futex: Prevent attaching to kernel threads
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * Basic futex operation and ordering guarantees:
74  *
75  * The waiter reads the futex value in user space and calls
76  * futex_wait(). This function computes the hash bucket and acquires
77  * the hash bucket lock. After that it reads the futex user space value
78  * again and verifies that the data has not changed. If it has not changed
79  * it enqueues itself into the hash bucket, releases the hash bucket lock
80  * and schedules.
81  *
82  * The waker side modifies the user space value of the futex and calls
83  * futex_wake(). This function computes the hash bucket and acquires the
84  * hash bucket lock. Then it looks for waiters on that futex in the hash
85  * bucket and wakes them.
86  *
87  * In futex wake up scenarios where no tasks are blocked on a futex, taking
88  * the hb spinlock can be avoided and simply return. In order for this
89  * optimization to work, ordering guarantees must exist so that the waiter
90  * being added to the list is acknowledged when the list is concurrently being
91  * checked by the waker, avoiding scenarios like the following:
92  *
93  * CPU 0                               CPU 1
94  * val = *futex;
95  * sys_futex(WAIT, futex, val);
96  *   futex_wait(futex, val);
97  *   uval = *futex;
98  *                                     *futex = newval;
99  *                                     sys_futex(WAKE, futex);
100  *                                       futex_wake(futex);
101  *                                       if (queue_empty())
102  *                                         return;
103  *   if (uval == val)
104  *      lock(hash_bucket(futex));
105  *      queue();
106  *     unlock(hash_bucket(futex));
107  *     schedule();
108  *
109  * This would cause the waiter on CPU 0 to wait forever because it
110  * missed the transition of the user space value from val to newval
111  * and the waker did not find the waiter in the hash bucket queue.
112  *
113  * The correct serialization ensures that a waiter either observes
114  * the changed user space value before blocking or is woken by a
115  * concurrent waker:
116  *
117  * CPU 0                                 CPU 1
118  * val = *futex;
119  * sys_futex(WAIT, futex, val);
120  *   futex_wait(futex, val);
121  *
122  *   waiters++;
123  *   mb(); (A) <-- paired with -.
124  *                              |
125  *   lock(hash_bucket(futex));  |
126  *                              |
127  *   uval = *futex;             |
128  *                              |        *futex = newval;
129  *                              |        sys_futex(WAKE, futex);
130  *                              |          futex_wake(futex);
131  *                              |
132  *                              `------->  mb(); (B)
133  *   if (uval == val)
134  *     queue();
135  *     unlock(hash_bucket(futex));
136  *     schedule();                         if (waiters)
137  *                                           lock(hash_bucket(futex));
138  *                                           wake_waiters(futex);
139  *                                           unlock(hash_bucket(futex));
140  *
141  * Where (A) orders the waiters increment and the futex value read -- this
142  * is guaranteed by the head counter in the hb spinlock; and where (B)
143  * orders the write to futex and the waiters read -- this is done by the
144  * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
145  * depending on the futex type.
146  *
147  * This yields the following case (where X:=waiters, Y:=futex):
148  *
149  *      X = Y = 0
150  *
151  *      w[X]=1          w[Y]=1
152  *      MB              MB
153  *      r[Y]=y          r[X]=x
154  *
155  * Which guarantees that x==0 && y==0 is impossible; which translates back into
156  * the guarantee that we cannot both miss the futex variable change and the
157  * enqueue.
158  */
159
160 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
161 int __read_mostly futex_cmpxchg_enabled;
162 #endif
163
164 /*
165  * Futex flags used to encode options to functions and preserve them across
166  * restarts.
167  */
168 #define FLAGS_SHARED            0x01
169 #define FLAGS_CLOCKRT           0x02
170 #define FLAGS_HAS_TIMEOUT       0x04
171
172 /*
173  * Priority Inheritance state:
174  */
175 struct futex_pi_state {
176         /*
177          * list of 'owned' pi_state instances - these have to be
178          * cleaned up in do_exit() if the task exits prematurely:
179          */
180         struct list_head list;
181
182         /*
183          * The PI object:
184          */
185         struct rt_mutex pi_mutex;
186
187         struct task_struct *owner;
188         atomic_t refcount;
189
190         union futex_key key;
191 };
192
193 /**
194  * struct futex_q - The hashed futex queue entry, one per waiting task
195  * @list:               priority-sorted list of tasks waiting on this futex
196  * @task:               the task waiting on the futex
197  * @lock_ptr:           the hash bucket lock
198  * @key:                the key the futex is hashed on
199  * @pi_state:           optional priority inheritance state
200  * @rt_waiter:          rt_waiter storage for use with requeue_pi
201  * @requeue_pi_key:     the requeue_pi target futex key
202  * @bitset:             bitset for the optional bitmasked wakeup
203  *
204  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
205  * we can wake only the relevant ones (hashed queues may be shared).
206  *
207  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
208  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
209  * The order of wakeup is always to make the first condition true, then
210  * the second.
211  *
212  * PI futexes are typically woken before they are removed from the hash list via
213  * the rt_mutex code. See unqueue_me_pi().
214  */
215 struct futex_q {
216         struct plist_node list;
217
218         struct task_struct *task;
219         spinlock_t *lock_ptr;
220         union futex_key key;
221         struct futex_pi_state *pi_state;
222         struct rt_mutex_waiter *rt_waiter;
223         union futex_key *requeue_pi_key;
224         u32 bitset;
225 };
226
227 static const struct futex_q futex_q_init = {
228         /* list gets initialized in queue_me()*/
229         .key = FUTEX_KEY_INIT,
230         .bitset = FUTEX_BITSET_MATCH_ANY
231 };
232
233 /*
234  * Hash buckets are shared by all the futex_keys that hash to the same
235  * location.  Each key may have multiple futex_q structures, one for each task
236  * waiting on a futex.
237  */
238 struct futex_hash_bucket {
239         atomic_t waiters;
240         spinlock_t lock;
241         struct plist_head chain;
242 } ____cacheline_aligned_in_smp;
243
244 static unsigned long __read_mostly futex_hashsize;
245
246 static struct futex_hash_bucket *futex_queues;
247
248 static inline void futex_get_mm(union futex_key *key)
249 {
250         atomic_inc(&key->private.mm->mm_count);
251         /*
252          * Ensure futex_get_mm() implies a full barrier such that
253          * get_futex_key() implies a full barrier. This is relied upon
254          * as full barrier (B), see the ordering comment above.
255          */
256         smp_mb__after_atomic_inc();
257 }
258
259 /*
260  * Reflects a new waiter being added to the waitqueue.
261  */
262 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
263 {
264 #ifdef CONFIG_SMP
265         atomic_inc(&hb->waiters);
266         /*
267          * Full barrier (A), see the ordering comment above.
268          */
269         smp_mb__after_atomic_inc();
270 #endif
271 }
272
273 /*
274  * Reflects a waiter being removed from the waitqueue by wakeup
275  * paths.
276  */
277 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
278 {
279 #ifdef CONFIG_SMP
280         atomic_dec(&hb->waiters);
281 #endif
282 }
283
284 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
285 {
286 #ifdef CONFIG_SMP
287         return atomic_read(&hb->waiters);
288 #else
289         return 1;
290 #endif
291 }
292
293 /*
294  * We hash on the keys returned from get_futex_key (see below).
295  */
296 static struct futex_hash_bucket *hash_futex(union futex_key *key)
297 {
298         u32 hash = jhash2((u32*)&key->both.word,
299                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
300                           key->both.offset);
301         return &futex_queues[hash & (futex_hashsize - 1)];
302 }
303
304 /*
305  * Return 1 if two futex_keys are equal, 0 otherwise.
306  */
307 static inline int match_futex(union futex_key *key1, union futex_key *key2)
308 {
309         return (key1 && key2
310                 && key1->both.word == key2->both.word
311                 && key1->both.ptr == key2->both.ptr
312                 && key1->both.offset == key2->both.offset);
313 }
314
315 /*
316  * Take a reference to the resource addressed by a key.
317  * Can be called while holding spinlocks.
318  *
319  */
320 static void get_futex_key_refs(union futex_key *key)
321 {
322         if (!key->both.ptr)
323                 return;
324
325         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
326         case FUT_OFF_INODE:
327                 ihold(key->shared.inode); /* implies MB (B) */
328                 break;
329         case FUT_OFF_MMSHARED:
330                 futex_get_mm(key); /* implies MB (B) */
331                 break;
332         }
333 }
334
335 /*
336  * Drop a reference to the resource addressed by a key.
337  * The hash bucket spinlock must not be held.
338  */
339 static void drop_futex_key_refs(union futex_key *key)
340 {
341         if (!key->both.ptr) {
342                 /* If we're here then we tried to put a key we failed to get */
343                 WARN_ON_ONCE(1);
344                 return;
345         }
346
347         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
348         case FUT_OFF_INODE:
349                 iput(key->shared.inode);
350                 break;
351         case FUT_OFF_MMSHARED:
352                 mmdrop(key->private.mm);
353                 break;
354         }
355 }
356
357 /**
358  * get_futex_key() - Get parameters which are the keys for a futex
359  * @uaddr:      virtual address of the futex
360  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
361  * @key:        address where result is stored.
362  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
363  *              VERIFY_WRITE)
364  *
365  * Return: a negative error code or 0
366  *
367  * The key words are stored in *key on success.
368  *
369  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
370  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
371  * We can usually work out the index without swapping in the page.
372  *
373  * lock_page() might sleep, the caller should not hold a spinlock.
374  */
375 static int
376 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
377 {
378         unsigned long address = (unsigned long)uaddr;
379         struct mm_struct *mm = current->mm;
380         struct page *page, *page_head;
381         int err, ro = 0;
382
383         /*
384          * The futex address must be "naturally" aligned.
385          */
386         key->both.offset = address % PAGE_SIZE;
387         if (unlikely((address % sizeof(u32)) != 0))
388                 return -EINVAL;
389         address -= key->both.offset;
390
391         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
392                 return -EFAULT;
393
394         /*
395          * PROCESS_PRIVATE futexes are fast.
396          * As the mm cannot disappear under us and the 'key' only needs
397          * virtual address, we dont even have to find the underlying vma.
398          * Note : We do have to check 'uaddr' is a valid user address,
399          *        but access_ok() should be faster than find_vma()
400          */
401         if (!fshared) {
402                 key->private.mm = mm;
403                 key->private.address = address;
404                 get_futex_key_refs(key);  /* implies MB (B) */
405                 return 0;
406         }
407
408 again:
409         err = get_user_pages_fast(address, 1, 1, &page);
410         /*
411          * If write access is not required (eg. FUTEX_WAIT), try
412          * and get read-only access.
