xdp: fix cpumap redirect SKB creation bug
[platform/kernel/linux-rpi.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/compat.h>
48 #include <linux/slab.h>
49 #include <linux/poll.h>
50 #include <linux/fs.h>
51 #include <linux/file.h>
52 #include <linux/jhash.h>
53 #include <linux/init.h>
54 #include <linux/futex.h>
55 #include <linux/mount.h>
56 #include <linux/pagemap.h>
57 #include <linux/syscalls.h>
58 #include <linux/signal.h>
59 #include <linux/export.h>
60 #include <linux/magic.h>
61 #include <linux/pid.h>
62 #include <linux/nsproxy.h>
63 #include <linux/ptrace.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/wake_q.h>
66 #include <linux/sched/mm.h>
67 #include <linux/hugetlb.h>
68 #include <linux/freezer.h>
69 #include <linux/bootmem.h>
70 #include <linux/fault-inject.h>
71
72 #include <asm/futex.h>
73
74 #include "locking/rtmutex_common.h"
75
76 /*
77  * READ this before attempting to hack on futexes!
78  *
79  * Basic futex operation and ordering guarantees
80  * =============================================
81  *
82  * The waiter reads the futex value in user space and calls
83  * futex_wait(). This function computes the hash bucket and acquires
84  * the hash bucket lock. After that it reads the futex user space value
85  * again and verifies that the data has not changed. If it has not changed
86  * it enqueues itself into the hash bucket, releases the hash bucket lock
87  * and schedules.
88  *
89  * The waker side modifies the user space value of the futex and calls
90  * futex_wake(). This function computes the hash bucket and acquires the
91  * hash bucket lock. Then it looks for waiters on that futex in the hash
92  * bucket and wakes them.
93  *
94  * In futex wake up scenarios where no tasks are blocked on a futex, taking
95  * the hb spinlock can be avoided and simply return. In order for this
96  * optimization to work, ordering guarantees must exist so that the waiter
97  * being added to the list is acknowledged when the list is concurrently being
98  * checked by the waker, avoiding scenarios like the following:
99  *
100  * CPU 0                               CPU 1
101  * val = *futex;
102  * sys_futex(WAIT, futex, val);
103  *   futex_wait(futex, val);
104  *   uval = *futex;
105  *                                     *futex = newval;
106  *                                     sys_futex(WAKE, futex);
107  *                                       futex_wake(futex);
108  *                                       if (queue_empty())
109  *                                         return;
110  *   if (uval == val)
111  *      lock(hash_bucket(futex));
112  *      queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();
115  *
116  * This would cause the waiter on CPU 0 to wait forever because it
117  * missed the transition of the user space value from val to newval
118  * and the waker did not find the waiter in the hash bucket queue.
119  *
120  * The correct serialization ensures that a waiter either observes
121  * the changed user space value before blocking or is woken by a
122  * concurrent waker:
123  *
124  * CPU 0                                 CPU 1
125  * val = *futex;
126  * sys_futex(WAIT, futex, val);
127  *   futex_wait(futex, val);
128  *
129  *   waiters++; (a)
130  *   smp_mb(); (A) <-- paired with -.
131  *                                  |
132  *   lock(hash_bucket(futex));      |
133  *                                  |
134  *   uval = *futex;                 |
135  *                                  |        *futex = newval;
136  *                                  |        sys_futex(WAKE, futex);
137  *                                  |          futex_wake(futex);
138  *                                  |
139  *                                  `--------> smp_mb(); (B)
140  *   if (uval == val)
141  *     queue();
142  *     unlock(hash_bucket(futex));
143  *     schedule();                         if (waiters)
144  *                                           lock(hash_bucket(futex));
145  *   else                                    wake_waiters(futex);
146  *     waiters--; (b)                        unlock(hash_bucket(futex));
147  *
148  * Where (A) orders the waiters increment and the futex value read through
149  * atomic operations (see hb_waiters_inc) and where (B) orders the write
150  * to futex and the waiters read -- this is done by the barriers for both
151  * shared and private futexes in get_futex_key_refs().
152  *
153  * This yields the following case (where X:=waiters, Y:=futex):
154  *
155  *      X = Y = 0
156  *
157  *      w[X]=1          w[Y]=1
158  *      MB              MB
159  *      r[Y]=y          r[X]=x
160  *
161  * Which guarantees that x==0 && y==0 is impossible; which translates back into
162  * the guarantee that we cannot both miss the futex variable change and the
163  * enqueue.
164  *
165  * Note that a new waiter is accounted for in (a) even when it is possible that
166  * the wait call can return error, in which case we backtrack from it in (b).
167  * Refer to the comment in queue_lock().
168  *
169  * Similarly, in order to account for waiters being requeued on another
170  * address we always increment the waiters for the destination bucket before
171  * acquiring the lock. It then decrements them again  after releasing it -
172  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173  * will do the additional required waiter count housekeeping. This is done for
174  * double_lock_hb() and double_unlock_hb(), respectively.
175  */
176
177 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178 #define futex_cmpxchg_enabled 1
179 #else
180 static int  __read_mostly futex_cmpxchg_enabled;
181 #endif
182
183 /*
184  * Futex flags used to encode options to functions and preserve them across
185  * restarts.
186  */
187 #ifdef CONFIG_MMU
188 # define FLAGS_SHARED           0x01
189 #else
190 /*
191  * NOMMU does not have per process address space. Let the compiler optimize
192  * code away.
193  */
194 # define FLAGS_SHARED           0x00
195 #endif
196 #define FLAGS_CLOCKRT           0x02
197 #define FLAGS_HAS_TIMEOUT       0x04
198
199 /*
200  * Priority Inheritance state:
201  */
202 struct futex_pi_state {
203         /*
204          * list of 'owned' pi_state instances - these have to be
205          * cleaned up in do_exit() if the task exits prematurely:
206          */
207         struct list_head list;
208
209         /*
210          * The PI object:
211          */
212         struct rt_mutex pi_mutex;
213
214         struct task_struct *owner;
215         atomic_t refcount;
216
217         union futex_key key;
218 } __randomize_layout;
219
220 /**
221  * struct futex_q - The hashed futex queue entry, one per waiting task
222  * @list:               priority-sorted list of tasks waiting on this futex
223  * @task:               the task waiting on the futex
224  * @lock_ptr:           the hash bucket lock
225  * @key:                the key the futex is hashed on
226  * @pi_state:           optional priority inheritance state
227  * @rt_waiter:          rt_waiter storage for use with requeue_pi
228  * @requeue_pi_key:     the requeue_pi target futex key
229  * @bitset:             bitset for the optional bitmasked wakeup
230  *
231  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
232  * we can wake only the relevant ones (hashed queues may be shared).
233  *
234  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
235  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
236  * The order of wakeup is always to make the first condition true, then
237  * the second.
238  *
239  * PI futexes are typically woken before they are removed from the hash list via
240  * the rt_mutex code. See unqueue_me_pi().
241  */
242 struct futex_q {
243         struct plist_node list;
244
245         struct task_struct *task;
246         spinlock_t *lock_ptr;
247         union futex_key key;
248         struct futex_pi_state *pi_state;
249         struct rt_mutex_waiter *rt_waiter;
250         union futex_key *requeue_pi_key;
251         u32 bitset;
252 } __randomize_layout;
253
254 static const struct futex_q futex_q_init = {
255         /* list gets initialized in queue_me()*/
256         .key = FUTEX_KEY_INIT,
257         .bitset = FUTEX_BITSET_MATCH_ANY
258 };
259
260 /*
261  * Hash buckets are shared by all the futex_keys that hash to the same
262  * location.  Each key may have multiple futex_q structures, one for each task
263  * waiting on a futex.
264  */
265 struct futex_hash_bucket {
266         atomic_t waiters;
267         spinlock_t lock;
268         struct plist_head chain;
269 } ____cacheline_aligned_in_smp;
270
271 /*
272  * The base of the bucket array and its size are always used together
273  * (after initialization only in hash_futex()), so ensure that they
274  * reside in the same cacheline.
275  */
276 static struct {
277         struct futex_hash_bucket *queues;
278         unsigned long            hashsize;
279 } __futex_data __read_mostly __aligned(2*sizeof(long));
280 #define futex_queues   (__futex_data.queues)
281 #define futex_hashsize (__futex_data.hashsize)
282
283
284 /*
285  * Fault injections for futexes.
286  */
287 #ifdef CONFIG_FAIL_FUTEX
288
289 static struct {
290         struct fault_attr attr;
291
292         bool ignore_private;
293 } fail_futex = {
294         .attr = FAULT_ATTR_INITIALIZER,
295         .ignore_private = false,
296 };
297
298 static int __init setup_fail_futex(char *str)
299 {
300         return setup_fault_attr(&fail_futex.attr, str);
301 }
302 __setup("fail_futex=", setup_fail_futex);
303
304 static bool should_fail_futex(bool fshared)
305 {
306         if (fail_futex.ignore_private && !fshared)
307                 return false;
308
309         return should_fail(&fail_futex.attr, 1);
310 }
311
312 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
314 static int __init fail_futex_debugfs(void)
315 {
316         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317         struct dentry *dir;
318
319         dir = fault_create_debugfs_attr("fail_futex", NULL,
320                                         &fail_futex.attr);
321         if (IS_ERR(dir))
322                 return PTR_ERR(dir);
323
324         if (!debugfs_create_bool("ignore-private", mode, dir,
325                                  &fail_futex.ignore_private)) {
326                 debugfs_remove_recursive(dir);
327                 return -ENOMEM;
328         }
329
330         return 0;
331 }
332
333 late_initcall(fail_futex_debugfs);
334
335 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
336
337 #else
338 static inline bool should_fail_futex(bool fshared)
339 {
340         return false;
341 }
342 #endif /* CONFIG_FAIL_FUTEX */
343
344 static inline void futex_get_mm(union futex_key *key)
345 {
346         mmgrab(key->private.mm);
347         /*
348          * Ensure futex_get_mm() implies a full barrier such that
349          * get_futex_key() implies a full barrier. This is relied upon
350          * as smp_mb(); (B), see the ordering comment above.
351          */
352         smp_mb__after_atomic();
353 }
354
355 /*
356  * Reflects a new waiter being added to the waitqueue.
357  */
358 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
359 {
360 #ifdef CONFIG_SMP
361         atomic_inc(&hb->waiters);
362         /*
363          * Full barrier (A), see the ordering comment above.
364          */
365         smp_mb__after_atomic();
366 #endif
367 }
368
369 /*
370  * Reflects a waiter being removed from the waitqueue by wakeup
371  * paths.
372  */
373 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
374 {
375 #ifdef CONFIG_SMP
376         atomic_dec(&hb->waiters);
377 #endif
378 }
379
380 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
381 {
382 #ifdef CONFIG_SMP
383         return atomic_read(&hb->waiters);
384 #else
385         return 1;
386 #endif
387 }
388
389 /**
390  * hash_futex - Return the hash bucket in the global hash
391  * @key:        Pointer to the futex key for which the hash is calculated
392  *
393  * We hash on the keys returned from get_futex_key (see below) and return the
394  * corresponding hash bucket in the global hash.
395  */
396 static struct futex_hash_bucket *hash_futex(union futex_key *key)
397 {
398         u32 hash = jhash2((u32*)&key->both.word,
399                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
400                           key->both.offset);
401         return &futex_queues[hash & (futex_hashsize - 1)];
402 }
403
404
405 /**
406  * match_futex - Check whether two futex keys are equal
407  * @key1:       Pointer to key1
408  * @key2:       Pointer to key2
409  *
410  * Return 1 if two futex_keys are equal, 0 otherwise.
411  */
412 static inline int match_futex(union futex_key *key1, union futex_key *key2)
413 {
414         return (key1 && key2
415                 && key1->both.word == key2->both.word
416                 && key1->both.ptr == key2->both.ptr
417                 && key1->both.offset == key2->both.offset);
418 }
419
420 /*
421  * Take a reference to the resource addressed by a key.
422  * Can be called while holding spinlocks.
423  *
424  */
425 static void get_futex_key_refs(union futex_key *key)
426 {
427         if (!key->both.ptr)
428                 return;
429
430         /*
431          * On MMU less systems futexes are always "private" as there is no per
432          * process address space. We need the smp wmb nevertheless - yes,
433          * arch/blackfin has MMU less SMP ...
434          */
435         if (!IS_ENABLED(CONFIG_MMU)) {
436                 smp_mb(); /* explicit smp_mb(); (B) */
437                 return;
438         }
439
440         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
441         case FUT_OFF_INODE:
442                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
443                 break;
444         case FUT_OFF_MMSHARED:
445                 futex_get_mm(key); /* implies smp_mb(); (B) */
446                 break;
447         default:
448                 /*
449                  * Private futexes do not hold reference on an inode or
450                  * mm, therefore the only purpose of calling get_futex_key_refs
451                  * is because we need the barrier for the lockless waiter check.
452                  */
453                 smp_mb(); /* explicit smp_mb(); (B) */
454         }
455 }
456
457 /*
458  * Drop a reference to the resource addressed by a key.
459  * The hash bucket spinlock must not be held. This is
460  * a no-op for private futexes, see comment in the get
461  * counterpart.
462  */
463 static void drop_futex_key_refs(union futex_key *key)
464 {
465         if (!key->both.ptr) {
466                 /* If we're here then we tried to put a key we failed to get */
467                 WARN_ON_ONCE(1);
468                 return;
469         }
470
471         if (!IS_ENABLED(CONFIG_MMU))
472                 return;
473
474         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
475         case FUT_OFF_INODE:
476                 iput(key->shared.inode);
477                 break;
478         case FUT_OFF_MMSHARED:
479                 mmdrop(key->private.mm);
480                 break;
481         }
482 }
483
484 /**
485  * get_futex_key() - Get parameters which are the keys for a futex
486  * @uaddr:      virtual address of the futex
487  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
488  * @key:        address where result is stored.
489  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
490  *              VERIFY_WRITE)
491  *
492  * Return: a negative error code or 0
493  *
494  * The key words are stored in @key on success.
495  *
496  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
497  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
498  * We can usually work out the index without swapping in the page.
499  *
500  * lock_page() might sleep, the caller should not hold a spinlock.
501  */
502 static int
503 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
504 {
505         unsigned long address = (unsigned long)uaddr;
506         struct mm_struct *mm = current->mm;
507         struct page *page, *tail;
508         struct address_space *mapping;
509         int err, ro = 0;
510
511         /*
512          * The futex address must be "naturally" aligned.
513          */
514         key->both.offset = address % PAGE_SIZE;
515         if (unlikely((address % sizeof(u32)) != 0))
516                 return -EINVAL;
517         address -= key->both.offset;
518
519         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
520                 return -EFAULT;
521
522         if (unlikely(should_fail_futex(fshared)))
523                 return -EFAULT;
524
525         /*
526          * PROCESS_PRIVATE futexes are fast.
527          * As the mm cannot disappear under us and the 'key' only needs
528          * virtual address, we dont even have to find the underlying vma.
