Merge tag 'xfs-5.4-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[platform/kernel/linux-rpi.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
59
60 #include <asm/futex.h>
61
62 #include "locking/rtmutex_common.h"
63
64 /*
65  * READ this before attempting to hack on futexes!
66  *
67  * Basic futex operation and ordering guarantees
68  * =============================================
69  *
70  * The waiter reads the futex value in user space and calls
71  * futex_wait(). This function computes the hash bucket and acquires
72  * the hash bucket lock. After that it reads the futex user space value
73  * again and verifies that the data has not changed. If it has not changed
74  * it enqueues itself into the hash bucket, releases the hash bucket lock
75  * and schedules.
76  *
77  * The waker side modifies the user space value of the futex and calls
78  * futex_wake(). This function computes the hash bucket and acquires the
79  * hash bucket lock. Then it looks for waiters on that futex in the hash
80  * bucket and wakes them.
81  *
82  * In futex wake up scenarios where no tasks are blocked on a futex, taking
83  * the hb spinlock can be avoided and simply return. In order for this
84  * optimization to work, ordering guarantees must exist so that the waiter
85  * being added to the list is acknowledged when the list is concurrently being
86  * checked by the waker, avoiding scenarios like the following:
87  *
88  * CPU 0                               CPU 1
89  * val = *futex;
90  * sys_futex(WAIT, futex, val);
91  *   futex_wait(futex, val);
92  *   uval = *futex;
93  *                                     *futex = newval;
94  *                                     sys_futex(WAKE, futex);
95  *                                       futex_wake(futex);
96  *                                       if (queue_empty())
97  *                                         return;
98  *   if (uval == val)
99  *      lock(hash_bucket(futex));
100  *      queue();
101  *     unlock(hash_bucket(futex));
102  *     schedule();
103  *
104  * This would cause the waiter on CPU 0 to wait forever because it
105  * missed the transition of the user space value from val to newval
106  * and the waker did not find the waiter in the hash bucket queue.
107  *
108  * The correct serialization ensures that a waiter either observes
109  * the changed user space value before blocking or is woken by a
110  * concurrent waker:
111  *
112  * CPU 0                                 CPU 1
113  * val = *futex;
114  * sys_futex(WAIT, futex, val);
115  *   futex_wait(futex, val);
116  *
117  *   waiters++; (a)
118  *   smp_mb(); (A) <-- paired with -.
119  *                                  |
120  *   lock(hash_bucket(futex));      |
121  *                                  |
122  *   uval = *futex;                 |
123  *                                  |        *futex = newval;
124  *                                  |        sys_futex(WAKE, futex);
125  *                                  |          futex_wake(futex);
126  *                                  |
127  *                                  `--------> smp_mb(); (B)
128  *   if (uval == val)
129  *     queue();
130  *     unlock(hash_bucket(futex));
131  *     schedule();                         if (waiters)
132  *                                           lock(hash_bucket(futex));
133  *   else                                    wake_waiters(futex);
134  *     waiters--; (b)                        unlock(hash_bucket(futex));
135  *
136  * Where (A) orders the waiters increment and the futex value read through
137  * atomic operations (see hb_waiters_inc) and where (B) orders the write
138  * to futex and the waiters read -- this is done by the barriers for both
139  * shared and private futexes in get_futex_key_refs().
140  *
141  * This yields the following case (where X:=waiters, Y:=futex):
142  *
143  *      X = Y = 0
144  *
145  *      w[X]=1          w[Y]=1
146  *      MB              MB
147  *      r[Y]=y          r[X]=x
148  *
149  * Which guarantees that x==0 && y==0 is impossible; which translates back into
150  * the guarantee that we cannot both miss the futex variable change and the
151  * enqueue.
152  *
153  * Note that a new waiter is accounted for in (a) even when it is possible that
154  * the wait call can return error, in which case we backtrack from it in (b).
155  * Refer to the comment in queue_lock().
156  *
157  * Similarly, in order to account for waiters being requeued on another
158  * address we always increment the waiters for the destination bucket before
159  * acquiring the lock. It then decrements them again  after releasing it -
160  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161  * will do the additional required waiter count housekeeping. This is done for
162  * double_lock_hb() and double_unlock_hb(), respectively.
163  */
164
165 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166 #define futex_cmpxchg_enabled 1
167 #else
168 static int  __read_mostly futex_cmpxchg_enabled;
169 #endif
170
171 /*
172  * Futex flags used to encode options to functions and preserve them across
173  * restarts.
174  */
175 #ifdef CONFIG_MMU
176 # define FLAGS_SHARED           0x01
177 #else
178 /*
179  * NOMMU does not have per process address space. Let the compiler optimize
180  * code away.
181  */
182 # define FLAGS_SHARED           0x00
183 #endif
184 #define FLAGS_CLOCKRT           0x02
185 #define FLAGS_HAS_TIMEOUT       0x04
186
187 /*
188  * Priority Inheritance state:
189  */
190 struct futex_pi_state {
191         /*
192          * list of 'owned' pi_state instances - these have to be
193          * cleaned up in do_exit() if the task exits prematurely:
194          */
195         struct list_head list;
196
197         /*
198          * The PI object:
199          */
200         struct rt_mutex pi_mutex;
201
202         struct task_struct *owner;
203         refcount_t refcount;
204
205         union futex_key key;
206 } __randomize_layout;
207
208 /**
209  * struct futex_q - The hashed futex queue entry, one per waiting task
210  * @list:               priority-sorted list of tasks waiting on this futex
211  * @task:               the task waiting on the futex
212  * @lock_ptr:           the hash bucket lock
213  * @key:                the key the futex is hashed on
214  * @pi_state:           optional priority inheritance state
215  * @rt_waiter:          rt_waiter storage for use with requeue_pi
216  * @requeue_pi_key:     the requeue_pi target futex key
217  * @bitset:             bitset for the optional bitmasked wakeup
218  *
219  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
220  * we can wake only the relevant ones (hashed queues may be shared).
221  *
222  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
223  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224  * The order of wakeup is always to make the first condition true, then
225  * the second.
226  *
227  * PI futexes are typically woken before they are removed from the hash list via
228  * the rt_mutex code. See unqueue_me_pi().
229  */
230 struct futex_q {
231         struct plist_node list;
232
233         struct task_struct *task;
234         spinlock_t *lock_ptr;
235         union futex_key key;
236         struct futex_pi_state *pi_state;
237         struct rt_mutex_waiter *rt_waiter;
238         union futex_key *requeue_pi_key;
239         u32 bitset;
240 } __randomize_layout;
241
242 static const struct futex_q futex_q_init = {
243         /* list gets initialized in queue_me()*/
244         .key = FUTEX_KEY_INIT,
245         .bitset = FUTEX_BITSET_MATCH_ANY
246 };
247
248 /*
249  * Hash buckets are shared by all the futex_keys that hash to the same
250  * location.  Each key may have multiple futex_q structures, one for each task
251  * waiting on a futex.
252  */
253 struct futex_hash_bucket {
254         atomic_t waiters;
255         spinlock_t lock;
256         struct plist_head chain;
257 } ____cacheline_aligned_in_smp;
258
259 /*
260  * The base of the bucket array and its size are always used together
261  * (after initialization only in hash_futex()), so ensure that they
262  * reside in the same cacheline.
263  */
264 static struct {
265         struct futex_hash_bucket *queues;
266         unsigned long            hashsize;
267 } __futex_data __read_mostly __aligned(2*sizeof(long));
268 #define futex_queues   (__futex_data.queues)
269 #define futex_hashsize (__futex_data.hashsize)
270
271
272 /*
273  * Fault injections for futexes.
274  */
275 #ifdef CONFIG_FAIL_FUTEX
276
277 static struct {
278         struct fault_attr attr;
279
280         bool ignore_private;
281 } fail_futex = {
282         .attr = FAULT_ATTR_INITIALIZER,
283         .ignore_private = false,
284 };
285
286 static int __init setup_fail_futex(char *str)
287 {
288         return setup_fault_attr(&fail_futex.attr, str);
289 }
290 __setup("fail_futex=", setup_fail_futex);
291
292 static bool should_fail_futex(bool fshared)
293 {
294         if (fail_futex.ignore_private && !fshared)
295                 return false;
296
297         return should_fail(&fail_futex.attr, 1);
298 }
299
300 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302 static int __init fail_futex_debugfs(void)
303 {
304         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305         struct dentry *dir;
306
307         dir = fault_create_debugfs_attr("fail_futex", NULL,
308                                         &fail_futex.attr);
309         if (IS_ERR(dir))
310                 return PTR_ERR(dir);
311
312         debugfs_create_bool("ignore-private", mode, dir,
313                             &fail_futex.ignore_private);
314         return 0;
315 }
316
317 late_initcall(fail_futex_debugfs);
318
319 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321 #else
322 static inline bool should_fail_futex(bool fshared)
323 {
324         return false;
325 }
326 #endif /* CONFIG_FAIL_FUTEX */
327
328 static inline void futex_get_mm(union futex_key *key)
329 {
330         mmgrab(key->private.mm);
331         /*
332          * Ensure futex_get_mm() implies a full barrier such that
333          * get_futex_key() implies a full barrier. This is relied upon
334          * as smp_mb(); (B), see the ordering comment above.
335          */
336         smp_mb__after_atomic();
337 }
338
339 /*
340  * Reflects a new waiter being added to the waitqueue.
341  */
342 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
343 {
344 #ifdef CONFIG_SMP
345         atomic_inc(&hb->waiters);
346         /*
347          * Full barrier (A), see the ordering comment above.