413          */
414         if (err == -EFAULT && rw == VERIFY_READ) {
415                 err = get_user_pages_fast(address, 1, 0, &page);
416                 ro = 1;
417         }
418         if (err < 0)
419                 return err;
420         else
421                 err = 0;
422
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424         page_head = page;
425         if (unlikely(PageTail(page))) {
426                 put_page(page);
427                 /* serialize against __split_huge_page_splitting() */
428                 local_irq_disable();
429                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
430                         page_head = compound_head(page);
431                         /*
432                          * page_head is valid pointer but we must pin
433                          * it before taking the PG_lock and/or
434                          * PG_compound_lock. The moment we re-enable
435                          * irqs __split_huge_page_splitting() can
436                          * return and the head page can be freed from
437                          * under us. We can't take the PG_lock and/or
438                          * PG_compound_lock on a page that could be
439                          * freed from under us.
440                          */
441                         if (page != page_head) {
442                                 get_page(page_head);
443                                 put_page(page);
444                         }
445                         local_irq_enable();
446                 } else {
447                         local_irq_enable();
448                         goto again;
449                 }
450         }
451 #else
452         page_head = compound_head(page);
453         if (page != page_head) {
454                 get_page(page_head);
455                 put_page(page);
456         }
457 #endif
458
459         lock_page(page_head);
460
461         /*
462          * If page_head->mapping is NULL, then it cannot be a PageAnon
463          * page; but it might be the ZERO_PAGE or in the gate area or
464          * in a special mapping (all cases which we are happy to fail);
465          * or it may have been a good file page when get_user_pages_fast
466          * found it, but truncated or holepunched or subjected to
467          * invalidate_complete_page2 before we got the page lock (also
468          * cases which we are happy to fail).  And we hold a reference,
469          * so refcount care in invalidate_complete_page's remove_mapping
470          * prevents drop_caches from setting mapping to NULL beneath us.
471          *
472          * The case we do have to guard against is when memory pressure made
473          * shmem_writepage move it from filecache to swapcache beneath us:
474          * an unlikely race, but we do need to retry for page_head->mapping.
475          */
476         if (!page_head->mapping) {
477                 int shmem_swizzled = PageSwapCache(page_head);
478                 unlock_page(page_head);
479                 put_page(page_head);
480                 if (shmem_swizzled)
481                         goto again;
482                 return -EFAULT;
483         }
484
485         /*
486          * Private mappings are handled in a simple way.
487          *
488          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
489          * it's a read-only handle, it's expected that futexes attach to
490          * the object not the particular process.
491          */
492         if (PageAnon(page_head)) {
493                 /*
494                  * A RO anonymous page will never change and thus doesn't make
495                  * sense for futex operations.
496                  */
497                 if (ro) {
498                         err = -EFAULT;
499                         goto out;
500                 }
501
502                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
503                 key->private.mm = mm;
504                 key->private.address = address;
505         } else {
506                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
507                 key->shared.inode = page_head->mapping->host;
508                 key->shared.pgoff = basepage_index(page);
509         }
510
511         get_futex_key_refs(key); /* implies MB (B) */
512
513 out:
514         unlock_page(page_head);
515         put_page(page_head);
516         return err;
517 }
518
519 static inline void put_futex_key(union futex_key *key)
520 {
521         drop_futex_key_refs(key);
522 }
523
524 /**
525  * fault_in_user_writeable() - Fault in user address and verify RW access
526  * @uaddr:      pointer to faulting user space address
527  *
528  * Slow path to fixup the fault we just took in the atomic write
529  * access to @uaddr.
530  *
531  * We have no generic implementation of a non-destructive write to the
532  * user address. We know that we faulted in the atomic pagefault
533  * disabled section so we can as well avoid the #PF overhead by
534  * calling get_user_pages() right away.
535  */
536 static int fault_in_user_writeable(u32 __user *uaddr)
537 {
538         struct mm_struct *mm = current->mm;
539         int ret;
540
541         down_read(&mm->mmap_sem);
542         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
543                                FAULT_FLAG_WRITE);
544         up_read(&mm->mmap_sem);
545
546         return ret < 0 ? ret : 0;
547 }
548
549 /**
550  * futex_top_waiter() - Return the highest priority waiter on a futex
551  * @hb:         the hash bucket the futex_q's reside in
552  * @key:        the futex key (to distinguish it from other futex futex_q's)
553  *
554  * Must be called with the hb lock held.
555  */
556 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
557                                         union futex_key *key)
558 {
559         struct futex_q *this;
560
561         plist_for_each_entry(this, &hb->chain, list) {
562                 if (match_futex(&this->key, key))
563                         return this;
564         }
565         return NULL;
566 }
567
568 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
569                                       u32 uval, u32 newval)
570 {
571         int ret;
572
573         pagefault_disable();
574         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
575         pagefault_enable();
576
577         return ret;
578 }
579
580 static int get_futex_value_locked(u32 *dest, u32 __user *from)
581 {
582         int ret;
583
584         pagefault_disable();
585         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
586         pagefault_enable();
587
588         return ret ? -EFAULT : 0;
589 }
590
591
592 /*
593  * PI code:
594  */
595 static int refill_pi_state_cache(void)
596 {
597         struct futex_pi_state *pi_state;
598
599         if (likely(current->pi_state_cache))
600                 return 0;
601
602         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
603
604         if (!pi_state)
605                 return -ENOMEM;
606
607         INIT_LIST_HEAD(&pi_state->list);
608         /* pi_mutex gets initialized later */
609         pi_state->owner = NULL;
610         atomic_set(&pi_state->refcount, 1);
611         pi_state->key = FUTEX_KEY_INIT;
612
613         current->pi_state_cache = pi_state;
614
615         return 0;
616 }
617
618 static struct futex_pi_state * alloc_pi_state(void)
619 {
620         struct futex_pi_state *pi_state = current->pi_state_cache;
621
622         WARN_ON(!pi_state);
623         current->pi_state_cache = NULL;
624
625         return pi_state;
626 }
627
628 static void free_pi_state(struct futex_pi_state *pi_state)
629 {
630         if (!atomic_dec_and_test(&pi_state->refcount))
631                 return;
632
633         /*
634          * If pi_state->owner is NULL, the owner is most probably dying
635          * and has cleaned up the pi_state already
636          */
637         if (pi_state->owner) {
638                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
639                 list_del_init(&pi_state->list);
640                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
641
642                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
643         }
644
645         if (current->pi_state_cache)
646                 kfree(pi_state);
647         else {
648                 /*
649                  * pi_state->list is already empty.
650                  * clear pi_state->owner.
651                  * refcount is at 0 - put it back to 1.
652                  */
653                 pi_state->owner = NULL;
654                 atomic_set(&pi_state->refcount, 1);
655                 current->pi_state_cache = pi_state;
656         }
657 }
658
659 /*
660  * Look up the task based on what TID userspace gave us.
661  * We dont trust it.
662  */
663 static struct task_struct * futex_find_get_task(pid_t pid)
664 {
665         struct task_struct *p;
666
667         rcu_read_lock();
668         p = find_task_by_vpid(pid);
669         if (p)
670                 get_task_struct(p);
671
672         rcu_read_unlock();
673
674         return p;
675 }
676
677 /*
678  * This task is holding PI mutexes at exit time => bad.
679  * Kernel cleans up PI-state, but userspace is likely hosed.
680  * (Robust-futex cleanup is separate and might save the day for userspace.)
681  */
682 void exit_pi_state_list(struct task_struct *curr)
683 {
684         struct list_head *next, *head = &curr->pi_state_list;
685         struct futex_pi_state *pi_state;
686         struct futex_hash_bucket *hb;
687         union futex_key key = FUTEX_KEY_INIT;
688
689         if (!futex_cmpxchg_enabled)
690                 return;
691         /*
692          * We are a ZOMBIE and nobody can enqueue itself on
693          * pi_state_list anymore, but we have to be careful
694          * versus waiters unqueueing themselves:
695          */
696         raw_spin_lock_irq(&curr->pi_lock);
697         while (!list_empty(head)) {
698
699                 next = head->next;
700                 pi_state = list_entry(next, struct futex_pi_state, list);
701                 key = pi_state->key;
702                 hb = hash_futex(&key);
703                 raw_spin_unlock_irq(&curr->pi_lock);
704
705                 spin_lock(&hb->lock);
706
707                 raw_spin_lock_irq(&curr->pi_lock);
708                 /*
709                  * We dropped the pi-lock, so re-check whether this
710                  * task still owns the PI-state:
711                  */
712                 if (head->next != next) {
713                         spin_unlock(&hb->lock);
714                         continue;
715                 }
716
717                 WARN_ON(pi_state->owner != curr);
718                 WARN_ON(list_empty(&pi_state->list));
719                 list_del_init(&pi_state->list);
720                 pi_state->owner = NULL;
721                 raw_spin_unlock_irq(&curr->pi_lock);
722
723                 rt_mutex_unlock(&pi_state->pi_mutex);
724
725                 spin_unlock(&hb->lock);
726
727                 raw_spin_lock_irq(&curr->pi_lock);
728         }
729         raw_spin_unlock_irq(&curr->pi_lock);
730 }
731
732 static int
733 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
734                 union futex_key *key, struct futex_pi_state **ps,
735                 struct task_struct *task)
736 {
737         struct futex_pi_state *pi_state = NULL;
738         struct futex_q *this, *next;
739         struct task_struct *p;
740         pid_t pid = uval & FUTEX_TID_MASK;
741
742         plist_for_each_entry_safe(this, next, &hb->chain, list) {
743                 if (match_futex(&this->key, key)) {
744                         /*
745                          * Another waiter already exists - bump up
746                          * the refcount and return its pi_state:
747                          */
748                         pi_state = this->pi_state;
749                         /*
750                          * Userspace might have messed up non-PI and PI futexes
751                          */
752                         if (unlikely(!pi_state))
753                                 return -EINVAL;
754
755                         WARN_ON(!atomic_read(&pi_state->refcount));
756
757                         /*
758                          * When pi_state->owner is NULL then the owner died
759                          * and another waiter is on the fly. pi_state->owner
760                          * is fixed up by the task which acquires
761                          * pi_state->rt_mutex.
762                          *
763                          * We do not check for pid == 0 which can happen when
764                          * the owner died and robust_list_exit() cleared the
765                          * TID.
766                          */
767                         if (pid && pi_state->owner) {
768                                 /*
769                                  * Bail out if user space manipulated the
770                                  * futex value.
771                                  */
772                                 if (pid != task_pid_vnr(pi_state->owner))
773                                         return -EINVAL;
774                         }
775
776                         /*
777                          * Protect against a corrupted uval. If uval
778                          * is 0x80000000 then pid is 0 and the waiter
779                          * bit is set. So the deadlock check in the
780                          * calling code has failed and we did not fall
781                          * into the check above due to !pid.