529          * Note : We do have to check 'uaddr' is a valid user address,
530          *        but access_ok() should be faster than find_vma()
531          */
532         if (!fshared) {
533                 key->private.mm = mm;
534                 key->private.address = address;
535                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
536                 return 0;
537         }
538
539 again:
540         /* Ignore any VERIFY_READ mapping (futex common case) */
541         if (unlikely(should_fail_futex(fshared)))
542                 return -EFAULT;
543
544         err = get_user_pages_fast(address, 1, 1, &page);
545         /*
546          * If write access is not required (eg. FUTEX_WAIT), try
547          * and get read-only access.
548          */
549         if (err == -EFAULT && rw == VERIFY_READ) {
550                 err = get_user_pages_fast(address, 1, 0, &page);
551                 ro = 1;
552         }
553         if (err < 0)
554                 return err;
555         else
556                 err = 0;
557
558         /*
559          * The treatment of mapping from this point on is critical. The page
560          * lock protects many things but in this context the page lock
561          * stabilizes mapping, prevents inode freeing in the shared
562          * file-backed region case and guards against movement to swap cache.
563          *
564          * Strictly speaking the page lock is not needed in all cases being
565          * considered here and page lock forces unnecessarily serialization
566          * From this point on, mapping will be re-verified if necessary and
567          * page lock will be acquired only if it is unavoidable
568          *
569          * Mapping checks require the head page for any compound page so the
570          * head page and mapping is looked up now. For anonymous pages, it
571          * does not matter if the page splits in the future as the key is
572          * based on the address. For filesystem-backed pages, the tail is
573          * required as the index of the page determines the key. For
574          * base pages, there is no tail page and tail == page.
575          */
576         tail = page;
577         page = compound_head(page);
578         mapping = READ_ONCE(page->mapping);
579
580         /*
581          * If page->mapping is NULL, then it cannot be a PageAnon
582          * page; but it might be the ZERO_PAGE or in the gate area or
583          * in a special mapping (all cases which we are happy to fail);
584          * or it may have been a good file page when get_user_pages_fast
585          * found it, but truncated or holepunched or subjected to
586          * invalidate_complete_page2 before we got the page lock (also
587          * cases which we are happy to fail).  And we hold a reference,
588          * so refcount care in invalidate_complete_page's remove_mapping
589          * prevents drop_caches from setting mapping to NULL beneath us.
590          *
591          * The case we do have to guard against is when memory pressure made
592          * shmem_writepage move it from filecache to swapcache beneath us:
593          * an unlikely race, but we do need to retry for page->mapping.
594          */
595         if (unlikely(!mapping)) {
596                 int shmem_swizzled;
597
598                 /*
599                  * Page lock is required to identify which special case above
600                  * applies. If this is really a shmem page then the page lock
601                  * will prevent unexpected transitions.
602                  */
603                 lock_page(page);
604                 shmem_swizzled = PageSwapCache(page) || page->mapping;
605                 unlock_page(page);
606                 put_page(page);
607
608                 if (shmem_swizzled)
609                         goto again;
610
611                 return -EFAULT;
612         }
613
614         /*
615          * Private mappings are handled in a simple way.
616          *
617          * If the futex key is stored on an anonymous page, then the associated
618          * object is the mm which is implicitly pinned by the calling process.
619          *
620          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
621          * it's a read-only handle, it's expected that futexes attach to
622          * the object not the particular process.
623          */
624         if (PageAnon(page)) {
625                 /*
626                  * A RO anonymous page will never change and thus doesn't make
627                  * sense for futex operations.
628                  */
629                 if (unlikely(should_fail_futex(fshared)) || ro) {
630                         err = -EFAULT;
631                         goto out;
632                 }
633
634                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
635                 key->private.mm = mm;
636                 key->private.address = address;
637
638                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
639
640         } else {
641                 struct inode *inode;
642
643                 /*
644                  * The associated futex object in this case is the inode and
645                  * the page->mapping must be traversed. Ordinarily this should
646                  * be stabilised under page lock but it's not strictly
647                  * necessary in this case as we just want to pin the inode, not
648                  * update the radix tree or anything like that.
649                  *
650                  * The RCU read lock is taken as the inode is finally freed
651                  * under RCU. If the mapping still matches expectations then the
652                  * mapping->host can be safely accessed as being a valid inode.
653                  */
654                 rcu_read_lock();
655
656                 if (READ_ONCE(page->mapping) != mapping) {
657                         rcu_read_unlock();
658                         put_page(page);
659
660                         goto again;
661                 }
662
663                 inode = READ_ONCE(mapping->host);
664                 if (!inode) {
665                         rcu_read_unlock();
666                         put_page(page);
667
668                         goto again;
669                 }
670
671                 /*
672                  * Take a reference unless it is about to be freed. Previously
673                  * this reference was taken by ihold under the page lock
674                  * pinning the inode in place so i_lock was unnecessary. The
675                  * only way for this check to fail is if the inode was
676                  * truncated in parallel which is almost certainly an
677                  * application bug. In such a case, just retry.
678                  *
679                  * We are not calling into get_futex_key_refs() in file-backed
680                  * cases, therefore a successful atomic_inc return below will
681                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
682                  */
683                 if (!atomic_inc_not_zero(&inode->i_count)) {
684                         rcu_read_unlock();
685                         put_page(page);
686
687                         goto again;
688                 }
689
690                 /* Should be impossible but lets be paranoid for now */
691                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
692                         err = -EFAULT;
693                         rcu_read_unlock();
694                         iput(inode);
695
696                         goto out;
697                 }
698
699                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
700                 key->shared.inode = inode;
701                 key->shared.pgoff = basepage_index(tail);
702                 rcu_read_unlock();
703         }
704
705 out:
706         put_page(page);
707         return err;
708 }
709
710 static inline void put_futex_key(union futex_key *key)
711 {
712         drop_futex_key_refs(key);
713 }
714
715 /**
716  * fault_in_user_writeable() - Fault in user address and verify RW access
717  * @uaddr:      pointer to faulting user space address
718  *
719  * Slow path to fixup the fault we just took in the atomic write
720  * access to @uaddr.
721  *
722  * We have no generic implementation of a non-destructive write to the
723  * user address. We know that we faulted in the atomic pagefault
724  * disabled section so we can as well avoid the #PF overhead by
725  * calling get_user_pages() right away.
726  */
727 static int fault_in_user_writeable(u32 __user *uaddr)
728 {
729         struct mm_struct *mm = current->mm;
730         int ret;
731
732         down_read(&mm->mmap_sem);
733         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
734                                FAULT_FLAG_WRITE, NULL);
735         up_read(&mm->mmap_sem);
736
737         return ret < 0 ? ret : 0;
738 }
739
740 /**
741  * futex_top_waiter() - Return the highest priority waiter on a futex
742  * @hb:         the hash bucket the futex_q's reside in
743  * @key:        the futex key (to distinguish it from other futex futex_q's)
744  *
745  * Must be called with the hb lock held.
746  */
747 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
748                                         union futex_key *key)
749 {
750         struct futex_q *this;
751
752         plist_for_each_entry(this, &hb->chain, list) {
753                 if (match_futex(&this->key, key))
754                         return this;
755         }
756         return NULL;
757 }
758
759 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
760                                       u32 uval, u32 newval)
761 {
762         int ret;
763
764         pagefault_disable();
765         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
766         pagefault_enable();
767
768         return ret;
769 }
770
771 static int get_futex_value_locked(u32 *dest, u32 __user *from)
772 {
773         int ret;
774
775         pagefault_disable();
776         ret = __get_user(*dest, from);
777         pagefault_enable();
778
779         return ret ? -EFAULT : 0;
780 }
781
782
783 /*
784  * PI code:
785  */
786 static int refill_pi_state_cache(void)
787 {
788         struct futex_pi_state *pi_state;
789
790         if (likely(current->pi_state_cache))
791                 return 0;
792
793         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
794
795         if (!pi_state)
796                 return -ENOMEM;
797
798         INIT_LIST_HEAD(&pi_state->list);
799         /* pi_mutex gets initialized later */
800         pi_state->owner = NULL;
801         atomic_set(&pi_state->refcount, 1);
802         pi_state->key = FUTEX_KEY_INIT;
803
804         current->pi_state_cache = pi_state;
805
806         return 0;
807 }
808
809 static struct futex_pi_state *alloc_pi_state(void)
810 {
811         struct futex_pi_state *pi_state = current->pi_state_cache;
812
813         WARN_ON(!pi_state);
814         current->pi_state_cache = NULL;
815
816         return pi_state;
817 }
818
819 static void get_pi_state(struct futex_pi_state *pi_state)
820 {
821         WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
822 }
823
824 /*
825  * Drops a reference to the pi_state object and frees or caches it
826  * when the last reference is gone.
827  */
828 static void put_pi_state(struct futex_pi_state *pi_state)
829 {
830         if (!pi_state)
831                 return;
832
833         if (!atomic_dec_and_test(&pi_state->refcount))
834                 return;
835
836         /*
837          * If pi_state->owner is NULL, the owner is most probably dying
838          * and has cleaned up the pi_state already
839          */
840         if (pi_state->owner) {
841                 struct task_struct *owner;
842
843                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
844                 owner = pi_state->owner;
845                 if (owner) {
846                         raw_spin_lock(&owner->pi_lock);
847                         list_del_init(&pi_state->list);
848                         raw_spin_unlock(&owner->pi_lock);
849                 }
850                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
851                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
852         }
853
854         if (current->pi_state_cache) {
855                 kfree(pi_state);
856         } else {
857                 /*
858                  * pi_state->list is already empty.
859                  * clear pi_state->owner.
860                  * refcount is at 0 - put it back to 1.
861                  */
862                 pi_state->owner = NULL;
863                 atomic_set(&pi_state->refcount, 1);
864                 current->pi_state_cache = pi_state;
865         }
866 }
867
868 #ifdef CONFIG_FUTEX_PI
869
870 /*
871  * This task is holding PI mutexes at exit time => bad.
872  * Kernel cleans up PI-state, but userspace is likely hosed.
873  * (Robust-futex cleanup is separate and might save the day for userspace.)
874  */
875 void exit_pi_state_list(struct task_struct *curr)
876 {
877         struct list_head *next, *head = &curr->pi_state_list;
878         struct futex_pi_state *pi_state;
879         struct futex_hash_bucket *hb;
880         union futex_key key = FUTEX_KEY_INIT;
881
882         if (!futex_cmpxchg_enabled)
883                 return;
884         /*
885          * We are a ZOMBIE and nobody can enqueue itself on
886          * pi_state_list anymore, but we have to be careful
887          * versus waiters unqueueing themselves:
888          */
889         raw_spin_lock_irq(&curr->pi_lock);
890         while (!list_empty(head)) {
891                 next = head->next;
892                 pi_state = list_entry(next, struct futex_pi_state, list);
893                 key = pi_state->key;
894                 hb = hash_futex(&key);
895
896                 /*
897                  * We can race against put_pi_state() removing itself from the
898                  * list (a waiter going away). put_pi_state() will first
899                  * decrement the reference count and then modify the list, so
900                  * its possible to see the list entry but fail this reference
901                  * acquire.
902                  *
903                  * In that case; drop the locks to let put_pi_state() make
904                  * progress and retry the loop.
905                  */
906                 if (!atomic_inc_not_zero(&pi_state->refcount)) {
907                         raw_spin_unlock_irq(&curr->pi_lock);
908                         cpu_relax();
909                         raw_spin_lock_irq(&curr->pi_lock);
910                         continue;
911                 }
912                 raw_spin_unlock_irq(&curr->pi_lock);
913
914                 spin_lock(&hb->lock);
915                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
916                 raw_spin_lock(&curr->pi_lock);
917                 /*
918                  * We dropped the pi-lock, so re-check whether this
919                  * task still owns the PI-state:
920                  */
921                 if (head->next != next) {
922                         /* retain curr->pi_lock for the loop invariant */
923                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
924                         spin_unlock(&hb->lock);
925                         put_pi_state(pi_state);
926                         continue;
927                 }
928
929                 WARN_ON(pi_state->owner != curr);
930                 WARN_ON(list_empty(&pi_state->list));
931                 list_del_init(&pi_state->list);
932                 pi_state->owner = NULL;
933
934                 raw_spin_unlock(&curr->pi_lock);
935                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
936                 spin_unlock(&hb->lock);
937
938                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
939                 put_pi_state(pi_state);
940
941                 raw_spin_lock_irq(&curr->pi_lock);
942         }
943         raw_spin_unlock_irq(&curr->pi_lock);
944 }
945
946 #endif
947
948 /*
949  * We need to check the following states:
950  *
951  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
952  *
953  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
954  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
955  *
956  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
957  *
958  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
959  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
960  *
961  * [6]  Found  | Found    | task      | 0         | 1      | Valid
962  *
963  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
964  *
965  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
966  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
967  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
968  *
969  * [1]  Indicates that the kernel can acquire the futex atomically. We
970  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
971  *
972  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
973  *      thread is found then it indicates that the owner TID has died.
974  *
975  * [3]  Invalid. The waiter is queued on a non PI futex
976  *
977  * [4]  Valid state after exit_robust_list(), which sets the user space
978  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
979  *
980  * [5]  The user space value got manipulated between exit_robust_list()
981  *      and exit_pi_state_list()
982  *
983  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
984  *      the pi_state but cannot access the user space value.
985  *
986  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
987  *
988  * [8]  Owner and user space value match
989  *
990  * [9]  There is no transient state which sets the user space TID to 0
991  *      except exit_robust_list(), but this is indicated by the
992  *      FUTEX_OWNER_DIED bit. See [4]
993  *
994  * [10] There is no transient state which leaves owner and user space
995  *      TID out of sync.
996  *
997  *
998  * Serialization and lifetime rules:
999  *
1000  * hb->lock:
1001  *
1002  *      hb -> futex_q, relation
1003  *      futex_q -> pi_state, relation
1004  *
1005  *      (cannot be raw because hb can contain arbitrary amount
1006  *       of futex_q's)
1007  *
1008  * pi_mutex->wait_lock:
1009  *
1010  *      {uval, pi_state}
1011  *
1012  *      (and pi_mutex 'obviously')
1013  *
1014  * p->pi_lock:
1015  *
1016  *      p->pi_state_list -> pi_state->list, relation
1017  *
1018  * pi_state->refcount:
1019  *
1020  *      pi_state lifetime
1021  *
1022  *
1023  * Lock order:
1024  *
1025  *   hb->lock
1026  *     pi_mutex->wait_lock
1027  *       p->pi_lock
1028  *
1029  */
1030
1031 /*
1032  * Validate that the existing waiter has a pi_state and sanity check
1033  * the pi_state against the user space value. If correct, attach to
1034  * it.
