);
981 /* drop_futex_key_refs() must be called outside the spinlocks. */
982 while (--drop_count >= 0)
983 drop_futex_key_refs(&key1);
986 futex_unlock_mm(fshared);
990 /* The key must be already stored in q->key. */
991 static inline struct futex_hash_bucket *
992 queue_lock(struct futex_q *q, int fd, struct file *filp)
994 struct futex_hash_bucket *hb;
999 init_waitqueue_head(&q->waiters);
1001 get_futex_key_refs(&q->key);
1002 hb = hash_futex(&q->key);
1003 q->lock_ptr = &hb->lock;
1005 spin_lock(&hb->lock);
1009 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1014 * The priority used to register this element is
1015 * - either the real thread-priority for the real-time threads
1016 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1017 * - or MAX_RT_PRIO for non-RT threads.
1018 * Thus, all RT-threads are woken first in priority order, and
1019 * the others are woken last, in FIFO order.
1021 prio = min(current->normal_prio, MAX_RT_PRIO);
1023 plist_node_init(&q->list, prio);
1024 #ifdef CONFIG_DEBUG_PI_LIST
1025 q->list.plist.lock = &hb->lock;
1027 plist_add(&q->list, &hb->chain);
1029 spin_unlock(&hb->lock);
1033 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1035 spin_unlock(&hb->lock);
1036 drop_futex_key_refs(&q->key);
1040 * queue_me and unqueue_me must be called as a pair, each
1041 * exactly once. They are called with the hashed spinlock held.
1044 /* The key must be already stored in q->key. */
1045 static void queue_me(struct futex_q *q, int fd, struct file *filp)
1047 struct futex_hash_bucket *hb;
1049 hb = queue_lock(q, fd, filp);
1053 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1054 static int unqueue_me(struct futex_q *q)
1056 spinlock_t *lock_ptr;
1059 /* In the common case we don't take the spinlock, which is nice. */
1061 lock_ptr = q->lock_ptr;
1063 if (lock_ptr != NULL) {
1064 spin_lock(lock_ptr);
1066 * q->lock_ptr can change between reading it and
1067 * spin_lock(), causing us to take the wrong lock. This
1068 * corrects the race condition.
1070 * Reasoning goes like this: if we have the wrong lock,
1071 * q->lock_ptr must have changed (maybe several times)
1072 * between reading it and the spin_lock(). It can
1073 * change again after the spin_lock() but only if it was
1074 * already changed before the spin_lock(). It cannot,
1075 * however, change back to the original value. Therefore
1076 * we can detect whether we acquired the correct lock.
1078 if (unlikely(lock_ptr != q->lock_ptr)) {
1079 spin_unlock(lock_ptr);
1082 WARN_ON(plist_node_empty(&q->list));
1083 plist_del(&q->list, &q->list.plist);
1085 BUG_ON(q->pi_state);
1087 spin_unlock(lock_ptr);
1091 drop_futex_key_refs(&q->key);
1096 * PI futexes can not be requeued and must remove themself from the
1097 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1100 static void unqueue_me_pi(struct futex_q *q)
1102 WARN_ON(plist_node_empty(&q->list));
1103 plist_del(&q->list, &q->list.plist);
1105 BUG_ON(!q->pi_state);
1106 free_pi_state(q->pi_state);
1109 spin_unlock(q->lock_ptr);
1111 drop_futex_key_refs(&q->key);
1115 * Fixup the pi_state owner with the new owner.
1117 * Must be called with hash bucket lock held and mm->sem held for non
1120 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1121 struct task_struct *newowner)
1123 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1124 struct futex_pi_state *pi_state = q->pi_state;
1125 u32 uval, curval, newval;
1129 if (pi_state->owner != NULL) {
1130 spin_lock_irq(&pi_state->owner->pi_lock);
1131 WARN_ON(list_empty(&pi_state->list));
1132 list_del_init(&pi_state->list);
1133 spin_unlock_irq(&pi_state->owner->pi_lock);
1135 newtid |= FUTEX_OWNER_DIED;
1137 pi_state->owner = newowner;
1139 spin_lock_irq(&newowner->pi_lock);
1140 WARN_ON(!list_empty(&pi_state->list));
1141 list_add(&pi_state->list, &newowner->pi_state_list);
1142 spin_unlock_irq(&newowner->pi_lock);
1145 * We own it, so we have to replace the pending owner
1146 * TID. This must be atomic as we have preserve the
1147 * owner died bit here.