782                          */
783                         if (task && pi_state->owner == task)
784                                 return -EDEADLK;
785
786                         atomic_inc(&pi_state->refcount);
787                         *ps = pi_state;
788
789                         return 0;
790                 }
791         }
792
793         /*
794          * We are the first waiter - try to look up the real owner and attach
795          * the new pi_state to it, but bail out when TID = 0
796          */
797         if (!pid)
798                 return -ESRCH;
799         p = futex_find_get_task(pid);
800         if (!p)
801                 return -ESRCH;
802
803         if (!p->mm) {
804                 put_task_struct(p);
805                 return -EPERM;
806         }
807
808         /*
809          * We need to look at the task state flags to figure out,
810          * whether the task is exiting. To protect against the do_exit
811          * change of the task flags, we do this protected by
812          * p->pi_lock:
813          */
814         raw_spin_lock_irq(&p->pi_lock);
815         if (unlikely(p->flags & PF_EXITING)) {
816                 /*
817                  * The task is on the way out. When PF_EXITPIDONE is
818                  * set, we know that the task has finished the
819                  * cleanup:
820                  */
821                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
822
823                 raw_spin_unlock_irq(&p->pi_lock);
824                 put_task_struct(p);
825                 return ret;
826         }
827
828         pi_state = alloc_pi_state();
829
830         /*
831          * Initialize the pi_mutex in locked state and make 'p'
832          * the owner of it:
833          */
834         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
835
836         /* Store the key for possible exit cleanups: */
837         pi_state->key = *key;
838
839         WARN_ON(!list_empty(&pi_state->list));
840         list_add(&pi_state->list, &p->pi_state_list);
841         pi_state->owner = p;
842         raw_spin_unlock_irq(&p->pi_lock);
843
844         put_task_struct(p);
845
846         *ps = pi_state;
847
848         return 0;
849 }
850
851 /**
852  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
853  * @uaddr:              the pi futex user address
854  * @hb:                 the pi futex hash bucket
855  * @key:                the futex key associated with uaddr and hb
856  * @ps:                 the pi_state pointer where we store the result of the
857  *                      lookup
858  * @task:               the task to perform the atomic lock work for.  This will
859  *                      be "current" except in the case of requeue pi.
860  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
861  *
862  * Return:
863  *  0 - ready to wait;
864  *  1 - acquired the lock;
865  * <0 - error
866  *
867  * The hb->lock and futex_key refs shall be held by the caller.
868  */
869 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
870                                 union futex_key *key,
871                                 struct futex_pi_state **ps,
872                                 struct task_struct *task, int set_waiters)
873 {
874         int lock_taken, ret, force_take = 0;
875         u32 uval, newval, curval, vpid = task_pid_vnr(task);
876
877 retry:
878         ret = lock_taken = 0;
879
880         /*
881          * To avoid races, we attempt to take the lock here again
882          * (by doing a 0 -> TID atomic cmpxchg), while holding all
883          * the locks. It will most likely not succeed.
884          */
885         newval = vpid;
886         if (set_waiters)
887                 newval |= FUTEX_WAITERS;
888
889         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
890                 return -EFAULT;
891
892         /*
893          * Detect deadlocks.
894          */
895         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
896                 return -EDEADLK;
897
898         /*
899          * Surprise - we got the lock. Just return to userspace:
900          */
901         if (unlikely(!curval))
902                 return 1;
903
904         uval = curval;
905
906         /*
907          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
908          * to wake at the next unlock.
909          */
910         newval = curval | FUTEX_WAITERS;
911
912         /*
913          * Should we force take the futex? See below.
914          */
915         if (unlikely(force_take)) {
916                 /*
917                  * Keep the OWNER_DIED and the WAITERS bit and set the
918                  * new TID value.
919                  */
920                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
921                 force_take = 0;
922                 lock_taken = 1;
923         }
924
925         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
926                 return -EFAULT;
927         if (unlikely(curval != uval))
928                 goto retry;
929
930         /*
931          * We took the lock due to forced take over.
932          */
933         if (unlikely(lock_taken))
934                 return 1;
935
936         /*
937          * We dont have the lock. Look up the PI state (or create it if
938          * we are the first waiter):
939          */
940         ret = lookup_pi_state(uval, hb, key, ps, task);
941
942         if (unlikely(ret)) {
943                 switch (ret) {
944                 case -ESRCH:
945                         /*
946                          * We failed to find an owner for this
947                          * futex. So we have no pi_state to block
948                          * on. This can happen in two cases:
949                          *
950                          * 1) The owner died
951                          * 2) A stale FUTEX_WAITERS bit
952                          *
953                          * Re-read the futex value.
954                          */
955                         if (get_futex_value_locked(&curval, uaddr))
956                                 return -EFAULT;
957
958                         /*
959                          * If the owner died or we have a stale
960                          * WAITERS bit the owner TID in the user space
961                          * futex is 0.
962                          */
963                         if (!(curval & FUTEX_TID_MASK)) {
964                                 force_take = 1;
965                                 goto retry;
966                         }
967                 default:
968                         break;
969                 }
970         }
971
972         return ret;
973 }
974
975 /**
976  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
977  * @q:  The futex_q to unqueue
978  *
979  * The q->lock_ptr must not be NULL and must be held by the caller.
980  */
981 static void __unqueue_futex(struct futex_q *q)
982 {
983         struct futex_hash_bucket *hb;
984
985         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
986             || WARN_ON(plist_node_empty(&q->list)))
987                 return;
988
989         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
990         plist_del(&q->list, &hb->chain);
991         hb_waiters_dec(hb);
992 }
993
994 /*
995  * The hash bucket lock must be held when this is called.
996  * Afterwards, the futex_q must not be accessed.
997  */
998 static void wake_futex(struct futex_q *q)
999 {
1000         struct task_struct *p = q->task;
1001
1002         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1003                 return;
1004
1005         /*
1006          * We set q->lock_ptr = NULL _before_ we wake up the task. If
1007          * a non-futex wake up happens on another CPU then the task
1008          * might exit and p would dereference a non-existing task
1009          * struct. Prevent this by holding a reference on p across the
1010          * wake up.
1011          */
1012         get_task_struct(p);
1013
1014         __unqueue_futex(q);
1015         /*
1016          * The waiting task can free the futex_q as soon as
1017          * q->lock_ptr = NULL is written, without taking any locks. A
1018          * memory barrier is required here to prevent the following
1019          * store to lock_ptr from getting ahead of the plist_del.
1020          */
1021         smp_wmb();
1022         q->lock_ptr = NULL;
1023
1024         wake_up_state(p, TASK_NORMAL);
1025         put_task_struct(p);
1026 }
1027
1028 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1029 {
1030         struct task_struct *new_owner;
1031         struct futex_pi_state *pi_state = this->pi_state;
1032         u32 uninitialized_var(curval), newval;
1033
1034         if (!pi_state)
1035                 return -EINVAL;
1036
1037         /*
1038          * If current does not own the pi_state then the futex is
1039          * inconsistent and user space fiddled with the futex value.
1040          */
1041         if (pi_state->owner != current)
1042                 return -EINVAL;
1043
1044         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1045         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1046
1047         /*
1048          * It is possible that the next waiter (the one that brought
1049          * this owner to the kernel) timed out and is no longer
1050          * waiting on the lock.
1051          */
1052         if (!new_owner)
1053                 new_owner = this->task;
1054
1055         /*
1056          * We pass it to the next owner. (The WAITERS bit is always
1057          * kept enabled while there is PI state around. We must also
1058          * preserve the owner died bit.)
1059          */
1060         if (!(uval & FUTEX_OWNER_DIED)) {
1061                 int ret = 0;
1062
1063                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1064
1065                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1066                         ret = -EFAULT;
1067                 else if (curval != uval)
1068                         ret = -EINVAL;
1069                 if (ret) {
1070                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1071                         return ret;
1072                 }
1073         }
1074
1075         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1076         WARN_ON(list_empty(&pi_state->list));
1077         list_del_init(&pi_state->list);
1078         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1079
1080         raw_spin_lock_irq(&new_owner->pi_lock);
1081         WARN_ON(!list_empty(&pi_state->list));
1082         list_add(&pi_state->list, &new_owner->pi_state_list);
1083         pi_state->owner = new_owner;
1084         raw_spin_unlock_irq(&new_owner->pi_lock);
1085
1086         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1087         rt_mutex_unlock(&pi_state->pi_mutex);
1088
1089         return 0;
1090 }
1091
1092 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1093 {
1094         u32 uninitialized_var(oldval);
1095
1096         /*
1097          * There is no waiter, so we unlock the futex. The owner died
1098          * bit has not to be preserved here. We are the owner:
1099          */
1100         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1101                 return -EFAULT;
1102         if (oldval != uval)
1103                 return -EAGAIN;
1104
1105         return 0;
1106 }
1107
1108 /*
1109  * Express the locking dependencies for lockdep:
1110  */
1111 static inline void
1112 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1113 {
1114         if (hb1 <= hb2) {
1115                 spin_lock(&hb1->lock);
1116                 if (hb1 < hb2)
1117                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1118         } else { /* hb1 > hb2 */
1119                 spin_lock(&hb2->lock);
1120                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1121         }
1122 }
1123
1124 static inline void
1125 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1126 {
1127         spin_unlock(&hb1->lock);
1128         if (hb1 != hb2)
1129                 spin_unlock(&hb2->lock);
1130 }
1131
1132 /*
1133  * Wake up waiters matching bitset queued on this futex (uaddr).