348          */
349         smp_mb__after_atomic();
350 #endif
351 }
352
353 /*
354  * Reflects a waiter being removed from the waitqueue by wakeup
355  * paths.
356  */
357 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
358 {
359 #ifdef CONFIG_SMP
360         atomic_dec(&hb->waiters);
361 #endif
362 }
363
364 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
365 {
366 #ifdef CONFIG_SMP
367         return atomic_read(&hb->waiters);
368 #else
369         return 1;
370 #endif
371 }
372
373 /**
374  * hash_futex - Return the hash bucket in the global hash
375  * @key:        Pointer to the futex key for which the hash is calculated
376  *
377  * We hash on the keys returned from get_futex_key (see below) and return the
378  * corresponding hash bucket in the global hash.
379  */
380 static struct futex_hash_bucket *hash_futex(union futex_key *key)
381 {
382         u32 hash = jhash2((u32*)&key->both.word,
383                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
384                           key->both.offset);
385         return &futex_queues[hash & (futex_hashsize - 1)];
386 }
387
388
389 /**
390  * match_futex - Check whether two futex keys are equal
391  * @key1:       Pointer to key1
392  * @key2:       Pointer to key2
393  *
394  * Return 1 if two futex_keys are equal, 0 otherwise.
395  */
396 static inline int match_futex(union futex_key *key1, union futex_key *key2)
397 {
398         return (key1 && key2
399                 && key1->both.word == key2->both.word
400                 && key1->both.ptr == key2->both.ptr
401                 && key1->both.offset == key2->both.offset);
402 }
403
404 /*
405  * Take a reference to the resource addressed by a key.
406  * Can be called while holding spinlocks.
407  *
408  */
409 static void get_futex_key_refs(union futex_key *key)
410 {
411         if (!key->both.ptr)
412                 return;
413
414         /*
415          * On MMU less systems futexes are always "private" as there is no per
416          * process address space. We need the smp wmb nevertheless - yes,
417          * arch/blackfin has MMU less SMP ...
418          */
419         if (!IS_ENABLED(CONFIG_MMU)) {
420                 smp_mb(); /* explicit smp_mb(); (B) */
421                 return;
422         }
423
424         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
425         case FUT_OFF_INODE:
426                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
427                 break;
428         case FUT_OFF_MMSHARED:
429                 futex_get_mm(key); /* implies smp_mb(); (B) */
430                 break;
431         default:
432                 /*
433                  * Private futexes do not hold reference on an inode or
434                  * mm, therefore the only purpose of calling get_futex_key_refs
435                  * is because we need the barrier for the lockless waiter check.
436                  */
437                 smp_mb(); /* explicit smp_mb(); (B) */
438         }
439 }
440
441 /*
442  * Drop a reference to the resource addressed by a key.
443  * The hash bucket spinlock must not be held. This is
444  * a no-op for private futexes, see comment in the get
445  * counterpart.
446  */
447 static void drop_futex_key_refs(union futex_key *key)
448 {
449         if (!key->both.ptr) {
450                 /* If we're here then we tried to put a key we failed to get */
451                 WARN_ON_ONCE(1);
452                 return;
453         }
454
455         if (!IS_ENABLED(CONFIG_MMU))
456                 return;
457
458         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
459         case FUT_OFF_INODE:
460                 iput(key->shared.inode);
461                 break;
462         case FUT_OFF_MMSHARED:
463                 mmdrop(key->private.mm);
464                 break;
465         }
466 }
467
468 enum futex_access {
469         FUTEX_READ,
470         FUTEX_WRITE
471 };
472
473 /**
474  * futex_setup_timer - set up the sleeping hrtimer.
475  * @time:       ptr to the given timeout value
476  * @timeout:    the hrtimer_sleeper structure to be set up
477  * @flags:      futex flags
478  * @range_ns:   optional range in ns
479  *
480  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
481  *         value given
482  */
483 static inline struct hrtimer_sleeper *
484 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
485                   int flags, u64 range_ns)
486 {
487         if (!time)
488                 return NULL;
489
490         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
491                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
492                                       HRTIMER_MODE_ABS);
493         /*
494          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
495          * effectively the same as calling hrtimer_set_expires().
496          */
497         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
498
499         return timeout;
500 }
501
502 /**
503  * get_futex_key() - Get parameters which are the keys for a futex
504  * @uaddr:      virtual address of the futex
505  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
506  * @key:        address where result is stored.
507  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
508  *              FUTEX_WRITE)
509  *
510  * Return: a negative error code or 0
511  *
512  * The key words are stored in @key on success.
513  *
514  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
515  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
516  * We can usually work out the index without swapping in the page.
517  *
518  * lock_page() might sleep, the caller should not hold a spinlock.
519  */
520 static int
521 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
522 {
523         unsigned long address = (unsigned long)uaddr;
524         struct mm_struct *mm = current->mm;
525         struct page *page, *tail;
526         struct address_space *mapping;
527         int err, ro = 0;
528
529         /*
530          * The futex address must be "naturally" aligned.
531          */
532         key->both.offset = address % PAGE_SIZE;
533         if (unlikely((address % sizeof(u32)) != 0))
534                 return -EINVAL;
535         address -= key->both.offset;
536
537         if (unlikely(!access_ok(uaddr, sizeof(u32))))
538                 return -EFAULT;
539
540         if (unlikely(should_fail_futex(fshared)))
541                 return -EFAULT;
542
543         /*
544          * PROCESS_PRIVATE futexes are fast.
545          * As the mm cannot disappear under us and the 'key' only needs
546          * virtual address, we dont even have to find the underlying vma.
547          * Note : We do have to check 'uaddr' is a valid user address,
548          *        but access_ok() should be faster than find_vma()
549          */
550         if (!fshared) {
551                 key->private.mm = mm;
552                 key->private.address = address;
553                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
554                 return 0;
555         }
556
557 again:
558         /* Ignore any VERIFY_READ mapping (futex common case) */
559         if (unlikely(should_fail_futex(fshared)))
560                 return -EFAULT;
561
562         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
563         /*
564          * If write access is not required (eg. FUTEX_WAIT), try
565          * and get read-only access.
566          */
567         if (err == -EFAULT && rw == FUTEX_READ) {
568                 err = get_user_pages_fast(address, 1, 0, &page);
569                 ro = 1;
570         }
571         if (err < 0)
572                 return err;
573         else
574                 err = 0;
575
576         /*
577          * The treatment of mapping from this point on is critical. The page
578          * lock protects many things but in this context the page lock
579          * stabilizes mapping, prevents inode freeing in the shared
580          * file-backed region case and guards against movement to swap cache.
581          *
582          * Strictly speaking the page lock is not needed in all cases being
583          * considered here and page lock forces unnecessarily serialization
584          * From this point on, mapping will be re-verified if necessary and
585          * page lock will be acquired only if it is unavoidable
586          *
587          * Mapping checks require the head page for any compound page so the
588          * head page and mapping is looked up now. For anonymous pages, it
589          * does not matter if the page splits in the future as the key is
590          * based on the address. For filesystem-backed pages, the tail is
591          * required as the index of the page determines the key. For
592          * base pages, there is no tail page and tail == page.
593          */
594         tail = page;
595         page = compound_head(page);
596         mapping = READ_ONCE(page->mapping);
597
598         /*
599          * If page->mapping is NULL, then it cannot be a PageAnon
600          * page; but it might be the ZERO_PAGE or in the gate area or
601          * in a special mapping (all cases which we are happy to fail);
602          * or it may have been a good file page when get_user_pages_fast
603          * found it, but truncated or holepunched or subjected to
604          * invalidate_complete_page2 before we got the page lock (also
605          * cases which we are happy to fail).  And we hold a reference,
606          * so refcount care in invalidate_complete_page's remove_mapping
607          * prevents drop_caches from setting mapping to NULL beneath us.
608          *
609          * The case we do have to guard against is when memory pressure made
610          * shmem_writepage move it from filecache to swapcache beneath us:
611          * an unlikely race, but we do need to retry for page->mapping.
612          */
613         if (unlikely(!mapping)) {
614                 int shmem_swizzled;
615
616                 /*
617                  * Page lock is required to identify which special case above
618                  * applies. If this is really a shmem page then the page lock
619                  * will prevent unexpected transitions.
620                  */
621                 lock_page(page);
622                 shmem_swizzled = PageSwapCache(page) || page->mapping;
623                 unlock_page(page);
624                 put_page(page);
625
626                 if (shmem_swizzled)
627                         goto again;
628
629                 return -EFAULT;
630         }
631
632         /*
633          * Private mappings are handled in a simple way.
634          *
635          * If the futex key is stored on an anonymous page, then the associated
636          * object is the mm which is implicitly pinned by the calling process.
637          *
638          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
639          * it's a read-only handle, it's expected that futexes attach to
640          * the object not the particular process.
641          */
642         if (PageAnon(page)) {
643                 /*
644                  * A RO anonymous page will never change and thus doesn't make
645                  * sense for futex operations.
646                  */
647                 if (unlikely(should_fail_futex(fshared)) || ro) {
648                         err = -EFAULT;
649                         goto out;
650                 }
651
652                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
653                 key->private.mm = mm;
654                 key->private.address = address;
655
656                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
657
658         } else {
659                 struct inode *inode;
660
661                 /*
662                  * The associated futex object in this case is the inode and
663                  * the page->mapping must be traversed. Ordinarily this should
664                  * be stabilised under page lock but it's not strictly
665                  * necessary in this case as we just want to pin the inode, not
666                  * update the radix tree or anything like that.