1149 ret = get_futex_value_locked(&uval, uaddr);
1152 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1154 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1156 if (curval == -EFAULT)
1166 * In case we must use restart_block to restart a futex_wait,
1167 * we encode in the 'flags' shared capability
1169 #define FLAGS_SHARED 1
1171 static long futex_wait_restart(struct restart_block *restart);
1173 static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1174 u32 val, ktime_t *abs_time, u32 bitset)
1176 struct task_struct *curr = current;
1177 DECLARE_WAITQUEUE(wait, curr);
1178 struct futex_hash_bucket *hb;
1182 struct hrtimer_sleeper t;
1191 futex_lock_mm(fshared);
1193 ret = get_futex_key(uaddr, fshared, &q.key);
1194 if (unlikely(ret != 0))
1195 goto out_release_sem;
1197 hb = queue_lock(&q, -1, NULL);
1200 * Access the page AFTER the futex is queued.
1201 * Order is important:
1203 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1204 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1206 * The basic logical guarantee of a futex is that it blocks ONLY
1207 * if cond(var) is known to be true at the time of blocking, for
1208 * any cond. If we queued after testing *uaddr, that would open
1209 * a race condition where we could block indefinitely with
1210 * cond(var) false, which would violate the guarantee.
1212 * A consequence is that futex_wait() can return zero and absorb
1213 * a wakeup when *uaddr != val on entry to the syscall. This is
1216 * for shared futexes, we hold the mmap semaphore, so the mapping
1217 * cannot have changed since we looked it up in get_futex_key.
1219 ret = get_futex_value_locked(&uval, uaddr);
1221 if (unlikely(ret)) {
1222 queue_unlock(&q, hb);
1225 * If we would have faulted, release mmap_sem, fault it in and
1226 * start all over again.
1228 futex_unlock_mm(fshared);
1230 ret = get_user(uval, uaddr);
1238 goto out_unlock_release_sem;
1240 /* Only actually queue if *uaddr contained val. */
1244 * Now the futex is queued and we have checked the data, we
1245 * don't want to hold mmap_sem while we sleep.
1247 futex_unlock_mm(fshared);
1250 * There might have been scheduling since the queue_me(), as we
1251 * cannot hold a spinlock across the get_user() in case it
1252 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1253 * queueing ourselves into the futex hash. This code thus has to
1254 * rely on the futex_wake() code removing us from hash when it
1258 /* add_wait_queue is the barrier after __set_current_state. */
1259 __set_current_state(TASK_INTERRUPTIBLE);
1260 add_wait_queue(&q.waiters, &wait);
1262 * !plist_node_empty() is safe here without any lock.
1263 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1265 if (likely(!plist_node_empty(&q.list))) {
1269 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
1271 hrtimer_init_sleeper(&t, current);
1272 t.timer.expires = *abs_time;
1274 hrtimer_start(&t.timer, t.timer.expires,
1276 if (!hrtimer_active(&t.timer))
1280 * the timer could have already expired, in which
1281 * case current would be flagged for rescheduling.
1282 * Don't bother calling schedule.
1287 hrtimer_cancel(&t.timer);
1289 /* Flag if a timeout occured */
1290 rem = (t.task == NULL);
1292 destroy_hrtimer_on_stack(&t.timer);
1295 __set_current_state(TASK_RUNNING);
1298 * NOTE: we don't remove ourselves from the waitqueue because
1299 * we are the only user of it.
1302 /* If we were woken (and unqueued), we succeeded, whatever. */
1303 if (!unqueue_me(&q))
1309 * We expect signal_pending(current), but another thread may
1310 * have handled it for us already.
1313 return -ERESTARTSYS;
1315 struct restart_block *restart;
1316 restart = ¤t_thread_info()->restart_block;
1317 restart->fn = futex_wait_restart;
1318 restart->futex.uaddr = (u32 *)uaddr;
1319 restart->futex.val = val;
1320 restart->futex.time = abs_time->tv64;
1321 restart->futex.bitset = bitset;
1322 restart->futex.flags = 0;
1325 restart->futex.flags |= FLAGS_SHARED;
1326 return -ERESTART_RESTARTBLOCK;
1329 out_unlock_release_sem:
1330 queue_unlock(&q, hb);
1333 futex_unlock_mm(fshared);
1338 static long futex_wait_restart(struct restart_block *restart)
1340 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1341 struct rw_semaphore *fshared = NULL;
1344 t.tv64 = restart->futex.time;
1345 restart->fn = do_no_restart_syscall;
1346 if (restart->futex.flags & FLAGS_SHARED)
1347 fshared = ¤t->mm->mmap_sem;
1348 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1349 restart->futex.bitset);
1354 * Userspace tried a 0 -> TID atomic transition of the futex value
1355 * and failed. The kernel side here does the whole locking operation:
1356 * if there are waiters then it will block, it does PI, etc. (Due to
1357 * races the kernel might see a 0 value of the futex too.)