1134  */
1135 static int
1136 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1137 {
1138         struct futex_hash_bucket *hb;
1139         struct futex_q *this, *next;
1140         union futex_key key = FUTEX_KEY_INIT;
1141         int ret;
1142
1143         if (!bitset)
1144                 return -EINVAL;
1145
1146         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1147         if (unlikely(ret != 0))
1148                 goto out;
1149
1150         hb = hash_futex(&key);
1151
1152         /* Make sure we really have tasks to wakeup */
1153         if (!hb_waiters_pending(hb))
1154                 goto out_put_key;
1155
1156         spin_lock(&hb->lock);
1157
1158         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1159                 if (match_futex (&this->key, &key)) {
1160                         if (this->pi_state || this->rt_waiter) {
1161                                 ret = -EINVAL;
1162                                 break;
1163                         }
1164
1165                         /* Check if one of the bits is set in both bitsets */
1166                         if (!(this->bitset & bitset))
1167                                 continue;
1168
1169                         wake_futex(this);
1170                         if (++ret >= nr_wake)
1171                                 break;
1172                 }
1173         }
1174
1175         spin_unlock(&hb->lock);
1176 out_put_key:
1177         put_futex_key(&key);
1178 out:
1179         return ret;
1180 }
1181
1182 /*
1183  * Wake up all waiters hashed on the physical page that is mapped
1184  * to this virtual address:
1185  */
1186 static int
1187 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1188               int nr_wake, int nr_wake2, int op)
1189 {
1190         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1191         struct futex_hash_bucket *hb1, *hb2;
1192         struct futex_q *this, *next;
1193         int ret, op_ret;
1194
1195 retry:
1196         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1197         if (unlikely(ret != 0))
1198                 goto out;
1199         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1200         if (unlikely(ret != 0))
1201                 goto out_put_key1;
1202
1203         hb1 = hash_futex(&key1);
1204         hb2 = hash_futex(&key2);
1205
1206 retry_private:
1207         double_lock_hb(hb1, hb2);
1208         op_ret = futex_atomic_op_inuser(op, uaddr2);
1209         if (unlikely(op_ret < 0)) {
1210
1211                 double_unlock_hb(hb1, hb2);
1212
1213 #ifndef CONFIG_MMU
1214                 /*
1215                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1216                  * but we might get them from range checking
1217                  */
1218                 ret = op_ret;
1219                 goto out_put_keys;
1220 #endif
1221
1222                 if (unlikely(op_ret != -EFAULT)) {
1223                         ret = op_ret;
1224                         goto out_put_keys;
1225                 }
1226
1227                 ret = fault_in_user_writeable(uaddr2);
1228                 if (ret)
1229                         goto out_put_keys;
1230
1231                 if (!(flags & FLAGS_SHARED))
1232                         goto retry_private;
1233
1234                 put_futex_key(&key2);
1235                 put_futex_key(&key1);
1236                 goto retry;
1237         }
1238
1239         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1240                 if (match_futex (&this->key, &key1)) {
1241                         if (this->pi_state || this->rt_waiter) {
1242                                 ret = -EINVAL;
1243                                 goto out_unlock;
1244                         }
1245                         wake_futex(this);
1246                         if (++ret >= nr_wake)
1247                                 break;
1248                 }
1249         }
1250
1251         if (op_ret > 0) {
1252                 op_ret = 0;
1253                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1254                         if (match_futex (&this->key, &key2)) {
1255                                 if (this->pi_state || this->rt_waiter) {
1256                                         ret = -EINVAL;
1257                                         goto out_unlock;
1258                                 }
1259                                 wake_futex(this);
1260                                 if (++op_ret >= nr_wake2)
1261                                         break;
1262                         }
1263                 }
1264                 ret += op_ret;
1265         }
1266
1267 out_unlock:
1268         double_unlock_hb(hb1, hb2);
1269 out_put_keys:
1270         put_futex_key(&key2);
1271 out_put_key1:
1272         put_futex_key(&key1);
1273 out:
1274         return ret;
1275 }
1276
1277 /**
1278  * requeue_futex() - Requeue a futex_q from one hb to another
1279  * @q:          the futex_q to requeue
1280  * @hb1:        the source hash_bucket
1281  * @hb2:        the target hash_bucket
1282  * @key2:       the new key for the requeued futex_q
1283  */
1284 static inline
1285 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1286                    struct futex_hash_bucket *hb2, union futex_key *key2)
1287 {
1288
1289         /*
1290          * If key1 and key2 hash to the same bucket, no need to
1291          * requeue.
1292          */
1293         if (likely(&hb1->chain != &hb2->chain)) {
1294                 plist_del(&q->list, &hb1->chain);
1295                 hb_waiters_dec(hb1);
1296                 plist_add(&q->list, &hb2->chain);
1297                 hb_waiters_inc(hb2);
1298                 q->lock_ptr = &hb2->lock;
1299         }
1300         get_futex_key_refs(key2);
1301         q->key = *key2;
1302 }
1303
1304 /**
1305  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1306  * @q:          the futex_q
1307  * @key:        the key of the requeue target futex
1308  * @hb:         the hash_bucket of the requeue target futex
1309  *
1310  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1311  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1312  * to the requeue target futex so the waiter can detect the wakeup on the right
1313  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1314  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1315  * to protect access to the pi_state to fixup the owner later.  Must be called
1316  * with both q->lock_ptr and hb->lock held.
1317  */
1318 static inline
1319 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1320                            struct futex_hash_bucket *hb)
1321 {
1322         get_futex_key_refs(key);
1323         q->key = *key;
1324
1325         __unqueue_futex(q);
1326
1327         WARN_ON(!q->rt_waiter);
1328         q->rt_waiter = NULL;
1329
1330         q->lock_ptr = &hb->lock;
1331
1332         wake_up_state(q->task, TASK_NORMAL);
1333 }
1334
1335 /**
1336  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1337  * @pifutex:            the user address of the to futex
1338  * @hb1:                the from futex hash bucket, must be locked by the caller
1339  * @hb2:                the to futex hash bucket, must be locked by the caller
1340  * @key1:               the from futex key
1341  * @key2:               the to futex key
1342  * @ps:                 address to store the pi_state pointer
1343  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1344  *
1345  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1346  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1347  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1348  * hb1 and hb2 must be held by the caller.
1349  *
1350  * Return:
1351  *  0 - failed to acquire the lock atomically;
1352  * >0 - acquired the lock, return value is vpid of the top_waiter
1353  * <0 - error
1354  */
1355 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1356                                  struct futex_hash_bucket *hb1,
1357                                  struct futex_hash_bucket *hb2,
1358                                  union futex_key *key1, union futex_key *key2,
1359                                  struct futex_pi_state **ps, int set_waiters)
1360 {
1361         struct futex_q *top_waiter = NULL;
1362         u32 curval;
1363         int ret, vpid;
1364
1365         if (get_futex_value_locked(&curval, pifutex))
1366                 return -EFAULT;
1367
1368         /*
1369          * Find the top_waiter and determine if there are additional waiters.
1370          * If the caller intends to requeue more than 1 waiter to pifutex,
1371          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1372          * as we have means to handle the possible fault.  If not, don't set
1373          * the bit unecessarily as it will force the subsequent unlock to enter
1374          * the kernel.
1375          */
1376         top_waiter = futex_top_waiter(hb1, key1);
1377
1378         /* There are no waiters, nothing for us to do. */
1379         if (!top_waiter)
1380                 return 0;
1381
1382         /* Ensure we requeue to the expected futex. */
1383         if (!match_futex(top_waiter->requeue_pi_key, key2))
1384                 return -EINVAL;
1385
1386         /*
1387          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1388          * the contended case or if set_waiters is 1.  The pi_state is returned
1389          * in ps in contended cases.
1390          */
1391         vpid = task_pid_vnr(top_waiter->task);
1392         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1393                                    set_waiters);
1394         if (ret == 1) {
1395                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1396                 return vpid;
1397         }
1398         return ret;
1399 }
1400
1401 /**
1402  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1403  * @uaddr1:     source futex user address
1404  * @flags:      futex flags (FLAGS_SHARED, etc.)
1405  * @uaddr2:     target futex user address
1406  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1407  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1408  * @cmpval:     @uaddr1 expected value (or %NULL)
1409  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1410  *              pi futex (pi to pi requeue is not supported)
1411  *
1412  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1413  * uaddr2 atomically on behalf of the top waiter.
1414  *
1415  * Return:
1416  * >=0 - on success, the number of tasks requeued or woken;
1417  *  <0 - on error
1418  */
1419 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1420                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1421                          u32 *cmpval, int requeue_pi)
1422 {
1423         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1424         int drop_count = 0, task_count = 0, ret;
1425         struct futex_pi_state *pi_state = NULL;
1426         struct futex_hash_bucket *hb1, *hb2;
1427         struct futex_q *this, *next;
1428
1429         if (requeue_pi) {
1430                 /*
1431                  * requeue_pi requires a pi_state, try to allocate it now
1432                  * without any locks in case it fails.
1433                  */
1434                 if (refill_pi_state_cache())
1435                         return -ENOMEM;
1436                 /*
1437                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1438                  * + nr_requeue, since it acquires the rt_mutex prior to
1439                  * returning to userspace, so as to not leave the rt_mutex with
1440                  * waiters and no owner.  However, second and third wake-ups
1441                  * cannot be predicted as they involve race conditions with the
1442                  * first wake and a fault while looking up the pi_state.  Both
1443                  * pthread_cond_signal() and pthread_cond_broadcast() should
1444                  * use nr_wake=1.
1445                  */
1446                 if (nr_wake != 1)
1447                         return -EINVAL;
1448         }
1449
1450 retry:
1451         if (pi_state != NULL) {
1452                 /*
1453                  * We will have to lookup the pi_state again, so free this one
1454                  * to keep the accounting correct.
1455                  */
1456                 free_pi_state(pi_state);
1457                 pi_state = NULL;
1458         }
1459
1460         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1461         if (unlikely(ret != 0))
1462                 goto out;
1463         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1464                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1465         if (unlikely(ret != 0))
1466                 goto out_put_key1;
1467
1468         hb1 = hash_futex(&key1);
1469         hb2 = hash_futex(&key2);
1470
1471 retry_private:
1472         hb_waiters_inc(hb2);
1473         double_lock_hb(hb1, hb2);
1474
1475         if (likely(cmpval != NULL)) {
1476                 u32 curval;
1477
1478                 ret = get_futex_value_locked(&curval, uaddr1);
1479
1480                 if (unlikely(ret)) {
1481                         double_unlock_hb(hb1, hb2);
1482                         hb_waiters_dec(hb2);
1483
1484                         ret = get_user(curval, uaddr1);
1485                         if (ret)
1486                                 goto out_put_keys;
1487
1488                         if (!(flags & FLAGS_SHARED))
1489                                 goto retry_private;
1490
1491                         put_futex_key(&key2);
1492                         put_futex_key(&key1);
1493                         goto retry;
1494                 }
1495                 if (curval != *cmpval) {
1496                         ret = -EAGAIN;
1497                         goto out_unlock;
1498                 }
1499         }
1500
1501         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1502                 /*
1503                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1504                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1505                  * bit.  We force this here where we are able to easily handle
1506                  * faults rather in the requeue loop below.
1507                  */
1508                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1509                                                  &key2, &pi_state, nr_requeue);
1510
1511                 /*
1512                  * At this point the top_waiter has either taken uaddr2 or is
1513                  * waiting on it.  If the former, then the pi_state will not
1514                  * exist yet, look it up one more time to ensure we have a
1515                  * reference to it. If the lock was taken, ret contains the
1516                  * vpid of the top waiter task.
1517                  */
1518                 if (ret > 0) {
1519                         WARN_ON(pi_state);
1520                         drop_count++;
1521                         task_count++;
1522                         /*
1523                          * If we acquired the lock, then the user
1524                          * space value of uaddr2 should be vpid. It
1525                          * cannot be changed by the top waiter as it
1526                          * is blocked on hb2 lock if it tries to do
1527                          * so. If something fiddled with it behind our
1528                          * back the pi state lookup might unearth
1529                          * it. So we rather use the known value than
1530                          * rereading and handing potential crap to
1531                          * lookup_pi_state.
1532                          */
1533                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1534                 }
1535
1536                 switch (ret) {
1537                 case 0:
1538                         break;
1539                 case -EFAULT:
1540                         double_unlock_hb(hb1, hb2);
1541                         hb_waiters_dec(hb2);
1542                         put_futex_key(&key2);
1543                         put_futex_key(&key1);
1544                         ret = fault_in_user_writeable(uaddr2);
1545                         if (!ret)
1546                                 goto retry;
1547                         goto out;
1548                 case -EAGAIN:
1549                         /* The owner was exiting, try again. */
1550                         double_unlock_hb(hb1, hb2);
1551                         hb_waiters_dec(hb2);
1552                         put_futex_key(&key2);
1553                         put_futex_key(&key1);
1554                         cond_resched();
1555                         goto retry;
1556                 default:
1557                         goto out_unlock;
1558                 }
1559         }
1560
1561         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1562                 if (task_count - nr_wake >= nr_requeue)
1563                         break;
1564
1565                 if (!match_futex(&this->key, &key1))
1566                         continue;
1567
1568                 /*
1569                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1570                  * be paired with each other and no other futex ops.