667                  *
668                  * The RCU read lock is taken as the inode is finally freed
669                  * under RCU. If the mapping still matches expectations then the
670                  * mapping->host can be safely accessed as being a valid inode.
671                  */
672                 rcu_read_lock();
673
674                 if (READ_ONCE(page->mapping) != mapping) {
675                         rcu_read_unlock();
676                         put_page(page);
677
678                         goto again;
679                 }
680
681                 inode = READ_ONCE(mapping->host);
682                 if (!inode) {
683                         rcu_read_unlock();
684                         put_page(page);
685
686                         goto again;
687                 }
688
689                 /*
690                  * Take a reference unless it is about to be freed. Previously
691                  * this reference was taken by ihold under the page lock
692                  * pinning the inode in place so i_lock was unnecessary. The
693                  * only way for this check to fail is if the inode was
694                  * truncated in parallel which is almost certainly an
695                  * application bug. In such a case, just retry.
696                  *
697                  * We are not calling into get_futex_key_refs() in file-backed
698                  * cases, therefore a successful atomic_inc return below will
699                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
700                  */
701                 if (!atomic_inc_not_zero(&inode->i_count)) {
702                         rcu_read_unlock();
703                         put_page(page);
704
705                         goto again;
706                 }
707
708                 /* Should be impossible but lets be paranoid for now */
709                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
710                         err = -EFAULT;
711                         rcu_read_unlock();
712                         iput(inode);
713
714                         goto out;
715                 }
716
717                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
718                 key->shared.inode = inode;
719                 key->shared.pgoff = basepage_index(tail);
720                 rcu_read_unlock();
721         }
722
723 out:
724         put_page(page);
725         return err;
726 }
727
728 static inline void put_futex_key(union futex_key *key)
729 {
730         drop_futex_key_refs(key);
731 }
732
733 /**
734  * fault_in_user_writeable() - Fault in user address and verify RW access
735  * @uaddr:      pointer to faulting user space address
736  *
737  * Slow path to fixup the fault we just took in the atomic write
738  * access to @uaddr.
739  *
740  * We have no generic implementation of a non-destructive write to the
741  * user address. We know that we faulted in the atomic pagefault
742  * disabled section so we can as well avoid the #PF overhead by
743  * calling get_user_pages() right away.
744  */
745 static int fault_in_user_writeable(u32 __user *uaddr)
746 {
747         struct mm_struct *mm = current->mm;
748         int ret;
749
750         down_read(&mm->mmap_sem);
751         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
752                                FAULT_FLAG_WRITE, NULL);
753         up_read(&mm->mmap_sem);
754
755         return ret < 0 ? ret : 0;
756 }
757
758 /**
759  * futex_top_waiter() - Return the highest priority waiter on a futex
760  * @hb:         the hash bucket the futex_q's reside in
761  * @key:        the futex key (to distinguish it from other futex futex_q's)
762  *
763  * Must be called with the hb lock held.
764  */
765 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
766                                         union futex_key *key)
767 {
768         struct futex_q *this;
769
770         plist_for_each_entry(this, &hb->chain, list) {
771                 if (match_futex(&this->key, key))
772                         return this;
773         }
774         return NULL;
775 }
776
777 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
778                                       u32 uval, u32 newval)
779 {
780         int ret;
781
782         pagefault_disable();
783         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
784         pagefault_enable();
785
786         return ret;
787 }
788
789 static int get_futex_value_locked(u32 *dest, u32 __user *from)
790 {
791         int ret;
792
793         pagefault_disable();
794         ret = __get_user(*dest, from);
795         pagefault_enable();
796
797         return ret ? -EFAULT : 0;
798 }
799
800
801 /*
802  * PI code:
803  */
804 static int refill_pi_state_cache(void)
805 {
806         struct futex_pi_state *pi_state;
807
808         if (likely(current->pi_state_cache))
809                 return 0;
810
811         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
812
813         if (!pi_state)
814                 return -ENOMEM;
815
816         INIT_LIST_HEAD(&pi_state->list);
817         /* pi_mutex gets initialized later */
818         pi_state->owner = NULL;
819         refcount_set(&pi_state->refcount, 1);
820         pi_state->key = FUTEX_KEY_INIT;
821
822         current->pi_state_cache = pi_state;
823
824         return 0;
825 }
826
827 static struct futex_pi_state *alloc_pi_state(void)
828 {
829         struct futex_pi_state *pi_state = current->pi_state_cache;
830
831         WARN_ON(!pi_state);
832         current->pi_state_cache = NULL;
833
834         return pi_state;
835 }
836
837 static void get_pi_state(struct futex_pi_state *pi_state)
838 {
839         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
840 }
841
842 /*
843  * Drops a reference to the pi_state object and frees or caches it
844  * when the last reference is gone.
845  */
846 static void put_pi_state(struct futex_pi_state *pi_state)
847 {
848         if (!pi_state)
849                 return;
850
851         if (!refcount_dec_and_test(&pi_state->refcount))
852                 return;
853
854         /*
855          * If pi_state->owner is NULL, the owner is most probably dying
856          * and has cleaned up the pi_state already
857          */
858         if (pi_state->owner) {
859                 struct task_struct *owner;
860
861                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
862                 owner = pi_state->owner;
863                 if (owner) {
864                         raw_spin_lock(&owner->pi_lock);
865                         list_del_init(&pi_state->list);
866                         raw_spin_unlock(&owner->pi_lock);
867                 }
868                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
869                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
870         }
871
872         if (current->pi_state_cache) {
873                 kfree(pi_state);
874         } else {
875                 /*
876                  * pi_state->list is already empty.
877                  * clear pi_state->owner.
878                  * refcount is at 0 - put it back to 1.
879                  */
880                 pi_state->owner = NULL;
881                 refcount_set(&pi_state->refcount, 1);
882                 current->pi_state_cache = pi_state;
883         }
884 }
885
886 #ifdef CONFIG_FUTEX_PI
887
888 /*
889  * This task is holding PI mutexes at exit time => bad.
890  * Kernel cleans up PI-state, but userspace is likely hosed.
891  * (Robust-futex cleanup is separate and might save the day for userspace.)
892  */
893 void exit_pi_state_list(struct task_struct *curr)
894 {
895         struct list_head *next, *head = &curr->pi_state_list;
896         struct futex_pi_state *pi_state;
897         struct futex_hash_bucket *hb;
898         union futex_key key = FUTEX_KEY_INIT;
899
900         if (!futex_cmpxchg_enabled)
901                 return;
902         /*
903          * We are a ZOMBIE and nobody can enqueue itself on
904          * pi_state_list anymore, but we have to be careful
905          * versus waiters unqueueing themselves:
906          */
907         raw_spin_lock_irq(&curr->pi_lock);
908         while (!list_empty(head)) {
909                 next = head->next;
910                 pi_state = list_entry(next, struct futex_pi_state, list);
911                 key = pi_state->key;
912                 hb = hash_futex(&key);
913
914                 /*
915                  * We can race against put_pi_state() removing itself from the
916                  * list (a waiter going away). put_pi_state() will first
917                  * decrement the reference count and then modify the list, so
918                  * its possible to see the list entry but fail this reference
919                  * acquire.
920                  *
921                  * In that case; drop the locks to let put_pi_state() make
922                  * progress and retry the loop.
923                  */
924                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
925                         raw_spin_unlock_irq(&curr->pi_lock);
926                         cpu_relax();
927                         raw_spin_lock_irq(&curr->pi_lock);
928                         continue;
929                 }
930                 raw_spin_unlock_irq(&curr->pi_lock);
931
932                 spin_lock(&hb->lock);
933                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
934                 raw_spin_lock(&curr->pi_lock);
935                 /*
936                  * We dropped the pi-lock, so re-check whether this
937                  * task still owns the PI-state:
938                  */
939                 if (head->next != next) {
940                         /* retain curr->pi_lock for the loop invariant */
941                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
942                         spin_unlock(&hb->lock);
943                         put_pi_state(pi_state);
944                         continue;
945                 }
946
947                 WARN_ON(pi_state->owner != curr);
948                 WARN_ON(list_empty(&pi_state->list));
949                 list_del_init(&pi_state->list);
950                 pi_state->owner = NULL;
951
952                 raw_spin_unlock(&curr->pi_lock);
953                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
954                 spin_unlock(&hb->lock);
955
956                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
957                 put_pi_state(pi_state);
958
959                 raw_spin_lock_irq(&curr->pi_lock);
960         }
961         raw_spin_unlock_irq(&curr->pi_lock);
962 }
963
964 #endif
965
966 /*
967  * We need to check the following states:
968  *
969  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
970  *
971  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
972  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
973  *
974  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
975  *
976  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
977  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
978  *
979  * [6]  Found  | Found    | task      | 0         | 1      | Valid
980  *
981  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
982  *
983  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
984  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
985  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
986  *
987  * [1]  Indicates that the kernel can acquire the futex atomically. We
988  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
989  *
990  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
991  *      thread is found then it indicates that the owner TID has died.
992  *
993  * [3]  Invalid. The waiter is queued on a non PI futex
994  *
995  * [4]  Valid state after exit_robust_list(), which sets the user space
996  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
997  *
998  * [5]  The user space value got manipulated between exit_robust_list()
999  *      and exit_pi_state_list()
1000  *
1001  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1002  *      the pi_state but cannot access the user space value.
