futexes: Clean up various details
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66
67 #include <asm/futex.h>
68
69 #include "locking/rtmutex_common.h"
70
71 int __read_mostly futex_cmpxchg_enabled;
72
73 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
74
75 /*
76  * Futex flags used to encode options to functions and preserve them across
77  * restarts.
78  */
79 #define FLAGS_SHARED            0x01
80 #define FLAGS_CLOCKRT           0x02
81 #define FLAGS_HAS_TIMEOUT       0x04
82
83 /*
84  * Priority Inheritance state:
85  */
86 struct futex_pi_state {
87         /*
88          * list of 'owned' pi_state instances - these have to be
89          * cleaned up in do_exit() if the task exits prematurely:
90          */
91         struct list_head list;
92
93         /*
94          * The PI object:
95          */
96         struct rt_mutex pi_mutex;
97
98         struct task_struct *owner;
99         atomic_t refcount;
100
101         union futex_key key;
102 };
103
104 /**
105  * struct futex_q - The hashed futex queue entry, one per waiting task
106  * @list:               priority-sorted list of tasks waiting on this futex
107  * @task:               the task waiting on the futex
108  * @lock_ptr:           the hash bucket lock
109  * @key:                the key the futex is hashed on
110  * @pi_state:           optional priority inheritance state
111  * @rt_waiter:          rt_waiter storage for use with requeue_pi
112  * @requeue_pi_key:     the requeue_pi target futex key
113  * @bitset:             bitset for the optional bitmasked wakeup
114  *
115  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
116  * we can wake only the relevant ones (hashed queues may be shared).
117  *
118  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
119  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
120  * The order of wakeup is always to make the first condition true, then
121  * the second.
122  *
123  * PI futexes are typically woken before they are removed from the hash list via
124  * the rt_mutex code. See unqueue_me_pi().
125  */
126 struct futex_q {
127         struct plist_node list;
128
129         struct task_struct *task;
130         spinlock_t *lock_ptr;
131         union futex_key key;
132         struct futex_pi_state *pi_state;
133         struct rt_mutex_waiter *rt_waiter;
134         union futex_key *requeue_pi_key;
135         u32 bitset;
136 };
137
138 static const struct futex_q futex_q_init = {
139         /* list gets initialized in queue_me()*/
140         .key = FUTEX_KEY_INIT,
141         .bitset = FUTEX_BITSET_MATCH_ANY
142 };
143
144 /*
145  * Hash buckets are shared by all the futex_keys that hash to the same
146  * location.  Each key may have multiple futex_q structures, one for each task
147  * waiting on a futex.
148  */
149 struct futex_hash_bucket {
150         spinlock_t lock;
151         struct plist_head chain;
152 };
153
154 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
155
156 /*
157  * We hash on the keys returned from get_futex_key (see below).
158  */
159 static struct futex_hash_bucket *hash_futex(union futex_key *key)
160 {
161         u32 hash = jhash2((u32*)&key->both.word,
162                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
163                           key->both.offset);
164         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
165 }
166
167 /*
168  * Return 1 if two futex_keys are equal, 0 otherwise.
169  */
170 static inline int match_futex(union futex_key *key1, union futex_key *key2)
171 {
172         return (key1 && key2
173                 && key1->both.word == key2->both.word
174                 && key1->both.ptr == key2->both.ptr
175                 && key1->both.offset == key2->both.offset);
176 }
177
178 /*
179  * Take a reference to the resource addressed by a key.
180  * Can be called while holding spinlocks.
181  *
182  */
183 static void get_futex_key_refs(union futex_key *key)
184 {
185         if (!key->both.ptr)
186                 return;
187
188         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
189         case FUT_OFF_INODE:
190                 ihold(key->shared.inode);
191                 break;
192         case FUT_OFF_MMSHARED:
193                 atomic_inc(&key->private.mm->mm_count);
194                 break;
195         }
196 }
197
198 /*
199  * Drop a reference to the resource addressed by a key.
200  * The hash bucket spinlock must not be held.
201  */
202 static void drop_futex_key_refs(union futex_key *key)
203 {
204         if (!key->both.ptr) {
205                 /* If we're here then we tried to put a key we failed to get */
206                 WARN_ON_ONCE(1);
207                 return;
208         }
209
210         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
211         case FUT_OFF_INODE:
212                 iput(key->shared.inode);
213                 break;
214         case FUT_OFF_MMSHARED:
215                 mmdrop(key->private.mm);
216                 break;
217         }
218 }
219
220 /**
221  * get_futex_key() - Get parameters which are the keys for a futex
222  * @uaddr:      virtual address of the futex
223  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
224  * @key:        address where result is stored.
225  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
226  *              VERIFY_WRITE)
227  *
228  * Return: a negative error code or 0
229  *
230  * The key words are stored in *key on success.
231  *
232  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
233  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
234  * We can usually work out the index without swapping in the page.
235  *
236  * lock_page() might sleep, the caller should not hold a spinlock.
237  */
238 static int
239 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
240 {
241         unsigned long address = (unsigned long)uaddr;
242         struct mm_struct *mm = current->mm;
243         struct page *page, *page_head;
244         int err, ro = 0;
245
246         /*
247          * The futex address must be "naturally" aligned.
248          */
249         key->both.offset = address % PAGE_SIZE;
250         if (unlikely((address % sizeof(u32)) != 0))
251                 return -EINVAL;
252         address -= key->both.offset;
253
254         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
255                 return -EFAULT;
256
257         /*
258          * PROCESS_PRIVATE futexes are fast.
259          * As the mm cannot disappear under us and the 'key' only needs
260          * virtual address, we dont even have to find the underlying vma.
261          * Note : We do have to check 'uaddr' is a valid user address,
262          *        but access_ok() should be faster than find_vma()
263          */
264         if (!fshared) {
265                 key->private.mm = mm;
266                 key->private.address = address;
267                 get_futex_key_refs(key);
268                 return 0;
269         }
270
271 again:
272         err = get_user_pages_fast(address, 1, 1, &page);
273         /*
274          * If write access is not required (eg. FUTEX_WAIT), try
275          * and get read-only access.
276          */
277         if (err == -EFAULT && rw == VERIFY_READ) {
278                 err = get_user_pages_fast(address, 1, 0, &page);
279                 ro = 1;
280         }
281         if (err < 0)
282                 return err;
283         else
284                 err = 0;
285
286 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
287         page_head = page;
288         if (unlikely(PageTail(page))) {
289                 put_page(page);
290                 /* serialize against __split_huge_page_splitting() */
291                 local_irq_disable();
292                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
293                         page_head = compound_head(page);
294                         /*
295                          * page_head is valid pointer but we must pin
296                          * it before taking the PG_lock and/or
297                          * PG_compound_lock. The moment we re-enable
298                          * irqs __split_huge_page_splitting() can
299                          * return and the head page can be freed from
300                          * under us. We can't take the PG_lock and/or
301                          * PG_compound_lock on a page that could be
302                          * freed from under us.
303                          */
304                         if (page != page_head) {
305                                 get_page(page_head);
306                                 put_page(page);
307                         }
308                         local_irq_enable();
309                 } else {
310                         local_irq_enable();
311                         goto again;
312                 }
313         }
314 #else
315         page_head = compound_head(page);
316         if (page != page_head) {
317                 get_page(page_head);
318                 put_page(page);
319         }
320 #endif
321
322         lock_page(page_head);
323
324         /*
325          * If page_head->mapping is NULL, then it cannot be a PageAnon
326          * page; but it might be the ZERO_PAGE or in the gate area or
327          * in a special mapping (all cases which we are happy to fail);
328          * or it may have been a good file page when get_user_pages_fast
329          * found it, but truncated or holepunched or subjected to
330          * invalidate_complete_page2 before we got the page lock (also
331          * cases which we are happy to fail).  And we hold a reference,
332          * so refcount care in invalidate_complete_page's remove_mapping
333          * prevents drop_caches from setting mapping to NULL beneath us.
334          *
335          * The case we do have to guard against is when memory pressure made
336          * shmem_writepage move it from filecache to swapcache beneath us:
337          * an unlikely race, but we do need to retry for page_head->mapping.
338          */
339         if (!page_head->mapping) {
340                 int shmem_swizzled = PageSwapCache(page_head);
341                 unlock_page(page_head);
342                 put_page(page_head);
343                 if (shmem_swizzled)
344                         goto again;
345                 return -EFAULT;
346         }
347
348         /*
349          * Private mappings are handled in a simple way.
350          *
351          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
352          * it's a read-only handle, it's expected that futexes attach to
353          * the object not the particular process.
354          */
355         if (PageAnon(page_head)) {
356                 /*
357                  * A RO anonymous page will never change and thus doesn't make
358                  * sense for futex operations.
359                  */
360                 if (ro) {
361                         err = -EFAULT;
362                         goto out;
363                 }
364
365                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
366                 key->private.mm = mm;
367                 key->private.address = address;
368         } else {
369                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
370                 key->shared.inode = page_head->mapping->host;
371                 key->shared.pgoff = basepage_index(page);
372         }
373
374         get_futex_key_refs(key);
375
376 out:
377         unlock_page(page_head);
378         put_page(page_head);
379         return err;
380 }
381
382 static inline void put_futex_key(union futex_key *key)
383 {
384         drop_futex_key_refs(key);
385 }
386
387 /**
388  * fault_in_user_writeable() - Fault in user address and verify RW access
389  * @uaddr:      pointer to faulting user space address
390  *
391  * Slow path to fixup the fault we just took in the atomic write
392  * access to @uaddr.
393  *
394  * We have no generic implementation of a non-destructive write to the
395  * user address. We know that we faulted in the atomic pagefault
396  * disabled section so we can as well avoid the #PF overhead by
397  * calling get_user_pages() right away.