1571                  *
1572                  * We should never be requeueing a futex_q with a pi_state,
1573                  * which is awaiting a futex_unlock_pi().
1574                  */
1575                 if ((requeue_pi && !this->rt_waiter) ||
1576                     (!requeue_pi && this->rt_waiter) ||
1577                     this->pi_state) {
1578                         ret = -EINVAL;
1579                         break;
1580                 }
1581
1582                 /*
1583                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1584                  * lock, we already woke the top_waiter.  If not, it will be
1585                  * woken by futex_unlock_pi().
1586                  */
1587                 if (++task_count <= nr_wake && !requeue_pi) {
1588                         wake_futex(this);
1589                         continue;
1590                 }
1591
1592                 /* Ensure we requeue to the expected futex for requeue_pi. */
1593                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1594                         ret = -EINVAL;
1595                         break;
1596                 }
1597
1598                 /*
1599                  * Requeue nr_requeue waiters and possibly one more in the case
1600                  * of requeue_pi if we couldn't acquire the lock atomically.
1601                  */
1602                 if (requeue_pi) {
1603                         /* Prepare the waiter to take the rt_mutex. */
1604                         atomic_inc(&pi_state->refcount);
1605                         this->pi_state = pi_state;
1606                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1607                                                         this->rt_waiter,
1608                                                         this->task, 1);
1609                         if (ret == 1) {
1610                                 /* We got the lock. */
1611                                 requeue_pi_wake_futex(this, &key2, hb2);
1612                                 drop_count++;
1613                                 continue;
1614                         } else if (ret) {
1615                                 /* -EDEADLK */
1616                                 this->pi_state = NULL;
1617                                 free_pi_state(pi_state);
1618                                 goto out_unlock;
1619                         }
1620                 }
1621                 requeue_futex(this, hb1, hb2, &key2);
1622                 drop_count++;
1623         }
1624
1625 out_unlock:
1626         double_unlock_hb(hb1, hb2);
1627         hb_waiters_dec(hb2);
1628
1629         /*
1630          * drop_futex_key_refs() must be called outside the spinlocks. During
1631          * the requeue we moved futex_q's from the hash bucket at key1 to the
1632          * one at key2 and updated their key pointer.  We no longer need to
1633          * hold the references to key1.
1634          */
1635         while (--drop_count >= 0)
1636                 drop_futex_key_refs(&key1);
1637
1638 out_put_keys:
1639         put_futex_key(&key2);
1640 out_put_key1:
1641         put_futex_key(&key1);
1642 out:
1643         if (pi_state != NULL)
1644                 free_pi_state(pi_state);
1645         return ret ? ret : task_count;
1646 }
1647
1648 /* The key must be already stored in q->key. */
1649 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1650         __acquires(&hb->lock)
1651 {
1652         struct futex_hash_bucket *hb;
1653
1654         hb = hash_futex(&q->key);
1655
1656         /*
1657          * Increment the counter before taking the lock so that
1658          * a potential waker won't miss a to-be-slept task that is
1659          * waiting for the spinlock. This is safe as all queue_lock()
1660          * users end up calling queue_me(). Similarly, for housekeeping,
1661          * decrement the counter at queue_unlock() when some error has
1662          * occurred and we don't end up adding the task to the list.
1663          */
1664         hb_waiters_inc(hb);
1665
1666         q->lock_ptr = &hb->lock;
1667
1668         spin_lock(&hb->lock); /* implies MB (A) */
1669         return hb;
1670 }
1671
1672 static inline void
1673 queue_unlock(struct futex_hash_bucket *hb)
1674         __releases(&hb->lock)
1675 {
1676         spin_unlock(&hb->lock);
1677         hb_waiters_dec(hb);
1678 }
1679
1680 /**
1681  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1682  * @q:  The futex_q to enqueue
1683  * @hb: The destination hash bucket
1684  *
1685  * The hb->lock must be held by the caller, and is released here. A call to
1686  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1687  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1688  * or nothing if the unqueue is done as part of the wake process and the unqueue
1689  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1690  * an example).
1691  */
1692 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1693         __releases(&hb->lock)
1694 {
1695         int prio;
1696
1697         /*
1698          * The priority used to register this element is
1699          * - either the real thread-priority for the real-time threads
1700          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1701          * - or MAX_RT_PRIO for non-RT threads.
1702          * Thus, all RT-threads are woken first in priority order, and
1703          * the others are woken last, in FIFO order.
1704          */
1705         prio = min(current->normal_prio, MAX_RT_PRIO);
1706
1707         plist_node_init(&q->list, prio);
1708         plist_add(&q->list, &hb->chain);
1709         q->task = current;
1710         spin_unlock(&hb->lock);
1711 }
1712
1713 /**
1714  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1715  * @q:  The futex_q to unqueue
1716  *
1717  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1718  * be paired with exactly one earlier call to queue_me().
1719  *
1720  * Return:
1721  *   1 - if the futex_q was still queued (and we removed unqueued it);
1722  *   0 - if the futex_q was already removed by the waking thread
1723  */
1724 static int unqueue_me(struct futex_q *q)
1725 {
1726         spinlock_t *lock_ptr;
1727         int ret = 0;
1728
1729         /* In the common case we don't take the spinlock, which is nice. */
1730 retry:
1731         lock_ptr = q->lock_ptr;
1732         barrier();
1733         if (lock_ptr != NULL) {
1734                 spin_lock(lock_ptr);
1735                 /*
1736                  * q->lock_ptr can change between reading it and
1737                  * spin_lock(), causing us to take the wrong lock.  This
1738                  * corrects the race condition.
1739                  *
1740                  * Reasoning goes like this: if we have the wrong lock,
1741                  * q->lock_ptr must have changed (maybe several times)
1742                  * between reading it and the spin_lock().  It can
1743                  * change again after the spin_lock() but only if it was
1744                  * already changed before the spin_lock().  It cannot,
1745                  * however, change back to the original value.  Therefore
1746                  * we can detect whether we acquired the correct lock.
1747                  */
1748                 if (unlikely(lock_ptr != q->lock_ptr)) {
1749                         spin_unlock(lock_ptr);
1750                         goto retry;
1751                 }
1752                 __unqueue_futex(q);
1753
1754                 BUG_ON(q->pi_state);
1755
1756                 spin_unlock(lock_ptr);
1757                 ret = 1;
1758         }
1759
1760         drop_futex_key_refs(&q->key);
1761         return ret;
1762 }
1763
1764 /*
1765  * PI futexes can not be requeued and must remove themself from the
1766  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1767  * and dropped here.
1768  */
1769 static void unqueue_me_pi(struct futex_q *q)
1770         __releases(q->lock_ptr)
1771 {
1772         __unqueue_futex(q);
1773
1774         BUG_ON(!q->pi_state);
1775         free_pi_state(q->pi_state);
1776         q->pi_state = NULL;
1777
1778         spin_unlock(q->lock_ptr);
1779 }
1780
1781 /*
1782  * Fixup the pi_state owner with the new owner.
1783  *
1784  * Must be called with hash bucket lock held and mm->sem held for non
1785  * private futexes.
1786  */
1787 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1788                                 struct task_struct *newowner)
1789 {
1790         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1791         struct futex_pi_state *pi_state = q->pi_state;
1792         struct task_struct *oldowner = pi_state->owner;
1793         u32 uval, uninitialized_var(curval), newval;
1794         int ret;
1795
1796         /* Owner died? */
1797         if (!pi_state->owner)
1798                 newtid |= FUTEX_OWNER_DIED;
1799
1800         /*
1801          * We are here either because we stole the rtmutex from the
1802          * previous highest priority waiter or we are the highest priority
1803          * waiter but failed to get the rtmutex the first time.
1804          * We have to replace the newowner TID in the user space variable.
1805          * This must be atomic as we have to preserve the owner died bit here.
1806          *
1807          * Note: We write the user space value _before_ changing the pi_state
1808          * because we can fault here. Imagine swapped out pages or a fork
1809          * that marked all the anonymous memory readonly for cow.
1810          *
1811          * Modifying pi_state _before_ the user space value would
1812          * leave the pi_state in an inconsistent state when we fault
1813          * here, because we need to drop the hash bucket lock to
1814          * handle the fault. This might be observed in the PID check
1815          * in lookup_pi_state.
1816          */
1817 retry:
1818         if (get_futex_value_locked(&uval, uaddr))
1819                 goto handle_fault;
1820
1821         while (1) {
1822                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1823
1824                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1825                         goto handle_fault;
1826                 if (curval == uval)
1827                         break;
1828                 uval = curval;
1829         }
1830
1831         /*
1832          * We fixed up user space. Now we need to fix the pi_state
1833          * itself.
1834          */
1835         if (pi_state->owner != NULL) {
1836                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1837                 WARN_ON(list_empty(&pi_state->list));
1838                 list_del_init(&pi_state->list);
1839                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1840         }
1841
1842         pi_state->owner = newowner;
1843
1844         raw_spin_lock_irq(&newowner->pi_lock);
1845         WARN_ON(!list_empty(&pi_state->list));
1846         list_add(&pi_state->list, &newowner->pi_state_list);
1847         raw_spin_unlock_irq(&newowner->pi_lock);
1848         return 0;
1849
1850         /*
1851          * To handle the page fault we need to drop the hash bucket
1852          * lock here. That gives the other task (either the highest priority
1853          * waiter itself or the task which stole the rtmutex) the
1854          * chance to try the fixup of the pi_state. So once we are
1855          * back from handling the fault we need to check the pi_state
1856          * after reacquiring the hash bucket lock and before trying to
1857          * do another fixup. When the fixup has been done already we
1858          * simply return.
1859          */
1860 handle_fault:
1861         spin_unlock(q->lock_ptr);
1862
1863         ret = fault_in_user_writeable(uaddr);
1864
1865         spin_lock(q->lock_ptr);
1866
1867         /*
1868          * Check if someone else fixed it for us:
1869          */
1870         if (pi_state->owner != oldowner)
1871                 return 0;
1872
1873         if (ret)
1874                 return ret;
1875
1876         goto retry;
1877 }
1878
1879 static long futex_wait_restart(struct restart_block *restart);
1880
1881 /**
1882  * fixup_owner() - Post lock pi_state and corner case management
1883  * @uaddr:      user address of the futex
1884  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1885  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1886  *
1887  * After attempting to lock an rt_mutex, this function is called to cleanup
1888  * the pi_state owner as well as handle race conditions that may allow us to
1889  * acquire the lock. Must be called with the hb lock held.