1359 static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1360 int detect, ktime_t *time, int trylock)
1362 struct hrtimer_sleeper timeout, *to = NULL;
1363 struct task_struct *curr = current;
1364 struct futex_hash_bucket *hb;
1365 u32 uval, newval, curval;
1367 int ret, lock_taken, ownerdied = 0, attempt = 0;
1369 if (refill_pi_state_cache())
1374 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1376 hrtimer_init_sleeper(to, current);
1377 to->timer.expires = *time;
1382 futex_lock_mm(fshared);
1384 ret = get_futex_key(uaddr, fshared, &q.key);
1385 if (unlikely(ret != 0))
1386 goto out_release_sem;
1389 hb = queue_lock(&q, -1, NULL);
1392 ret = lock_taken = 0;
1395 * To avoid races, we attempt to take the lock here again
1396 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1397 * the locks. It will most likely not succeed.
1399 newval = task_pid_vnr(current);
1401 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1403 if (unlikely(curval == -EFAULT))
1407 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1408 * situation and we return success to user space.
1410 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1412 goto out_unlock_release_sem;
1416 * Surprise - we got the lock. Just return to userspace:
1418 if (unlikely(!curval))
1419 goto out_unlock_release_sem;
1424 * Set the WAITERS flag, so the owner will know it has someone
1425 * to wake at next unlock
1427 newval = curval | FUTEX_WAITERS;
1430 * There are two cases, where a futex might have no owner (the
1431 * owner TID is 0): OWNER_DIED. We take over the futex in this
1432 * case. We also do an unconditional take over, when the owner
1433 * of the futex died.
1435 * This is safe as we are protected by the hash bucket lock !
1437 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1438 /* Keep the OWNER_DIED bit */
1439 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1444 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1446 if (unlikely(curval == -EFAULT))
1448 if (unlikely(curval != uval))
1452 * We took the lock due to owner died take over.
1454 if (unlikely(lock_taken))
1455 goto out_unlock_release_sem;
1458 * We dont have the lock. Look up the PI state (or create it if
1459 * we are the first waiter):
1461 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1463 if (unlikely(ret)) {
1468 * Task is exiting and we just wait for the
1471 queue_unlock(&q, hb);
1472 futex_unlock_mm(fshared);
1478 * No owner found for this futex. Check if the
1479 * OWNER_DIED bit is set to figure out whether
1480 * this is a robust futex or not.
1482 if (get_futex_value_locked(&curval, uaddr))
1486 * We simply start over in case of a robust
1487 * futex. The code above will take the futex
1490 if (curval & FUTEX_OWNER_DIED) {
1495 goto out_unlock_release_sem;
1500 * Only actually queue now that the atomic ops are done:
1505 * Now the futex is queued and we have checked the data, we
1506 * don't want to hold mmap_sem while we sleep.
1508 futex_unlock_mm(fshared);
1510 WARN_ON(!q.pi_state);
1512 * Block on the PI mutex:
1515 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1517 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1518 /* Fixup the trylock return value: */
1519 ret = ret ? 0 : -EWOULDBLOCK;
1522 futex_lock_mm(fshared);
1523 spin_lock(q.lock_ptr);
1527 * Got the lock. We might not be the anticipated owner
1528 * if we did a lock-steal - fix up the PI-state in
1531 if (q.pi_state->owner != curr)
1532 ret = fixup_pi_state_owner(uaddr, &q, curr);
1535 * Catch the rare case, where the lock was released
1536 * when we were on the way back before we locked the
1539 if (q.pi_state->owner == curr) {
1541 * Try to get the rt_mutex now. This might
1542 * fail as some other task acquired the
1543 * rt_mutex after we removed ourself from the
1544 * rt_mutex waiters list.