398  */
399 static int fault_in_user_writeable(u32 __user *uaddr)
400 {
401         struct mm_struct *mm = current->mm;
402         int ret;
403
404         down_read(&mm->mmap_sem);
405         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
406                                FAULT_FLAG_WRITE);
407         up_read(&mm->mmap_sem);
408
409         return ret < 0 ? ret : 0;
410 }
411
412 /**
413  * futex_top_waiter() - Return the highest priority waiter on a futex
414  * @hb:         the hash bucket the futex_q's reside in
415  * @key:        the futex key (to distinguish it from other futex futex_q's)
416  *
417  * Must be called with the hb lock held.
418  */
419 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
420                                         union futex_key *key)
421 {
422         struct futex_q *this;
423
424         plist_for_each_entry(this, &hb->chain, list) {
425                 if (match_futex(&this->key, key))
426                         return this;
427         }
428         return NULL;
429 }
430
431 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
432                                       u32 uval, u32 newval)
433 {
434         int ret;
435
436         pagefault_disable();
437         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
438         pagefault_enable();
439
440         return ret;
441 }
442
443 static int get_futex_value_locked(u32 *dest, u32 __user *from)
444 {
445         int ret;
446
447         pagefault_disable();
448         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
449         pagefault_enable();
450
451         return ret ? -EFAULT : 0;
452 }
453
454
455 /*
456  * PI code:
457  */
458 static int refill_pi_state_cache(void)
459 {
460         struct futex_pi_state *pi_state;
461
462         if (likely(current->pi_state_cache))
463                 return 0;
464
465         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
466
467         if (!pi_state)
468                 return -ENOMEM;
469
470         INIT_LIST_HEAD(&pi_state->list);
471         /* pi_mutex gets initialized later */
472         pi_state->owner = NULL;
473         atomic_set(&pi_state->refcount, 1);
474         pi_state->key = FUTEX_KEY_INIT;
475
476         current->pi_state_cache = pi_state;
477
478         return 0;
479 }
480
481 static struct futex_pi_state * alloc_pi_state(void)
482 {
483         struct futex_pi_state *pi_state = current->pi_state_cache;
484
485         WARN_ON(!pi_state);
486         current->pi_state_cache = NULL;
487
488         return pi_state;
489 }
490
491 static void free_pi_state(struct futex_pi_state *pi_state)
492 {
493         if (!atomic_dec_and_test(&pi_state->refcount))
494                 return;
495
496         /*
497          * If pi_state->owner is NULL, the owner is most probably dying
498          * and has cleaned up the pi_state already
499          */
500         if (pi_state->owner) {
501                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
502                 list_del_init(&pi_state->list);
503                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
504
505                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
506         }
507
508         if (current->pi_state_cache)
509                 kfree(pi_state);
510         else {
511                 /*
512                  * pi_state->list is already empty.
513                  * clear pi_state->owner.
514                  * refcount is at 0 - put it back to 1.
515                  */
516                 pi_state->owner = NULL;
517                 atomic_set(&pi_state->refcount, 1);
518                 current->pi_state_cache = pi_state;
519         }
520 }
521
522 /*
523  * Look up the task based on what TID userspace gave us.
524  * We dont trust it.
525  */
526 static struct task_struct * futex_find_get_task(pid_t pid)
527 {
528         struct task_struct *p;
529
530         rcu_read_lock();
531         p = find_task_by_vpid(pid);
532         if (p)
533                 get_task_struct(p);
534
535         rcu_read_unlock();
536
537         return p;
538 }
539
540 /*
541  * This task is holding PI mutexes at exit time => bad.
542  * Kernel cleans up PI-state, but userspace is likely hosed.
543  * (Robust-futex cleanup is separate and might save the day for userspace.)
544  */
545 void exit_pi_state_list(struct task_struct *curr)
546 {
547         struct list_head *next, *head = &curr->pi_state_list;
548         struct futex_pi_state *pi_state;
549         struct futex_hash_bucket *hb;
550         union futex_key key = FUTEX_KEY_INIT;
551
552         if (!futex_cmpxchg_enabled)
553                 return;
554         /*
555          * We are a ZOMBIE and nobody can enqueue itself on
556          * pi_state_list anymore, but we have to be careful
557          * versus waiters unqueueing themselves:
558          */
559         raw_spin_lock_irq(&curr->pi_lock);
560         while (!list_empty(head)) {
561
562                 next = head->next;
563                 pi_state = list_entry(next, struct futex_pi_state, list);
564                 key = pi_state->key;
565                 hb = hash_futex(&key);
566                 raw_spin_unlock_irq(&curr->pi_lock);
567
568                 spin_lock(&hb->lock);
569
570                 raw_spin_lock_irq(&curr->pi_lock);
571                 /*
572                  * We dropped the pi-lock, so re-check whether this
573                  * task still owns the PI-state:
574                  */
575                 if (head->next != next) {
576                         spin_unlock(&hb->lock);
577                         continue;
578                 }
579
580                 WARN_ON(pi_state->owner != curr);
581                 WARN_ON(list_empty(&pi_state->list));
582                 list_del_init(&pi_state->list);
583                 pi_state->owner = NULL;
584                 raw_spin_unlock_irq(&curr->pi_lock);
585
586                 rt_mutex_unlock(&pi_state->pi_mutex);
587
588                 spin_unlock(&hb->lock);
589
590                 raw_spin_lock_irq(&curr->pi_lock);
591         }
592         raw_spin_unlock_irq(&curr->pi_lock);
593 }
594
595 static int
596 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
597                 union futex_key *key, struct futex_pi_state **ps)
598 {
599         struct futex_pi_state *pi_state = NULL;
600         struct futex_q *this, *next;
601         struct task_struct *p;
602         pid_t pid = uval & FUTEX_TID_MASK;
603
604         plist_for_each_entry_safe(this, next, &hb->chain, list) {
605                 if (match_futex(&this->key, key)) {
606                         /*
607                          * Another waiter already exists - bump up
608                          * the refcount and return its pi_state:
609                          */
610                         pi_state = this->pi_state;
611                         /*
612                          * Userspace might have messed up non-PI and PI futexes
613                          */
614                         if (unlikely(!pi_state))
615                                 return -EINVAL;
616
617                         WARN_ON(!atomic_read(&pi_state->refcount));
618
619                         /*
620                          * When pi_state->owner is NULL then the owner died
621                          * and another waiter is on the fly. pi_state->owner
622                          * is fixed up by the task which acquires
623                          * pi_state->rt_mutex.
624                          *
625                          * We do not check for pid == 0 which can happen when
626                          * the owner died and robust_list_exit() cleared the
627                          * TID.
628                          */
629                         if (pid && pi_state->owner) {
630                                 /*
631                                  * Bail out if user space manipulated the
632                                  * futex value.
633                                  */
634                                 if (pid != task_pid_vnr(pi_state->owner))
635                                         return -EINVAL;
636                         }
637
638                         atomic_inc(&pi_state->refcount);
639                         *ps = pi_state;
640
641                         return 0;
642                 }
643         }
644
645         /*
646          * We are the first waiter - try to look up the real owner and attach
647          * the new pi_state to it, but bail out when TID = 0
648          */
649         if (!pid)
650                 return -ESRCH;
651         p = futex_find_get_task(pid);
652         if (!p)
653                 return -ESRCH;
654
655         /*
656          * We need to look at the task state flags to figure out,
657          * whether the task is exiting. To protect against the do_exit
658          * change of the task flags, we do this protected by
659          * p->pi_lock:
660          */
661         raw_spin_lock_irq(&p->pi_lock);
662         if (unlikely(p->flags & PF_EXITING)) {
663                 /*
664                  * The task is on the way out. When PF_EXITPIDONE is
665                  * set, we know that the task has finished the
666                  * cleanup:
667                  */
668                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
669
670                 raw_spin_unlock_irq(&p->pi_lock);
671                 put_task_struct(p);
672                 return ret;
673         }
674
675         pi_state = alloc_pi_state();
676
677         /*
678          * Initialize the pi_mutex in locked state and make 'p'
679          * the owner of it:
680          */
681         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
682
683         /* Store the key for possible exit cleanups: */
684         pi_state->key = *key;
685
686         WARN_ON(!list_empty(&pi_state->list));
687         list_add(&pi_state->list, &p->pi_state_list);
688         pi_state->owner = p;
689         raw_spin_unlock_irq(&p->pi_lock);
690
691         put_task_struct(p);
692
693         *ps = pi_state;
694
695         return 0;
696 }
697
698 /**
699  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
700  * @uaddr:              the pi futex user address
701  * @hb:                 the pi futex hash bucket
702  * @key:                the futex key associated with uaddr and hb
703  * @ps:                 the pi_state pointer where we store the result of the
704  *                      lookup
705  * @task:               the task to perform the atomic lock work for.  This will
706  *                      be "current" except in the case of requeue pi.
707  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
708  *
709  * Return:
710  *  0 - ready to wait;
711  *  1 - acquired the lock;
712  * <0 - error
713  *
714  * The hb->lock and futex_key refs shall be held by the caller.
715  */
716 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
717                                 union futex_key *key,
718                                 struct futex_pi_state **ps,
719                                 struct task_struct *task, int set_waiters)
720 {
721         int lock_taken, ret, force_take = 0;
722         u32 uval, newval, curval, vpid = task_pid_vnr(task);
723
724 retry:
725         ret = lock_taken = 0;
726
727         /*
728          * To avoid races, we attempt to take the lock here again
729          * (by doing a 0 -> TID atomic cmpxchg), while holding all
730          * the locks. It will most likely not succeed.
731          */
732         newval = vpid;
733         if (set_waiters)
734                 newval |= FUTEX_WAITERS;
735
736         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
737                 return -EFAULT;
738
739         /*
740          * Detect deadlocks.
741          */
742         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
743                 return -EDEADLK;
744
745         /*
746          * Surprise - we got the lock. Just return to userspace:
747          */
748         if (unlikely(!curval))
749                 return 1;
750
751         uval = curval;
752
753         /*
754          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
755          * to wake at the next unlock.
756          */
757         newval = curval | FUTEX_WAITERS;
758
759         /*
760          * Should we force take the futex? See below.
761          */
762         if (unlikely(force_take)) {
763                 /*
764                  * Keep the OWNER_DIED and the WAITERS bit and set the
765                  * new TID value.