1890  *
1891  * Return:
1892  *  1 - success, lock taken;
1893  *  0 - success, lock not taken;
1894  * <0 - on error (-EFAULT)
1895  */
1896 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1897 {
1898         struct task_struct *owner;
1899         int ret = 0;
1900
1901         if (locked) {
1902                 /*
1903                  * Got the lock. We might not be the anticipated owner if we
1904                  * did a lock-steal - fix up the PI-state in that case:
1905                  */
1906                 if (q->pi_state->owner != current)
1907                         ret = fixup_pi_state_owner(uaddr, q, current);
1908                 goto out;
1909         }
1910
1911         /*
1912          * Catch the rare case, where the lock was released when we were on the
1913          * way back before we locked the hash bucket.
1914          */
1915         if (q->pi_state->owner == current) {
1916                 /*
1917                  * Try to get the rt_mutex now. This might fail as some other
1918                  * task acquired the rt_mutex after we removed ourself from the
1919                  * rt_mutex waiters list.
1920                  */
1921                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1922                         locked = 1;
1923                         goto out;
1924                 }
1925
1926                 /*
1927                  * pi_state is incorrect, some other task did a lock steal and
1928                  * we returned due to timeout or signal without taking the
1929                  * rt_mutex. Too late.
1930                  */
1931                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1932                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1933                 if (!owner)
1934                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1935                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1936                 ret = fixup_pi_state_owner(uaddr, q, owner);
1937                 goto out;
1938         }
1939
1940         /*
1941          * Paranoia check. If we did not take the lock, then we should not be
1942          * the owner of the rt_mutex.
1943          */
1944         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1945                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1946                                 "pi-state %p\n", ret,
1947                                 q->pi_state->pi_mutex.owner,
1948                                 q->pi_state->owner);
1949
1950 out:
1951         return ret ? ret : locked;
1952 }
1953
1954 /**
1955  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1956  * @hb:         the futex hash bucket, must be locked by the caller
1957  * @q:          the futex_q to queue up on
1958  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1959  */
1960 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1961                                 struct hrtimer_sleeper *timeout)
1962 {
1963         /*
1964          * The task state is guaranteed to be set before another task can
1965          * wake it. set_current_state() is implemented using set_mb() and
1966          * queue_me() calls spin_unlock() upon completion, both serializing
1967          * access to the hash list and forcing another memory barrier.
1968          */
1969         set_current_state(TASK_INTERRUPTIBLE);
1970         queue_me(q, hb);
1971
1972         /* Arm the timer */
1973         if (timeout) {
1974                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1975                 if (!hrtimer_active(&timeout->timer))
1976                         timeout->task = NULL;
1977         }
1978
1979         /*
1980          * If we have been removed from the hash list, then another task
1981          * has tried to wake us, and we can skip the call to schedule().
1982          */
1983         if (likely(!plist_node_empty(&q->list))) {
1984                 /*
1985                  * If the timer has already expired, current will already be
1986                  * flagged for rescheduling. Only call schedule if there
1987                  * is no timeout, or if it has yet to expire.
1988                  */
1989                 if (!timeout || timeout->task)
1990                         freezable_schedule();
1991         }
1992         __set_current_state(TASK_RUNNING);
1993 }
1994
1995 /**
1996  * futex_wait_setup() - Prepare to wait on a futex
1997  * @uaddr:      the futex userspace address
1998  * @val:        the expected value
1999  * @flags:      futex flags (FLAGS_SHARED, etc.)
2000  * @q:          the associated futex_q
2001  * @hb:         storage for hash_bucket pointer to be returned to caller
2002  *
2003  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2004  * compare it with the expected value.  Handle atomic faults internally.
2005  * Return with the hb lock held and a q.key reference on success, and unlocked
2006  * with no q.key reference on failure.
2007  *
2008  * Return:
2009  *  0 - uaddr contains val and hb has been locked;
2010  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2011  */
2012 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2013                            struct futex_q *q, struct futex_hash_bucket **hb)
2014 {
2015         u32 uval;
2016         int ret;
2017
2018         /*
2019          * Access the page AFTER the hash-bucket is locked.
2020          * Order is important:
2021          *
2022          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2023          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2024          *
2025          * The basic logical guarantee of a futex is that it blocks ONLY
2026          * if cond(var) is known to be true at the time of blocking, for
2027          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2028          * would open a race condition where we could block indefinitely with
2029          * cond(var) false, which would violate the guarantee.
2030          *
2031          * On the other hand, we insert q and release the hash-bucket only
2032          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2033          * absorb a wakeup if *uaddr does not match the desired values
2034          * while the syscall executes.
2035          */
2036 retry:
2037         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2038         if (unlikely(ret != 0))
2039                 return ret;
2040
2041 retry_private:
2042         *hb = queue_lock(q);
2043
2044         ret = get_futex_value_locked(&uval, uaddr);
2045
2046         if (ret) {
2047                 queue_unlock(*hb);
2048
2049                 ret = get_user(uval, uaddr);
2050                 if (ret)
2051                         goto out;
2052
2053                 if (!(flags & FLAGS_SHARED))
2054                         goto retry_private;
2055
2056                 put_futex_key(&q->key);
2057                 goto retry;
2058         }
2059
2060         if (uval != val) {
2061                 queue_unlock(*hb);
2062                 ret = -EWOULDBLOCK;
2063         }
2064
2065 out:
2066         if (ret)
2067                 put_futex_key(&q->key);
2068         return ret;
2069 }
2070
2071 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2072                       ktime_t *abs_time, u32 bitset)
2073 {
2074         struct hrtimer_sleeper timeout, *to = NULL;
2075         struct restart_block *restart;
2076         struct futex_hash_bucket *hb;
2077         struct futex_q q = futex_q_init;
2078         int ret;
2079
2080         if (!bitset)
2081                 return -EINVAL;
2082         q.bitset = bitset;
2083
2084         if (abs_time) {
2085                 to = &timeout;
2086
2087                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2088                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2089                                       HRTIMER_MODE_ABS);
2090                 hrtimer_init_sleeper(to, current);
2091                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2092                                              current->timer_slack_ns);
2093         }
2094
2095 retry:
2096         /*
2097          * Prepare to wait on uaddr. On success, holds hb lock and increments
2098          * q.key refs.
2099          */
2100         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2101         if (ret)
2102                 goto out;
2103
2104         /* queue_me and wait for wakeup, timeout, or a signal. */
2105         futex_wait_queue_me(hb, &q, to);
2106
2107         /* If we were woken (and unqueued), we succeeded, whatever. */
2108         ret = 0;
2109         /* unqueue_me() drops q.key ref */
2110         if (!unqueue_me(&q))
2111                 goto out;
2112         ret = -ETIMEDOUT;
2113         if (to && !to->task)
2114                 goto out;
2115
2116         /*
2117          * We expect signal_pending(current), but we might be the
2118          * victim of a spurious wakeup as well.
2119          */
2120         if (!signal_pending(current))
2121                 goto retry;
2122
2123         ret = -ERESTARTSYS;
2124         if (!abs_time)
2125                 goto out;
2126
2127         restart = &current_thread_info()->restart_block;
2128         restart->fn = futex_wait_restart;
2129         restart->futex.uaddr = uaddr;
2130         restart->futex.val = val;
2131         restart->futex.time = abs_time->tv64;
2132         restart->futex.bitset = bitset;
2133         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2134
2135         ret = -ERESTART_RESTARTBLOCK;
2136
2137 out:
2138         if (to) {
2139                 hrtimer_cancel(&to->timer);
2140                 destroy_hrtimer_on_stack(&to->timer);
2141         }
2142         return ret;
2143 }
2144
2145
2146 static long futex_wait_restart(struct restart_block *restart)
2147 {
2148         u32 __user *uaddr = restart->futex.uaddr;
2149         ktime_t t, *tp = NULL;
2150
2151         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2152                 t.tv64 = restart->futex.time;
2153                 tp = &t;
2154         }
2155         restart->fn = do_no_restart_syscall;
2156
2157         return (long)futex_wait(uaddr, restart->futex.flags,
2158                                 restart->futex.val, tp, restart->futex.bitset);
2159 }
2160
2161
2162 /*
2163  * Userspace tried a 0 -> TID atomic transition of the futex value
2164  * and failed. The kernel side here does the whole locking operation:
2165  * if there are waiters then it will block, it does PI, etc. (Due to
2166  * races the kernel might see a 0 value of the futex too.)
2167  */
2168 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2169                          ktime_t *time, int trylock)
2170 {
2171         struct hrtimer_sleeper timeout, *to = NULL;
2172         struct futex_hash_bucket *hb;
2173         struct futex_q q = futex_q_init;
2174         int res, ret;
2175
2176         if (refill_pi_state_cache())
2177                 return -ENOMEM;
2178
2179         if (time) {
2180                 to = &timeout;
2181                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2182                                       HRTIMER_MODE_ABS);
2183                 hrtimer_init_sleeper(to, current);
2184                 hrtimer_set_expires(&to->timer, *time);
2185         }
2186
2187 retry:
2188         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2189         if (unlikely(ret != 0))
2190                 goto out;
2191
2192 retry_private:
2193         hb = queue_lock(&q);
2194
2195         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2196         if (unlikely(ret)) {
2197                 switch (ret) {
2198                 case 1:
2199                         /* We got the lock. */
2200                         ret = 0;
2201                         goto out_unlock_put_key;
2202                 case -EFAULT:
2203                         goto uaddr_faulted;
2204                 case -EAGAIN:
2205                         /*
2206                          * Task is exiting and we just wait for the
2207                          * exit to complete.
2208                          */
2209                         queue_unlock(hb);
2210                         put_futex_key(&q.key);
2211                         cond_resched();
2212                         goto retry;
2213                 default:
2214                         goto out_unlock_put_key;
2215                 }
2216         }
2217
2218         /*
2219          * Only actually queue now that the atomic ops are done:
2220          */
2221         queue_me(&q, hb);
2222
2223         WARN_ON(!q.pi_state);
2224         /*
2225          * Block on the PI mutex:
2226          */
2227         if (!trylock)
2228                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2229         else {
2230                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2231                 /* Fixup the trylock return value: */
2232                 ret = ret ? 0 : -EWOULDBLOCK;
2233         }
2234
2235         spin_lock(q.lock_ptr);
2236         /*
2237          * Fixup the pi_state owner and possibly acquire the lock if we
2238          * haven't already.
2239          */
2240         res = fixup_owner(uaddr, &q, !ret);
2241         /*
2242          * If fixup_owner() returned an error, proprogate that.  If it acquired
2243          * the lock, clear our -ETIMEDOUT or -EINTR.
2244          */
2245         if (res)
2246                 ret = (res < 0) ? res : 0;
2247
2248         /*
2249          * If fixup_owner() faulted and was unable to handle the fault, unlock
2250          * it and return the fault to userspace.