1035  */
1036 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1037                               struct futex_pi_state *pi_state,
1038                               struct futex_pi_state **ps)
1039 {
1040         pid_t pid = uval & FUTEX_TID_MASK;
1041         u32 uval2;
1042         int ret;
1043
1044         /*
1045          * Userspace might have messed up non-PI and PI futexes [3]
1046          */
1047         if (unlikely(!pi_state))
1048                 return -EINVAL;
1049
1050         /*
1051          * We get here with hb->lock held, and having found a
1052          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1053          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1054          * which in turn means that futex_lock_pi() still has a reference on
1055          * our pi_state.
1056          *
1057          * The waiter holding a reference on @pi_state also protects against
1058          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1059          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1060          * free pi_state before we can take a reference ourselves.
1061          */
1062         WARN_ON(!atomic_read(&pi_state->refcount));
1063
1064         /*
1065          * Now that we have a pi_state, we can acquire wait_lock
1066          * and do the state validation.
1067          */
1068         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1069
1070         /*
1071          * Since {uval, pi_state} is serialized by wait_lock, and our current
1072          * uval was read without holding it, it can have changed. Verify it
1073          * still is what we expect it to be, otherwise retry the entire
1074          * operation.
1075          */
1076         if (get_futex_value_locked(&uval2, uaddr))
1077                 goto out_efault;
1078
1079         if (uval != uval2)
1080                 goto out_eagain;
1081
1082         /*
1083          * Handle the owner died case:
1084          */
1085         if (uval & FUTEX_OWNER_DIED) {
1086                 /*
1087                  * exit_pi_state_list sets owner to NULL and wakes the
1088                  * topmost waiter. The task which acquires the
1089                  * pi_state->rt_mutex will fixup owner.
1090                  */
1091                 if (!pi_state->owner) {
1092                         /*
1093                          * No pi state owner, but the user space TID
1094                          * is not 0. Inconsistent state. [5]
1095                          */
1096                         if (pid)
1097                                 goto out_einval;
1098                         /*
1099                          * Take a ref on the state and return success. [4]
1100                          */
1101                         goto out_attach;
1102                 }
1103
1104                 /*
1105                  * If TID is 0, then either the dying owner has not
1106                  * yet executed exit_pi_state_list() or some waiter
1107                  * acquired the rtmutex in the pi state, but did not
1108                  * yet fixup the TID in user space.
1109                  *
1110                  * Take a ref on the state and return success. [6]
1111                  */
1112                 if (!pid)
1113                         goto out_attach;
1114         } else {
1115                 /*
1116                  * If the owner died bit is not set, then the pi_state
1117                  * must have an owner. [7]
1118                  */
1119                 if (!pi_state->owner)
1120                         goto out_einval;
1121         }
1122
1123         /*
1124          * Bail out if user space manipulated the futex value. If pi
1125          * state exists then the owner TID must be the same as the
1126          * user space TID. [9/10]
1127          */
1128         if (pid != task_pid_vnr(pi_state->owner))
1129                 goto out_einval;
1130
1131 out_attach:
1132         get_pi_state(pi_state);
1133         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1134         *ps = pi_state;
1135         return 0;
1136
1137 out_einval:
1138         ret = -EINVAL;
1139         goto out_error;
1140
1141 out_eagain:
1142         ret = -EAGAIN;
1143         goto out_error;
1144
1145 out_efault:
1146         ret = -EFAULT;
1147         goto out_error;
1148
1149 out_error:
1150         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1151         return ret;
1152 }
1153
1154 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1155                             struct task_struct *tsk)
1156 {
1157         u32 uval2;
1158
1159         /*
1160          * If PF_EXITPIDONE is not yet set, then try again.
1161          */
1162         if (tsk && !(tsk->flags & PF_EXITPIDONE))
1163                 return -EAGAIN;
1164
1165         /*
1166          * Reread the user space value to handle the following situation:
1167          *
1168          * CPU0                         CPU1
1169          *
1170          * sys_exit()                   sys_futex()
1171          *  do_exit()                    futex_lock_pi()
1172          *                                futex_lock_pi_atomic()
1173          *   exit_signals(tsk)              No waiters:
1174          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1175          *  mm_release(tsk)                 Set waiter bit
1176          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1177          *      Set owner died              attach_to_pi_owner() {
1178          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1179          *   }                               if (!tsk->flags & PF_EXITING) {
1180          *  ...                                attach();
1181          *  tsk->flags |= PF_EXITPIDONE;     } else {
1182          *                                     if (!(tsk->flags & PF_EXITPIDONE))
1183          *                                       return -EAGAIN;
1184          *                                     return -ESRCH; <--- FAIL
1185          *                                   }
1186          *
1187          * Returning ESRCH unconditionally is wrong here because the
1188          * user space value has been changed by the exiting task.
1189          *
1190          * The same logic applies to the case where the exiting task is
1191          * already gone.
1192          */
1193         if (get_futex_value_locked(&uval2, uaddr))
1194                 return -EFAULT;
1195
1196         /* If the user space value has changed, try again. */
1197         if (uval2 != uval)
1198                 return -EAGAIN;
1199
1200         /*
1201          * The exiting task did not have a robust list, the robust list was
1202          * corrupted or the user space value in *uaddr is simply bogus.
1203          * Give up and tell user space.
1204          */
1205         return -ESRCH;
1206 }
1207
1208 /*
1209  * Lookup the task for the TID provided from user space and attach to
1210  * it after doing proper sanity checks.
1211  */
1212 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1213                               struct futex_pi_state **ps)
1214 {
1215         pid_t pid = uval & FUTEX_TID_MASK;
1216         struct futex_pi_state *pi_state;
1217         struct task_struct *p;
1218
1219         /*
1220          * We are the first waiter - try to look up the real owner and attach
1221          * the new pi_state to it, but bail out when TID = 0 [1]
1222          *
1223          * The !pid check is paranoid. None of the call sites should end up
1224          * with pid == 0, but better safe than sorry. Let the caller retry
1225          */
1226         if (!pid)
1227                 return -EAGAIN;
1228         p = find_get_task_by_vpid(pid);
1229         if (!p)
1230                 return handle_exit_race(uaddr, uval, NULL);
1231
1232         if (unlikely(p->flags & PF_KTHREAD)) {
1233                 put_task_struct(p);
1234                 return -EPERM;
1235         }
1236
1237         /*
1238          * We need to look at the task state flags to figure out,
1239          * whether the task is exiting. To protect against the do_exit
1240          * change of the task flags, we do this protected by
1241          * p->pi_lock:
1242          */
1243         raw_spin_lock_irq(&p->pi_lock);
1244         if (unlikely(p->flags & PF_EXITING)) {
1245                 /*
1246                  * The task is on the way out. When PF_EXITPIDONE is
1247                  * set, we know that the task has finished the
1248                  * cleanup:
1249                  */
1250                 int ret = handle_exit_race(uaddr, uval, p);
1251
1252                 raw_spin_unlock_irq(&p->pi_lock);
1253                 put_task_struct(p);
1254                 return ret;
1255         }
1256
1257         /*
1258          * No existing pi state. First waiter. [2]
1259          *
1260          * This creates pi_state, we have hb->lock held, this means nothing can
1261          * observe this state, wait_lock is irrelevant.
1262          */
1263         pi_state = alloc_pi_state();
1264
1265         /*
1266          * Initialize the pi_mutex in locked state and make @p
1267          * the owner of it:
1268          */
1269         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1270
1271         /* Store the key for possible exit cleanups: */
1272         pi_state->key = *key;
1273
1274         WARN_ON(!list_empty(&pi_state->list));
1275         list_add(&pi_state->list, &p->pi_state_list);
1276         /*
1277          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1278          * because there is no concurrency as the object is not published yet.
1279          */
1280         pi_state->owner = p;
1281         raw_spin_unlock_irq(&p->pi_lock);
1282
1283         put_task_struct(p);
1284
1285         *ps = pi_state;
1286
1287         return 0;
1288 }
1289
1290 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1291                            struct futex_hash_bucket *hb,
1292                            union futex_key *key, struct futex_pi_state **ps)
1293 {
1294         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1295
1296         /*
1297          * If there is a waiter on that futex, validate it and
1298          * attach to the pi_state when the validation succeeds.
1299          */
1300         if (top_waiter)
1301                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1302
1303         /*
1304          * We are the first waiter - try to look up the owner based on
1305          * @uval and attach to it.
1306          */
1307         return attach_to_pi_owner(uaddr, uval, key, ps);
1308 }
1309
1310 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1311 {
1312         int err;
1313         u32 uninitialized_var(curval);
1314
1315         if (unlikely(should_fail_futex(true)))
1316                 return -EFAULT;
1317
1318         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1319         if (unlikely(err))
1320                 return err;
1321
1322         /* If user space value changed, let the caller retry */
1323         return curval != uval ? -EAGAIN : 0;
1324 }
1325
1326 /**
1327  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1328  * @uaddr:              the pi futex user address
1329  * @hb:                 the pi futex hash bucket
1330  * @key:                the futex key associated with uaddr and hb
1331  * @ps:                 the pi_state pointer where we store the result of the
1332  *                      lookup
1333  * @task:               the task to perform the atomic lock work for.  This will
1334  *                      be "current" except in the case of requeue pi.
1335  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1336  *
1337  * Return:
1338  *  -  0 - ready to wait;
1339  *  -  1 - acquired the lock;
1340  *  - <0 - error
1341  *
1342  * The hb->lock and futex_key refs shall be held by the caller.
1343  */
1344 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1345                                 union futex_key *key,
1346                                 struct futex_pi_state **ps,
1347                                 struct task_struct *task, int set_waiters)
1348 {
1349         u32 uval, newval, vpid = task_pid_vnr(task);
1350         struct futex_q *top_waiter;
1351         int ret;
1352
1353         /*
1354          * Read the user space value first so we can validate a few
1355          * things before proceeding further.
1356          */
1357         if (get_futex_value_locked(&uval, uaddr))
1358                 return -EFAULT;
1359
1360         if (unlikely(should_fail_futex(true)))
1361                 return -EFAULT;
1362
1363         /*
1364          * Detect deadlocks.
1365          */
1366         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1367                 return -EDEADLK;
1368
1369         if ((unlikely(should_fail_futex(true))))
1370                 return -EDEADLK;
1371
1372         /*
1373          * Lookup existing state first. If it exists, try to attach to
1374          * its pi_state.
1375          */
1376         top_waiter = futex_top_waiter(hb, key);
1377         if (top_waiter)
1378                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1379
1380         /*
1381          * No waiter and user TID is 0. We are here because the
1382          * waiters or the owner died bit is set or called from
1383          * requeue_cmp_pi or for whatever reason something took the
1384          * syscall.
1385          */
1386         if (!(uval & FUTEX_TID_MASK)) {
1387                 /*
1388                  * We take over the futex. No other waiters and the user space
1389                  * TID is 0. We preserve the owner died bit.
1390                  */
1391                 newval = uval & FUTEX_OWNER_DIED;
1392                 newval |= vpid;
1393
1394                 /* The futex requeue_pi code can enforce the waiters bit */
1395                 if (set_waiters)
1396                         newval |= FUTEX_WAITERS;
1397
1398                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1399                 /* If the take over worked, return 1 */
1400                 return ret < 0 ? ret : 1;
1401         }
1402
1403         /*
1404          * First waiter. Set the waiters bit before attaching ourself to
1405          * the owner. If owner tries to unlock, it will be forced into
1406          * the kernel and blocked on hb->lock.
1407          */
1408         newval = uval | FUTEX_WAITERS;
1409         ret = lock_pi_update_atomic(uaddr, uval, newval);
1410         if (ret)
1411                 return ret;
1412         /*
1413          * If the update of the user space value succeeded, we try to
1414          * attach to the owner. If that fails, no harm done, we only
1415          * set the FUTEX_WAITERS bit in the user space variable.
1416          */
1417         return attach_to_pi_owner(uaddr, newval, key, ps);
1418 }
1419
1420 /**
1421  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1422  * @q:  The futex_q to unqueue
1423  *
1424  * The q->lock_ptr must not be NULL and must be held by the caller.
1425  */
1426 static void __unqueue_futex(struct futex_q *q)
1427 {
1428         struct futex_hash_bucket *hb;
1429
1430         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1431             || WARN_ON(plist_node_empty(&q->list)))
1432                 return;
1433
1434         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1435         plist_del(&q->list, &hb->chain);
1436         hb_waiters_dec(hb);
1437 }
1438
1439 /*
1440  * The hash bucket lock must be held when this is called.
1441  * Afterwards, the futex_q must not be accessed. Callers
1442  * must ensure to later call wake_up_q() for the actual
1443  * wakeups to occur.
1444  */
1445 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1446 {
1447         struct task_struct *p = q->task;
1448
1449         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1450                 return;
1451
1452         get_task_struct(p);
1453         __unqueue_futex(q);
1454         /*
1455          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1456          * is written, without taking any locks. This is possible in the event
1457          * of a spurious wakeup, for example. A memory barrier is required here
1458          * to prevent the following store to lock_ptr from getting ahead of the
1459          * plist_del in __unqueue_futex().
1460          */
1461         smp_store_release(&q->lock_ptr, NULL);
1462
1463         /*
1464          * Queue the task for later wakeup for after we've released
1465          * the hb->lock. wake_q_add() grabs reference to p.
1466          */
1467         wake_q_add(wake_q, p);
1468         put_task_struct(p);
1469 }
1470
1471 /*
1472  * Caller must hold a reference on @pi_state.
1473  */
1474 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1475 {
1476         u32 uninitialized_var(curval), newval;
1477         struct task_struct *new_owner;
1478         bool postunlock = false;
1479         DEFINE_WAKE_Q(wake_q);
1480         int ret = 0;
1481
1482         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1483         if (WARN_ON_ONCE(!new_owner)) {
1484                 /*
1485                  * As per the comment in futex_unlock_pi() this should not happen.
1486                  *
1487                  * When this happens, give up our locks and try again, giving
1488                  * the futex_lock_pi() instance time to complete, either by
1489                  * waiting on the rtmutex or removing itself from the futex
1490                  * queue.
1491                  */
1492                 ret = -EAGAIN;
1493                 goto out_unlock;
1494         }
1495
1496         /*
1497          * We pass it to the next owner. The WAITERS bit is always kept
1498          * enabled while there is PI state around. We cleanup the owner
1499          * died bit, because we are the owner.
1500          */
1501         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1502
1503         if (unlikely(should_fail_futex(true)))
1504                 ret = -EFAULT;
1505
1506         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1507         if (!ret && (curval != uval)) {
1508                 /*
1509                  * If a unconditional UNLOCK_PI operation (user space did not
1510                  * try the TID->0 transition) raced with a waiter setting the
1511                  * FUTEX_WAITERS flag between get_user() and locking the hash
1512                  * bucket lock, retry the operation.
1513                  */
1514                 if ((FUTEX_TID_MASK & curval) == uval)
1515                         ret = -EAGAIN;
1516                 else
1517                         ret = -EINVAL;
1518         }
1519
1520         if (ret)
1521                 goto out_unlock;
1522
1523         /*
1524          * This is a point of no return; once we modify the uval there is no
1525          * going back and subsequent operations must not fail.