766                  */
767                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
768                 force_take = 0;
769                 lock_taken = 1;
770         }
771
772         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
773                 return -EFAULT;
774         if (unlikely(curval != uval))
775                 goto retry;
776
777         /*
778          * We took the lock due to forced take over.
779          */
780         if (unlikely(lock_taken))
781                 return 1;
782
783         /*
784          * We dont have the lock. Look up the PI state (or create it if
785          * we are the first waiter):
786          */
787         ret = lookup_pi_state(uval, hb, key, ps);
788
789         if (unlikely(ret)) {
790                 switch (ret) {
791                 case -ESRCH:
792                         /*
793                          * We failed to find an owner for this
794                          * futex. So we have no pi_state to block
795                          * on. This can happen in two cases:
796                          *
797                          * 1) The owner died
798                          * 2) A stale FUTEX_WAITERS bit
799                          *
800                          * Re-read the futex value.
801                          */
802                         if (get_futex_value_locked(&curval, uaddr))
803                                 return -EFAULT;
804
805                         /*
806                          * If the owner died or we have a stale
807                          * WAITERS bit the owner TID in the user space
808                          * futex is 0.
809                          */
810                         if (!(curval & FUTEX_TID_MASK)) {
811                                 force_take = 1;
812                                 goto retry;
813                         }
814                 default:
815                         break;
816                 }
817         }
818
819         return ret;
820 }
821
822 /**
823  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
824  * @q:  The futex_q to unqueue
825  *
826  * The q->lock_ptr must not be NULL and must be held by the caller.
827  */
828 static void __unqueue_futex(struct futex_q *q)
829 {
830         struct futex_hash_bucket *hb;
831
832         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
833             || WARN_ON(plist_node_empty(&q->list)))
834                 return;
835
836         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
837         plist_del(&q->list, &hb->chain);
838 }
839
840 /*
841  * The hash bucket lock must be held when this is called.
842  * Afterwards, the futex_q must not be accessed.
843  */
844 static void wake_futex(struct futex_q *q)
845 {
846         struct task_struct *p = q->task;
847
848         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
849                 return;
850
851         /*
852          * We set q->lock_ptr = NULL _before_ we wake up the task. If
853          * a non-futex wake up happens on another CPU then the task
854          * might exit and p would dereference a non-existing task
855          * struct. Prevent this by holding a reference on p across the
856          * wake up.
857          */
858         get_task_struct(p);
859
860         __unqueue_futex(q);
861         /*
862          * The waiting task can free the futex_q as soon as
863          * q->lock_ptr = NULL is written, without taking any locks. A
864          * memory barrier is required here to prevent the following
865          * store to lock_ptr from getting ahead of the plist_del.
866          */
867         smp_wmb();
868         q->lock_ptr = NULL;
869
870         wake_up_state(p, TASK_NORMAL);
871         put_task_struct(p);
872 }
873
874 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
875 {
876         struct task_struct *new_owner;
877         struct futex_pi_state *pi_state = this->pi_state;
878         u32 uninitialized_var(curval), newval;
879
880         if (!pi_state)
881                 return -EINVAL;
882
883         /*
884          * If current does not own the pi_state then the futex is
885          * inconsistent and user space fiddled with the futex value.
886          */
887         if (pi_state->owner != current)
888                 return -EINVAL;
889
890         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
891         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
892
893         /*
894          * It is possible that the next waiter (the one that brought
895          * this owner to the kernel) timed out and is no longer
896          * waiting on the lock.
897          */
898         if (!new_owner)
899                 new_owner = this->task;
900
901         /*
902          * We pass it to the next owner. (The WAITERS bit is always
903          * kept enabled while there is PI state around. We must also
904          * preserve the owner died bit.)
905          */
906         if (!(uval & FUTEX_OWNER_DIED)) {
907                 int ret = 0;
908
909                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
910
911                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
912                         ret = -EFAULT;
913                 else if (curval != uval)
914                         ret = -EINVAL;
915                 if (ret) {
916                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
917                         return ret;
918                 }
919         }
920
921         raw_spin_lock_irq(&pi_state->owner->pi_lock);
922         WARN_ON(list_empty(&pi_state->list));
923         list_del_init(&pi_state->list);
924         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
925
926         raw_spin_lock_irq(&new_owner->pi_lock);
927         WARN_ON(!list_empty(&pi_state->list));
928         list_add(&pi_state->list, &new_owner->pi_state_list);
929         pi_state->owner = new_owner;
930         raw_spin_unlock_irq(&new_owner->pi_lock);
931
932         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
933         rt_mutex_unlock(&pi_state->pi_mutex);
934
935         return 0;
936 }
937
938 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
939 {
940         u32 uninitialized_var(oldval);
941
942         /*
943          * There is no waiter, so we unlock the futex. The owner died
944          * bit has not to be preserved here. We are the owner:
945          */
946         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
947                 return -EFAULT;
948         if (oldval != uval)
949                 return -EAGAIN;
950
951         return 0;
952 }
953
954 /*
955  * Express the locking dependencies for lockdep:
956  */
957 static inline void
958 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
959 {
960         if (hb1 <= hb2) {
961                 spin_lock(&hb1->lock);
962                 if (hb1 < hb2)
963                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
964         } else { /* hb1 > hb2 */
965                 spin_lock(&hb2->lock);
966                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
967         }
968 }
969
970 static inline void
971 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
972 {
973         spin_unlock(&hb1->lock);
974         if (hb1 != hb2)
975                 spin_unlock(&hb2->lock);
976 }
977
978 /*
979  * Wake up waiters matching bitset queued on this futex (uaddr).
980  */
981 static int
982 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
983 {
984         struct futex_hash_bucket *hb;
985         struct futex_q *this, *next;
986         union futex_key key = FUTEX_KEY_INIT;
987         int ret;
988
989         if (!bitset)
990                 return -EINVAL;
991
992         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
993         if (unlikely(ret != 0))
994                 goto out;
995
996         hb = hash_futex(&key);
997         spin_lock(&hb->lock);
998
999         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1000                 if (match_futex (&this->key, &key)) {
1001                         if (this->pi_state || this->rt_waiter) {
1002                                 ret = -EINVAL;
1003                                 break;
1004                         }
1005
1006                         /* Check if one of the bits is set in both bitsets */
1007                         if (!(this->bitset & bitset))
1008                                 continue;
1009
1010                         wake_futex(this);
1011                         if (++ret >= nr_wake)
1012                                 break;
1013                 }
1014         }
1015
1016         spin_unlock(&hb->lock);
1017         put_futex_key(&key);
1018 out:
1019         return ret;
1020 }
1021
1022 /*
1023  * Wake up all waiters hashed on the physical page that is mapped
1024  * to this virtual address:
1025  */
1026 static int
1027 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1028               int nr_wake, int nr_wake2, int op)
1029 {
1030         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1031         struct futex_hash_bucket *hb1, *hb2;
1032         struct futex_q *this, *next;
1033         int ret, op_ret;
1034
1035 retry:
1036         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1037         if (unlikely(ret != 0))
1038                 goto out;
1039         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1040         if (unlikely(ret != 0))
1041                 goto out_put_key1;
1042
1043         hb1 = hash_futex(&key1);
1044         hb2 = hash_futex(&key2);
1045
1046 retry_private:
1047         double_lock_hb(hb1, hb2);
1048         op_ret = futex_atomic_op_inuser(op, uaddr2);
1049         if (unlikely(op_ret < 0)) {
1050
1051                 double_unlock_hb(hb1, hb2);
1052
1053 #ifndef CONFIG_MMU
1054                 /*
1055                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1056                  * but we might get them from range checking
1057                  */
1058                 ret = op_ret;
1059                 goto out_put_keys;
1060 #endif
1061
1062                 if (unlikely(op_ret != -EFAULT)) {
1063                         ret = op_ret;
1064                         goto out_put_keys;
1065                 }
1066
1067                 ret = fault_in_user_writeable(uaddr2);
1068                 if (ret)
1069                         goto out_put_keys;
1070
1071                 if (!(flags & FLAGS_SHARED))
1072                         goto retry_private;
1073
1074                 put_futex_key(&key2);
1075                 put_futex_key(&key1);
1076                 goto retry;
1077         }
1078
1079         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1080                 if (match_futex (&this->key, &key1)) {
1081                         if (this->pi_state || this->rt_waiter) {
1082                                 ret = -EINVAL;
1083                                 goto out_unlock;
1084                         }
1085                         wake_futex(this);
1086                         if (++ret >= nr_wake)
1087                                 break;
1088                 }
1089         }
1090
1091         if (op_ret > 0) {
1092                 op_ret = 0;
1093                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1094                         if (match_futex (&this->key, &key2)) {
1095                                 if (this->pi_state || this->rt_waiter) {
1096                                         ret = -EINVAL;
1097                                         goto out_unlock;
1098                                 }
1099                                 wake_futex(this);
1100                                 if (++op_ret >= nr_wake2)
1101                                         break;
1102                         }
1103                 }
1104                 ret += op_ret;
1105         }
1106
1107 out_unlock:
1108         double_unlock_hb(hb1, hb2);
1109 out_put_keys:
1110         put_futex_key(&key2);
1111 out_put_key1:
1112         put_futex_key(&key1);
1113 out:
1114         return ret;
1115 }
1116
1117 /**
1118  * requeue_futex() - Requeue a futex_q from one hb to another
1119  * @q:          the futex_q to requeue
1120  * @hb1:        the source hash_bucket
1121  * @hb2:        the target hash_bucket
1122  * @key2:       the new key for the requeued futex_q
1123  */
1124 static inline
1125 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1126                    struct futex_hash_bucket *hb2, union futex_key *key2)
1127 {
1128
1129         /*
1130          * If key1 and key2 hash to the same bucket, no need to
1131          * requeue.