2251          */
2252         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2253                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2254
2255         /* Unqueue and drop the lock */
2256         unqueue_me_pi(&q);
2257
2258         goto out_put_key;
2259
2260 out_unlock_put_key:
2261         queue_unlock(hb);
2262
2263 out_put_key:
2264         put_futex_key(&q.key);
2265 out:
2266         if (to)
2267                 destroy_hrtimer_on_stack(&to->timer);
2268         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2269
2270 uaddr_faulted:
2271         queue_unlock(hb);
2272
2273         ret = fault_in_user_writeable(uaddr);
2274         if (ret)
2275                 goto out_put_key;
2276
2277         if (!(flags & FLAGS_SHARED))
2278                 goto retry_private;
2279
2280         put_futex_key(&q.key);
2281         goto retry;
2282 }
2283
2284 /*
2285  * Userspace attempted a TID -> 0 atomic transition, and failed.
2286  * This is the in-kernel slowpath: we look up the PI state (if any),
2287  * and do the rt-mutex unlock.
2288  */
2289 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2290 {
2291         struct futex_hash_bucket *hb;
2292         struct futex_q *this, *next;
2293         union futex_key key = FUTEX_KEY_INIT;
2294         u32 uval, vpid = task_pid_vnr(current);
2295         int ret;
2296
2297 retry:
2298         if (get_user(uval, uaddr))
2299                 return -EFAULT;
2300         /*
2301          * We release only a lock we actually own:
2302          */
2303         if ((uval & FUTEX_TID_MASK) != vpid)
2304                 return -EPERM;
2305
2306         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2307         if (unlikely(ret != 0))
2308                 goto out;
2309
2310         hb = hash_futex(&key);
2311         spin_lock(&hb->lock);
2312
2313         /*
2314          * To avoid races, try to do the TID -> 0 atomic transition
2315          * again. If it succeeds then we can return without waking
2316          * anyone else up:
2317          */
2318         if (!(uval & FUTEX_OWNER_DIED) &&
2319             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2320                 goto pi_faulted;
2321         /*
2322          * Rare case: we managed to release the lock atomically,
2323          * no need to wake anyone else up:
2324          */
2325         if (unlikely(uval == vpid))
2326                 goto out_unlock;
2327
2328         /*
2329          * Ok, other tasks may need to be woken up - check waiters
2330          * and do the wakeup if necessary:
2331          */
2332         plist_for_each_entry_safe(this, next, &hb->chain, list) {
2333                 if (!match_futex (&this->key, &key))
2334                         continue;
2335                 ret = wake_futex_pi(uaddr, uval, this);
2336                 /*
2337                  * The atomic access to the futex value
2338                  * generated a pagefault, so retry the
2339                  * user-access and the wakeup:
2340                  */
2341                 if (ret == -EFAULT)
2342                         goto pi_faulted;
2343                 goto out_unlock;
2344         }
2345         /*
2346          * No waiters - kernel unlocks the futex:
2347          */
2348         if (!(uval & FUTEX_OWNER_DIED)) {
2349                 ret = unlock_futex_pi(uaddr, uval);
2350                 if (ret == -EFAULT)
2351                         goto pi_faulted;
2352         }
2353
2354 out_unlock:
2355         spin_unlock(&hb->lock);
2356         put_futex_key(&key);
2357
2358 out:
2359         return ret;
2360
2361 pi_faulted:
2362         spin_unlock(&hb->lock);
2363         put_futex_key(&key);
2364
2365         ret = fault_in_user_writeable(uaddr);
2366         if (!ret)
2367                 goto retry;
2368
2369         return ret;
2370 }
2371
2372 /**
2373  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2374  * @hb:         the hash_bucket futex_q was original enqueued on
2375  * @q:          the futex_q woken while waiting to be requeued
2376  * @key2:       the futex_key of the requeue target futex
2377  * @timeout:    the timeout associated with the wait (NULL if none)
2378  *
2379  * Detect if the task was woken on the initial futex as opposed to the requeue
2380  * target futex.  If so, determine if it was a timeout or a signal that caused
2381  * the wakeup and return the appropriate error code to the caller.  Must be
2382  * called with the hb lock held.
2383  *
2384  * Return:
2385  *  0 = no early wakeup detected;
2386  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2387  */
2388 static inline
2389 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2390                                    struct futex_q *q, union futex_key *key2,
2391                                    struct hrtimer_sleeper *timeout)
2392 {
2393         int ret = 0;
2394
2395         /*
2396          * With the hb lock held, we avoid races while we process the wakeup.
2397          * We only need to hold hb (and not hb2) to ensure atomicity as the
2398          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2399          * It can't be requeued from uaddr2 to something else since we don't
2400          * support a PI aware source futex for requeue.
2401          */
2402         if (!match_futex(&q->key, key2)) {
2403                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2404                 /*
2405                  * We were woken prior to requeue by a timeout or a signal.
2406                  * Unqueue the futex_q and determine which it was.
2407                  */
2408                 plist_del(&q->list, &hb->chain);
2409                 hb_waiters_dec(hb);
2410
2411                 /* Handle spurious wakeups gracefully */
2412                 ret = -EWOULDBLOCK;
2413                 if (timeout && !timeout->task)
2414                         ret = -ETIMEDOUT;
2415                 else if (signal_pending(current))
2416                         ret = -ERESTARTNOINTR;
2417         }
2418         return ret;
2419 }
2420
2421 /**
2422  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2423  * @uaddr:      the futex we initially wait on (non-pi)
2424  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2425  *              the same type, no requeueing from private to shared, etc.
2426  * @val:        the expected value of uaddr
2427  * @abs_time:   absolute timeout
2428  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2429  * @uaddr2:     the pi futex we will take prior to returning to user-space
2430  *
2431  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2432  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2433  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2434  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2435  * without one, the pi logic would not know which task to boost/deboost, if
2436  * there was a need to.
2437  *
2438  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2439  * via the following--
2440  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2441  * 2) wakeup on uaddr2 after a requeue
2442  * 3) signal
2443  * 4) timeout
2444  *
2445  * If 3, cleanup and return -ERESTARTNOINTR.
2446  *
2447  * If 2, we may then block on trying to take the rt_mutex and return via:
2448  * 5) successful lock
2449  * 6) signal
2450  * 7) timeout
2451  * 8) other lock acquisition failure
2452  *
2453  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2454  *
2455  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2456  *
2457  * Return:
2458  *  0 - On success;
2459  * <0 - On error
2460  */
2461 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2462                                  u32 val, ktime_t *abs_time, u32 bitset,
2463                                  u32 __user *uaddr2)
2464 {
2465         struct hrtimer_sleeper timeout, *to = NULL;
2466         struct rt_mutex_waiter rt_waiter;
2467         struct rt_mutex *pi_mutex = NULL;
2468         struct futex_hash_bucket *hb;
2469         union futex_key key2 = FUTEX_KEY_INIT;
2470         struct futex_q q = futex_q_init;
2471         int res, ret;
2472
2473         if (uaddr == uaddr2)
2474                 return -EINVAL;
2475
2476         if (!bitset)
2477                 return -EINVAL;
2478
2479         if (abs_time) {
2480                 to = &timeout;
2481                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2482                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2483                                       HRTIMER_MODE_ABS);
2484                 hrtimer_init_sleeper(to, current);
2485                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2486                                              current->timer_slack_ns);
2487         }
2488
2489         /*
2490          * The waiter is allocated on our stack, manipulated by the requeue
2491          * code while we sleep on uaddr.
2492          */
2493         debug_rt_mutex_init_waiter(&rt_waiter);
2494         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2495         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2496         rt_waiter.task = NULL;
2497
2498         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2499         if (unlikely(ret != 0))
2500                 goto out;
2501
2502         q.bitset = bitset;
2503         q.rt_waiter = &rt_waiter;
2504         q.requeue_pi_key = &key2;
2505
2506         /*
2507          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2508          * count.
2509          */
2510         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2511         if (ret)
2512                 goto out_key2;
2513
2514         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2515         futex_wait_queue_me(hb, &q, to);
2516
2517         spin_lock(&hb->lock);
2518         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2519         spin_unlock(&hb->lock);
2520         if (ret)
2521                 goto out_put_keys;
2522
2523         /*
2524          * In order for us to be here, we know our q.key == key2, and since
2525          * we took the hb->lock above, we also know that futex_requeue() has
2526          * completed and we no longer have to concern ourselves with a wakeup
2527          * race with the atomic proxy lock acquisition by the requeue code. The
2528          * futex_requeue dropped our key1 reference and incremented our key2
2529          * reference count.
2530          */
2531
2532         /* Check if the requeue code acquired the second futex for us. */
2533         if (!q.rt_waiter) {
2534                 /*
2535                  * Got the lock. We might not be the anticipated owner if we
2536                  * did a lock-steal - fix up the PI-state in that case.
2537                  */
2538                 if (q.pi_state && (q.pi_state->owner != current)) {
2539                         spin_lock(q.lock_ptr);
2540                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2541                         spin_unlock(q.lock_ptr);
2542                 }
2543         } else {
2544                 /*
2545                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2546                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2547                  * the pi_state.
2548                  */
2549                 WARN_ON(!q.pi_state);
2550                 pi_mutex = &q.pi_state->pi_mutex;
2551                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2552                 debug_rt_mutex_free_waiter(&rt_waiter);
2553
2554                 spin_lock(q.lock_ptr);
2555                 /*
2556                  * Fixup the pi_state owner and possibly acquire the lock if we
2557                  * haven't already.
2558                  */
2559                 res = fixup_owner(uaddr2, &q, !ret);
2560                 /*
2561                  * If fixup_owner() returned an error, proprogate that.  If it
2562                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2563                  */
2564                 if (res)
2565                         ret = (res < 0) ? res : 0;
2566
2567                 /* Unqueue and drop the lock. */
2568                 unqueue_me_pi(&q);
2569         }
2570
2571         /*
2572          * If fixup_pi_state_owner() faulted and was unable to handle the
2573          * fault, unlock the rt_mutex and return the fault to userspace.
2574          */
2575         if (ret == -EFAULT) {
2576                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2577                         rt_mutex_unlock(pi_mutex);
2578         } else if (ret == -EINTR) {
2579                 /*
2580                  * We've already been requeued, but cannot restart by calling
2581                  * futex_lock_pi() directly. We could restart this syscall, but
2582                  * it would detect that the user space "val" changed and return
2583                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2584                  * -EWOULDBLOCK directly.
2585                  */
2586                 ret = -EWOULDBLOCK;
2587         }
2588
2589 out_put_keys:
2590         put_futex_key(&q.key);
2591 out_key2:
2592         put_futex_key(&key2);
2593
2594 out:
2595         if (to) {
2596                 hrtimer_cancel(&to->timer);
2597                 destroy_hrtimer_on_stack(&to->timer);
2598         }
2599         return ret;
2600 }
2601
2602 /*
2603  * Support for robust futexes: the kernel cleans up held futexes at
2604  * thread exit time.