1003  *
1004  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1005  *
1006  * [8]  Owner and user space value match
1007  *
1008  * [9]  There is no transient state which sets the user space TID to 0
1009  *      except exit_robust_list(), but this is indicated by the
1010  *      FUTEX_OWNER_DIED bit. See [4]
1011  *
1012  * [10] There is no transient state which leaves owner and user space
1013  *      TID out of sync.
1014  *
1015  *
1016  * Serialization and lifetime rules:
1017  *
1018  * hb->lock:
1019  *
1020  *      hb -> futex_q, relation
1021  *      futex_q -> pi_state, relation
1022  *
1023  *      (cannot be raw because hb can contain arbitrary amount
1024  *       of futex_q's)
1025  *
1026  * pi_mutex->wait_lock:
1027  *
1028  *      {uval, pi_state}
1029  *
1030  *      (and pi_mutex 'obviously')
1031  *
1032  * p->pi_lock:
1033  *
1034  *      p->pi_state_list -> pi_state->list, relation
1035  *
1036  * pi_state->refcount:
1037  *
1038  *      pi_state lifetime
1039  *
1040  *
1041  * Lock order:
1042  *
1043  *   hb->lock
1044  *     pi_mutex->wait_lock
1045  *       p->pi_lock
1046  *
1047  */
1048
1049 /*
1050  * Validate that the existing waiter has a pi_state and sanity check
1051  * the pi_state against the user space value. If correct, attach to
1052  * it.
1053  */
1054 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1055                               struct futex_pi_state *pi_state,
1056                               struct futex_pi_state **ps)
1057 {
1058         pid_t pid = uval & FUTEX_TID_MASK;
1059         u32 uval2;
1060         int ret;
1061
1062         /*
1063          * Userspace might have messed up non-PI and PI futexes [3]
1064          */
1065         if (unlikely(!pi_state))
1066                 return -EINVAL;
1067
1068         /*
1069          * We get here with hb->lock held, and having found a
1070          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1071          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1072          * which in turn means that futex_lock_pi() still has a reference on
1073          * our pi_state.
1074          *
1075          * The waiter holding a reference on @pi_state also protects against
1076          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1077          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1078          * free pi_state before we can take a reference ourselves.
1079          */
1080         WARN_ON(!refcount_read(&pi_state->refcount));
1081
1082         /*
1083          * Now that we have a pi_state, we can acquire wait_lock
1084          * and do the state validation.
1085          */
1086         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1087
1088         /*
1089          * Since {uval, pi_state} is serialized by wait_lock, and our current
1090          * uval was read without holding it, it can have changed. Verify it
1091          * still is what we expect it to be, otherwise retry the entire
1092          * operation.
1093          */
1094         if (get_futex_value_locked(&uval2, uaddr))
1095                 goto out_efault;
1096
1097         if (uval != uval2)
1098                 goto out_eagain;
1099
1100         /*
1101          * Handle the owner died case:
1102          */
1103         if (uval & FUTEX_OWNER_DIED) {
1104                 /*
1105                  * exit_pi_state_list sets owner to NULL and wakes the
1106                  * topmost waiter. The task which acquires the
1107                  * pi_state->rt_mutex will fixup owner.
1108                  */
1109                 if (!pi_state->owner) {
1110                         /*
1111                          * No pi state owner, but the user space TID
1112                          * is not 0. Inconsistent state. [5]
1113                          */
1114                         if (pid)
1115                                 goto out_einval;
1116                         /*
1117                          * Take a ref on the state and return success. [4]
1118                          */
1119                         goto out_attach;
1120                 }
1121
1122                 /*
1123                  * If TID is 0, then either the dying owner has not
1124                  * yet executed exit_pi_state_list() or some waiter
1125                  * acquired the rtmutex in the pi state, but did not
1126                  * yet fixup the TID in user space.
1127                  *
1128                  * Take a ref on the state and return success. [6]
1129                  */
1130                 if (!pid)
1131                         goto out_attach;
1132         } else {
1133                 /*
1134                  * If the owner died bit is not set, then the pi_state
1135                  * must have an owner. [7]
1136                  */
1137                 if (!pi_state->owner)
1138                         goto out_einval;
1139         }
1140
1141         /*
1142          * Bail out if user space manipulated the futex value. If pi
1143          * state exists then the owner TID must be the same as the
1144          * user space TID. [9/10]
1145          */
1146         if (pid != task_pid_vnr(pi_state->owner))
1147                 goto out_einval;
1148
1149 out_attach:
1150         get_pi_state(pi_state);
1151         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1152         *ps = pi_state;
1153         return 0;
1154
1155 out_einval:
1156         ret = -EINVAL;
1157         goto out_error;
1158
1159 out_eagain:
1160         ret = -EAGAIN;
1161         goto out_error;
1162
1163 out_efault:
1164         ret = -EFAULT;
1165         goto out_error;
1166
1167 out_error:
1168         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1169         return ret;
1170 }
1171
1172 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1173                             struct task_struct *tsk)
1174 {
1175         u32 uval2;
1176
1177         /*
1178          * If PF_EXITPIDONE is not yet set, then try again.
1179          */
1180         if (tsk && !(tsk->flags & PF_EXITPIDONE))
1181                 return -EAGAIN;
1182
1183         /*
1184          * Reread the user space value to handle the following situation:
1185          *
1186          * CPU0                         CPU1
1187          *
1188          * sys_exit()                   sys_futex()
1189          *  do_exit()                    futex_lock_pi()
1190          *                                futex_lock_pi_atomic()
1191          *   exit_signals(tsk)              No waiters:
1192          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1193          *  mm_release(tsk)                 Set waiter bit
1194          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1195          *      Set owner died              attach_to_pi_owner() {
1196          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1197          *   }                               if (!tsk->flags & PF_EXITING) {
1198          *  ...                                attach();
1199          *  tsk->flags |= PF_EXITPIDONE;     } else {
1200          *                                     if (!(tsk->flags & PF_EXITPIDONE))
1201          *                                       return -EAGAIN;
1202          *                                     return -ESRCH; <--- FAIL
1203          *                                   }
1204          *
1205          * Returning ESRCH unconditionally is wrong here because the
1206          * user space value has been changed by the exiting task.
1207          *
1208          * The same logic applies to the case where the exiting task is
1209          * already gone.
1210          */
1211         if (get_futex_value_locked(&uval2, uaddr))
1212                 return -EFAULT;
1213
1214         /* If the user space value has changed, try again. */
1215         if (uval2 != uval)
1216                 return -EAGAIN;
1217
1218         /*
1219          * The exiting task did not have a robust list, the robust list was
1220          * corrupted or the user space value in *uaddr is simply bogus.
1221          * Give up and tell user space.
1222          */
1223         return -ESRCH;
1224 }
1225
1226 /*
1227  * Lookup the task for the TID provided from user space and attach to
1228  * it after doing proper sanity checks.
1229  */
1230 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1231                               struct futex_pi_state **ps)
1232 {
1233         pid_t pid = uval & FUTEX_TID_MASK;
1234         struct futex_pi_state *pi_state;
1235         struct task_struct *p;
1236
1237         /*
1238          * We are the first waiter - try to look up the real owner and attach
1239          * the new pi_state to it, but bail out when TID = 0 [1]
1240          *
1241          * The !pid check is paranoid. None of the call sites should end up
1242          * with pid == 0, but better safe than sorry. Let the caller retry
1243          */
1244         if (!pid)
1245                 return -EAGAIN;
1246         p = find_get_task_by_vpid(pid);
1247         if (!p)
1248                 return handle_exit_race(uaddr, uval, NULL);
1249
1250         if (unlikely(p->flags & PF_KTHREAD)) {
1251                 put_task_struct(p);
1252                 return -EPERM;
1253         }
1254
1255         /*
1256          * We need to look at the task state flags to figure out,
1257          * whether the task is exiting. To protect against the do_exit
1258          * change of the task flags, we do this protected by
1259          * p->pi_lock:
1260          */
1261         raw_spin_lock_irq(&p->pi_lock);
1262         if (unlikely(p->flags & PF_EXITING)) {
1263                 /*
1264                  * The task is on the way out. When PF_EXITPIDONE is
1265                  * set, we know that the task has finished the
1266                  * cleanup:
1267                  */
1268                 int ret = handle_exit_race(uaddr, uval, p);
1269
1270                 raw_spin_unlock_irq(&p->pi_lock);
1271                 put_task_struct(p);
1272                 return ret;
1273         }
1274
1275         /*
1276          * No existing pi state. First waiter. [2]
1277          *
1278          * This creates pi_state, we have hb->lock held, this means nothing can
1279          * observe this state, wait_lock is irrelevant.
1280          */
1281         pi_state = alloc_pi_state();
1282
1283         /*
1284          * Initialize the pi_mutex in locked state and make @p
1285          * the owner of it:
1286          */
1287         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1288
1289         /* Store the key for possible exit cleanups: */
1290         pi_state->key = *key;
1291
1292         WARN_ON(!list_empty(&pi_state->list));
1293         list_add(&pi_state->list, &p->pi_state_list);
1294         /*
1295          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1296          * because there is no concurrency as the object is not published yet.
1297          */
1298         pi_state->owner = p;
1299         raw_spin_unlock_irq(&p->pi_lock);
1300
1301         put_task_struct(p);
1302
1303         *ps = pi_state;
1304
1305         return 0;
1306 }
1307
1308 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1309                            struct futex_hash_bucket *hb,
1310                            union futex_key *key, struct futex_pi_state **ps)
1311 {
1312         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1313
1314         /*
1315          * If there is a waiter on that futex, validate it and
1316          * attach to the pi_state when the validation succeeds.