1132          */
1133         if (likely(&hb1->chain != &hb2->chain)) {
1134                 plist_del(&q->list, &hb1->chain);
1135                 plist_add(&q->list, &hb2->chain);
1136                 q->lock_ptr = &hb2->lock;
1137         }
1138         get_futex_key_refs(key2);
1139         q->key = *key2;
1140 }
1141
1142 /**
1143  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1144  * @q:          the futex_q
1145  * @key:        the key of the requeue target futex
1146  * @hb:         the hash_bucket of the requeue target futex
1147  *
1148  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1149  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1150  * to the requeue target futex so the waiter can detect the wakeup on the right
1151  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1152  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1153  * to protect access to the pi_state to fixup the owner later.  Must be called
1154  * with both q->lock_ptr and hb->lock held.
1155  */
1156 static inline
1157 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1158                            struct futex_hash_bucket *hb)
1159 {
1160         get_futex_key_refs(key);
1161         q->key = *key;
1162
1163         __unqueue_futex(q);
1164
1165         WARN_ON(!q->rt_waiter);
1166         q->rt_waiter = NULL;
1167
1168         q->lock_ptr = &hb->lock;
1169
1170         wake_up_state(q->task, TASK_NORMAL);
1171 }
1172
1173 /**
1174  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1175  * @pifutex:            the user address of the to futex
1176  * @hb1:                the from futex hash bucket, must be locked by the caller
1177  * @hb2:                the to futex hash bucket, must be locked by the caller
1178  * @key1:               the from futex key
1179  * @key2:               the to futex key
1180  * @ps:                 address to store the pi_state pointer
1181  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1182  *
1183  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1184  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1185  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1186  * hb1 and hb2 must be held by the caller.
1187  *
1188  * Return:
1189  *  0 - failed to acquire the lock atomically;
1190  *  1 - acquired the lock;
1191  * <0 - error
1192  */
1193 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1194                                  struct futex_hash_bucket *hb1,
1195                                  struct futex_hash_bucket *hb2,
1196                                  union futex_key *key1, union futex_key *key2,
1197                                  struct futex_pi_state **ps, int set_waiters)
1198 {
1199         struct futex_q *top_waiter = NULL;
1200         u32 curval;
1201         int ret;
1202
1203         if (get_futex_value_locked(&curval, pifutex))
1204                 return -EFAULT;
1205
1206         /*
1207          * Find the top_waiter and determine if there are additional waiters.
1208          * If the caller intends to requeue more than 1 waiter to pifutex,
1209          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1210          * as we have means to handle the possible fault.  If not, don't set
1211          * the bit unecessarily as it will force the subsequent unlock to enter
1212          * the kernel.
1213          */
1214         top_waiter = futex_top_waiter(hb1, key1);
1215
1216         /* There are no waiters, nothing for us to do. */
1217         if (!top_waiter)
1218                 return 0;
1219
1220         /* Ensure we requeue to the expected futex. */
1221         if (!match_futex(top_waiter->requeue_pi_key, key2))
1222                 return -EINVAL;
1223
1224         /*
1225          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1226          * the contended case or if set_waiters is 1.  The pi_state is returned
1227          * in ps in contended cases.
1228          */
1229         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1230                                    set_waiters);
1231         if (ret == 1)
1232                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1233
1234         return ret;
1235 }
1236
1237 /**
1238  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1239  * @uaddr1:     source futex user address
1240  * @flags:      futex flags (FLAGS_SHARED, etc.)
1241  * @uaddr2:     target futex user address
1242  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1243  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1244  * @cmpval:     @uaddr1 expected value (or %NULL)
1245  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1246  *              pi futex (pi to pi requeue is not supported)
1247  *
1248  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1249  * uaddr2 atomically on behalf of the top waiter.
1250  *
1251  * Return:
1252  * >=0 - on success, the number of tasks requeued or woken;
1253  *  <0 - on error
1254  */
1255 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1256                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1257                          u32 *cmpval, int requeue_pi)
1258 {
1259         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1260         int drop_count = 0, task_count = 0, ret;
1261         struct futex_pi_state *pi_state = NULL;
1262         struct futex_hash_bucket *hb1, *hb2;
1263         struct futex_q *this, *next;
1264         u32 curval2;
1265
1266         if (requeue_pi) {
1267                 /*
1268                  * requeue_pi requires a pi_state, try to allocate it now
1269                  * without any locks in case it fails.
1270                  */
1271                 if (refill_pi_state_cache())
1272                         return -ENOMEM;
1273                 /*
1274                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1275                  * + nr_requeue, since it acquires the rt_mutex prior to
1276                  * returning to userspace, so as to not leave the rt_mutex with
1277                  * waiters and no owner.  However, second and third wake-ups
1278                  * cannot be predicted as they involve race conditions with the
1279                  * first wake and a fault while looking up the pi_state.  Both
1280                  * pthread_cond_signal() and pthread_cond_broadcast() should
1281                  * use nr_wake=1.
1282                  */
1283                 if (nr_wake != 1)
1284                         return -EINVAL;
1285         }
1286
1287 retry:
1288         if (pi_state != NULL) {
1289                 /*
1290                  * We will have to lookup the pi_state again, so free this one
1291                  * to keep the accounting correct.
1292                  */
1293                 free_pi_state(pi_state);
1294                 pi_state = NULL;
1295         }
1296
1297         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1298         if (unlikely(ret != 0))
1299                 goto out;
1300         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1301                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1302         if (unlikely(ret != 0))
1303                 goto out_put_key1;
1304
1305         hb1 = hash_futex(&key1);
1306         hb2 = hash_futex(&key2);
1307
1308 retry_private:
1309         double_lock_hb(hb1, hb2);
1310
1311         if (likely(cmpval != NULL)) {
1312                 u32 curval;
1313
1314                 ret = get_futex_value_locked(&curval, uaddr1);
1315
1316                 if (unlikely(ret)) {
1317                         double_unlock_hb(hb1, hb2);
1318
1319                         ret = get_user(curval, uaddr1);
1320                         if (ret)
1321                                 goto out_put_keys;
1322
1323                         if (!(flags & FLAGS_SHARED))
1324                                 goto retry_private;
1325
1326                         put_futex_key(&key2);
1327                         put_futex_key(&key1);
1328                         goto retry;
1329                 }
1330                 if (curval != *cmpval) {
1331                         ret = -EAGAIN;
1332                         goto out_unlock;
1333                 }
1334         }
1335
1336         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1337                 /*
1338                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1339                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1340                  * bit.  We force this here where we are able to easily handle
1341                  * faults rather in the requeue loop below.
1342                  */
1343                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1344                                                  &key2, &pi_state, nr_requeue);
1345
1346                 /*
1347                  * At this point the top_waiter has either taken uaddr2 or is
1348                  * waiting on it.  If the former, then the pi_state will not
1349                  * exist yet, look it up one more time to ensure we have a
1350                  * reference to it.
1351                  */
1352                 if (ret == 1) {
1353                         WARN_ON(pi_state);
1354                         drop_count++;
1355                         task_count++;
1356                         ret = get_futex_value_locked(&curval2, uaddr2);
1357                         if (!ret)
1358                                 ret = lookup_pi_state(curval2, hb2, &key2,
1359                                                       &pi_state);
1360                 }
1361
1362                 switch (ret) {
1363                 case 0:
1364                         break;
1365                 case -EFAULT:
1366                         double_unlock_hb(hb1, hb2);
1367                         put_futex_key(&key2);
1368                         put_futex_key(&key1);
1369                         ret = fault_in_user_writeable(uaddr2);
1370                         if (!ret)
1371                                 goto retry;
1372                         goto out;
1373                 case -EAGAIN:
1374                         /* The owner was exiting, try again. */
1375                         double_unlock_hb(hb1, hb2);
1376                         put_futex_key(&key2);
1377                         put_futex_key(&key1);
1378                         cond_resched();
1379                         goto retry;
1380                 default:
1381                         goto out_unlock;
1382                 }
1383         }
1384
1385         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1386                 if (task_count - nr_wake >= nr_requeue)
1387                         break;
1388
1389                 if (!match_futex(&this->key, &key1))
1390                         continue;
1391
1392                 /*
1393                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1394                  * be paired with each other and no other futex ops.
1395                  *
1396                  * We should never be requeueing a futex_q with a pi_state,
1397                  * which is awaiting a futex_unlock_pi().
1398                  */
1399                 if ((requeue_pi && !this->rt_waiter) ||
1400                     (!requeue_pi && this->rt_waiter) ||
1401                     this->pi_state) {
1402                         ret = -EINVAL;
1403                         break;
1404                 }
1405
1406                 /*
1407                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1408                  * lock, we already woke the top_waiter.  If not, it will be
1409                  * woken by futex_unlock_pi().
1410                  */
1411                 if (++task_count <= nr_wake && !requeue_pi) {
1412                         wake_futex(this);
1413                         continue;
1414                 }
1415
1416                 /* Ensure we requeue to the expected futex for requeue_pi. */
1417                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1418                         ret = -EINVAL;
1419                         break;
1420                 }
1421
1422                 /*
1423                  * Requeue nr_requeue waiters and possibly one more in the case
1424                  * of requeue_pi if we couldn't acquire the lock atomically.
1425                  */
1426                 if (requeue_pi) {
1427                         /* Prepare the waiter to take the rt_mutex. */
1428                         atomic_inc(&pi_state->refcount);
1429                         this->pi_state = pi_state;
1430                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1431                                                         this->rt_waiter,
1432                                                         this->task, 1);
1433                         if (ret == 1) {
1434                                 /* We got the lock. */
1435                                 requeue_pi_wake_futex(this, &key2, hb2);
1436                                 drop_count++;
1437                                 continue;
1438                         } else if (ret) {
1439                                 /* -EDEADLK */
1440                                 this->pi_state = NULL;
1441                                 free_pi_state(pi_state);
1442                                 goto out_unlock;
1443                         }
1444                 }
1445                 requeue_futex(this, hb1, hb2, &key2);
1446                 drop_count++;
1447         }
1448
1449 out_unlock:
1450         double_unlock_hb(hb1, hb2);
1451
1452         /*
1453          * drop_futex_key_refs() must be called outside the spinlocks. During
1454          * the requeue we moved futex_q's from the hash bucket at key1 to the
1455          * one at key2 and updated their key pointer.  We no longer need to
1456          * hold the references to key1.