2605  *
2606  * Implementation: user-space maintains a per-thread list of locks it
2607  * is holding. Upon do_exit(), the kernel carefully walks this list,
2608  * and marks all locks that are owned by this thread with the
2609  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2610  * always manipulated with the lock held, so the list is private and
2611  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2612  * field, to allow the kernel to clean up if the thread dies after
2613  * acquiring the lock, but just before it could have added itself to
2614  * the list. There can only be one such pending lock.
2615  */
2616
2617 /**
2618  * sys_set_robust_list() - Set the robust-futex list head of a task
2619  * @head:       pointer to the list-head
2620  * @len:        length of the list-head, as userspace expects
2621  */
2622 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2623                 size_t, len)
2624 {
2625         if (!futex_cmpxchg_enabled)
2626                 return -ENOSYS;
2627         /*
2628          * The kernel knows only one size for now:
2629          */
2630         if (unlikely(len != sizeof(*head)))
2631                 return -EINVAL;
2632
2633         current->robust_list = head;
2634
2635         return 0;
2636 }
2637
2638 /**
2639  * sys_get_robust_list() - Get the robust-futex list head of a task
2640  * @pid:        pid of the process [zero for current task]
2641  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2642  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2643  */
2644 SYSCALL_DEFINE3(get_robust_list, int, pid,
2645                 struct robust_list_head __user * __user *, head_ptr,
2646                 size_t __user *, len_ptr)
2647 {
2648         struct robust_list_head __user *head;
2649         unsigned long ret;
2650         struct task_struct *p;
2651
2652         if (!futex_cmpxchg_enabled)
2653                 return -ENOSYS;
2654
2655         rcu_read_lock();
2656
2657         ret = -ESRCH;
2658         if (!pid)
2659                 p = current;
2660         else {
2661                 p = find_task_by_vpid(pid);
2662                 if (!p)
2663                         goto err_unlock;
2664         }
2665
2666         ret = -EPERM;
2667         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2668                 goto err_unlock;
2669
2670         head = p->robust_list;
2671         rcu_read_unlock();
2672
2673         if (put_user(sizeof(*head), len_ptr))
2674                 return -EFAULT;
2675         return put_user(head, head_ptr);
2676
2677 err_unlock:
2678         rcu_read_unlock();
2679
2680         return ret;
2681 }
2682
2683 /*
2684  * Process a futex-list entry, check whether it's owned by the
2685  * dying task, and do notification if so:
2686  */
2687 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2688 {
2689         u32 uval, uninitialized_var(nval), mval;
2690
2691 retry:
2692         if (get_user(uval, uaddr))
2693                 return -1;
2694
2695         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2696                 /*
2697                  * Ok, this dying thread is truly holding a futex
2698                  * of interest. Set the OWNER_DIED bit atomically
2699                  * via cmpxchg, and if the value had FUTEX_WAITERS
2700                  * set, wake up a waiter (if any). (We have to do a
2701                  * futex_wake() even if OWNER_DIED is already set -
2702                  * to handle the rare but possible case of recursive
2703                  * thread-death.) The rest of the cleanup is done in
2704                  * userspace.
2705                  */
2706                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2707                 /*
2708                  * We are not holding a lock here, but we want to have
2709                  * the pagefault_disable/enable() protection because
2710                  * we want to handle the fault gracefully. If the
2711                  * access fails we try to fault in the futex with R/W
2712                  * verification via get_user_pages. get_user() above
2713                  * does not guarantee R/W access. If that fails we
2714                  * give up and leave the futex locked.
2715                  */
2716                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2717                         if (fault_in_user_writeable(uaddr))
2718                                 return -1;
2719                         goto retry;
2720                 }
2721                 if (nval != uval)
2722                         goto retry;
2723
2724                 /*
2725                  * Wake robust non-PI futexes here. The wakeup of
2726                  * PI futexes happens in exit_pi_state():
2727                  */
2728                 if (!pi && (uval & FUTEX_WAITERS))
2729                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2730         }
2731         return 0;
2732 }
2733
2734 /*
2735  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2736  */
2737 static inline int fetch_robust_entry(struct robust_list __user **entry,
2738                                      struct robust_list __user * __user *head,
2739                                      unsigned int *pi)
2740 {
2741         unsigned long uentry;
2742
2743         if (get_user(uentry, (unsigned long __user *)head))
2744                 return -EFAULT;
2745
2746         *entry = (void __user *)(uentry & ~1UL);
2747         *pi = uentry & 1;
2748
2749         return 0;
2750 }
2751
2752 /*
2753  * Walk curr->robust_list (very carefully, it's a userspace list!)
2754  * and mark any locks found there dead, and notify any waiters.
2755  *
2756  * We silently return on any sign of list-walking problem.
2757  */
2758 void exit_robust_list(struct task_struct *curr)
2759 {
2760         struct robust_list_head __user *head = curr->robust_list;
2761         struct robust_list __user *entry, *next_entry, *pending;
2762         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2763         unsigned int uninitialized_var(next_pi);
2764         unsigned long futex_offset;
2765         int rc;
2766
2767         if (!futex_cmpxchg_enabled)
2768                 return;
2769
2770         /*
2771          * Fetch the list head (which was registered earlier, via
2772          * sys_set_robust_list()):
2773          */
2774         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2775                 return;
2776         /*
2777          * Fetch the relative futex offset:
2778          */
2779         if (get_user(futex_offset, &head->futex_offset))
2780                 return;
2781         /*
2782          * Fetch any possibly pending lock-add first, and handle it
2783          * if it exists:
2784          */
2785         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2786                 return;
2787
2788         next_entry = NULL;      /* avoid warning with gcc */
2789         while (entry != &head->list) {
2790                 /*
2791                  * Fetch the next entry in the list before calling
2792                  * handle_futex_death:
2793                  */
2794                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2795                 /*
2796                  * A pending lock might already be on the list, so
2797                  * don't process it twice:
2798                  */
2799                 if (entry != pending)
2800                         if (handle_futex_death((void __user *)entry + futex_offset,
2801                                                 curr, pi))
2802                                 return;
2803                 if (rc)
2804                         return;
2805                 entry = next_entry;
2806                 pi = next_pi;
2807                 /*
2808                  * Avoid excessively long or circular lists:
2809                  */
2810                 if (!--limit)
2811                         break;
2812
2813                 cond_resched();
2814         }
2815
2816         if (pending)
2817                 handle_futex_death((void __user *)pending + futex_offset,
2818                                    curr, pip);
2819 }
2820
2821 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2822                 u32 __user *uaddr2, u32 val2, u32 val3)
2823 {
2824         int cmd = op & FUTEX_CMD_MASK;
2825         unsigned int flags = 0;
2826
2827         if (!(op & FUTEX_PRIVATE_FLAG))
2828                 flags |= FLAGS_SHARED;
2829
2830         if (op & FUTEX_CLOCK_REALTIME) {
2831                 flags |= FLAGS_CLOCKRT;
2832                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2833                         return -ENOSYS;
2834         }
2835
2836         switch (cmd) {
2837         case FUTEX_LOCK_PI:
2838         case FUTEX_UNLOCK_PI:
2839         case FUTEX_TRYLOCK_PI:
2840         case FUTEX_WAIT_REQUEUE_PI:
2841         case FUTEX_CMP_REQUEUE_PI:
2842                 if (!futex_cmpxchg_enabled)
2843                         return -ENOSYS;
2844         }
2845
2846         switch (cmd) {
2847         case FUTEX_WAIT:
2848                 val3 = FUTEX_BITSET_MATCH_ANY;
2849         case FUTEX_WAIT_BITSET:
2850                 return futex_wait(uaddr, flags, val, timeout, val3);
2851         case FUTEX_WAKE:
2852                 val3 = FUTEX_BITSET_MATCH_ANY;
2853         case FUTEX_WAKE_BITSET:
2854                 return futex_wake(uaddr, flags, val, val3);
2855         case FUTEX_REQUEUE:
2856                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2857         case FUTEX_CMP_REQUEUE:
2858                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2859         case FUTEX_WAKE_OP:
2860                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2861         case FUTEX_LOCK_PI:
2862                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2863         case FUTEX_UNLOCK_PI:
2864                 return futex_unlock_pi(uaddr, flags);
2865         case FUTEX_TRYLOCK_PI:
2866                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2867         case FUTEX_WAIT_REQUEUE_PI:
2868                 val3 = FUTEX_BITSET_MATCH_ANY;
2869                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2870                                              uaddr2);
2871         case FUTEX_CMP_REQUEUE_PI:
2872                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2873         }
2874         return -ENOSYS;
2875 }
2876
2877
2878 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2879                 struct timespec __user *, utime, u32 __user *, uaddr2,
2880                 u32, val3)
2881 {
2882         struct timespec ts;
2883         ktime_t t, *tp = NULL;
2884         u32 val2 = 0;
2885         int cmd = op & FUTEX_CMD_MASK;
2886
2887         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2888                       cmd == FUTEX_WAIT_BITSET ||
2889                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2890                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2891                         return -EFAULT;
2892                 if (!timespec_valid(&ts))
2893                         return -EINVAL;
2894
2895                 t = timespec_to_ktime(ts);
2896                 if (cmd == FUTEX_WAIT)
2897                         t = ktime_add_safe(ktime_get(), t);
2898                 tp = &t;
2899         }
2900         /*
2901          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2902          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2903          */
2904         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2905             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2906                 val2 = (u32) (unsigned long) utime;
2907
2908         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2909 }
2910
2911 static void __init futex_detect_cmpxchg(void)
2912 {
2913 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2914         u32 curval;
2915
2916         /*
2917          * This will fail and we want it. Some arch implementations do
2918          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2919          * functionality. We want to know that before we call in any
2920          * of the complex code paths. Also we want to prevent
2921          * registration of robust lists in that case. NULL is
2922          * guaranteed to fault and we get -EFAULT on functional
2923          * implementation, the non-functional ones will return
2924          * -ENOSYS.
2925          */
2926         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2927                 futex_cmpxchg_enabled = 1;
2928 #endif
2929 }
2930
2931 static int __init futex_init(void)
2932 {
2933         unsigned int futex_shift;
2934         unsigned long i;
2935
2936 #if CONFIG_BASE_SMALL
2937         futex_hashsize = 16;
2938 #else
2939         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2940 #endif
2941
2942         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2943                                                futex_hashsize, 0,
2944                                                futex_hashsize < 256 ? HASH_SMALL : 0,
2945                                                &futex_shift, NULL,
2946                                                futex_hashsize, futex_hashsize);
2947         futex_hashsize = 1UL << futex_shift;
2948
2949         futex_detect_cmpxchg();
2950
2951         for (i = 0; i < futex_hashsize; i++) {
2952                 atomic_set(&futex_queues[i].waiters, 0);
2953                 plist_head_init(&futex_queues[i].chain);
2954                 spin_lock_init(&futex_queues[i].lock);
2955         }
2956
2957         return 0;
2958 }
2959 __initcall(futex_init);