1317          */
1318         if (top_waiter)
1319                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1320
1321         /*
1322          * We are the first waiter - try to look up the owner based on
1323          * @uval and attach to it.
1324          */
1325         return attach_to_pi_owner(uaddr, uval, key, ps);
1326 }
1327
1328 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1329 {
1330         int err;
1331         u32 uninitialized_var(curval);
1332
1333         if (unlikely(should_fail_futex(true)))
1334                 return -EFAULT;
1335
1336         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1337         if (unlikely(err))
1338                 return err;
1339
1340         /* If user space value changed, let the caller retry */
1341         return curval != uval ? -EAGAIN : 0;
1342 }
1343
1344 /**
1345  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1346  * @uaddr:              the pi futex user address
1347  * @hb:                 the pi futex hash bucket
1348  * @key:                the futex key associated with uaddr and hb
1349  * @ps:                 the pi_state pointer where we store the result of the
1350  *                      lookup
1351  * @task:               the task to perform the atomic lock work for.  This will
1352  *                      be "current" except in the case of requeue pi.
1353  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1354  *
1355  * Return:
1356  *  -  0 - ready to wait;
1357  *  -  1 - acquired the lock;
1358  *  - <0 - error
1359  *
1360  * The hb->lock and futex_key refs shall be held by the caller.
1361  */
1362 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1363                                 union futex_key *key,
1364                                 struct futex_pi_state **ps,
1365                                 struct task_struct *task, int set_waiters)
1366 {
1367         u32 uval, newval, vpid = task_pid_vnr(task);
1368         struct futex_q *top_waiter;
1369         int ret;
1370
1371         /*
1372          * Read the user space value first so we can validate a few
1373          * things before proceeding further.
1374          */
1375         if (get_futex_value_locked(&uval, uaddr))
1376                 return -EFAULT;
1377
1378         if (unlikely(should_fail_futex(true)))
1379                 return -EFAULT;
1380
1381         /*
1382          * Detect deadlocks.
1383          */
1384         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1385                 return -EDEADLK;
1386
1387         if ((unlikely(should_fail_futex(true))))
1388                 return -EDEADLK;
1389
1390         /*
1391          * Lookup existing state first. If it exists, try to attach to
1392          * its pi_state.
1393          */
1394         top_waiter = futex_top_waiter(hb, key);
1395         if (top_waiter)
1396                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1397
1398         /*
1399          * No waiter and user TID is 0. We are here because the
1400          * waiters or the owner died bit is set or called from
1401          * requeue_cmp_pi or for whatever reason something took the
1402          * syscall.
1403          */
1404         if (!(uval & FUTEX_TID_MASK)) {
1405                 /*
1406                  * We take over the futex. No other waiters and the user space
1407                  * TID is 0. We preserve the owner died bit.
1408                  */
1409                 newval = uval & FUTEX_OWNER_DIED;
1410                 newval |= vpid;
1411
1412                 /* The futex requeue_pi code can enforce the waiters bit */
1413                 if (set_waiters)
1414                         newval |= FUTEX_WAITERS;
1415
1416                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1417                 /* If the take over worked, return 1 */
1418                 return ret < 0 ? ret : 1;
1419         }
1420
1421         /*
1422          * First waiter. Set the waiters bit before attaching ourself to
1423          * the owner. If owner tries to unlock, it will be forced into
1424          * the kernel and blocked on hb->lock.
1425          */
1426         newval = uval | FUTEX_WAITERS;
1427         ret = lock_pi_update_atomic(uaddr, uval, newval);
1428         if (ret)
1429                 return ret;
1430         /*
1431          * If the update of the user space value succeeded, we try to
1432          * attach to the owner. If that fails, no harm done, we only
1433          * set the FUTEX_WAITERS bit in the user space variable.
1434          */
1435         return attach_to_pi_owner(uaddr, newval, key, ps);
1436 }
1437
1438 /**
1439  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1440  * @q:  The futex_q to unqueue
1441  *
1442  * The q->lock_ptr must not be NULL and must be held by the caller.
1443  */
1444 static void __unqueue_futex(struct futex_q *q)
1445 {
1446         struct futex_hash_bucket *hb;
1447
1448         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1449                 return;
1450         lockdep_assert_held(q->lock_ptr);
1451
1452         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1453         plist_del(&q->list, &hb->chain);
1454         hb_waiters_dec(hb);
1455 }
1456
1457 /*
1458  * The hash bucket lock must be held when this is called.
1459  * Afterwards, the futex_q must not be accessed. Callers
1460  * must ensure to later call wake_up_q() for the actual
1461  * wakeups to occur.
1462  */
1463 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1464 {
1465         struct task_struct *p = q->task;
1466
1467         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1468                 return;
1469
1470         get_task_struct(p);
1471         __unqueue_futex(q);
1472         /*
1473          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1474          * is written, without taking any locks. This is possible in the event
1475          * of a spurious wakeup, for example. A memory barrier is required here
1476          * to prevent the following store to lock_ptr from getting ahead of the
1477          * plist_del in __unqueue_futex().
1478          */
1479         smp_store_release(&q->lock_ptr, NULL);
1480
1481         /*
1482          * Queue the task for later wakeup for after we've released
1483          * the hb->lock. wake_q_add() grabs reference to p.
1484          */
1485         wake_q_add_safe(wake_q, p);
1486 }
1487
1488 /*
1489  * Caller must hold a reference on @pi_state.
1490  */
1491 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1492 {
1493         u32 uninitialized_var(curval), newval;
1494         struct task_struct *new_owner;
1495         bool postunlock = false;
1496         DEFINE_WAKE_Q(wake_q);
1497         int ret = 0;
1498
1499         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1500         if (WARN_ON_ONCE(!new_owner)) {
1501                 /*
1502                  * As per the comment in futex_unlock_pi() this should not happen.
1503                  *
1504                  * When this happens, give up our locks and try again, giving
1505                  * the futex_lock_pi() instance time to complete, either by
1506                  * waiting on the rtmutex or removing itself from the futex
1507                  * queue.
1508                  */
1509                 ret = -EAGAIN;
1510                 goto out_unlock;
1511         }
1512
1513         /*
1514          * We pass it to the next owner. The WAITERS bit is always kept
1515          * enabled while there is PI state around. We cleanup the owner
1516          * died bit, because we are the owner.
1517          */
1518         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1519
1520         if (unlikely(should_fail_futex(true)))
1521                 ret = -EFAULT;
1522
1523         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1524         if (!ret && (curval != uval)) {
1525                 /*
1526                  * If a unconditional UNLOCK_PI operation (user space did not
1527                  * try the TID->0 transition) raced with a waiter setting the
1528                  * FUTEX_WAITERS flag between get_user() and locking the hash
1529                  * bucket lock, retry the operation.
1530                  */
1531                 if ((FUTEX_TID_MASK & curval) == uval)
1532                         ret = -EAGAIN;
1533                 else
1534                         ret = -EINVAL;
1535         }
1536
1537         if (ret)
1538                 goto out_unlock;
1539
1540         /*
1541          * This is a point of no return; once we modify the uval there is no
1542          * going back and subsequent operations must not fail.
1543          */
1544
1545         raw_spin_lock(&pi_state->owner->pi_lock);
1546         WARN_ON(list_empty(&pi_state->list));
1547         list_del_init(&pi_state->list);
1548         raw_spin_unlock(&pi_state->owner->pi_lock);
1549
1550         raw_spin_lock(&new_owner->pi_lock);
1551         WARN_ON(!list_empty(&pi_state->list));
1552         list_add(&pi_state->list, &new_owner->pi_state_list);
1553         pi_state->owner = new_owner;
1554         raw_spin_unlock(&new_owner->pi_lock);
1555
1556         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1557
1558 out_unlock:
1559         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1560
1561         if (postunlock)
1562                 rt_mutex_postunlock(&wake_q);
1563
1564         return ret;
1565 }
1566
1567 /*
1568  * Express the locking dependencies for lockdep:
1569  */
1570 static inline void
1571 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1572 {
1573         if (hb1 <= hb2) {
1574                 spin_lock(&hb1->lock);
1575                 if (hb1 < hb2)
1576                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1577         } else { /* hb1 > hb2 */
1578                 spin_lock(&hb2->lock);
1579                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1580         }
1581 }
1582
1583 static inline void
1584 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1585 {
1586         spin_unlock(&hb1->lock);
1587         if (hb1 != hb2)
1588                 spin_unlock(&hb2->lock);
1589 }
1590
1591 /*
1592  * Wake up waiters matching bitset queued on this futex (uaddr).