1457          */
1458         while (--drop_count >= 0)
1459                 drop_futex_key_refs(&key1);
1460
1461 out_put_keys:
1462         put_futex_key(&key2);
1463 out_put_key1:
1464         put_futex_key(&key1);
1465 out:
1466         if (pi_state != NULL)
1467                 free_pi_state(pi_state);
1468         return ret ? ret : task_count;
1469 }
1470
1471 /* The key must be already stored in q->key. */
1472 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1473         __acquires(&hb->lock)
1474 {
1475         struct futex_hash_bucket *hb;
1476
1477         hb = hash_futex(&q->key);
1478         q->lock_ptr = &hb->lock;
1479
1480         spin_lock(&hb->lock);
1481         return hb;
1482 }
1483
1484 static inline void
1485 queue_unlock(struct futex_hash_bucket *hb)
1486         __releases(&hb->lock)
1487 {
1488         spin_unlock(&hb->lock);
1489 }
1490
1491 /**
1492  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1493  * @q:  The futex_q to enqueue
1494  * @hb: The destination hash bucket
1495  *
1496  * The hb->lock must be held by the caller, and is released here. A call to
1497  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1498  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1499  * or nothing if the unqueue is done as part of the wake process and the unqueue
1500  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1501  * an example).
1502  */
1503 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1504         __releases(&hb->lock)
1505 {
1506         int prio;
1507
1508         /*
1509          * The priority used to register this element is
1510          * - either the real thread-priority for the real-time threads
1511          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1512          * - or MAX_RT_PRIO for non-RT threads.
1513          * Thus, all RT-threads are woken first in priority order, and
1514          * the others are woken last, in FIFO order.
1515          */
1516         prio = min(current->normal_prio, MAX_RT_PRIO);
1517
1518         plist_node_init(&q->list, prio);
1519         plist_add(&q->list, &hb->chain);
1520         q->task = current;
1521         spin_unlock(&hb->lock);
1522 }
1523
1524 /**
1525  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1526  * @q:  The futex_q to unqueue
1527  *
1528  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1529  * be paired with exactly one earlier call to queue_me().
1530  *
1531  * Return:
1532  *   1 - if the futex_q was still queued (and we removed unqueued it);
1533  *   0 - if the futex_q was already removed by the waking thread
1534  */
1535 static int unqueue_me(struct futex_q *q)
1536 {
1537         spinlock_t *lock_ptr;
1538         int ret = 0;
1539
1540         /* In the common case we don't take the spinlock, which is nice. */
1541 retry:
1542         lock_ptr = q->lock_ptr;
1543         barrier();
1544         if (lock_ptr != NULL) {
1545                 spin_lock(lock_ptr);
1546                 /*
1547                  * q->lock_ptr can change between reading it and
1548                  * spin_lock(), causing us to take the wrong lock.  This
1549                  * corrects the race condition.
1550                  *
1551                  * Reasoning goes like this: if we have the wrong lock,
1552                  * q->lock_ptr must have changed (maybe several times)
1553                  * between reading it and the spin_lock().  It can
1554                  * change again after the spin_lock() but only if it was
1555                  * already changed before the spin_lock().  It cannot,
1556                  * however, change back to the original value.  Therefore
1557                  * we can detect whether we acquired the correct lock.
1558                  */
1559                 if (unlikely(lock_ptr != q->lock_ptr)) {
1560                         spin_unlock(lock_ptr);
1561                         goto retry;
1562                 }
1563                 __unqueue_futex(q);
1564
1565                 BUG_ON(q->pi_state);
1566
1567                 spin_unlock(lock_ptr);
1568                 ret = 1;
1569         }
1570
1571         drop_futex_key_refs(&q->key);
1572         return ret;
1573 }
1574
1575 /*
1576  * PI futexes can not be requeued and must remove themself from the
1577  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1578  * and dropped here.
1579  */
1580 static void unqueue_me_pi(struct futex_q *q)
1581         __releases(q->lock_ptr)
1582 {
1583         __unqueue_futex(q);
1584
1585         BUG_ON(!q->pi_state);
1586         free_pi_state(q->pi_state);
1587         q->pi_state = NULL;
1588
1589         spin_unlock(q->lock_ptr);
1590 }
1591
1592 /*
1593  * Fixup the pi_state owner with the new owner.
1594  *
1595  * Must be called with hash bucket lock held and mm->sem held for non
1596  * private futexes.
1597  */
1598 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1599                                 struct task_struct *newowner)
1600 {
1601         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1602         struct futex_pi_state *pi_state = q->pi_state;
1603         struct task_struct *oldowner = pi_state->owner;
1604         u32 uval, uninitialized_var(curval), newval;
1605         int ret;
1606
1607         /* Owner died? */
1608         if (!pi_state->owner)
1609                 newtid |= FUTEX_OWNER_DIED;
1610
1611         /*
1612          * We are here either because we stole the rtmutex from the
1613          * previous highest priority waiter or we are the highest priority
1614          * waiter but failed to get the rtmutex the first time.
1615          * We have to replace the newowner TID in the user space variable.
1616          * This must be atomic as we have to preserve the owner died bit here.
1617          *
1618          * Note: We write the user space value _before_ changing the pi_state
1619          * because we can fault here. Imagine swapped out pages or a fork
1620          * that marked all the anonymous memory readonly for cow.
1621          *
1622          * Modifying pi_state _before_ the user space value would
1623          * leave the pi_state in an inconsistent state when we fault
1624          * here, because we need to drop the hash bucket lock to
1625          * handle the fault. This might be observed in the PID check
1626          * in lookup_pi_state.
1627          */
1628 retry:
1629         if (get_futex_value_locked(&uval, uaddr))
1630                 goto handle_fault;
1631
1632         while (1) {
1633                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1634
1635                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1636                         goto handle_fault;
1637                 if (curval == uval)
1638                         break;
1639                 uval = curval;
1640         }
1641
1642         /*
1643          * We fixed up user space. Now we need to fix the pi_state
1644          * itself.
1645          */
1646         if (pi_state->owner != NULL) {
1647                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1648                 WARN_ON(list_empty(&pi_state->list));
1649                 list_del_init(&pi_state->list);
1650                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1651         }
1652
1653         pi_state->owner = newowner;
1654
1655         raw_spin_lock_irq(&newowner->pi_lock);
1656         WARN_ON(!list_empty(&pi_state->list));
1657         list_add(&pi_state->list, &newowner->pi_state_list);
1658         raw_spin_unlock_irq(&newowner->pi_lock);
1659         return 0;
1660
1661         /*
1662          * To handle the page fault we need to drop the hash bucket
1663          * lock here. That gives the other task (either the highest priority
1664          * waiter itself or the task which stole the rtmutex) the
1665          * chance to try the fixup of the pi_state. So once we are
1666          * back from handling the fault we need to check the pi_state
1667          * after reacquiring the hash bucket lock and before trying to
1668          * do another fixup. When the fixup has been done already we
1669          * simply return.
1670          */
1671 handle_fault:
1672         spin_unlock(q->lock_ptr);
1673
1674         ret = fault_in_user_writeable(uaddr);
1675
1676         spin_lock(q->lock_ptr);
1677
1678         /*
1679          * Check if someone else fixed it for us:
1680          */
1681         if (pi_state->owner != oldowner)
1682                 return 0;
1683
1684         if (ret)
1685                 return ret;
1686
1687         goto retry;
1688 }
1689
1690 static long futex_wait_restart(struct restart_block *restart);
1691
1692 /**
1693  * fixup_owner() - Post lock pi_state and corner case management
1694  * @uaddr:      user address of the futex
1695  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1696  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1697  *
1698  * After attempting to lock an rt_mutex, this function is called to cleanup
1699  * the pi_state owner as well as handle race conditions that may allow us to
1700  * acquire the lock. Must be called with the hb lock held.
1701  *
1702  * Return:
1703  *  1 - success, lock taken;
1704  *  0 - success, lock not taken;
1705  * <0 - on error (-EFAULT)
1706  */
1707 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1708 {
1709         struct task_struct *owner;
1710         int ret = 0;
1711
1712         if (locked) {
1713                 /*
1714                  * Got the lock. We might not be the anticipated owner if we
1715                  * did a lock-steal - fix up the PI-state in that case:
1716                  */
1717                 if (q->pi_state->owner != current)
1718                         ret = fixup_pi_state_owner(uaddr, q, current);
1719                 goto out;
1720         }
1721
1722         /*
1723          * Catch the rare case, where the lock was released when we were on the
1724          * way back before we locked the hash bucket.
1725          */
1726         if (q->pi_state->owner == current) {
1727                 /*
1728                  * Try to get the rt_mutex now. This might fail as some other
1729                  * task acquired the rt_mutex after we removed ourself from the
1730                  * rt_mutex waiters list.
1731                  */
1732                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1733                         locked = 1;
1734                         goto out;
1735                 }
1736
1737                 /*
1738                  * pi_state is incorrect, some other task did a lock steal and
1739                  * we returned due to timeout or signal without taking the
1740                  * rt_mutex. Too late.
1741                  */
1742                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1743                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1744                 if (!owner)
1745                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1746                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1747                 ret = fixup_pi_state_owner(uaddr, q, owner);
1748                 goto out;
1749         }
1750
1751         /*
1752          * Paranoia check. If we did not take the lock, then we should not be
1753          * the owner of the rt_mutex.
1754          */
1755         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1756                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1757                                 "pi-state %p\n", ret,
1758                                 q->pi_state->pi_mutex.owner,
1759                                 q->pi_state->owner);
1760
1761 out:
1762         return ret ? ret : locked;
1763 }
1764
1765 /**
1766  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1767  * @hb:         the futex hash bucket, must be locked by the caller
1768  * @q:          the futex_q to queue up on
1769  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1770  */
1771 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1772                                 struct hrtimer_sleeper *timeout)
1773 {
1774         /*
1775          * The task state is guaranteed to be set before another task can
1776          * wake it. set_current_state() is implemented using set_mb() and
1777          * queue_me() calls spin_unlock() upon completion, both serializing
1778          * access to the hash list and forcing another memory barrier.