1526          */
1527
1528         raw_spin_lock(&pi_state->owner->pi_lock);
1529         WARN_ON(list_empty(&pi_state->list));
1530         list_del_init(&pi_state->list);
1531         raw_spin_unlock(&pi_state->owner->pi_lock);
1532
1533         raw_spin_lock(&new_owner->pi_lock);
1534         WARN_ON(!list_empty(&pi_state->list));
1535         list_add(&pi_state->list, &new_owner->pi_state_list);
1536         pi_state->owner = new_owner;
1537         raw_spin_unlock(&new_owner->pi_lock);
1538
1539         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1540
1541 out_unlock:
1542         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1543
1544         if (postunlock)
1545                 rt_mutex_postunlock(&wake_q);
1546
1547         return ret;
1548 }
1549
1550 /*
1551  * Express the locking dependencies for lockdep:
1552  */
1553 static inline void
1554 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1555 {
1556         if (hb1 <= hb2) {
1557                 spin_lock(&hb1->lock);
1558                 if (hb1 < hb2)
1559                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1560         } else { /* hb1 > hb2 */
1561                 spin_lock(&hb2->lock);
1562                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1563         }
1564 }
1565
1566 static inline void
1567 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1568 {
1569         spin_unlock(&hb1->lock);
1570         if (hb1 != hb2)
1571                 spin_unlock(&hb2->lock);
1572 }
1573
1574 /*
1575  * Wake up waiters matching bitset queued on this futex (uaddr).
1576  */
1577 static int
1578 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1579 {
1580         struct futex_hash_bucket *hb;
1581         struct futex_q *this, *next;
1582         union futex_key key = FUTEX_KEY_INIT;
1583         int ret;
1584         DEFINE_WAKE_Q(wake_q);
1585
1586         if (!bitset)
1587                 return -EINVAL;
1588
1589         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1590         if (unlikely(ret != 0))
1591                 goto out;
1592
1593         hb = hash_futex(&key);
1594
1595         /* Make sure we really have tasks to wakeup */
1596         if (!hb_waiters_pending(hb))
1597                 goto out_put_key;
1598
1599         spin_lock(&hb->lock);
1600
1601         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1602                 if (match_futex (&this->key, &key)) {
1603                         if (this->pi_state || this->rt_waiter) {
1604                                 ret = -EINVAL;
1605                                 break;
1606                         }
1607
1608                         /* Check if one of the bits is set in both bitsets */
1609                         if (!(this->bitset & bitset))
1610                                 continue;
1611
1612                         mark_wake_futex(&wake_q, this);
1613                         if (++ret >= nr_wake)
1614                                 break;
1615                 }
1616         }
1617
1618         spin_unlock(&hb->lock);
1619         wake_up_q(&wake_q);
1620 out_put_key:
1621         put_futex_key(&key);
1622 out:
1623         return ret;
1624 }
1625
1626 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1627 {
1628         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1629         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1630         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1631         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1632         int oldval, ret;
1633
1634         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1635                 if (oparg < 0 || oparg > 31) {
1636                         char comm[sizeof(current->comm)];
1637                         /*
1638                          * kill this print and return -EINVAL when userspace
1639                          * is sane again
1640                          */
1641                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1642                                         get_task_comm(comm, current), oparg);
1643                         oparg &= 31;
1644                 }
1645                 oparg = 1 << oparg;
1646         }
1647
1648         if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1649                 return -EFAULT;
1650
1651         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1652         if (ret)
1653                 return ret;
1654
1655         switch (cmp) {
1656         case FUTEX_OP_CMP_EQ:
1657                 return oldval == cmparg;
1658         case FUTEX_OP_CMP_NE:
1659                 return oldval != cmparg;
1660         case FUTEX_OP_CMP_LT:
1661                 return oldval < cmparg;
1662         case FUTEX_OP_CMP_GE:
1663                 return oldval >= cmparg;
1664         case FUTEX_OP_CMP_LE:
1665                 return oldval <= cmparg;
1666         case FUTEX_OP_CMP_GT:
1667                 return oldval > cmparg;
1668         default:
1669                 return -ENOSYS;
1670         }
1671 }
1672
1673 /*
1674  * Wake up all waiters hashed on the physical page that is mapped
1675  * to this virtual address:
1676  */
1677 static int
1678 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1679               int nr_wake, int nr_wake2, int op)
1680 {
1681         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1682         struct futex_hash_bucket *hb1, *hb2;
1683         struct futex_q *this, *next;
1684         int ret, op_ret;
1685         DEFINE_WAKE_Q(wake_q);
1686
1687 retry:
1688         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1689         if (unlikely(ret != 0))
1690                 goto out;
1691         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1692         if (unlikely(ret != 0))
1693                 goto out_put_key1;
1694
1695         hb1 = hash_futex(&key1);
1696         hb2 = hash_futex(&key2);
1697
1698 retry_private:
1699         double_lock_hb(hb1, hb2);
1700         op_ret = futex_atomic_op_inuser(op, uaddr2);
1701         if (unlikely(op_ret < 0)) {
1702                 double_unlock_hb(hb1, hb2);
1703
1704                 if (!IS_ENABLED(CONFIG_MMU) ||
1705                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1706                         /*
1707                          * we don't get EFAULT from MMU faults if we don't have
1708                          * an MMU, but we might get them from range checking
1709                          */
1710                         ret = op_ret;
1711                         goto out_put_keys;
1712                 }
1713
1714                 if (op_ret == -EFAULT) {
1715                         ret = fault_in_user_writeable(uaddr2);
1716                         if (ret)
1717                                 goto out_put_keys;
1718                 }
1719
1720                 if (!(flags & FLAGS_SHARED)) {
1721                         cond_resched();
1722                         goto retry_private;
1723                 }
1724
1725                 put_futex_key(&key2);
1726                 put_futex_key(&key1);
1727                 cond_resched();
1728                 goto retry;
1729         }
1730
1731         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1732                 if (match_futex (&this->key, &key1)) {
1733                         if (this->pi_state || this->rt_waiter) {
1734                                 ret = -EINVAL;
1735                                 goto out_unlock;
1736                         }
1737                         mark_wake_futex(&wake_q, this);
1738                         if (++ret >= nr_wake)
1739                                 break;
1740                 }
1741         }
1742
1743         if (op_ret > 0) {
1744                 op_ret = 0;
1745                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1746                         if (match_futex (&this->key, &key2)) {
1747                                 if (this->pi_state || this->rt_waiter) {
1748                                         ret = -EINVAL;
1749                                         goto out_unlock;
1750                                 }
1751                                 mark_wake_futex(&wake_q, this);
1752                                 if (++op_ret >= nr_wake2)
1753                                         break;
1754                         }
1755                 }
1756                 ret += op_ret;
1757         }
1758
1759 out_unlock:
1760         double_unlock_hb(hb1, hb2);
1761         wake_up_q(&wake_q);
1762 out_put_keys:
1763         put_futex_key(&key2);
1764 out_put_key1:
1765         put_futex_key(&key1);
1766 out:
1767         return ret;
1768 }
1769
1770 /**
1771  * requeue_futex() - Requeue a futex_q from one hb to another
1772  * @q:          the futex_q to requeue
1773  * @hb1:        the source hash_bucket
1774  * @hb2:        the target hash_bucket
1775  * @key2:       the new key for the requeued futex_q
1776  */
1777 static inline
1778 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1779                    struct futex_hash_bucket *hb2, union futex_key *key2)
1780 {
1781
1782         /*
1783          * If key1 and key2 hash to the same bucket, no need to
1784          * requeue.
1785          */
1786         if (likely(&hb1->chain != &hb2->chain)) {
1787                 plist_del(&q->list, &hb1->chain);
1788                 hb_waiters_dec(hb1);
1789                 hb_waiters_inc(hb2);
1790                 plist_add(&q->list, &hb2->chain);
1791                 q->lock_ptr = &hb2->lock;
1792         }
1793         get_futex_key_refs(key2);
1794         q->key = *key2;
1795 }
1796
1797 /**
1798  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1799  * @q:          the futex_q
1800  * @key:        the key of the requeue target futex
1801  * @hb:         the hash_bucket of the requeue target futex
1802  *
1803  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1804  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1805  * to the requeue target futex so the waiter can detect the wakeup on the right
1806  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1807  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1808  * to protect access to the pi_state to fixup the owner later.  Must be called
1809  * with both q->lock_ptr and hb->lock held.
1810  */
1811 static inline
1812 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1813                            struct futex_hash_bucket *hb)
1814 {
1815         get_futex_key_refs(key);
1816         q->key = *key;
1817
1818         __unqueue_futex(q);
1819
1820         WARN_ON(!q->rt_waiter);
1821         q->rt_waiter = NULL;
1822
1823         q->lock_ptr = &hb->lock;
1824
1825         wake_up_state(q->task, TASK_NORMAL);
1826 }
1827
1828 /**
1829  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1830  * @pifutex:            the user address of the to futex
1831  * @hb1:                the from futex hash bucket, must be locked by the caller
1832  * @hb2:                the to futex hash bucket, must be locked by the caller
1833  * @key1:               the from futex key
1834  * @key2:               the to futex key
1835  * @ps:                 address to store the pi_state pointer
1836  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1837  *
1838  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1839  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1840  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1841  * hb1 and hb2 must be held by the caller.
1842  *
1843  * Return:
1844  *  -  0 - failed to acquire the lock atomically;
1845  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1846  *  - <0 - error
1847  */
1848 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1849                                  struct futex_hash_bucket *hb1,
1850                                  struct futex_hash_bucket *hb2,
1851                                  union futex_key *key1, union futex_key *key2,
1852                                  struct futex_pi_state **ps, int set_waiters)
1853 {
1854         struct futex_q *top_waiter = NULL;
1855         u32 curval;
1856         int ret, vpid;
1857
1858         if (get_futex_value_locked(&curval, pifutex))
1859                 return -EFAULT;
1860
1861         if (unlikely(should_fail_futex(true)))
1862                 return -EFAULT;
1863
1864         /*
1865          * Find the top_waiter and determine if there are additional waiters.
1866          * If the caller intends to requeue more than 1 waiter to pifutex,
1867          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1868          * as we have means to handle the possible fault.  If not, don't set
1869          * the bit unecessarily as it will force the subsequent unlock to enter
1870          * the kernel.
1871          */
1872         top_waiter = futex_top_waiter(hb1, key1);
1873
1874         /* There are no waiters, nothing for us to do. */
1875         if (!top_waiter)
1876                 return 0;
1877
1878         /* Ensure we requeue to the expected futex. */
1879         if (!match_futex(top_waiter->requeue_pi_key, key2))
1880                 return -EINVAL;
1881
1882         /*
1883          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1884          * the contended case or if set_waiters is 1.  The pi_state is returned
1885          * in ps in contended cases.
1886          */
1887         vpid = task_pid_vnr(top_waiter->task);
1888         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1889                                    set_waiters);
1890         if (ret == 1) {
1891                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1892                 return vpid;
1893         }
1894         return ret;
1895 }
1896
1897 /**
1898  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1899  * @uaddr1:     source futex user address
1900  * @flags:      futex flags (FLAGS_SHARED, etc.)
1901  * @uaddr2:     target futex user address
1902  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1903  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1904  * @cmpval:     @uaddr1 expected value (or %NULL)
1905  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1906  *              pi futex (pi to pi requeue is not supported)
1907  *
1908  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1909  * uaddr2 atomically on behalf of the top waiter.
1910  *
1911  * Return:
1912  *  - >=0 - on success, the number of tasks requeued or woken;
1913  *  -  <0 - on error
1914  */
1915 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1916                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1917                          u32 *cmpval, int requeue_pi)
1918 {
1919         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1920         int drop_count = 0, task_count = 0, ret;
1921         struct futex_pi_state *pi_state = NULL;
1922         struct futex_hash_bucket *hb1, *hb2;
1923         struct futex_q *this, *next;
1924         DEFINE_WAKE_Q(wake_q);
1925
1926         if (nr_wake < 0 || nr_requeue < 0)
1927                 return -EINVAL;
1928
1929         /*
1930          * When PI not supported: return -ENOSYS if requeue_pi is true,
1931          * consequently the compiler knows requeue_pi is always false past
1932          * this point which will optimize away all the conditional code
1933          * further down.
1934          */
1935         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1936                 return -ENOSYS;
1937
1938         if (requeue_pi) {
1939                 /*
1940                  * Requeue PI only works on two distinct uaddrs. This
1941                  * check is only valid for private futexes. See below.
1942                  */
1943                 if (uaddr1 == uaddr2)
1944                         return -EINVAL;
1945
1946                 /*
1947                  * requeue_pi requires a pi_state, try to allocate it now
1948                  * without any locks in case it fails.
1949                  */
1950                 if (refill_pi_state_cache())
1951                         return -ENOMEM;
1952                 /*
1953                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1954                  * + nr_requeue, since it acquires the rt_mutex prior to
1955                  * returning to userspace, so as to not leave the rt_mutex with
1956                  * waiters and no owner.  However, second and third wake-ups
1957                  * cannot be predicted as they involve race conditions with the
1958                  * first wake and a fault while looking up the pi_state.  Both
1959                  * pthread_cond_signal() and pthread_cond_broadcast() should
1960                  * use nr_wake=1.
1961                  */
1962                 if (nr_wake != 1)
1963                         return -EINVAL;
1964         }
1965
1966 retry:
1967         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1968         if (unlikely(ret != 0))
1969                 goto out;
1970         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1971                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1972         if (unlikely(ret != 0))
1973                 goto out_put_key1;
1974
1975         /*
1976          * The check above which compares uaddrs is not sufficient for
1977          * shared futexes. We need to compare the keys:
1978          */
1979         if (requeue_pi && match_futex(&key1, &key2)) {
1980                 ret = -EINVAL;
1981                 goto out_put_keys;
1982         }
1983
1984         hb1 = hash_futex(&key1);
1985         hb2 = hash_futex(&key2);
1986
1987 retry_private:
1988         hb_waiters_inc(hb2);
1989         double_lock_hb(hb1, hb2);
1990
1991         if (likely(cmpval != NULL)) {
1992                 u32 curval;
1993
1994                 ret = get_futex_value_locked(&curval, uaddr1);
1995
1996                 if (unlikely(ret)) {
1997                         double_unlock_hb(hb1, hb2);
1998                         hb_waiters_dec(hb2);
1999
2000                         ret = get_user(curval, uaddr1);
2001                         if (ret)
2002                                 goto out_put_keys;
2003
2004                         if (!(flags & FLAGS_SHARED))
2005                                 goto retry_private;
2006
2007                         put_futex_key(&key2);
2008                         put_futex_key(&key1);
2009                         goto retry;
2010                 }
2011                 if (curval != *cmpval) {
2012                         ret = -EAGAIN;
2013                         goto out_unlock;
2014                 }
2015         }
2016
2017         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2018                 /*
2019                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2020                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2021                  * bit.  We force this here where we are able to easily handle
2022                  * faults rather in the requeue loop below.