1593  */
1594 static int
1595 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1596 {
1597         struct futex_hash_bucket *hb;
1598         struct futex_q *this, *next;
1599         union futex_key key = FUTEX_KEY_INIT;
1600         int ret;
1601         DEFINE_WAKE_Q(wake_q);
1602
1603         if (!bitset)
1604                 return -EINVAL;
1605
1606         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1607         if (unlikely(ret != 0))
1608                 goto out;
1609
1610         hb = hash_futex(&key);
1611
1612         /* Make sure we really have tasks to wakeup */
1613         if (!hb_waiters_pending(hb))
1614                 goto out_put_key;
1615
1616         spin_lock(&hb->lock);
1617
1618         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1619                 if (match_futex (&this->key, &key)) {
1620                         if (this->pi_state || this->rt_waiter) {
1621                                 ret = -EINVAL;
1622                                 break;
1623                         }
1624
1625                         /* Check if one of the bits is set in both bitsets */
1626                         if (!(this->bitset & bitset))
1627                                 continue;
1628
1629                         mark_wake_futex(&wake_q, this);
1630                         if (++ret >= nr_wake)
1631                                 break;
1632                 }
1633         }
1634
1635         spin_unlock(&hb->lock);
1636         wake_up_q(&wake_q);
1637 out_put_key:
1638         put_futex_key(&key);
1639 out:
1640         return ret;
1641 }
1642
1643 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1644 {
1645         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1646         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1647         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1648         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1649         int oldval, ret;
1650
1651         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1652                 if (oparg < 0 || oparg > 31) {
1653                         char comm[sizeof(current->comm)];
1654                         /*
1655                          * kill this print and return -EINVAL when userspace
1656                          * is sane again
1657                          */
1658                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1659                                         get_task_comm(comm, current), oparg);
1660                         oparg &= 31;
1661                 }
1662                 oparg = 1 << oparg;
1663         }
1664
1665         if (!access_ok(uaddr, sizeof(u32)))
1666                 return -EFAULT;
1667
1668         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1669         if (ret)
1670                 return ret;
1671
1672         switch (cmp) {
1673         case FUTEX_OP_CMP_EQ:
1674                 return oldval == cmparg;
1675         case FUTEX_OP_CMP_NE:
1676                 return oldval != cmparg;
1677         case FUTEX_OP_CMP_LT:
1678                 return oldval < cmparg;
1679         case FUTEX_OP_CMP_GE:
1680                 return oldval >= cmparg;
1681         case FUTEX_OP_CMP_LE:
1682                 return oldval <= cmparg;
1683         case FUTEX_OP_CMP_GT:
1684                 return oldval > cmparg;
1685         default:
1686                 return -ENOSYS;
1687         }
1688 }
1689
1690 /*
1691  * Wake up all waiters hashed on the physical page that is mapped
1692  * to this virtual address:
1693  */
1694 static int
1695 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1696               int nr_wake, int nr_wake2, int op)
1697 {
1698         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1699         struct futex_hash_bucket *hb1, *hb2;
1700         struct futex_q *this, *next;
1701         int ret, op_ret;
1702         DEFINE_WAKE_Q(wake_q);
1703
1704 retry:
1705         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1706         if (unlikely(ret != 0))
1707                 goto out;
1708         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1709         if (unlikely(ret != 0))
1710                 goto out_put_key1;
1711
1712         hb1 = hash_futex(&key1);
1713         hb2 = hash_futex(&key2);
1714
1715 retry_private:
1716         double_lock_hb(hb1, hb2);
1717         op_ret = futex_atomic_op_inuser(op, uaddr2);
1718         if (unlikely(op_ret < 0)) {
1719                 double_unlock_hb(hb1, hb2);
1720
1721                 if (!IS_ENABLED(CONFIG_MMU) ||
1722                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1723                         /*
1724                          * we don't get EFAULT from MMU faults if we don't have
1725                          * an MMU, but we might get them from range checking
1726                          */
1727                         ret = op_ret;
1728                         goto out_put_keys;
1729                 }
1730
1731                 if (op_ret == -EFAULT) {
1732                         ret = fault_in_user_writeable(uaddr2);
1733                         if (ret)
1734                                 goto out_put_keys;
1735                 }
1736
1737                 if (!(flags & FLAGS_SHARED)) {
1738                         cond_resched();
1739                         goto retry_private;
1740                 }
1741
1742                 put_futex_key(&key2);
1743                 put_futex_key(&key1);
1744                 cond_resched();
1745                 goto retry;
1746         }
1747
1748         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1749                 if (match_futex (&this->key, &key1)) {
1750                         if (this->pi_state || this->rt_waiter) {
1751                                 ret = -EINVAL;
1752                                 goto out_unlock;
1753                         }
1754                         mark_wake_futex(&wake_q, this);
1755                         if (++ret >= nr_wake)
1756                                 break;
1757                 }
1758         }
1759
1760         if (op_ret > 0) {
1761                 op_ret = 0;
1762                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1763                         if (match_futex (&this->key, &key2)) {
1764                                 if (this->pi_state || this->rt_waiter) {
1765                                         ret = -EINVAL;
1766                                         goto out_unlock;
1767                                 }
1768                                 mark_wake_futex(&wake_q, this);
1769                                 if (++op_ret >= nr_wake2)
1770                                         break;
1771                         }
1772                 }
1773                 ret += op_ret;
1774         }
1775
1776 out_unlock:
1777         double_unlock_hb(hb1, hb2);
1778         wake_up_q(&wake_q);
1779 out_put_keys:
1780         put_futex_key(&key2);
1781 out_put_key1:
1782         put_futex_key(&key1);
1783 out:
1784         return ret;
1785 }
1786
1787 /**
1788  * requeue_futex() - Requeue a futex_q from one hb to another
1789  * @q:          the futex_q to requeue
1790  * @hb1:        the source hash_bucket
1791  * @hb2:        the target hash_bucket
1792  * @key2:       the new key for the requeued futex_q
1793  */
1794 static inline
1795 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1796                    struct futex_hash_bucket *hb2, union futex_key *key2)
1797 {
1798
1799         /*
1800          * If key1 and key2 hash to the same bucket, no need to
1801          * requeue.
1802          */
1803         if (likely(&hb1->chain != &hb2->chain)) {
1804                 plist_del(&q->list, &hb1->chain);
1805                 hb_waiters_dec(hb1);
1806                 hb_waiters_inc(hb2);
1807                 plist_add(&q->list, &hb2->chain);
1808                 q->lock_ptr = &hb2->lock;
1809         }
1810         get_futex_key_refs(key2);
1811         q->key = *key2;
1812 }
1813
1814 /**
1815  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1816  * @q:          the futex_q
1817  * @key:        the key of the requeue target futex
1818  * @hb:         the hash_bucket of the requeue target futex
1819  *
1820  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1821  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1822  * to the requeue target futex so the waiter can detect the wakeup on the right
1823  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1824  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1825  * to protect access to the pi_state to fixup the owner later.  Must be called
1826  * with both q->lock_ptr and hb->lock held.
1827  */
1828 static inline
1829 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1830                            struct futex_hash_bucket *hb)
1831 {
1832         get_futex_key_refs(key);
1833         q->key = *key;
1834
1835         __unqueue_futex(q);
1836
1837         WARN_ON(!q->rt_waiter);
1838         q->rt_waiter = NULL;
1839
1840         q->lock_ptr = &hb->lock;
1841
1842         wake_up_state(q->task, TASK_NORMAL);
1843 }
1844
1845 /**
1846  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1847  * @pifutex:            the user address of the to futex
1848  * @hb1:                the from futex hash bucket, must be locked by the caller
1849  * @hb2:                the to futex hash bucket, must be locked by the caller
1850  * @key1:               the from futex key
1851  * @key2:               the to futex key
1852  * @ps:                 address to store the pi_state pointer
1853  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1854  *
1855  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1856  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1857  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1858  * hb1 and hb2 must be held by the caller.
1859  *
1860  * Return:
1861  *  -  0 - failed to acquire the lock atomically;
1862  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1863  *  - <0 - error
1864  */
1865 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1866                                  struct futex_hash_bucket *hb1,
1867                                  struct futex_hash_bucket *hb2,
1868                                  union futex_key *key1, union futex_key *key2,
1869                                  struct futex_pi_state **ps, int set_waiters)
1870 {
1871         struct futex_q *top_waiter = NULL;
1872         u32 curval;
1873         int ret, vpid;
1874
1875         if (get_futex_value_locked(&curval, pifutex))
1876                 return -EFAULT;
1877
1878         if (unlikely(should_fail_futex(true)))
1879                 return -EFAULT;
1880
1881         /*
1882          * Find the top_waiter and determine if there are additional waiters.
1883          * If the caller intends to requeue more than 1 waiter to pifutex,
1884          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1885          * as we have means to handle the possible fault.  If not, don't set
1886          * the bit unecessarily as it will force the subsequent unlock to enter
1887          * the kernel.
1888          */
1889         top_waiter = futex_top_waiter(hb1, key1);
1890
1891         /* There are no waiters, nothing for us to do. */
1892         if (!top_waiter)
1893                 return 0;
1894
1895         /* Ensure we requeue to the expected futex. */
1896         if (!match_futex(top_waiter->requeue_pi_key, key2))
1897                 return -EINVAL;
1898
1899         /*
1900          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1901          * the contended case or if set_waiters is 1.  The pi_state is returned
1902          * in ps in contended cases.
1903          */
1904         vpid = task_pid_vnr(top_waiter->task);
1905         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1906                                    set_waiters);
1907         if (ret == 1) {
1908                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1909                 return vpid;
1910         }
1911         return ret;
1912 }
1913
1914 /**
1915  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1916  * @uaddr1:     source futex user address
1917  * @flags:      futex flags (FLAGS_SHARED, etc.)
1918  * @uaddr2:     target futex user address
1919  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1920  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1921  * @cmpval:     @uaddr1 expected value (or %NULL)
1922  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1923  *              pi futex (pi to pi requeue is not supported)
1924  *
1925  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1926  * uaddr2 atomically on behalf of the top waiter.