1779          */
1780         set_current_state(TASK_INTERRUPTIBLE);
1781         queue_me(q, hb);
1782
1783         /* Arm the timer */
1784         if (timeout) {
1785                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1786                 if (!hrtimer_active(&timeout->timer))
1787                         timeout->task = NULL;
1788         }
1789
1790         /*
1791          * If we have been removed from the hash list, then another task
1792          * has tried to wake us, and we can skip the call to schedule().
1793          */
1794         if (likely(!plist_node_empty(&q->list))) {
1795                 /*
1796                  * If the timer has already expired, current will already be
1797                  * flagged for rescheduling. Only call schedule if there
1798                  * is no timeout, or if it has yet to expire.
1799                  */
1800                 if (!timeout || timeout->task)
1801                         freezable_schedule();
1802         }
1803         __set_current_state(TASK_RUNNING);
1804 }
1805
1806 /**
1807  * futex_wait_setup() - Prepare to wait on a futex
1808  * @uaddr:      the futex userspace address
1809  * @val:        the expected value
1810  * @flags:      futex flags (FLAGS_SHARED, etc.)
1811  * @q:          the associated futex_q
1812  * @hb:         storage for hash_bucket pointer to be returned to caller
1813  *
1814  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1815  * compare it with the expected value.  Handle atomic faults internally.
1816  * Return with the hb lock held and a q.key reference on success, and unlocked
1817  * with no q.key reference on failure.
1818  *
1819  * Return:
1820  *  0 - uaddr contains val and hb has been locked;
1821  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1822  */
1823 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1824                            struct futex_q *q, struct futex_hash_bucket **hb)
1825 {
1826         u32 uval;
1827         int ret;
1828
1829         /*
1830          * Access the page AFTER the hash-bucket is locked.
1831          * Order is important:
1832          *
1833          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1834          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1835          *
1836          * The basic logical guarantee of a futex is that it blocks ONLY
1837          * if cond(var) is known to be true at the time of blocking, for
1838          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1839          * would open a race condition where we could block indefinitely with
1840          * cond(var) false, which would violate the guarantee.
1841          *
1842          * On the other hand, we insert q and release the hash-bucket only
1843          * after testing *uaddr.  This guarantees that futex_wait() will NOT
1844          * absorb a wakeup if *uaddr does not match the desired values
1845          * while the syscall executes.
1846          */
1847 retry:
1848         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1849         if (unlikely(ret != 0))
1850                 return ret;
1851
1852 retry_private:
1853         *hb = queue_lock(q);
1854
1855         ret = get_futex_value_locked(&uval, uaddr);
1856
1857         if (ret) {
1858                 queue_unlock(*hb);
1859
1860                 ret = get_user(uval, uaddr);
1861                 if (ret)
1862                         goto out;
1863
1864                 if (!(flags & FLAGS_SHARED))
1865                         goto retry_private;
1866
1867                 put_futex_key(&q->key);
1868                 goto retry;
1869         }
1870
1871         if (uval != val) {
1872                 queue_unlock(*hb);
1873                 ret = -EWOULDBLOCK;
1874         }
1875
1876 out:
1877         if (ret)
1878                 put_futex_key(&q->key);
1879         return ret;
1880 }
1881
1882 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1883                       ktime_t *abs_time, u32 bitset)
1884 {
1885         struct hrtimer_sleeper timeout, *to = NULL;
1886         struct restart_block *restart;
1887         struct futex_hash_bucket *hb;
1888         struct futex_q q = futex_q_init;
1889         int ret;
1890
1891         if (!bitset)
1892                 return -EINVAL;
1893         q.bitset = bitset;
1894
1895         if (abs_time) {
1896                 to = &timeout;
1897
1898                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1899                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
1900                                       HRTIMER_MODE_ABS);
1901                 hrtimer_init_sleeper(to, current);
1902                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1903                                              current->timer_slack_ns);
1904         }
1905
1906 retry:
1907         /*
1908          * Prepare to wait on uaddr. On success, holds hb lock and increments
1909          * q.key refs.
1910          */
1911         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1912         if (ret)
1913                 goto out;
1914
1915         /* queue_me and wait for wakeup, timeout, or a signal. */
1916         futex_wait_queue_me(hb, &q, to);
1917
1918         /* If we were woken (and unqueued), we succeeded, whatever. */
1919         ret = 0;
1920         /* unqueue_me() drops q.key ref */
1921         if (!unqueue_me(&q))
1922                 goto out;
1923         ret = -ETIMEDOUT;
1924         if (to && !to->task)
1925                 goto out;
1926
1927         /*
1928          * We expect signal_pending(current), but we might be the
1929          * victim of a spurious wakeup as well.
1930          */
1931         if (!signal_pending(current))
1932                 goto retry;
1933
1934         ret = -ERESTARTSYS;
1935         if (!abs_time)
1936                 goto out;
1937
1938         restart = &current_thread_info()->restart_block;
1939         restart->fn = futex_wait_restart;
1940         restart->futex.uaddr = uaddr;
1941         restart->futex.val = val;
1942         restart->futex.time = abs_time->tv64;
1943         restart->futex.bitset = bitset;
1944         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1945
1946         ret = -ERESTART_RESTARTBLOCK;
1947
1948 out:
1949         if (to) {
1950                 hrtimer_cancel(&to->timer);
1951                 destroy_hrtimer_on_stack(&to->timer);
1952         }
1953         return ret;
1954 }
1955
1956
1957 static long futex_wait_restart(struct restart_block *restart)
1958 {
1959         u32 __user *uaddr = restart->futex.uaddr;
1960         ktime_t t, *tp = NULL;
1961
1962         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1963                 t.tv64 = restart->futex.time;
1964                 tp = &t;
1965         }
1966         restart->fn = do_no_restart_syscall;
1967
1968         return (long)futex_wait(uaddr, restart->futex.flags,
1969                                 restart->futex.val, tp, restart->futex.bitset);
1970 }
1971
1972
1973 /*
1974  * Userspace tried a 0 -> TID atomic transition of the futex value
1975  * and failed. The kernel side here does the whole locking operation:
1976  * if there are waiters then it will block, it does PI, etc. (Due to
1977  * races the kernel might see a 0 value of the futex too.)
1978  */
1979 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1980                          ktime_t *time, int trylock)
1981 {
1982         struct hrtimer_sleeper timeout, *to = NULL;
1983         struct futex_hash_bucket *hb;
1984         struct futex_q q = futex_q_init;
1985         int res, ret;
1986
1987         if (refill_pi_state_cache())
1988                 return -ENOMEM;
1989
1990         if (time) {
1991                 to = &timeout;
1992                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1993                                       HRTIMER_MODE_ABS);
1994                 hrtimer_init_sleeper(to, current);
1995                 hrtimer_set_expires(&to->timer, *time);
1996         }
1997
1998 retry:
1999         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2000         if (unlikely(ret != 0))
2001                 goto out;
2002
2003 retry_private:
2004         hb = queue_lock(&q);
2005
2006         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2007         if (unlikely(ret)) {
2008                 switch (ret) {
2009                 case 1:
2010                         /* We got the lock. */
2011                         ret = 0;
2012                         goto out_unlock_put_key;
2013                 case -EFAULT:
2014                         goto uaddr_faulted;
2015                 case -EAGAIN:
2016                         /*
2017                          * Task is exiting and we just wait for the
2018                          * exit to complete.
2019                          */
2020                         queue_unlock(hb);
2021                         put_futex_key(&q.key);
2022                         cond_resched();
2023                         goto retry;
2024                 default:
2025                         goto out_unlock_put_key;
2026                 }
2027         }
2028
2029         /*
2030          * Only actually queue now that the atomic ops are done:
2031          */
2032         queue_me(&q, hb);
2033
2034         WARN_ON(!q.pi_state);
2035         /*
2036          * Block on the PI mutex:
2037          */
2038         if (!trylock)
2039                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2040         else {
2041                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2042                 /* Fixup the trylock return value: */
2043                 ret = ret ? 0 : -EWOULDBLOCK;
2044         }
2045
2046         spin_lock(q.lock_ptr);
2047         /*
2048          * Fixup the pi_state owner and possibly acquire the lock if we
2049          * haven't already.
2050          */
2051         res = fixup_owner(uaddr, &q, !ret);
2052         /*
2053          * If fixup_owner() returned an error, proprogate that.  If it acquired
2054          * the lock, clear our -ETIMEDOUT or -EINTR.
2055          */
2056         if (res)
2057                 ret = (res < 0) ? res : 0;
2058
2059         /*
2060          * If fixup_owner() faulted and was unable to handle the fault, unlock
2061          * it and return the fault to userspace.
2062          */
2063         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2064                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2065
2066         /* Unqueue and drop the lock */
2067         unqueue_me_pi(&q);
2068
2069         goto out_put_key;
2070
2071 out_unlock_put_key:
2072         queue_unlock(hb);
2073
2074 out_put_key:
2075         put_futex_key(&q.key);
2076 out:
2077         if (to)
2078                 destroy_hrtimer_on_stack(&to->timer);
2079         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2080
2081 uaddr_faulted:
2082         queue_unlock(hb);
2083
2084         ret = fault_in_user_writeable(uaddr);
2085         if (ret)
2086                 goto out_put_key;
2087
2088         if (!(flags & FLAGS_SHARED))
2089                 goto retry_private;
2090
2091         put_futex_key(&q.key);
2092         goto retry;
2093 }
2094
2095 /*
2096  * Userspace attempted a TID -> 0 atomic transition, and failed.
2097  * This is the in-kernel slowpath: we look up the PI state (if any),
2098  * and do the rt-mutex unlock.