1546 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1550 * pi_state is incorrect, some other
1551 * task did a lock steal and we
1552 * returned due to timeout or signal
1553 * without taking the rt_mutex. Too
1554 * late. We can access the
1555 * rt_mutex_owner without locking, as
1556 * the other task is now blocked on
1557 * the hash bucket lock. Fix the state
1560 struct task_struct *owner;
1563 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1564 res = fixup_pi_state_owner(uaddr, &q, owner);
1566 /* propagate -EFAULT, if the fixup failed */
1572 * Paranoia check. If we did not take the lock
1573 * in the trylock above, then we should not be
1574 * the owner of the rtmutex, neither the real
1575 * nor the pending one:
1577 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1578 printk(KERN_ERR "futex_lock_pi: ret = %d "
1579 "pi-mutex: %p pi-state %p\n", ret,
1580 q.pi_state->pi_mutex.owner,
1585 /* Unqueue and drop the lock */
1587 futex_unlock_mm(fshared);
1590 destroy_hrtimer_on_stack(&to->timer);
1591 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1593 out_unlock_release_sem:
1594 queue_unlock(&q, hb);
1597 futex_unlock_mm(fshared);
1599 destroy_hrtimer_on_stack(&to->timer);
1604 * We have to r/w *(int __user *)uaddr, but we can't modify it
1605 * non-atomically. Therefore, if get_user below is not
1606 * enough, we need to handle the fault ourselves, while
1607 * still holding the mmap_sem.
1609 * ... and hb->lock. :-) --ANK
1611 queue_unlock(&q, hb);
1614 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1617 goto out_release_sem;
1618 goto retry_unlocked;
1621 futex_unlock_mm(fshared);
1623 ret = get_user(uval, uaddr);
1624 if (!ret && (uval != -EFAULT))
1628 destroy_hrtimer_on_stack(&to->timer);
1633 * Userspace attempted a TID -> 0 atomic transition, and failed.
1634 * This is the in-kernel slowpath: we look up the PI state (if any),
1635 * and do the rt-mutex unlock.
1637 static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1639 struct futex_hash_bucket *hb;
1640 struct futex_q *this, *next;
1642 struct plist_head *head;
1643 union futex_key key;
1644 int ret, attempt = 0;
1647 if (get_user(uval, uaddr))
1650 * We release only a lock we actually own:
1652 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1655 * First take all the futex related locks:
1657 futex_lock_mm(fshared);
1659 ret = get_futex_key(uaddr, fshared, &key);
1660 if (unlikely(ret != 0))
1663 hb = hash_futex(&key);
1665 spin_lock(&hb->lock);
1668 * To avoid races, try to do the TID -> 0 atomic transition
1669 * again. If it succeeds then we can return without waking
1672 if (!(uval & FUTEX_OWNER_DIED))
1673 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1676 if (unlikely(uval == -EFAULT))
1679 * Rare case: we managed to release the lock atomically,
1680 * no need to wake anyone else up:
1682 if (unlikely(uval == task_pid_vnr(current)))
1686 * Ok, other tasks may need to be woken up - check waiters
1687 * and do the wakeup if necessary:
1691 plist_for_each_entry_safe(this, next, head, list) {
1692 if (!match_futex (&this->key, &key))
1694 ret = wake_futex_pi(uaddr, uval, this);
1696 * The atomic access to the futex value
1697 * generated a pagefault, so retry the
1698 * user-access and the wakeup:
1705 * No waiters - kernel unlocks the futex:
1707 if (!(uval & FUTEX_OWNER_DIED)) {
1708 ret = unlock_futex_pi(uaddr, uval);
1714 spin_unlock(&hb->lock);
1716 futex_unlock_mm(fshared);
1722 * We have to r/w *(int __user *)uaddr, but we can't modify it
1723 * non-atomically. Therefore, if get_user below is not
1724 * enough, we need to handle the fault ourselves, while
1725 * still holding the mmap_sem.
1727 * ... and hb->lock. --ANK
1729 spin_unlock(&hb->lock);
1732 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1737 goto retry_unlocked;
1740 futex_unlock_mm(fshared);
1742 ret = get_user(uval, uaddr);
1743 if (!ret && (uval != -EFAULT))
1749 static int futex_close(struct inode *inode, struct file *filp)
1751 struct futex_q *q = filp->private_data;
1759 /* This is one-shot: once it's gone off you need a new fd */
1760 static unsigned int futex_poll(struct file *filp,
1761 struct poll_table_struct *wait)
1763 struct futex_q *q = filp->private_data;
1766 poll_wait(filp, &q->waiters, wait);
1769 * plist_node_empty() is safe here without any lock.