1927  *
1928  * Return:
1929  *  - >=0 - on success, the number of tasks requeued or woken;
1930  *  -  <0 - on error
1931  */
1932 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1933                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1934                          u32 *cmpval, int requeue_pi)
1935 {
1936         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1937         int drop_count = 0, task_count = 0, ret;
1938         struct futex_pi_state *pi_state = NULL;
1939         struct futex_hash_bucket *hb1, *hb2;
1940         struct futex_q *this, *next;
1941         DEFINE_WAKE_Q(wake_q);
1942
1943         if (nr_wake < 0 || nr_requeue < 0)
1944                 return -EINVAL;
1945
1946         /*
1947          * When PI not supported: return -ENOSYS if requeue_pi is true,
1948          * consequently the compiler knows requeue_pi is always false past
1949          * this point which will optimize away all the conditional code
1950          * further down.
1951          */
1952         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1953                 return -ENOSYS;
1954
1955         if (requeue_pi) {
1956                 /*
1957                  * Requeue PI only works on two distinct uaddrs. This
1958                  * check is only valid for private futexes. See below.
1959                  */
1960                 if (uaddr1 == uaddr2)
1961                         return -EINVAL;
1962
1963                 /*
1964                  * requeue_pi requires a pi_state, try to allocate it now
1965                  * without any locks in case it fails.
1966                  */
1967                 if (refill_pi_state_cache())
1968                         return -ENOMEM;
1969                 /*
1970                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1971                  * + nr_requeue, since it acquires the rt_mutex prior to
1972                  * returning to userspace, so as to not leave the rt_mutex with
1973                  * waiters and no owner.  However, second and third wake-ups
1974                  * cannot be predicted as they involve race conditions with the
1975                  * first wake and a fault while looking up the pi_state.  Both
1976                  * pthread_cond_signal() and pthread_cond_broadcast() should
1977                  * use nr_wake=1.
1978                  */
1979                 if (nr_wake != 1)
1980                         return -EINVAL;
1981         }
1982
1983 retry:
1984         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1985         if (unlikely(ret != 0))
1986                 goto out;
1987         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1988                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1989         if (unlikely(ret != 0))
1990                 goto out_put_key1;
1991
1992         /*
1993          * The check above which compares uaddrs is not sufficient for
1994          * shared futexes. We need to compare the keys:
1995          */
1996         if (requeue_pi && match_futex(&key1, &key2)) {
1997                 ret = -EINVAL;
1998                 goto out_put_keys;
1999         }
2000
2001         hb1 = hash_futex(&key1);
2002         hb2 = hash_futex(&key2);
2003
2004 retry_private:
2005         hb_waiters_inc(hb2);
2006         double_lock_hb(hb1, hb2);
2007
2008         if (likely(cmpval != NULL)) {
2009                 u32 curval;
2010
2011                 ret = get_futex_value_locked(&curval, uaddr1);
2012
2013                 if (unlikely(ret)) {
2014                         double_unlock_hb(hb1, hb2);
2015                         hb_waiters_dec(hb2);
2016
2017                         ret = get_user(curval, uaddr1);
2018                         if (ret)
2019                                 goto out_put_keys;
2020
2021                         if (!(flags & FLAGS_SHARED))
2022                                 goto retry_private;
2023
2024                         put_futex_key(&key2);
2025                         put_futex_key(&key1);
2026                         goto retry;
2027                 }
2028                 if (curval != *cmpval) {
2029                         ret = -EAGAIN;
2030                         goto out_unlock;
2031                 }
2032         }
2033
2034         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2035                 /*
2036                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2037                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2038                  * bit.  We force this here where we are able to easily handle
2039                  * faults rather in the requeue loop below.
2040                  */
2041                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2042                                                  &key2, &pi_state, nr_requeue);
2043
2044                 /*
2045                  * At this point the top_waiter has either taken uaddr2 or is
2046                  * waiting on it.  If the former, then the pi_state will not
2047                  * exist yet, look it up one more time to ensure we have a
2048                  * reference to it. If the lock was taken, ret contains the
2049                  * vpid of the top waiter task.
2050                  * If the lock was not taken, we have pi_state and an initial
2051                  * refcount on it. In case of an error we have nothing.
2052                  */
2053                 if (ret > 0) {
2054                         WARN_ON(pi_state);
2055                         drop_count++;
2056                         task_count++;
2057                         /*
2058                          * If we acquired the lock, then the user space value
2059                          * of uaddr2 should be vpid. It cannot be changed by
2060                          * the top waiter as it is blocked on hb2 lock if it
2061                          * tries to do so. If something fiddled with it behind
2062                          * our back the pi state lookup might unearth it. So
2063                          * we rather use the known value than rereading and
2064                          * handing potential crap to lookup_pi_state.
2065                          *
2066                          * If that call succeeds then we have pi_state and an
2067                          * initial refcount on it.
2068                          */
2069                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2070                 }
2071
2072                 switch (ret) {
2073                 case 0:
2074                         /* We hold a reference on the pi state. */
2075                         break;
2076
2077                         /* If the above failed, then pi_state is NULL */
2078                 case -EFAULT:
2079                         double_unlock_hb(hb1, hb2);
2080                         hb_waiters_dec(hb2);
2081                         put_futex_key(&key2);
2082                         put_futex_key(&key1);
2083                         ret = fault_in_user_writeable(uaddr2);
2084                         if (!ret)
2085                                 goto retry;
2086                         goto out;
2087                 case -EAGAIN:
2088                         /*
2089                          * Two reasons for this:
2090                          * - Owner is exiting and we just wait for the
2091                          *   exit to complete.
2092                          * - The user space value changed.
2093                          */
2094                         double_unlock_hb(hb1, hb2);
2095                         hb_waiters_dec(hb2);
2096                         put_futex_key(&key2);
2097                         put_futex_key(&key1);
2098                         cond_resched();
2099                         goto retry;
2100                 default:
2101                         goto out_unlock;
2102                 }
2103         }
2104
2105         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2106                 if (task_count - nr_wake >= nr_requeue)
2107                         break;
2108
2109                 if (!match_futex(&this->key, &key1))
2110                         continue;
2111
2112                 /*
2113                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2114                  * be paired with each other and no other futex ops.
2115                  *
2116                  * We should never be requeueing a futex_q with a pi_state,
2117                  * which is awaiting a futex_unlock_pi().
2118                  */
2119                 if ((requeue_pi && !this->rt_waiter) ||
2120                     (!requeue_pi && this->rt_waiter) ||
2121                     this->pi_state) {
2122                         ret = -EINVAL;
2123                         break;
2124                 }
2125
2126                 /*
2127                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2128                  * lock, we already woke the top_waiter.  If not, it will be
2129                  * woken by futex_unlock_pi().
2130                  */
2131                 if (++task_count <= nr_wake && !requeue_pi) {
2132                         mark_wake_futex(&wake_q, this);
2133                         continue;
2134                 }
2135
2136                 /* Ensure we requeue to the expected futex for requeue_pi. */
2137                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2138                         ret = -EINVAL;
2139                         break;
2140                 }
2141
2142                 /*
2143                  * Requeue nr_requeue waiters and possibly one more in the case
2144                  * of requeue_pi if we couldn't acquire the lock atomically.
2145                  */
2146                 if (requeue_pi) {
2147                         /*
2148                          * Prepare the waiter to take the rt_mutex. Take a
2149                          * refcount on the pi_state and store the pointer in
2150                          * the futex_q object of the waiter.
2151                          */
2152                         get_pi_state(pi_state);
2153                         this->pi_state = pi_state;
2154                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2155                                                         this->rt_waiter,
2156                                                         this->task);
2157                         if (ret == 1) {
2158                                 /*
2159                                  * We got the lock. We do neither drop the
2160                                  * refcount on pi_state nor clear
2161                                  * this->pi_state because the waiter needs the
2162                                  * pi_state for cleaning up the user space
2163                                  * value. It will drop the refcount after
2164                                  * doing so.
2165                                  */
2166                                 requeue_pi_wake_futex(this, &key2, hb2);
2167                                 drop_count++;
2168                                 continue;
2169                         } else if (ret) {
2170                                 /*
2171                                  * rt_mutex_start_proxy_lock() detected a
2172                                  * potential deadlock when we tried to queue
2173                                  * that waiter. Drop the pi_state reference
2174                                  * which we took above and remove the pointer
2175                                  * to the state from the waiters futex_q
2176                                  * object.
2177                                  */
2178                                 this->pi_state = NULL;
2179                                 put_pi_state(pi_state);
2180                                 /*
2181                                  * We stop queueing more waiters and let user
2182                                  * space deal with the mess.
2183                                  */
2184                                 break;
2185                         }
2186                 }
2187                 requeue_futex(this, hb1, hb2, &key2);
2188                 drop_count++;
2189         }
2190
2191         /*
2192          * We took an extra initial reference to the pi_state either
2193          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2194          * need to drop it here again.
2195          */
2196         put_pi_state(pi_state);
2197
2198 out_unlock:
2199         double_unlock_hb(hb1, hb2);
2200         wake_up_q(&wake_q);
2201         hb_waiters_dec(hb2);
2202
2203         /*
2204          * drop_futex_key_refs() must be called outside the spinlocks. During
2205          * the requeue we moved futex_q's from the hash bucket at key1 to the
2206          * one at key2 and updated their key pointer.  We no longer need to
2207          * hold the references to key1.