2099  */
2100 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2101 {
2102         struct futex_hash_bucket *hb;
2103         struct futex_q *this, *next;
2104         union futex_key key = FUTEX_KEY_INIT;
2105         u32 uval, vpid = task_pid_vnr(current);
2106         int ret;
2107
2108 retry:
2109         if (get_user(uval, uaddr))
2110                 return -EFAULT;
2111         /*
2112          * We release only a lock we actually own:
2113          */
2114         if ((uval & FUTEX_TID_MASK) != vpid)
2115                 return -EPERM;
2116
2117         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2118         if (unlikely(ret != 0))
2119                 goto out;
2120
2121         hb = hash_futex(&key);
2122         spin_lock(&hb->lock);
2123
2124         /*
2125          * To avoid races, try to do the TID -> 0 atomic transition
2126          * again. If it succeeds then we can return without waking
2127          * anyone else up:
2128          */
2129         if (!(uval & FUTEX_OWNER_DIED) &&
2130             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2131                 goto pi_faulted;
2132         /*
2133          * Rare case: we managed to release the lock atomically,
2134          * no need to wake anyone else up:
2135          */
2136         if (unlikely(uval == vpid))
2137                 goto out_unlock;
2138
2139         /*
2140          * Ok, other tasks may need to be woken up - check waiters
2141          * and do the wakeup if necessary:
2142          */
2143         plist_for_each_entry_safe(this, next, &hb->chain, list) {
2144                 if (!match_futex (&this->key, &key))
2145                         continue;
2146                 ret = wake_futex_pi(uaddr, uval, this);
2147                 /*
2148                  * The atomic access to the futex value
2149                  * generated a pagefault, so retry the
2150                  * user-access and the wakeup:
2151                  */
2152                 if (ret == -EFAULT)
2153                         goto pi_faulted;
2154                 goto out_unlock;
2155         }
2156         /*
2157          * No waiters - kernel unlocks the futex:
2158          */
2159         if (!(uval & FUTEX_OWNER_DIED)) {
2160                 ret = unlock_futex_pi(uaddr, uval);
2161                 if (ret == -EFAULT)
2162                         goto pi_faulted;
2163         }
2164
2165 out_unlock:
2166         spin_unlock(&hb->lock);
2167         put_futex_key(&key);
2168
2169 out:
2170         return ret;
2171
2172 pi_faulted:
2173         spin_unlock(&hb->lock);
2174         put_futex_key(&key);
2175
2176         ret = fault_in_user_writeable(uaddr);
2177         if (!ret)
2178                 goto retry;
2179
2180         return ret;
2181 }
2182
2183 /**
2184  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2185  * @hb:         the hash_bucket futex_q was original enqueued on
2186  * @q:          the futex_q woken while waiting to be requeued
2187  * @key2:       the futex_key of the requeue target futex
2188  * @timeout:    the timeout associated with the wait (NULL if none)
2189  *
2190  * Detect if the task was woken on the initial futex as opposed to the requeue
2191  * target futex.  If so, determine if it was a timeout or a signal that caused
2192  * the wakeup and return the appropriate error code to the caller.  Must be
2193  * called with the hb lock held.
2194  *
2195  * Return:
2196  *  0 = no early wakeup detected;
2197  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2198  */
2199 static inline
2200 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2201                                    struct futex_q *q, union futex_key *key2,
2202                                    struct hrtimer_sleeper *timeout)
2203 {
2204         int ret = 0;
2205
2206         /*
2207          * With the hb lock held, we avoid races while we process the wakeup.
2208          * We only need to hold hb (and not hb2) to ensure atomicity as the
2209          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2210          * It can't be requeued from uaddr2 to something else since we don't
2211          * support a PI aware source futex for requeue.
2212          */
2213         if (!match_futex(&q->key, key2)) {
2214                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2215                 /*
2216                  * We were woken prior to requeue by a timeout or a signal.
2217                  * Unqueue the futex_q and determine which it was.
2218                  */
2219                 plist_del(&q->list, &hb->chain);
2220
2221                 /* Handle spurious wakeups gracefully */
2222                 ret = -EWOULDBLOCK;
2223                 if (timeout && !timeout->task)
2224                         ret = -ETIMEDOUT;
2225                 else if (signal_pending(current))
2226                         ret = -ERESTARTNOINTR;
2227         }
2228         return ret;
2229 }
2230
2231 /**
2232  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2233  * @uaddr:      the futex we initially wait on (non-pi)
2234  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2235  *              the same type, no requeueing from private to shared, etc.
2236  * @val:        the expected value of uaddr
2237  * @abs_time:   absolute timeout
2238  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2239  * @uaddr2:     the pi futex we will take prior to returning to user-space
2240  *
2241  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2242  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2243  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2244  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2245  * without one, the pi logic would not know which task to boost/deboost, if
2246  * there was a need to.
2247  *
2248  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2249  * via the following--
2250  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2251  * 2) wakeup on uaddr2 after a requeue
2252  * 3) signal
2253  * 4) timeout
2254  *
2255  * If 3, cleanup and return -ERESTARTNOINTR.
2256  *
2257  * If 2, we may then block on trying to take the rt_mutex and return via:
2258  * 5) successful lock
2259  * 6) signal
2260  * 7) timeout
2261  * 8) other lock acquisition failure
2262  *
2263  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2264  *
2265  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2266  *
2267  * Return:
2268  *  0 - On success;
2269  * <0 - On error
2270  */
2271 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2272                                  u32 val, ktime_t *abs_time, u32 bitset,
2273                                  u32 __user *uaddr2)
2274 {
2275         struct hrtimer_sleeper timeout, *to = NULL;
2276         struct rt_mutex_waiter rt_waiter;
2277         struct rt_mutex *pi_mutex = NULL;
2278         struct futex_hash_bucket *hb;
2279         union futex_key key2 = FUTEX_KEY_INIT;
2280         struct futex_q q = futex_q_init;
2281         int res, ret;
2282
2283         if (uaddr == uaddr2)
2284                 return -EINVAL;
2285
2286         if (!bitset)
2287                 return -EINVAL;
2288
2289         if (abs_time) {
2290                 to = &timeout;
2291                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2292                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2293                                       HRTIMER_MODE_ABS);
2294                 hrtimer_init_sleeper(to, current);
2295                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2296                                              current->timer_slack_ns);
2297         }
2298
2299         /*
2300          * The waiter is allocated on our stack, manipulated by the requeue
2301          * code while we sleep on uaddr.
2302          */
2303         debug_rt_mutex_init_waiter(&rt_waiter);
2304         rt_waiter.task = NULL;
2305
2306         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2307         if (unlikely(ret != 0))
2308                 goto out;
2309
2310         q.bitset = bitset;
2311         q.rt_waiter = &rt_waiter;
2312         q.requeue_pi_key = &key2;
2313
2314         /*
2315          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2316          * count.
2317          */
2318         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2319         if (ret)
2320                 goto out_key2;
2321
2322         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2323         futex_wait_queue_me(hb, &q, to);
2324
2325         spin_lock(&hb->lock);
2326         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2327         spin_unlock(&hb->lock);
2328         if (ret)
2329                 goto out_put_keys;
2330
2331         /*
2332          * In order for us to be here, we know our q.key == key2, and since
2333          * we took the hb->lock above, we also know that futex_requeue() has
2334          * completed and we no longer have to concern ourselves with a wakeup
2335          * race with the atomic proxy lock acquisition by the requeue code. The
2336          * futex_requeue dropped our key1 reference and incremented our key2
2337          * reference count.
2338          */
2339
2340         /* Check if the requeue code acquired the second futex for us. */
2341         if (!q.rt_waiter) {
2342                 /*
2343                  * Got the lock. We might not be the anticipated owner if we
2344                  * did a lock-steal - fix up the PI-state in that case.
2345                  */
2346                 if (q.pi_state && (q.pi_state->owner != current)) {
2347                         spin_lock(q.lock_ptr);
2348                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2349                         spin_unlock(q.lock_ptr);
2350                 }
2351         } else {
2352                 /*
2353                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2354                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2355                  * the pi_state.
2356                  */
2357                 WARN_ON(!q.pi_state);
2358                 pi_mutex = &q.pi_state->pi_mutex;
2359                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2360                 debug_rt_mutex_free_waiter(&rt_waiter);
2361
2362                 spin_lock(q.lock_ptr);
2363                 /*
2364                  * Fixup the pi_state owner and possibly acquire the lock if we
2365                  * haven't already.
2366                  */
2367                 res = fixup_owner(uaddr2, &q, !ret);
2368                 /*
2369                  * If fixup_owner() returned an error, proprogate that.  If it
2370                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2371                  */
2372                 if (res)
2373                         ret = (res < 0) ? res : 0;
2374
2375                 /* Unqueue and drop the lock. */
2376                 unqueue_me_pi(&q);
2377         }
2378
2379         /*
2380          * If fixup_pi_state_owner() faulted and was unable to handle the
2381          * fault, unlock the rt_mutex and return the fault to userspace.
2382          */
2383         if (ret == -EFAULT) {
2384                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2385                         rt_mutex_unlock(pi_mutex);
2386         } else if (ret == -EINTR) {
2387                 /*
2388                  * We've already been requeued, but cannot restart by calling
2389                  * futex_lock_pi() directly. We could restart this syscall, but
2390                  * it would detect that the user space "val" changed and return
2391                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2392                  * -EWOULDBLOCK directly.
2393                  */
2394                 ret = -EWOULDBLOCK;
2395         }
2396
2397 out_put_keys:
2398         put_futex_key(&q.key);
2399 out_key2:
2400         put_futex_key(&key2);
2401
2402 out:
2403         if (to) {
2404                 hrtimer_cancel(&to->timer);
2405                 destroy_hrtimer_on_stack(&to->timer);
2406         }
2407         return ret;
2408 }
2409
2410 /*
2411  * Support for robust futexes: the kernel cleans up held futexes at
2412  * thread exit time.