2023                  */
2024                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2025                                                  &key2, &pi_state, nr_requeue);
2026
2027                 /*
2028                  * At this point the top_waiter has either taken uaddr2 or is
2029                  * waiting on it.  If the former, then the pi_state will not
2030                  * exist yet, look it up one more time to ensure we have a
2031                  * reference to it. If the lock was taken, ret contains the
2032                  * vpid of the top waiter task.
2033                  * If the lock was not taken, we have pi_state and an initial
2034                  * refcount on it. In case of an error we have nothing.
2035                  */
2036                 if (ret > 0) {
2037                         WARN_ON(pi_state);
2038                         drop_count++;
2039                         task_count++;
2040                         /*
2041                          * If we acquired the lock, then the user space value
2042                          * of uaddr2 should be vpid. It cannot be changed by
2043                          * the top waiter as it is blocked on hb2 lock if it
2044                          * tries to do so. If something fiddled with it behind
2045                          * our back the pi state lookup might unearth it. So
2046                          * we rather use the known value than rereading and
2047                          * handing potential crap to lookup_pi_state.
2048                          *
2049                          * If that call succeeds then we have pi_state and an
2050                          * initial refcount on it.
2051                          */
2052                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2053                 }
2054
2055                 switch (ret) {
2056                 case 0:
2057                         /* We hold a reference on the pi state. */
2058                         break;
2059
2060                         /* If the above failed, then pi_state is NULL */
2061                 case -EFAULT:
2062                         double_unlock_hb(hb1, hb2);
2063                         hb_waiters_dec(hb2);
2064                         put_futex_key(&key2);
2065                         put_futex_key(&key1);
2066                         ret = fault_in_user_writeable(uaddr2);
2067                         if (!ret)
2068                                 goto retry;
2069                         goto out;
2070                 case -EAGAIN:
2071                         /*
2072                          * Two reasons for this:
2073                          * - Owner is exiting and we just wait for the
2074                          *   exit to complete.
2075                          * - The user space value changed.
2076                          */
2077                         double_unlock_hb(hb1, hb2);
2078                         hb_waiters_dec(hb2);
2079                         put_futex_key(&key2);
2080                         put_futex_key(&key1);
2081                         cond_resched();
2082                         goto retry;
2083                 default:
2084                         goto out_unlock;
2085                 }
2086         }
2087
2088         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2089                 if (task_count - nr_wake >= nr_requeue)
2090                         break;
2091
2092                 if (!match_futex(&this->key, &key1))
2093                         continue;
2094
2095                 /*
2096                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2097                  * be paired with each other and no other futex ops.
2098                  *
2099                  * We should never be requeueing a futex_q with a pi_state,
2100                  * which is awaiting a futex_unlock_pi().
2101                  */
2102                 if ((requeue_pi && !this->rt_waiter) ||
2103                     (!requeue_pi && this->rt_waiter) ||
2104                     this->pi_state) {
2105                         ret = -EINVAL;
2106                         break;
2107                 }
2108
2109                 /*
2110                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2111                  * lock, we already woke the top_waiter.  If not, it will be
2112                  * woken by futex_unlock_pi().
2113                  */
2114                 if (++task_count <= nr_wake && !requeue_pi) {
2115                         mark_wake_futex(&wake_q, this);
2116                         continue;
2117                 }
2118
2119                 /* Ensure we requeue to the expected futex for requeue_pi. */
2120                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2121                         ret = -EINVAL;
2122                         break;
2123                 }
2124
2125                 /*
2126                  * Requeue nr_requeue waiters and possibly one more in the case
2127                  * of requeue_pi if we couldn't acquire the lock atomically.
2128                  */
2129                 if (requeue_pi) {
2130                         /*
2131                          * Prepare the waiter to take the rt_mutex. Take a
2132                          * refcount on the pi_state and store the pointer in
2133                          * the futex_q object of the waiter.
2134                          */
2135                         get_pi_state(pi_state);
2136                         this->pi_state = pi_state;
2137                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2138                                                         this->rt_waiter,
2139                                                         this->task);
2140                         if (ret == 1) {
2141                                 /*
2142                                  * We got the lock. We do neither drop the
2143                                  * refcount on pi_state nor clear
2144                                  * this->pi_state because the waiter needs the
2145                                  * pi_state for cleaning up the user space
2146                                  * value. It will drop the refcount after
2147                                  * doing so.
2148                                  */
2149                                 requeue_pi_wake_futex(this, &key2, hb2);
2150                                 drop_count++;
2151                                 continue;
2152                         } else if (ret) {
2153                                 /*
2154                                  * rt_mutex_start_proxy_lock() detected a
2155                                  * potential deadlock when we tried to queue
2156                                  * that waiter. Drop the pi_state reference
2157                                  * which we took above and remove the pointer
2158                                  * to the state from the waiters futex_q
2159                                  * object.
2160                                  */
2161                                 this->pi_state = NULL;
2162                                 put_pi_state(pi_state);
2163                                 /*
2164                                  * We stop queueing more waiters and let user
2165                                  * space deal with the mess.
2166                                  */
2167                                 break;
2168                         }
2169                 }
2170                 requeue_futex(this, hb1, hb2, &key2);
2171                 drop_count++;
2172         }
2173
2174         /*
2175          * We took an extra initial reference to the pi_state either
2176          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2177          * need to drop it here again.
2178          */
2179         put_pi_state(pi_state);
2180
2181 out_unlock:
2182         double_unlock_hb(hb1, hb2);
2183         wake_up_q(&wake_q);
2184         hb_waiters_dec(hb2);
2185
2186         /*
2187          * drop_futex_key_refs() must be called outside the spinlocks. During
2188          * the requeue we moved futex_q's from the hash bucket at key1 to the
2189          * one at key2 and updated their key pointer.  We no longer need to
2190          * hold the references to key1.
2191          */
2192         while (--drop_count >= 0)
2193                 drop_futex_key_refs(&key1);
2194
2195 out_put_keys:
2196         put_futex_key(&key2);
2197 out_put_key1:
2198         put_futex_key(&key1);
2199 out:
2200         return ret ? ret : task_count;
2201 }
2202
2203 /* The key must be already stored in q->key. */
2204 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2205         __acquires(&hb->lock)
2206 {
2207         struct futex_hash_bucket *hb;
2208
2209         hb = hash_futex(&q->key);
2210
2211         /*
2212          * Increment the counter before taking the lock so that
2213          * a potential waker won't miss a to-be-slept task that is
2214          * waiting for the spinlock. This is safe as all queue_lock()
2215          * users end up calling queue_me(). Similarly, for housekeeping,
2216          * decrement the counter at queue_unlock() when some error has
2217          * occurred and we don't end up adding the task to the list.
2218          */
2219         hb_waiters_inc(hb);
2220
2221         q->lock_ptr = &hb->lock;
2222
2223         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2224         return hb;
2225 }
2226
2227 static inline void
2228 queue_unlock(struct futex_hash_bucket *hb)
2229         __releases(&hb->lock)
2230 {
2231         spin_unlock(&hb->lock);
2232         hb_waiters_dec(hb);
2233 }
2234
2235 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2236 {
2237         int prio;
2238
2239         /*
2240          * The priority used to register this element is
2241          * - either the real thread-priority for the real-time threads
2242          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2243          * - or MAX_RT_PRIO for non-RT threads.
2244          * Thus, all RT-threads are woken first in priority order, and
2245          * the others are woken last, in FIFO order.
2246          */
2247         prio = min(current->normal_prio, MAX_RT_PRIO);
2248
2249         plist_node_init(&q->list, prio);
2250         plist_add(&q->list, &hb->chain);
2251         q->task = current;
2252 }
2253
2254 /**
2255  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2256  * @q:  The futex_q to enqueue
2257  * @hb: The destination hash bucket
2258  *
2259  * The hb->lock must be held by the caller, and is released here. A call to
2260  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2261  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2262  * or nothing if the unqueue is done as part of the wake process and the unqueue
2263  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2264  * an example).
2265  */
2266 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2267         __releases(&hb->lock)
2268 {
2269         __queue_me(q, hb);
2270         spin_unlock(&hb->lock);
2271 }
2272
2273 /**
2274  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2275  * @q:  The futex_q to unqueue
2276  *
2277  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2278  * be paired with exactly one earlier call to queue_me().
2279  *
2280  * Return:
2281  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2282  *  - 0 - if the futex_q was already removed by the waking thread
2283  */
2284 static int unqueue_me(struct futex_q *q)
2285 {
2286         spinlock_t *lock_ptr;
2287         int ret = 0;
2288
2289         /* In the common case we don't take the spinlock, which is nice. */
2290 retry:
2291         /*
2292          * q->lock_ptr can change between this read and the following spin_lock.
2293          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2294          * optimizing lock_ptr out of the logic below.
2295          */
2296         lock_ptr = READ_ONCE(q->lock_ptr);
2297         if (lock_ptr != NULL) {
2298                 spin_lock(lock_ptr);
2299                 /*
2300                  * q->lock_ptr can change between reading it and
2301                  * spin_lock(), causing us to take the wrong lock.  This
2302                  * corrects the race condition.
2303                  *
2304                  * Reasoning goes like this: if we have the wrong lock,
2305                  * q->lock_ptr must have changed (maybe several times)
2306                  * between reading it and the spin_lock().  It can
2307                  * change again after the spin_lock() but only if it was
2308                  * already changed before the spin_lock().  It cannot,
2309                  * however, change back to the original value.  Therefore
2310                  * we can detect whether we acquired the correct lock.
2311                  */
2312                 if (unlikely(lock_ptr != q->lock_ptr)) {
2313                         spin_unlock(lock_ptr);
2314                         goto retry;
2315                 }
2316                 __unqueue_futex(q);
2317
2318                 BUG_ON(q->pi_state);
2319
2320                 spin_unlock(lock_ptr);
2321                 ret = 1;
2322         }
2323
2324         drop_futex_key_refs(&q->key);
2325         return ret;
2326 }
2327
2328 /*
2329  * PI futexes can not be requeued and must remove themself from the
2330  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2331  * and dropped here.
2332  */
2333 static void unqueue_me_pi(struct futex_q *q)
2334         __releases(q->lock_ptr)
2335 {
2336         __unqueue_futex(q);
2337
2338         BUG_ON(!q->pi_state);
2339         put_pi_state(q->pi_state);
2340         q->pi_state = NULL;
2341
2342         spin_unlock(q->lock_ptr);
2343 }
2344
2345 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2346                                 struct task_struct *argowner)
2347 {
2348         struct futex_pi_state *pi_state = q->pi_state;
2349         u32 uval, uninitialized_var(curval), newval;
2350         struct task_struct *oldowner, *newowner;
2351         u32 newtid;
2352         int ret, err = 0;
2353
2354         lockdep_assert_held(q->lock_ptr);
2355
2356         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2357
2358         oldowner = pi_state->owner;
2359
2360         /*
2361          * We are here because either:
2362          *
2363          *  - we stole the lock and pi_state->owner needs updating to reflect
2364          *    that (@argowner == current),
2365          *
2366          * or:
2367          *
2368          *  - someone stole our lock and we need to fix things to point to the
2369          *    new owner (@argowner == NULL).
2370          *
2371          * Either way, we have to replace the TID in the user space variable.
2372          * This must be atomic as we have to preserve the owner died bit here.
2373          *
2374          * Note: We write the user space value _before_ changing the pi_state
2375          * because we can fault here. Imagine swapped out pages or a fork
2376          * that marked all the anonymous memory readonly for cow.
2377          *
2378          * Modifying pi_state _before_ the user space value would leave the
2379          * pi_state in an inconsistent state when we fault here, because we
2380          * need to drop the locks to handle the fault. This might be observed
2381          * in the PID check in lookup_pi_state.
2382          */
2383 retry:
2384         if (!argowner) {
2385                 if (oldowner != current) {
2386                         /*
2387                          * We raced against a concurrent self; things are
2388                          * already fixed up. Nothing to do.
2389                          */
2390                         ret = 0;
2391                         goto out_unlock;
2392                 }
2393
2394                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2395                         /* We got the lock after all, nothing to fix. */
2396                         ret = 0;
2397                         goto out_unlock;
2398                 }
2399
2400                 /*
2401                  * Since we just failed the trylock; there must be an owner.
2402                  */
2403                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2404                 BUG_ON(!newowner);
2405         } else {
2406                 WARN_ON_ONCE(argowner != current);
2407                 if (oldowner == current) {
2408                         /*
2409                          * We raced against a concurrent self; things are
2410                          * already fixed up. Nothing to do.
2411                          */
2412                         ret = 0;
2413                         goto out_unlock;
2414                 }
2415                 newowner = argowner;
2416         }
2417
2418         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2419         /* Owner died? */
2420         if (!pi_state->owner)
2421                 newtid |= FUTEX_OWNER_DIED;
2422
2423         err = get_futex_value_locked(&uval, uaddr);
2424         if (err)
2425                 goto handle_err;
2426
2427         for (;;) {
2428                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2429
2430                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2431                 if (err)
2432                         goto handle_err;
2433
2434                 if (curval == uval)
2435                         break;
2436                 uval = curval;
2437         }
2438
2439         /*
2440          * We fixed up user space. Now we need to fix the pi_state
2441          * itself.
2442          */
2443         if (pi_state->owner != NULL) {
2444                 raw_spin_lock(&pi_state->owner->pi_lock);
2445                 WARN_ON(list_empty(&pi_state->list));
2446                 list_del_init(&pi_state->list);
2447                 raw_spin_unlock(&pi_state->owner->pi_lock);
2448         }
2449
2450         pi_state->owner = newowner;
2451
2452         raw_spin_lock(&newowner->pi_lock);
2453         WARN_ON(!list_empty(&pi_state->list));
2454         list_add(&pi_state->list, &newowner->pi_state_list);
2455         raw_spin_unlock(&newowner->pi_lock);
2456         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2457
2458         return 0;
2459
2460         /*
2461          * In order to reschedule or handle a page fault, we need to drop the
2462          * locks here. In the case of a fault, this gives the other task
2463          * (either the highest priority waiter itself or the task which stole
2464          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2465          * are back from handling the fault we need to check the pi_state after
2466          * reacquiring the locks and before trying to do another fixup. When
2467          * the fixup has been done already we simply return.
2468          *
2469          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2470          * drop hb->lock since the caller owns the hb -> futex_q relation.