1770 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1772 if (plist_node_empty(&q->list))
1773 ret = POLLIN | POLLRDNORM;
1778 static const struct file_operations futex_fops = {
1779 .release = futex_close,
1784 * Signal allows caller to avoid the race which would occur if they
1785 * set the sigio stuff up afterwards.
1787 static int futex_fd(u32 __user *uaddr, int signal)
1792 struct rw_semaphore *fshared;
1793 static unsigned long printk_interval;
1795 if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1796 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
1797 "will be removed from the kernel in June 2007\n",
1802 if (!valid_signal(signal))
1805 ret = get_unused_fd();
1808 filp = get_empty_filp();
1814 filp->f_op = &futex_fops;
1815 filp->f_path.mnt = mntget(futex_mnt);
1816 filp->f_path.dentry = dget(futex_mnt->mnt_root);
1817 filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1820 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1824 filp->f_owner.signum = signal;
1827 q = kmalloc(sizeof(*q), GFP_KERNEL);
1834 fshared = ¤t->mm->mmap_sem;
1836 err = get_futex_key(uaddr, fshared, &q->key);
1838 if (unlikely(err != 0)) {
1845 * queue_me() must be called before releasing mmap_sem, because
1846 * key->shared.inode needs to be referenced while holding it.
1848 filp->private_data = q;
1850 queue_me(q, ret, filp);
1853 /* Now we map fd to filp, so userspace can access it */
1854 fd_install(ret, filp);
1865 * Support for robust futexes: the kernel cleans up held futexes at
1868 * Implementation: user-space maintains a per-thread list of locks it
1869 * is holding. Upon do_exit(), the kernel carefully walks this list,
1870 * and marks all locks that are owned by this thread with the
1871 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1872 * always manipulated with the lock held, so the list is private and
1873 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1874 * field, to allow the kernel to clean up if the thread dies after
1875 * acquiring the lock, but just before it could have added itself to
1876 * the list. There can only be one such pending lock.
1880 * sys_set_robust_list - set the robust-futex list head of a task
1881 * @head: pointer to the list-head
1882 * @len: length of the list-head, as userspace expects
1885 sys_set_robust_list(struct robust_list_head __user *head,
1888 if (!futex_cmpxchg_enabled)
1891 * The kernel knows only one size for now:
1893 if (unlikely(len != sizeof(*head)))
1896 current->robust_list = head;
1902 * sys_get_robust_list - get the robust-futex list head of a task
1903 * @pid: pid of the process [zero for current task]
1904 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1905 * @len_ptr: pointer to a length field, the kernel fills in the header size
1908 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1909 size_t __user *len_ptr)
1911 struct robust_list_head __user *head;
1914 if (!futex_cmpxchg_enabled)
1918 head = current->robust_list;
1920 struct task_struct *p;
1924 p = find_task_by_vpid(pid);
1928 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1929 !capable(CAP_SYS_PTRACE))
1931 head = p->robust_list;
1935 if (put_user(sizeof(*head), len_ptr))
1937 return put_user(head, head_ptr);
1946 * Process a futex-list entry, check whether it's owned by the
1947 * dying task, and do notification if so:
1949 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1951 u32 uval, nval, mval;
1954 if (get_user(uval, uaddr))
1957 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1959 * Ok, this dying thread is truly holding a futex
1960 * of interest. Set the OWNER_DIED bit atomically
1961 * via cmpxchg, and if the value had FUTEX_WAITERS
1962 * set, wake up a waiter (if any). (We have to do a
1963 * futex_wake() even if OWNER_DIED is already set -
1964 * to handle the rare but possible case of recursive
1965 * thread-death.) The rest of the cleanup is done in
1968 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1969 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1971 if (nval == -EFAULT)
1978 * Wake robust non-PI futexes here. The wakeup of
1979 * PI futexes happens in exit_pi_state():
1981 if (!pi && (uval & FUTEX_WAITERS))
1982 futex_wake(uaddr, &curr->mm->mmap_sem, 1,
1983 FUTEX_BITSET_MATCH_ANY);
1989 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1991 static inline int fetch_robust_entry(struct robust_list __user **entry,
1992 struct robust_list __user * __user *head,
1995 unsigned long uentry;
1997 if (get_user(uentry, (unsigned long __user *)head))
2000 *entry = (void __user *)(uentry & ~1UL);
2007 * Walk curr->robust_list (very carefully, it's a userspace list!)