2413  *
2414  * Implementation: user-space maintains a per-thread list of locks it
2415  * is holding. Upon do_exit(), the kernel carefully walks this list,
2416  * and marks all locks that are owned by this thread with the
2417  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2418  * always manipulated with the lock held, so the list is private and
2419  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2420  * field, to allow the kernel to clean up if the thread dies after
2421  * acquiring the lock, but just before it could have added itself to
2422  * the list. There can only be one such pending lock.
2423  */
2424
2425 /**
2426  * sys_set_robust_list() - Set the robust-futex list head of a task
2427  * @head:       pointer to the list-head
2428  * @len:        length of the list-head, as userspace expects
2429  */
2430 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2431                 size_t, len)
2432 {
2433         if (!futex_cmpxchg_enabled)
2434                 return -ENOSYS;
2435         /*
2436          * The kernel knows only one size for now:
2437          */
2438         if (unlikely(len != sizeof(*head)))
2439                 return -EINVAL;
2440
2441         current->robust_list = head;
2442
2443         return 0;
2444 }
2445
2446 /**
2447  * sys_get_robust_list() - Get the robust-futex list head of a task
2448  * @pid:        pid of the process [zero for current task]
2449  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2450  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2451  */
2452 SYSCALL_DEFINE3(get_robust_list, int, pid,
2453                 struct robust_list_head __user * __user *, head_ptr,
2454                 size_t __user *, len_ptr)
2455 {
2456         struct robust_list_head __user *head;
2457         unsigned long ret;
2458         struct task_struct *p;
2459
2460         if (!futex_cmpxchg_enabled)
2461                 return -ENOSYS;
2462
2463         rcu_read_lock();
2464
2465         ret = -ESRCH;
2466         if (!pid)
2467                 p = current;
2468         else {
2469                 p = find_task_by_vpid(pid);
2470                 if (!p)
2471                         goto err_unlock;
2472         }
2473
2474         ret = -EPERM;
2475         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2476                 goto err_unlock;
2477
2478         head = p->robust_list;
2479         rcu_read_unlock();
2480
2481         if (put_user(sizeof(*head), len_ptr))
2482                 return -EFAULT;
2483         return put_user(head, head_ptr);
2484
2485 err_unlock:
2486         rcu_read_unlock();
2487
2488         return ret;
2489 }
2490
2491 /*
2492  * Process a futex-list entry, check whether it's owned by the
2493  * dying task, and do notification if so:
2494  */
2495 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2496 {
2497         u32 uval, uninitialized_var(nval), mval;
2498
2499 retry:
2500         if (get_user(uval, uaddr))
2501                 return -1;
2502
2503         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2504                 /*
2505                  * Ok, this dying thread is truly holding a futex
2506                  * of interest. Set the OWNER_DIED bit atomically
2507                  * via cmpxchg, and if the value had FUTEX_WAITERS
2508                  * set, wake up a waiter (if any). (We have to do a
2509                  * futex_wake() even if OWNER_DIED is already set -
2510                  * to handle the rare but possible case of recursive
2511                  * thread-death.) The rest of the cleanup is done in
2512                  * userspace.
2513                  */
2514                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2515                 /*
2516                  * We are not holding a lock here, but we want to have
2517                  * the pagefault_disable/enable() protection because
2518                  * we want to handle the fault gracefully. If the
2519                  * access fails we try to fault in the futex with R/W
2520                  * verification via get_user_pages. get_user() above
2521                  * does not guarantee R/W access. If that fails we
2522                  * give up and leave the futex locked.
2523                  */
2524                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2525                         if (fault_in_user_writeable(uaddr))
2526                                 return -1;
2527                         goto retry;
2528                 }
2529                 if (nval != uval)
2530                         goto retry;
2531
2532                 /*
2533                  * Wake robust non-PI futexes here. The wakeup of
2534                  * PI futexes happens in exit_pi_state():
2535                  */
2536                 if (!pi && (uval & FUTEX_WAITERS))
2537                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2538         }
2539         return 0;
2540 }
2541
2542 /*
2543  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2544  */
2545 static inline int fetch_robust_entry(struct robust_list __user **entry,
2546                                      struct robust_list __user * __user *head,
2547                                      unsigned int *pi)
2548 {
2549         unsigned long uentry;
2550
2551         if (get_user(uentry, (unsigned long __user *)head))
2552                 return -EFAULT;
2553
2554         *entry = (void __user *)(uentry & ~1UL);
2555         *pi = uentry & 1;
2556
2557         return 0;
2558 }
2559
2560 /*
2561  * Walk curr->robust_list (very carefully, it's a userspace list!)
2562  * and mark any locks found there dead, and notify any waiters.
2563  *
2564  * We silently return on any sign of list-walking problem.
2565  */
2566 void exit_robust_list(struct task_struct *curr)
2567 {
2568         struct robust_list_head __user *head = curr->robust_list;
2569         struct robust_list __user *entry, *next_entry, *pending;
2570         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2571         unsigned int uninitialized_var(next_pi);
2572         unsigned long futex_offset;
2573         int rc;
2574
2575         if (!futex_cmpxchg_enabled)
2576                 return;
2577
2578         /*
2579          * Fetch the list head (which was registered earlier, via
2580          * sys_set_robust_list()):
2581          */
2582         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2583                 return;
2584         /*
2585          * Fetch the relative futex offset:
2586          */
2587         if (get_user(futex_offset, &head->futex_offset))
2588                 return;
2589         /*
2590          * Fetch any possibly pending lock-add first, and handle it
2591          * if it exists:
2592          */
2593         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2594                 return;
2595
2596         next_entry = NULL;      /* avoid warning with gcc */
2597         while (entry != &head->list) {
2598                 /*
2599                  * Fetch the next entry in the list before calling
2600                  * handle_futex_death:
2601                  */
2602                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2603                 /*
2604                  * A pending lock might already be on the list, so
2605                  * don't process it twice:
2606                  */
2607                 if (entry != pending)
2608                         if (handle_futex_death((void __user *)entry + futex_offset,
2609                                                 curr, pi))
2610                                 return;
2611                 if (rc)
2612                         return;
2613                 entry = next_entry;
2614                 pi = next_pi;
2615                 /*
2616                  * Avoid excessively long or circular lists:
2617                  */
2618                 if (!--limit)
2619                         break;
2620
2621                 cond_resched();
2622         }
2623
2624         if (pending)
2625                 handle_futex_death((void __user *)pending + futex_offset,
2626                                    curr, pip);
2627 }
2628
2629 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2630                 u32 __user *uaddr2, u32 val2, u32 val3)
2631 {
2632         int cmd = op & FUTEX_CMD_MASK;
2633         unsigned int flags = 0;
2634
2635         if (!(op & FUTEX_PRIVATE_FLAG))
2636                 flags |= FLAGS_SHARED;
2637
2638         if (op & FUTEX_CLOCK_REALTIME) {
2639                 flags |= FLAGS_CLOCKRT;
2640                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2641                         return -ENOSYS;
2642         }
2643
2644         switch (cmd) {
2645         case FUTEX_LOCK_PI:
2646         case FUTEX_UNLOCK_PI:
2647         case FUTEX_TRYLOCK_PI:
2648         case FUTEX_WAIT_REQUEUE_PI:
2649         case FUTEX_CMP_REQUEUE_PI:
2650                 if (!futex_cmpxchg_enabled)
2651                         return -ENOSYS;
2652         }
2653
2654         switch (cmd) {
2655         case FUTEX_WAIT:
2656                 val3 = FUTEX_BITSET_MATCH_ANY;
2657         case FUTEX_WAIT_BITSET:
2658                 return futex_wait(uaddr, flags, val, timeout, val3);
2659         case FUTEX_WAKE:
2660                 val3 = FUTEX_BITSET_MATCH_ANY;
2661         case FUTEX_WAKE_BITSET:
2662                 return futex_wake(uaddr, flags, val, val3);
2663         case FUTEX_REQUEUE:
2664                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2665         case FUTEX_CMP_REQUEUE:
2666                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2667         case FUTEX_WAKE_OP:
2668                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2669         case FUTEX_LOCK_PI:
2670                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2671         case FUTEX_UNLOCK_PI:
2672                 return futex_unlock_pi(uaddr, flags);
2673         case FUTEX_TRYLOCK_PI:
2674                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2675         case FUTEX_WAIT_REQUEUE_PI:
2676                 val3 = FUTEX_BITSET_MATCH_ANY;
2677                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2678                                              uaddr2);
2679         case FUTEX_CMP_REQUEUE_PI:
2680                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2681         }
2682         return -ENOSYS;
2683 }
2684
2685
2686 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2687                 struct timespec __user *, utime, u32 __user *, uaddr2,
2688                 u32, val3)
2689 {
2690         struct timespec ts;
2691         ktime_t t, *tp = NULL;
2692         u32 val2 = 0;
2693         int cmd = op & FUTEX_CMD_MASK;
2694
2695         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2696                       cmd == FUTEX_WAIT_BITSET ||
2697                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2698                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2699                         return -EFAULT;
2700                 if (!timespec_valid(&ts))
2701                         return -EINVAL;
2702
2703                 t = timespec_to_ktime(ts);
2704                 if (cmd == FUTEX_WAIT)
2705                         t = ktime_add_safe(ktime_get(), t);
2706                 tp = &t;
2707         }
2708         /*
2709          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2710          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2711          */
2712         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2713             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2714                 val2 = (u32) (unsigned long) utime;
2715
2716         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2717 }
2718
2719 static int __init futex_init(void)
2720 {
2721         u32 curval;
2722         int i;
2723
2724         /*
2725          * This will fail and we want it. Some arch implementations do
2726          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2727          * functionality. We want to know that before we call in any
2728          * of the complex code paths. Also we want to prevent
2729          * registration of robust lists in that case. NULL is
2730          * guaranteed to fault and we get -EFAULT on functional
2731          * implementation, the non-functional ones will return
2732          * -ENOSYS.
2733          */
2734         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2735                 futex_cmpxchg_enabled = 1;
2736
2737         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2738                 plist_head_init(&futex_queues[i].chain);
2739                 spin_lock_init(&futex_queues[i].lock);
2740         }
2741
2742         return 0;
2743 }
2744 __initcall(futex_init);