2471          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2472          */
2473 handle_err:
2474         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2475         spin_unlock(q->lock_ptr);
2476
2477         switch (err) {
2478         case -EFAULT:
2479                 ret = fault_in_user_writeable(uaddr);
2480                 break;
2481
2482         case -EAGAIN:
2483                 cond_resched();
2484                 ret = 0;
2485                 break;
2486
2487         default:
2488                 WARN_ON_ONCE(1);
2489                 ret = err;
2490                 break;
2491         }
2492
2493         spin_lock(q->lock_ptr);
2494         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2495
2496         /*
2497          * Check if someone else fixed it for us:
2498          */
2499         if (pi_state->owner != oldowner) {
2500                 ret = 0;
2501                 goto out_unlock;
2502         }
2503
2504         if (ret)
2505                 goto out_unlock;
2506
2507         goto retry;
2508
2509 out_unlock:
2510         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2511         return ret;
2512 }
2513
2514 static long futex_wait_restart(struct restart_block *restart);
2515
2516 /**
2517  * fixup_owner() - Post lock pi_state and corner case management
2518  * @uaddr:      user address of the futex
2519  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2520  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2521  *
2522  * After attempting to lock an rt_mutex, this function is called to cleanup
2523  * the pi_state owner as well as handle race conditions that may allow us to
2524  * acquire the lock. Must be called with the hb lock held.
2525  *
2526  * Return:
2527  *  -  1 - success, lock taken;
2528  *  -  0 - success, lock not taken;
2529  *  - <0 - on error (-EFAULT)
2530  */
2531 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2532 {
2533         int ret = 0;
2534
2535         if (locked) {
2536                 /*
2537                  * Got the lock. We might not be the anticipated owner if we
2538                  * did a lock-steal - fix up the PI-state in that case:
2539                  *
2540                  * Speculative pi_state->owner read (we don't hold wait_lock);
2541                  * since we own the lock pi_state->owner == current is the
2542                  * stable state, anything else needs more attention.
2543                  */
2544                 if (q->pi_state->owner != current)
2545                         ret = fixup_pi_state_owner(uaddr, q, current);
2546                 goto out;
2547         }
2548
2549         /*
2550          * If we didn't get the lock; check if anybody stole it from us. In
2551          * that case, we need to fix up the uval to point to them instead of
2552          * us, otherwise bad things happen. [10]
2553          *
2554          * Another speculative read; pi_state->owner == current is unstable
2555          * but needs our attention.
2556          */
2557         if (q->pi_state->owner == current) {
2558                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2559                 goto out;
2560         }
2561
2562         /*
2563          * Paranoia check. If we did not take the lock, then we should not be
2564          * the owner of the rt_mutex.
2565          */
2566         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2567                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2568                                 "pi-state %p\n", ret,
2569                                 q->pi_state->pi_mutex.owner,
2570                                 q->pi_state->owner);
2571         }
2572
2573 out:
2574         return ret ? ret : locked;
2575 }
2576
2577 /**
2578  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2579  * @hb:         the futex hash bucket, must be locked by the caller
2580  * @q:          the futex_q to queue up on
2581  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2582  */
2583 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2584                                 struct hrtimer_sleeper *timeout)
2585 {
2586         /*
2587          * The task state is guaranteed to be set before another task can
2588          * wake it. set_current_state() is implemented using smp_store_mb() and
2589          * queue_me() calls spin_unlock() upon completion, both serializing
2590          * access to the hash list and forcing another memory barrier.
2591          */
2592         set_current_state(TASK_INTERRUPTIBLE);
2593         queue_me(q, hb);
2594
2595         /* Arm the timer */
2596         if (timeout)
2597                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2598
2599         /*
2600          * If we have been removed from the hash list, then another task
2601          * has tried to wake us, and we can skip the call to schedule().
2602          */
2603         if (likely(!plist_node_empty(&q->list))) {
2604                 /*
2605                  * If the timer has already expired, current will already be
2606                  * flagged for rescheduling. Only call schedule if there
2607                  * is no timeout, or if it has yet to expire.
2608                  */
2609                 if (!timeout || timeout->task)
2610                         freezable_schedule();
2611         }
2612         __set_current_state(TASK_RUNNING);
2613 }
2614
2615 /**
2616  * futex_wait_setup() - Prepare to wait on a futex
2617  * @uaddr:      the futex userspace address
2618  * @val:        the expected value
2619  * @flags:      futex flags (FLAGS_SHARED, etc.)
2620  * @q:          the associated futex_q
2621  * @hb:         storage for hash_bucket pointer to be returned to caller
2622  *
2623  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2624  * compare it with the expected value.  Handle atomic faults internally.
2625  * Return with the hb lock held and a q.key reference on success, and unlocked
2626  * with no q.key reference on failure.
2627  *
2628  * Return:
2629  *  -  0 - uaddr contains val and hb has been locked;
2630  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2631  */
2632 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2633                            struct futex_q *q, struct futex_hash_bucket **hb)
2634 {
2635         u32 uval;
2636         int ret;
2637
2638         /*
2639          * Access the page AFTER the hash-bucket is locked.
2640          * Order is important:
2641          *
2642          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2643          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2644          *
2645          * The basic logical guarantee of a futex is that it blocks ONLY
2646          * if cond(var) is known to be true at the time of blocking, for
2647          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2648          * would open a race condition where we could block indefinitely with
2649          * cond(var) false, which would violate the guarantee.
2650          *
2651          * On the other hand, we insert q and release the hash-bucket only
2652          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2653          * absorb a wakeup if *uaddr does not match the desired values
2654          * while the syscall executes.
2655          */
2656 retry:
2657         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2658         if (unlikely(ret != 0))
2659                 return ret;
2660
2661 retry_private:
2662         *hb = queue_lock(q);
2663
2664         ret = get_futex_value_locked(&uval, uaddr);
2665
2666         if (ret) {
2667                 queue_unlock(*hb);
2668
2669                 ret = get_user(uval, uaddr);
2670                 if (ret)
2671                         goto out;
2672
2673                 if (!(flags & FLAGS_SHARED))
2674                         goto retry_private;
2675
2676                 put_futex_key(&q->key);
2677                 goto retry;
2678         }
2679
2680         if (uval != val) {
2681                 queue_unlock(*hb);
2682                 ret = -EWOULDBLOCK;
2683         }
2684
2685 out:
2686         if (ret)
2687                 put_futex_key(&q->key);
2688         return ret;
2689 }
2690
2691 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2692                       ktime_t *abs_time, u32 bitset)
2693 {
2694         struct hrtimer_sleeper timeout, *to = NULL;
2695         struct restart_block *restart;
2696         struct futex_hash_bucket *hb;
2697         struct futex_q q = futex_q_init;
2698         int ret;
2699
2700         if (!bitset)
2701                 return -EINVAL;
2702         q.bitset = bitset;
2703
2704         if (abs_time) {
2705                 to = &timeout;
2706
2707                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2708                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2709                                       HRTIMER_MODE_ABS);
2710                 hrtimer_init_sleeper(to, current);
2711                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2712                                              current->timer_slack_ns);
2713         }
2714
2715 retry:
2716         /*
2717          * Prepare to wait on uaddr. On success, holds hb lock and increments
2718          * q.key refs.
2719          */
2720         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2721         if (ret)
2722                 goto out;
2723
2724         /* queue_me and wait for wakeup, timeout, or a signal. */
2725         futex_wait_queue_me(hb, &q, to);
2726
2727         /* If we were woken (and unqueued), we succeeded, whatever. */
2728         ret = 0;
2729         /* unqueue_me() drops q.key ref */
2730         if (!unqueue_me(&q))
2731                 goto out;
2732         ret = -ETIMEDOUT;
2733         if (to && !to->task)
2734                 goto out;
2735
2736         /*
2737          * We expect signal_pending(current), but we might be the
2738          * victim of a spurious wakeup as well.
2739          */
2740         if (!signal_pending(current))
2741                 goto retry;
2742
2743         ret = -ERESTARTSYS;
2744         if (!abs_time)
2745                 goto out;
2746
2747         restart = &current->restart_block;
2748         restart->fn = futex_wait_restart;
2749         restart->futex.uaddr = uaddr;
2750         restart->futex.val = val;
2751         restart->futex.time = *abs_time;
2752         restart->futex.bitset = bitset;
2753         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2754
2755         ret = -ERESTART_RESTARTBLOCK;
2756
2757 out:
2758         if (to) {
2759                 hrtimer_cancel(&to->timer);
2760                 destroy_hrtimer_on_stack(&to->timer);
2761         }
2762         return ret;
2763 }
2764
2765
2766 static long futex_wait_restart(struct restart_block *restart)
2767 {
2768         u32 __user *uaddr = restart->futex.uaddr;
2769         ktime_t t, *tp = NULL;
2770
2771         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2772                 t = restart->futex.time;
2773                 tp = &t;
2774         }
2775         restart->fn = do_no_restart_syscall;
2776
2777         return (long)futex_wait(uaddr, restart->futex.flags,
2778                                 restart->futex.val, tp, restart->futex.bitset);
2779 }
2780
2781
2782 /*
2783  * Userspace tried a 0 -> TID atomic transition of the futex value
2784  * and failed. The kernel side here does the whole locking operation:
2785  * if there are waiters then it will block as a consequence of relying
2786  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2787  * a 0 value of the futex too.).
2788  *
2789  * Also serves as futex trylock_pi()'ing, and due semantics.
2790  */
2791 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2792                          ktime_t *time, int trylock)
2793 {
2794         struct hrtimer_sleeper timeout, *to = NULL;
2795         struct futex_pi_state *pi_state = NULL;
2796         struct rt_mutex_waiter rt_waiter;
2797         struct futex_hash_bucket *hb;
2798         struct futex_q q = futex_q_init;
2799         int res, ret;
2800
2801         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2802                 return -ENOSYS;
2803
2804         if (refill_pi_state_cache())
2805                 return -ENOMEM;
2806
2807         if (time) {
2808                 to = &timeout;
2809                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2810                                       HRTIMER_MODE_ABS);
2811                 hrtimer_init_sleeper(to, current);
2812                 hrtimer_set_expires(&to->timer, *time);
2813         }
2814
2815 retry:
2816         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2817         if (unlikely(ret != 0))
2818                 goto out;
2819
2820 retry_private:
2821         hb = queue_lock(&q);
2822
2823         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2824         if (unlikely(ret)) {
2825                 /*
2826                  * Atomic work succeeded and we got the lock,
2827                  * or failed. Either way, we do _not_ block.
2828                  */
2829                 switch (ret) {
2830                 case 1:
2831                         /* We got the lock. */
2832                         ret = 0;
2833                         goto out_unlock_put_key;
2834                 case -EFAULT:
2835                         goto uaddr_faulted;
2836                 case -EAGAIN:
2837                         /*
2838                          * Two reasons for this:
2839                          * - Task is exiting and we just wait for the
2840                          *   exit to complete.
2841                          * - The user space value changed.
2842                          */
2843                         queue_unlock(hb);
2844                         put_futex_key(&q.key);
2845                         cond_resched();
2846                         goto retry;
2847                 default:
2848                         goto out_unlock_put_key;
2849                 }
2850         }
2851
2852         WARN_ON(!q.pi_state);
2853
2854         /*
2855          * Only actually queue now that the atomic ops are done:
2856          */
2857         __queue_me(&q, hb);
2858
2859         if (trylock) {
2860                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2861                 /* Fixup the trylock return value: */
2862                 ret = ret ? 0 : -EWOULDBLOCK;
2863                 goto no_block;
2864         }
2865
2866         rt_mutex_init_waiter(&rt_waiter);
2867
2868         /*
2869          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2870          * hold it while doing rt_mutex_start_proxy(), because then it will
2871          * include hb->lock in the blocking chain, even through we'll not in
2872          * fact hold it while blocking. This will lead it to report -EDEADLK
2873          * and BUG when futex_unlock_pi() interleaves with this.
2874          *
2875          * Therefore acquire wait_lock while holding hb->lock, but drop the
2876          * latter before calling __rt_mutex_start_proxy_lock(). This
2877          * interleaves with futex_unlock_pi() -- which does a similar lock
2878          * handoff -- such that the latter can observe the futex_q::pi_state
2879          * before __rt_mutex_start_proxy_lock() is done.
2880          */
2881         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2882         spin_unlock(q.lock_ptr);
2883         /*
2884          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2885          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2886          * it sees the futex_q::pi_state.
2887          */
2888         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2889         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2890
2891         if (ret) {
2892                 if (ret == 1)
2893                         ret = 0;
2894                 goto cleanup;
2895         }
2896
2897         if (unlikely(to))
2898                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2899
2900         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2901
2902 cleanup:
2903         spin_lock(q.lock_ptr);
2904         /*
2905          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2906          * first acquire the hb->lock before removing the lock from the
2907          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2908          * lists consistent.
2909          *
2910          * In particular; it is important that futex_unlock_pi() can not
2911          * observe this inconsistency.
2912          */
2913         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2914                 ret = 0;
2915
2916 no_block:
2917         /*
2918          * Fixup the pi_state owner and possibly acquire the lock if we
2919          * haven't already.
2920          */
2921         res = fixup_owner(uaddr, &q, !ret);
2922         /*
2923          * If fixup_owner() returned an error, proprogate that.  If it acquired
2924          * the lock, clear our -ETIMEDOUT or -EINTR.
2925          */
2926         if (res)
2927                 ret = (res < 0) ? res : 0;
2928
2929         /*
2930          * If fixup_owner() faulted and was unable to handle the fault, unlock
2931          * it and return the fault to userspace.
2932          */
2933         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2934                 pi_state = q.pi_state;
2935                 get_pi_state(pi_state);
2936         }
2937
2938         /* Unqueue and drop the lock */
2939         unqueue_me_pi(&q);
2940
2941         if (pi_state) {
2942                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2943                 put_pi_state(pi_state);
2944         }
2945
2946         goto out_put_key;
2947
2948 out_unlock_put_key:
2949         queue_unlock(hb);
2950
2951 out_put_key:
2952         put_futex_key(&q.key);
2953 out:
2954         if (to) {
2955                 hrtimer_cancel(&to->timer);
2956                 destroy_hrtimer_on_stack(&to->timer);
2957         }
2958         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2959
2960 uaddr_faulted:
2961         queue_unlock(hb);
2962
2963         ret = fault_in_user_writeable(uaddr);
2964         if (ret)
2965                 goto out_put_key;
2966
2967         if (!(flags & FLAGS_SHARED))
2968                 goto retry_private;
2969
2970         put_futex_key(&q.key);
2971         goto retry;
2972 }
2973
2974 /*
2975  * Userspace attempted a TID -> 0 atomic transition, and failed.
2976  * This is the in-kernel slowpath: we look up the PI state (if any),
2977  * and do the rt-mutex unlock.
2978  */
2979 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2980 {
2981         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2982         union futex_key key = FUTEX_KEY_INIT;
2983         struct futex_hash_bucket *hb;
2984         struct futex_q *top_waiter;
2985         int ret;
2986
2987         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2988                 return -ENOSYS;
2989
2990 retry:
2991         if (get_user(uval, uaddr))
2992                 return -EFAULT;
2993         /*
2994          * We release only a lock we actually own:
2995          */
2996         if ((uval & FUTEX_TID_MASK) != vpid)
2997                 return -EPERM;
2998
2999         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
3000         if (ret)
3001                 return ret;
3002
3003         hb = hash_futex(&key);
3004         spin_lock(&hb->lock);
3005
3006         /*
3007          * Check waiters first. We do not trust user space values at
3008          * all and we at least want to know if user space fiddled
3009          * with the futex value instead of blindly unlocking.