2008 * and mark any locks found there dead, and notify any waiters.
2010 * We silently return on any sign of list-walking problem.
2012 void exit_robust_list(struct task_struct *curr)
2014 struct robust_list_head __user *head = curr->robust_list;
2015 struct robust_list __user *entry, *next_entry, *pending;
2016 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2017 unsigned long futex_offset;
2020 if (!futex_cmpxchg_enabled)
2024 * Fetch the list head (which was registered earlier, via
2025 * sys_set_robust_list()):
2027 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2030 * Fetch the relative futex offset:
2032 if (get_user(futex_offset, &head->futex_offset))
2035 * Fetch any possibly pending lock-add first, and handle it
2038 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2041 next_entry = NULL; /* avoid warning with gcc */
2042 while (entry != &head->list) {
2044 * Fetch the next entry in the list before calling
2045 * handle_futex_death:
2047 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2049 * A pending lock might already be on the list, so
2050 * don't process it twice:
2052 if (entry != pending)
2053 if (handle_futex_death((void __user *)entry + futex_offset,
2061 * Avoid excessively long or circular lists:
2070 handle_futex_death((void __user *)pending + futex_offset,
2074 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2075 u32 __user *uaddr2, u32 val2, u32 val3)
2078 int cmd = op & FUTEX_CMD_MASK;
2079 struct rw_semaphore *fshared = NULL;
2081 if (!(op & FUTEX_PRIVATE_FLAG))
2082 fshared = ¤t->mm->mmap_sem;
2086 val3 = FUTEX_BITSET_MATCH_ANY;
2087 case FUTEX_WAIT_BITSET:
2088 ret = futex_wait(uaddr, fshared, val, timeout, val3);
2091 val3 = FUTEX_BITSET_MATCH_ANY;
2092 case FUTEX_WAKE_BITSET:
2093 ret = futex_wake(uaddr, fshared, val, val3);
2096 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2097 ret = futex_fd(uaddr, val);
2100 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
2102 case FUTEX_CMP_REQUEUE:
2103 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
2106 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2109 if (futex_cmpxchg_enabled)
2110 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2112 case FUTEX_UNLOCK_PI:
2113 if (futex_cmpxchg_enabled)
2114 ret = futex_unlock_pi(uaddr, fshared);
2116 case FUTEX_TRYLOCK_PI:
2117 if (futex_cmpxchg_enabled)
2118 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2127 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
2128 struct timespec __user *utime, u32 __user *uaddr2,
2132 ktime_t t, *tp = NULL;
2134 int cmd = op & FUTEX_CMD_MASK;
2136 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2137 cmd == FUTEX_WAIT_BITSET)) {
2138 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2140 if (!timespec_valid(&ts))
2143 t = timespec_to_ktime(ts);
2144 if (cmd == FUTEX_WAIT)
2145 t = ktime_add_safe(ktime_get(), t);
2149 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2150 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2152 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2153 cmd == FUTEX_WAKE_OP)
2154 val2 = (u32) (unsigned long) utime;
2156 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2159 static int futexfs_get_sb(struct file_system_type *fs_type,
2160 int flags, const char *dev_name, void *data,
2161 struct vfsmount *mnt)
2163 return get_sb_pseudo(fs_type, "futex", NULL, FUTEXFS_SUPER_MAGIC, mnt);
2166 static struct file_system_type futex_fs_type = {
2168 .get_sb = futexfs_get_sb,
2169 .kill_sb = kill_anon_super,
2172 static int __init futex_init(void)
2178 * This will fail and we want it. Some arch implementations do
2179 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2180 * functionality. We want to know that before we call in any
2181 * of the complex code paths. Also we want to prevent
2182 * registration of robust lists in that case. NULL is
2183 * guaranteed to fault and we get -EFAULT on functional
2184 * implementation, the non functional ones will return
2187 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2188 if (curval == -EFAULT)
2189 futex_cmpxchg_enabled = 1;
2191 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2192 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2193 spin_lock_init(&futex_queues[i].lock);
2196 i = register_filesystem(&futex_fs_type);
2200 futex_mnt = kern_mount(&futex_fs_type);
2201 if (IS_ERR(futex_mnt)) {
2202 unregister_filesystem(&futex_fs_type);
2203 return PTR_ERR(futex_mnt);
2208 __initcall(futex_init);