3010          */
3011         top_waiter = futex_top_waiter(hb, &key);
3012         if (top_waiter) {
3013                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3014
3015                 ret = -EINVAL;
3016                 if (!pi_state)
3017                         goto out_unlock;
3018
3019                 /*
3020                  * If current does not own the pi_state then the futex is
3021                  * inconsistent and user space fiddled with the futex value.
3022                  */
3023                 if (pi_state->owner != current)
3024                         goto out_unlock;
3025
3026                 get_pi_state(pi_state);
3027                 /*
3028                  * By taking wait_lock while still holding hb->lock, we ensure
3029                  * there is no point where we hold neither; and therefore
3030                  * wake_futex_pi() must observe a state consistent with what we
3031                  * observed.
3032                  *
3033                  * In particular; this forces __rt_mutex_start_proxy() to
3034                  * complete such that we're guaranteed to observe the
3035                  * rt_waiter. Also see the WARN in wake_futex_pi().
3036                  */
3037                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3038                 spin_unlock(&hb->lock);
3039
3040                 /* drops pi_state->pi_mutex.wait_lock */
3041                 ret = wake_futex_pi(uaddr, uval, pi_state);
3042
3043                 put_pi_state(pi_state);
3044
3045                 /*
3046                  * Success, we're done! No tricky corner cases.
3047                  */
3048                 if (!ret)
3049                         goto out_putkey;
3050                 /*
3051                  * The atomic access to the futex value generated a
3052                  * pagefault, so retry the user-access and the wakeup:
3053                  */
3054                 if (ret == -EFAULT)
3055                         goto pi_faulted;
3056                 /*
3057                  * A unconditional UNLOCK_PI op raced against a waiter
3058                  * setting the FUTEX_WAITERS bit. Try again.
3059                  */
3060                 if (ret == -EAGAIN)
3061                         goto pi_retry;
3062                 /*
3063                  * wake_futex_pi has detected invalid state. Tell user
3064                  * space.
3065                  */
3066                 goto out_putkey;
3067         }
3068
3069         /*
3070          * We have no kernel internal state, i.e. no waiters in the
3071          * kernel. Waiters which are about to queue themselves are stuck
3072          * on hb->lock. So we can safely ignore them. We do neither
3073          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3074          * owner.
3075          */
3076         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3077                 spin_unlock(&hb->lock);
3078                 switch (ret) {
3079                 case -EFAULT:
3080                         goto pi_faulted;
3081
3082                 case -EAGAIN:
3083                         goto pi_retry;
3084
3085                 default:
3086                         WARN_ON_ONCE(1);
3087                         goto out_putkey;
3088                 }
3089         }
3090
3091         /*
3092          * If uval has changed, let user space handle it.
3093          */
3094         ret = (curval == uval) ? 0 : -EAGAIN;
3095
3096 out_unlock:
3097         spin_unlock(&hb->lock);
3098 out_putkey:
3099         put_futex_key(&key);
3100         return ret;
3101
3102 pi_retry:
3103         put_futex_key(&key);
3104         cond_resched();
3105         goto retry;
3106
3107 pi_faulted:
3108         put_futex_key(&key);
3109
3110         ret = fault_in_user_writeable(uaddr);
3111         if (!ret)
3112                 goto retry;
3113
3114         return ret;
3115 }
3116
3117 /**
3118  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3119  * @hb:         the hash_bucket futex_q was original enqueued on
3120  * @q:          the futex_q woken while waiting to be requeued
3121  * @key2:       the futex_key of the requeue target futex
3122  * @timeout:    the timeout associated with the wait (NULL if none)
3123  *
3124  * Detect if the task was woken on the initial futex as opposed to the requeue
3125  * target futex.  If so, determine if it was a timeout or a signal that caused
3126  * the wakeup and return the appropriate error code to the caller.  Must be
3127  * called with the hb lock held.
3128  *
3129  * Return:
3130  *  -  0 = no early wakeup detected;
3131  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3132  */
3133 static inline
3134 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3135                                    struct futex_q *q, union futex_key *key2,
3136                                    struct hrtimer_sleeper *timeout)
3137 {
3138         int ret = 0;
3139
3140         /*
3141          * With the hb lock held, we avoid races while we process the wakeup.
3142          * We only need to hold hb (and not hb2) to ensure atomicity as the
3143          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3144          * It can't be requeued from uaddr2 to something else since we don't
3145          * support a PI aware source futex for requeue.
3146          */
3147         if (!match_futex(&q->key, key2)) {
3148                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3149                 /*
3150                  * We were woken prior to requeue by a timeout or a signal.
3151                  * Unqueue the futex_q and determine which it was.
3152                  */
3153                 plist_del(&q->list, &hb->chain);
3154                 hb_waiters_dec(hb);
3155
3156                 /* Handle spurious wakeups gracefully */
3157                 ret = -EWOULDBLOCK;
3158                 if (timeout && !timeout->task)
3159                         ret = -ETIMEDOUT;
3160                 else if (signal_pending(current))
3161                         ret = -ERESTARTNOINTR;
3162         }
3163         return ret;
3164 }
3165
3166 /**
3167  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3168  * @uaddr:      the futex we initially wait on (non-pi)
3169  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3170  *              the same type, no requeueing from private to shared, etc.
3171  * @val:        the expected value of uaddr
3172  * @abs_time:   absolute timeout
3173  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3174  * @uaddr2:     the pi futex we will take prior to returning to user-space
3175  *
3176  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3177  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3178  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3179  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3180  * without one, the pi logic would not know which task to boost/deboost, if
3181  * there was a need to.
3182  *
3183  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3184  * via the following--
3185  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3186  * 2) wakeup on uaddr2 after a requeue
3187  * 3) signal
3188  * 4) timeout
3189  *
3190  * If 3, cleanup and return -ERESTARTNOINTR.
3191  *
3192  * If 2, we may then block on trying to take the rt_mutex and return via:
3193  * 5) successful lock
3194  * 6) signal
3195  * 7) timeout
3196  * 8) other lock acquisition failure
3197  *
3198  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3199  *
3200  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3201  *
3202  * Return:
3203  *  -  0 - On success;
3204  *  - <0 - On error
3205  */
3206 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3207                                  u32 val, ktime_t *abs_time, u32 bitset,
3208                                  u32 __user *uaddr2)
3209 {
3210         struct hrtimer_sleeper timeout, *to = NULL;
3211         struct futex_pi_state *pi_state = NULL;
3212         struct rt_mutex_waiter rt_waiter;
3213         struct futex_hash_bucket *hb;
3214         union futex_key key2 = FUTEX_KEY_INIT;
3215         struct futex_q q = futex_q_init;
3216         int res, ret;
3217
3218         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3219                 return -ENOSYS;
3220
3221         if (uaddr == uaddr2)
3222                 return -EINVAL;
3223
3224         if (!bitset)
3225                 return -EINVAL;
3226
3227         if (abs_time) {
3228                 to = &timeout;
3229                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3230                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
3231                                       HRTIMER_MODE_ABS);
3232                 hrtimer_init_sleeper(to, current);
3233                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3234                                              current->timer_slack_ns);
3235         }
3236
3237         /*
3238          * The waiter is allocated on our stack, manipulated by the requeue
3239          * code while we sleep on uaddr.
3240          */
3241         rt_mutex_init_waiter(&rt_waiter);
3242
3243         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3244         if (unlikely(ret != 0))
3245                 goto out;
3246
3247         q.bitset = bitset;
3248         q.rt_waiter = &rt_waiter;
3249         q.requeue_pi_key = &key2;
3250
3251         /*
3252          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3253          * count.
3254          */
3255         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3256         if (ret)
3257                 goto out_key2;
3258
3259         /*
3260          * The check above which compares uaddrs is not sufficient for
3261          * shared futexes. We need to compare the keys:
3262          */
3263         if (match_futex(&q.key, &key2)) {
3264                 queue_unlock(hb);
3265                 ret = -EINVAL;
3266                 goto out_put_keys;
3267         }
3268
3269         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3270         futex_wait_queue_me(hb, &q, to);
3271
3272         spin_lock(&hb->lock);
3273         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3274         spin_unlock(&hb->lock);
3275         if (ret)
3276                 goto out_put_keys;
3277
3278         /*
3279          * In order for us to be here, we know our q.key == key2, and since
3280          * we took the hb->lock above, we also know that futex_requeue() has
3281          * completed and we no longer have to concern ourselves with a wakeup
3282          * race with the atomic proxy lock acquisition by the requeue code. The
3283          * futex_requeue dropped our key1 reference and incremented our key2
3284          * reference count.
3285          */
3286
3287         /* Check if the requeue code acquired the second futex for us. */
3288         if (!q.rt_waiter) {
3289                 /*
3290                  * Got the lock. We might not be the anticipated owner if we
3291                  * did a lock-steal - fix up the PI-state in that case.
3292                  */
3293                 if (q.pi_state && (q.pi_state->owner != current)) {
3294                         spin_lock(q.lock_ptr);
3295                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3296                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3297                                 pi_state = q.pi_state;
3298                                 get_pi_state(pi_state);
3299                         }
3300                         /*
3301                          * Drop the reference to the pi state which
3302                          * the requeue_pi() code acquired for us.
3303                          */
3304                         put_pi_state(q.pi_state);
3305                         spin_unlock(q.lock_ptr);
3306                 }
3307         } else {
3308                 struct rt_mutex *pi_mutex;
3309
3310                 /*
3311                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3312                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3313                  * the pi_state.
3314                  */
3315                 WARN_ON(!q.pi_state);
3316                 pi_mutex = &q.pi_state->pi_mutex;
3317                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3318
3319                 spin_lock(q.lock_ptr);
3320                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3321                         ret = 0;
3322
3323                 debug_rt_mutex_free_waiter(&rt_waiter);
3324                 /*
3325                  * Fixup the pi_state owner and possibly acquire the lock if we
3326                  * haven't already.
3327                  */
3328                 res = fixup_owner(uaddr2, &q, !ret);
3329                 /*
3330                  * If fixup_owner() returned an error, proprogate that.  If it
3331                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3332                  */
3333                 if (res)
3334                         ret = (res < 0) ? res : 0;
3335
3336                 /*
3337                  * If fixup_pi_state_owner() faulted and was unable to handle
3338                  * the fault, unlock the rt_mutex and return the fault to
3339                  * userspace.
3340                  */
3341                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3342                         pi_state = q.pi_state;
3343                         get_pi_state(pi_state);
3344                 }
3345
3346                 /* Unqueue and drop the lock. */
3347                 unqueue_me_pi(&q);
3348         }
3349
3350         if (pi_state) {
3351                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3352                 put_pi_state(pi_state);
3353         }
3354
3355         if (ret == -EINTR) {
3356                 /*
3357                  * We've already been requeued, but cannot restart by calling
3358                  * futex_lock_pi() directly. We could restart this syscall, but
3359                  * it would detect that the user space "val" changed and return
3360                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3361                  * -EWOULDBLOCK directly.
3362                  */
3363                 ret = -EWOULDBLOCK;
3364         }
3365
3366 out_put_keys:
3367         put_futex_key(&q.key);
3368 out_key2:
3369         put_futex_key(&key2);
3370
3371 out:
3372         if (to) {
3373                 hrtimer_cancel(&to->timer);
3374                 destroy_hrtimer_on_stack(&to->timer);
3375         }
3376         return ret;
3377 }
3378
3379 /*
3380  * Support for robust futexes: the kernel cleans up held futexes at
3381  * thread exit time.
3382  *
3383  * Implementation: user-space maintains a per-thread list of locks it
3384  * is holding. Upon do_exit(), the kernel carefully walks this list,
3385  * and marks all locks that are owned by this thread with the
3386  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3387  * always manipulated with the lock held, so the list is private and
3388  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3389  * field, to allow the kernel to clean up if the thread dies after
3390  * acquiring the lock, but just before it could have added itself to
3391  * the list. There can only be one such pending lock.
3392  */
3393
3394 /**
3395  * sys_set_robust_list() - Set the robust-futex list head of a task
3396  * @head:       pointer to the list-head
3397  * @len:        length of the list-head, as userspace expects
3398  */
3399 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3400                 size_t, len)
3401 {
3402         if (!futex_cmpxchg_enabled)
3403                 return -ENOSYS;
3404         /*
3405          * The kernel knows only one size for now:
3406          */
3407         if (unlikely(len != sizeof(*head)))
3408                 return -EINVAL;
3409
3410         current->robust_list = head;
3411
3412         return 0;
3413 }
3414
3415 /**
3416  * sys_get_robust_list() - Get the robust-futex list head of a task
3417  * @pid:        pid of the process [zero for current task]
3418  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3419  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3420  */
3421 SYSCALL_DEFINE3(get_robust_list, int, pid,
3422                 struct robust_list_head __user * __user *, head_ptr,
3423                 size_t __user *, len_ptr)
3424 {
3425         struct robust_list_head __user *head;
3426         unsigned long ret;
3427         struct task_struct *p;
3428
3429         if (!futex_cmpxchg_enabled)
3430                 return -ENOSYS;
3431
3432         rcu_read_lock();
3433
3434         ret = -ESRCH;
3435         if (!pid)
3436                 p = current;
3437         else {
3438                 p = find_task_by_vpid(pid);
3439                 if (!p)
3440                         goto err_unlock;
3441         }
3442
3443         ret = -EPERM;
3444         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3445                 goto err_unlock;
3446
3447         head = p->robust_list;
3448         rcu_read_unlock();
3449
3450         if (put_user(sizeof(*head), len_ptr))
3451                 return -EFAULT;
3452         return put_user(head, head_ptr);
3453
3454 err_unlock:
3455         rcu_read_unlock();
3456
3457         return ret;
3458 }
3459
3460 /* Constants for the pending_op argument of handle_futex_death */
3461 #define HANDLE_DEATH_PENDING    true
3462 #define HANDLE_DEATH_LIST       false
3463
3464 /*
3465  * Process a futex-list entry, check whether it's owned by the
3466  * dying task, and do notification if so:
3467  */
3468 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3469                               bool pi, bool pending_op)
3470 {
3471         u32 uval, uninitialized_var(nval), mval;
3472         int err;
3473
3474         /* Futex address must be 32bit aligned */
3475         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3476                 return -1;
3477
3478 retry:
3479         if (get_user(uval, uaddr))
3480                 return -1;
3481
3482         /*
3483          * Special case for regular (non PI) futexes. The unlock path in
3484          * user space has two race scenarios:
3485          *
3486          * 1. The unlock path releases the user space futex value and
3487          *    before it can execute the futex() syscall to wake up
3488          *    waiters it is killed.
3489          *
3490          * 2. A woken up waiter is killed before it can acquire the
3491          *    futex in user space.
3492          *
3493          * In both cases the TID validation below prevents a wakeup of
3494          * potential waiters which can cause these waiters to block
3495          * forever.
3496          *
3497          * In both cases the following conditions are met:
3498          *
3499          *      1) task->robust_list->list_op_pending != NULL
3500          *         @pending_op == true
3501          *      2) User space futex value == 0
3502          *      3) Regular futex: @pi == false
3503          *
3504          * If these conditions are met, it is safe to attempt waking up a
3505          * potential waiter without touching the user space futex value and
3506          * trying to set the OWNER_DIED bit. The user space futex value is
3507          * uncontended and the rest of the user space mutex state is
3508          * consistent, so a woken waiter will just take over the
3509          * uncontended futex. Setting the OWNER_DIED bit would create
3510          * inconsistent state and malfunction of the user space owner died
3511          * handling.
3512          */
3513         if (pending_op && !pi && !uval) {
3514                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3515                 return 0;
3516         }
3517
3518         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3519                 return 0;
3520
3521         /*
3522          * Ok, this dying thread is truly holding a futex
3523          * of interest. Set the OWNER_DIED bit atomically
3524          * via cmpxchg, and if the value had FUTEX_WAITERS
3525          * set, wake up a waiter (if any). (We have to do a
3526          * futex_wake() even if OWNER_DIED is already set -
3527          * to handle the rare but possible case of recursive
3528          * thread-death.) The rest of the cleanup is done in
3529          * userspace.
3530          */
3531         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3532
3533         /*
3534          * We are not holding a lock here, but we want to have
3535          * the pagefault_disable/enable() protection because
3536          * we want to handle the fault gracefully. If the
3537          * access fails we try to fault in the futex with R/W
3538          * verification via get_user_pages. get_user() above
3539          * does not guarantee R/W access. If that fails we
3540          * give up and leave the futex locked.
3541          */
3542         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3543                 switch (err) {
3544                 case -EFAULT:
3545                         if (fault_in_user_writeable(uaddr))
3546                                 return -1;
3547                         goto retry;
3548
3549                 case -EAGAIN:
3550                         cond_resched();
3551                         goto retry;
3552
3553                 default:
3554                         WARN_ON_ONCE(1);
3555                         return err;
3556                 }
3557         }
3558
3559         if (nval != uval)
3560                 goto retry;
3561
3562         /*
3563          * Wake robust non-PI futexes here. The wakeup of
3564          * PI futexes happens in exit_pi_state():
3565          */
3566         if (!pi && (uval & FUTEX_WAITERS))
3567                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3568
3569         return 0;
3570 }
3571
3572 /*
3573  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3574  */
3575 static inline int fetch_robust_entry(struct robust_list __user **entry,
3576                                      struct robust_list __user * __user *head,
3577                                      unsigned int *pi)
3578 {
3579         unsigned long uentry;
3580
3581         if (get_user(uentry, (unsigned long __user *)head))
3582                 return -EFAULT;
3583
3584         *entry = (void __user *)(uentry & ~1UL);
3585         *pi = uentry & 1;
3586
3587         return 0;
3588 }
3589
3590 /*
3591  * Walk curr->robust_list (very carefully, it's a userspace list!)
3592  * and mark any locks found there dead, and notify any waiters.
3593  *
3594  * We silently return on any sign of list-walking problem.
3595  */
3596 void exit_robust_list(struct task_struct *curr)
3597 {
3598         struct robust_list_head __user *head = curr->robust_list;
3599         struct robust_list __user *entry, *next_entry, *pending;
3600         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3601         unsigned int uninitialized_var(next_pi);
3602         unsigned long futex_offset;
3603         int rc;
3604
3605         if (!futex_cmpxchg_enabled)
3606                 return;
3607
3608         /*
3609          * Fetch the list head (which was registered earlier, via
3610          * sys_set_robust_list()):
3611          */
3612         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3613                 return;
3614         /*
3615          * Fetch the relative futex offset:
3616          */
3617         if (get_user(futex_offset, &head->futex_offset))
3618                 return;
3619         /*
3620          * Fetch any possibly pending lock-add first, and handle it
3621          * if it exists:
3622          */
3623         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3624                 return;
3625
3626         next_entry = NULL;      /* avoid warning with gcc */
3627         while (entry != &head->list) {
3628                 /*
3629                  * Fetch the next entry in the list before calling
3630                  * handle_futex_death:
3631                  */
3632                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3633                 /*
3634                  * A pending lock might already be on the list, so
3635                  * don't process it twice:
3636                  */
3637                 if (entry != pending) {
3638                         if (handle_futex_death((void __user *)entry + futex_offset,
3639                                                 curr, pi, HANDLE_DEATH_LIST))
3640                                 return;
3641                 }
3642                 if (rc)
3643                         return;
3644                 entry = next_entry;
3645                 pi = next_pi;
3646                 /*
3647                  * Avoid excessively long or circular lists:
3648                  */
3649                 if (!--limit)
3650                         break;
3651
3652                 cond_resched();
3653         }
3654
3655         if (pending) {
3656                 handle_futex_death((void __user *)pending + futex_offset,
3657                                    curr, pip, HANDLE_DEATH_PENDING);
3658         }
3659 }
3660
3661 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3662                 u32 __user *uaddr2, u32 val2, u32 val3)
3663 {
3664         int cmd = op & FUTEX_CMD_MASK;
3665         unsigned int flags = 0;
3666
3667         if (!(op & FUTEX_PRIVATE_FLAG))
3668                 flags |= FLAGS_SHARED;
3669
3670         if (op & FUTEX_CLOCK_REALTIME) {
3671                 flags |= FLAGS_CLOCKRT;
3672                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3673                     cmd != FUTEX_WAIT_REQUEUE_PI)
3674                         return -ENOSYS;
3675         }
3676
3677         switch (cmd) {
3678         case FUTEX_LOCK_PI:
3679         case FUTEX_UNLOCK_PI:
3680         case FUTEX_TRYLOCK_PI:
3681         case FUTEX_WAIT_REQUEUE_PI:
3682         case FUTEX_CMP_REQUEUE_PI:
3683                 if (!futex_cmpxchg_enabled)
3684                         return -ENOSYS;
3685         }
3686
3687         switch (cmd) {
3688         case FUTEX_WAIT:
3689                 val3 = FUTEX_BITSET_MATCH_ANY;
3690                 /* fall through */
3691         case FUTEX_WAIT_BITSET:
3692                 return futex_wait(uaddr, flags, val, timeout, val3);
3693         case FUTEX_WAKE:
3694                 val3 = FUTEX_BITSET_MATCH_ANY;
3695                 /* fall through */
3696         case FUTEX_WAKE_BITSET:
3697                 return futex_wake(uaddr, flags, val, val3);
3698         case FUTEX_REQUEUE:
3699                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3700         case FUTEX_CMP_REQUEUE:
3701                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3702         case FUTEX_WAKE_OP:
3703                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3704         case FUTEX_LOCK_PI:
3705                 return futex_lock_pi(uaddr, flags, timeout, 0);
3706         case FUTEX_UNLOCK_PI:
3707                 return futex_unlock_pi(uaddr, flags);
3708         case FUTEX_TRYLOCK_PI:
3709                 return futex_lock_pi(uaddr, flags, NULL, 1);
3710         case FUTEX_WAIT_REQUEUE_PI:
3711                 val3 = FUTEX_BITSET_MATCH_ANY;
3712                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3713                                              uaddr2);
3714         case FUTEX_CMP_REQUEUE_PI:
3715                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3716         }
3717         return -ENOSYS;
3718 }
3719
3720
3721 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3722                 struct timespec __user *, utime, u32 __user *, uaddr2,
3723                 u32, val3)
3724 {
3725         struct timespec ts;
3726         ktime_t t, *tp = NULL;
3727         u32 val2 = 0;
3728         int cmd = op & FUTEX_CMD_MASK;
3729
3730         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3731                       cmd == FUTEX_WAIT_BITSET ||
3732                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3733                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3734                         return -EFAULT;
3735                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3736                         return -EFAULT;
3737                 if (!timespec_valid(&ts))
3738                         return -EINVAL;
3739
3740                 t = timespec_to_ktime(ts);
3741                 if (cmd == FUTEX_WAIT)
3742                         t = ktime_add_safe(ktime_get(), t);
3743                 tp = &t;
3744         }
3745         /*
3746          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3747          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3748          */
3749         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3750             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3751                 val2 = (u32) (unsigned long) utime;
3752
3753         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3754 }
3755
3756 #ifdef CONFIG_COMPAT
3757 /*
3758  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3759  */
3760 static inline int
3761 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3762                    compat_uptr_t __user *head, unsigned int *pi)
3763 {
3764         if (get_user(*uentry, head))
3765                 return -EFAULT;
3766
3767         *entry = compat_ptr((*uentry) & ~1);
3768         *pi = (unsigned int)(*uentry) & 1;
3769
3770         return 0;
3771 }
3772
3773 static void __user *futex_uaddr(struct robust_list __user *entry,
3774                                 compat_long_t futex_offset)
3775 {
3776         compat_uptr_t base = ptr_to_compat(entry);
3777         void __user *uaddr = compat_ptr(base + futex_offset);
3778
3779         return uaddr;
3780 }
3781
3782 /*
3783  * Walk curr->robust_list (very carefully, it's a userspace list!)
3784  * and mark any locks found there dead, and notify any waiters.
3785  *
3786  * We silently return on any sign of list-walking problem.
3787  */
3788 void compat_exit_robust_list(struct task_struct *curr)
3789 {
3790         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3791         struct robust_list __user *entry, *next_entry, *pending;
3792         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3793         unsigned int uninitialized_var(next_pi);
3794         compat_uptr_t uentry, next_uentry, upending;
3795         compat_long_t futex_offset;
3796         int rc;
3797
3798         if (!futex_cmpxchg_enabled)
3799                 return;
3800
3801         /*
3802          * Fetch the list head (which was registered earlier, via
3803          * sys_set_robust_list()):
3804          */
3805         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3806                 return;
3807         /*
3808          * Fetch the relative futex offset:
3809          */
3810         if (get_user(futex_offset, &head->futex_offset))
3811                 return;
3812         /*
3813          * Fetch any possibly pending lock-add first, and handle it
3814          * if it exists:
3815          */
3816         if (compat_fetch_robust_entry(&upending, &pending,
3817                                &head->list_op_pending, &pip))
3818                 return;
3819
3820         next_entry = NULL;      /* avoid warning with gcc */
3821         while (entry != (struct robust_list __user *) &head->list) {
3822                 /*
3823                  * Fetch the next entry in the list before calling
3824                  * handle_futex_death:
3825                  */
3826                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3827                         (compat_uptr_t __user *)&entry->next, &next_pi);
3828                 /*
3829                  * A pending lock might already be on the list, so
3830                  * dont process it twice:
3831                  */
3832                 if (entry != pending) {
3833                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3834
3835                         if (handle_futex_death(uaddr, curr, pi,
3836                                                HANDLE_DEATH_LIST))
3837                                 return;
3838                 }
3839                 if (rc)
3840                         return;
3841                 uentry = next_uentry;
3842                 entry = next_entry;
3843                 pi = next_pi;
3844                 /*
3845                  * Avoid excessively long or circular lists:
3846                  */
3847                 if (!--limit)
3848                         break;
3849
3850                 cond_resched();
3851         }
3852         if (pending) {
3853                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3854
3855                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3856         }
3857 }
3858
3859 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3860                 struct compat_robust_list_head __user *, head,
3861                 compat_size_t, len)
3862 {
3863         if (!futex_cmpxchg_enabled)
3864                 return -ENOSYS;
3865
3866         if (unlikely(len != sizeof(*head)))
3867                 return -EINVAL;
3868
3869         current->compat_robust_list = head;
3870
3871         return 0;
3872 }
3873
3874 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3875                         compat_uptr_t __user *, head_ptr,
3876                         compat_size_t __user *, len_ptr)
3877 {
3878         struct compat_robust_list_head __user *head;
3879         unsigned long ret;
3880         struct task_struct *p;
3881
3882         if (!futex_cmpxchg_enabled)
3883                 return -ENOSYS;
3884
3885         rcu_read_lock();
3886
3887         ret = -ESRCH;
3888         if (!pid)
3889                 p = current;
3890         else {
3891                 p = find_task_by_vpid(pid);
3892                 if (!p)
3893                         goto err_unlock;
3894         }
3895
3896         ret = -EPERM;
3897         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3898                 goto err_unlock;
3899
3900         head = p->compat_robust_list;
3901         rcu_read_unlock();
3902
3903         if (put_user(sizeof(*head), len_ptr))
3904                 return -EFAULT;
3905         return put_user(ptr_to_compat(head), head_ptr);
3906
3907 err_unlock:
3908         rcu_read_unlock();
3909
3910         return ret;
3911 }
3912
3913 COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3914                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3915                 u32, val3)
3916 {
3917         struct timespec ts;
3918         ktime_t t, *tp = NULL;
3919         int val2 = 0;
3920         int cmd = op & FUTEX_CMD_MASK;
3921
3922         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3923                       cmd == FUTEX_WAIT_BITSET ||
3924                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3925                 if (compat_get_timespec(&ts, utime))
3926                         return -EFAULT;
3927                 if (!timespec_valid(&ts))
3928                         return -EINVAL;
3929
3930                 t = timespec_to_ktime(ts);
3931                 if (cmd == FUTEX_WAIT)
3932                         t = ktime_add_safe(ktime_get(), t);
3933                 tp = &t;
3934         }
3935         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3936             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3937                 val2 = (int) (unsigned long) utime;
3938
3939         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3940 }
3941 #endif /* CONFIG_COMPAT */
3942
3943 static void __init futex_detect_cmpxchg(void)
3944 {
3945 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3946         u32 curval;
3947
3948         /*
3949          * This will fail and we want it. Some arch implementations do
3950          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3951          * functionality. We want to know that before we call in any
3952          * of the complex code paths. Also we want to prevent
3953          * registration of robust lists in that case. NULL is
3954          * guaranteed to fault and we get -EFAULT on functional
3955          * implementation, the non-functional ones will return
3956          * -ENOSYS.
3957          */
3958         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3959                 futex_cmpxchg_enabled = 1;
3960 #endif
3961 }
3962
3963 static int __init futex_init(void)
3964 {
3965         unsigned int futex_shift;
3966         unsigned long i;
3967
3968 #if CONFIG_BASE_SMALL
3969         futex_hashsize = 16;
3970 #else
3971         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3972 #endif
3973
3974         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3975                                                futex_hashsize, 0,
3976                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3977                                                &futex_shift, NULL,
3978                                                futex_hashsize, futex_hashsize);
3979         futex_hashsize = 1UL << futex_shift;
3980
3981         futex_detect_cmpxchg();
3982
3983         for (i = 0; i < futex_hashsize; i++) {
3984                 atomic_set(&futex_queues[i].waiters, 0);
3985                 plist_head_init(&futex_queues[i].chain);
3986                 spin_lock_init(&futex_queues[i].lock);
3987         }
3988
3989         return 0;
3990 }
3991 core_initcall(futex_init);