2208          */
2209         while (--drop_count >= 0)
2210                 drop_futex_key_refs(&key1);
2211
2212 out_put_keys:
2213         put_futex_key(&key2);
2214 out_put_key1:
2215         put_futex_key(&key1);
2216 out:
2217         return ret ? ret : task_count;
2218 }
2219
2220 /* The key must be already stored in q->key. */
2221 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2222         __acquires(&hb->lock)
2223 {
2224         struct futex_hash_bucket *hb;
2225
2226         hb = hash_futex(&q->key);
2227
2228         /*
2229          * Increment the counter before taking the lock so that
2230          * a potential waker won't miss a to-be-slept task that is
2231          * waiting for the spinlock. This is safe as all queue_lock()
2232          * users end up calling queue_me(). Similarly, for housekeeping,
2233          * decrement the counter at queue_unlock() when some error has
2234          * occurred and we don't end up adding the task to the list.
2235          */
2236         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2237
2238         q->lock_ptr = &hb->lock;
2239
2240         spin_lock(&hb->lock);
2241         return hb;
2242 }
2243
2244 static inline void
2245 queue_unlock(struct futex_hash_bucket *hb)
2246         __releases(&hb->lock)
2247 {
2248         spin_unlock(&hb->lock);
2249         hb_waiters_dec(hb);
2250 }
2251
2252 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2253 {
2254         int prio;
2255
2256         /*
2257          * The priority used to register this element is
2258          * - either the real thread-priority for the real-time threads
2259          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2260          * - or MAX_RT_PRIO for non-RT threads.
2261          * Thus, all RT-threads are woken first in priority order, and
2262          * the others are woken last, in FIFO order.
2263          */
2264         prio = min(current->normal_prio, MAX_RT_PRIO);
2265
2266         plist_node_init(&q->list, prio);
2267         plist_add(&q->list, &hb->chain);
2268         q->task = current;
2269 }
2270
2271 /**
2272  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2273  * @q:  The futex_q to enqueue
2274  * @hb: The destination hash bucket
2275  *
2276  * The hb->lock must be held by the caller, and is released here. A call to
2277  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2278  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2279  * or nothing if the unqueue is done as part of the wake process and the unqueue
2280  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2281  * an example).
2282  */
2283 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2284         __releases(&hb->lock)
2285 {
2286         __queue_me(q, hb);
2287         spin_unlock(&hb->lock);
2288 }
2289
2290 /**
2291  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2292  * @q:  The futex_q to unqueue
2293  *
2294  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2295  * be paired with exactly one earlier call to queue_me().
2296  *
2297  * Return:
2298  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2299  *  - 0 - if the futex_q was already removed by the waking thread
2300  */
2301 static int unqueue_me(struct futex_q *q)
2302 {
2303         spinlock_t *lock_ptr;
2304         int ret = 0;
2305
2306         /* In the common case we don't take the spinlock, which is nice. */
2307 retry:
2308         /*
2309          * q->lock_ptr can change between this read and the following spin_lock.
2310          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2311          * optimizing lock_ptr out of the logic below.
2312          */
2313         lock_ptr = READ_ONCE(q->lock_ptr);
2314         if (lock_ptr != NULL) {
2315                 spin_lock(lock_ptr);
2316                 /*
2317                  * q->lock_ptr can change between reading it and
2318                  * spin_lock(), causing us to take the wrong lock.  This
2319                  * corrects the race condition.
2320                  *
2321                  * Reasoning goes like this: if we have the wrong lock,
2322                  * q->lock_ptr must have changed (maybe several times)
2323                  * between reading it and the spin_lock().  It can
2324                  * change again after the spin_lock() but only if it was
2325                  * already changed before the spin_lock().  It cannot,
2326                  * however, change back to the original value.  Therefore
2327                  * we can detect whether we acquired the correct lock.
2328                  */
2329                 if (unlikely(lock_ptr != q->lock_ptr)) {
2330                         spin_unlock(lock_ptr);
2331                         goto retry;
2332                 }
2333                 __unqueue_futex(q);
2334
2335                 BUG_ON(q->pi_state);
2336
2337                 spin_unlock(lock_ptr);
2338                 ret = 1;
2339         }
2340
2341         drop_futex_key_refs(&q->key);
2342         return ret;
2343 }
2344
2345 /*
2346  * PI futexes can not be requeued and must remove themself from the
2347  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2348  * and dropped here.
2349  */
2350 static void unqueue_me_pi(struct futex_q *q)
2351         __releases(q->lock_ptr)
2352 {
2353         __unqueue_futex(q);
2354
2355         BUG_ON(!q->pi_state);
2356         put_pi_state(q->pi_state);
2357         q->pi_state = NULL;
2358
2359         spin_unlock(q->lock_ptr);
2360 }
2361
2362 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2363                                 struct task_struct *argowner)
2364 {
2365         struct futex_pi_state *pi_state = q->pi_state;
2366         u32 uval, uninitialized_var(curval), newval;
2367         struct task_struct *oldowner, *newowner;
2368         u32 newtid;
2369         int ret, err = 0;
2370
2371         lockdep_assert_held(q->lock_ptr);
2372
2373         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2374
2375         oldowner = pi_state->owner;
2376
2377         /*
2378          * We are here because either:
2379          *
2380          *  - we stole the lock and pi_state->owner needs updating to reflect
2381          *    that (@argowner == current),
2382          *
2383          * or:
2384          *
2385          *  - someone stole our lock and we need to fix things to point to the
2386          *    new owner (@argowner == NULL).
2387          *
2388          * Either way, we have to replace the TID in the user space variable.
2389          * This must be atomic as we have to preserve the owner died bit here.
2390          *
2391          * Note: We write the user space value _before_ changing the pi_state
2392          * because we can fault here. Imagine swapped out pages or a fork
2393          * that marked all the anonymous memory readonly for cow.
2394          *
2395          * Modifying pi_state _before_ the user space value would leave the
2396          * pi_state in an inconsistent state when we fault here, because we
2397          * need to drop the locks to handle the fault. This might be observed
2398          * in the PID check in lookup_pi_state.
2399          */
2400 retry:
2401         if (!argowner) {
2402                 if (oldowner != current) {
2403                         /*
2404                          * We raced against a concurrent self; things are
2405                          * already fixed up. Nothing to do.
2406                          */
2407                         ret = 0;
2408                         goto out_unlock;
2409                 }
2410
2411                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2412                         /* We got the lock after all, nothing to fix. */
2413                         ret = 0;
2414                         goto out_unlock;
2415                 }
2416
2417                 /*
2418                  * Since we just failed the trylock; there must be an owner.
2419                  */
2420                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2421                 BUG_ON(!newowner);
2422         } else {
2423                 WARN_ON_ONCE(argowner != current);
2424                 if (oldowner == current) {
2425                         /*
2426                          * We raced against a concurrent self; things are
2427                          * already fixed up. Nothing to do.
2428                          */
2429                         ret = 0;
2430                         goto out_unlock;
2431                 }
2432                 newowner = argowner;
2433         }
2434
2435         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2436         /* Owner died? */
2437         if (!pi_state->owner)
2438                 newtid |= FUTEX_OWNER_DIED;
2439
2440         err = get_futex_value_locked(&uval, uaddr);
2441         if (err)
2442                 goto handle_err;
2443
2444         for (;;) {
2445                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2446
2447                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2448                 if (err)
2449                         goto handle_err;
2450
2451                 if (curval == uval)
2452                         break;
2453                 uval = curval;
2454         }
2455
2456         /*
2457          * We fixed up user space. Now we need to fix the pi_state
2458          * itself.
2459          */
2460         if (pi_state->owner != NULL) {
2461                 raw_spin_lock(&pi_state->owner->pi_lock);
2462                 WARN_ON(list_empty(&pi_state->list));
2463                 list_del_init(&pi_state->list);
2464                 raw_spin_unlock(&pi_state->owner->pi_lock);
2465         }
2466
2467         pi_state->owner = newowner;
2468
2469         raw_spin_lock(&newowner->pi_lock);
2470         WARN_ON(!list_empty(&pi_state->list));
2471         list_add(&pi_state->list, &newowner->pi_state_list);
2472         raw_spin_unlock(&newowner->pi_lock);
2473         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2474
2475         return 0;
2476
2477         /*
2478          * In order to reschedule or handle a page fault, we need to drop the
2479          * locks here. In the case of a fault, this gives the other task
2480          * (either the highest priority waiter itself or the task which stole
2481          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2482          * are back from handling the fault we need to check the pi_state after
2483          * reacquiring the locks and before trying to do another fixup. When
2484          * the fixup has been done already we simply return.
2485          *
2486          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2487          * drop hb->lock since the caller owns the hb -> futex_q relation.
2488          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2489          */
2490 handle_err:
2491         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2492         spin_unlock(q->lock_ptr);
2493
2494         switch (err) {
2495         case -EFAULT:
2496                 ret = fault_in_user_writeable(uaddr);
2497                 break;
2498
2499         case -EAGAIN:
2500                 cond_resched();
2501                 ret = 0;
2502                 break;
2503
2504         default:
2505                 WARN_ON_ONCE(1);
2506                 ret = err;
2507                 break;
2508         }
2509
2510         spin_lock(q->lock_ptr);
2511         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2512
2513         /*
2514          * Check if someone else fixed it for us:
2515          */
2516         if (pi_state->owner != oldowner) {
2517                 ret = 0;
2518                 goto out_unlock;
2519         }
2520
2521         if (ret)
2522                 goto out_unlock;
2523
2524         goto retry;
2525
2526 out_unlock:
2527         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2528         return ret;
2529 }
2530
2531 static long futex_wait_restart(struct restart_block *restart);
2532
2533 /**
2534  * fixup_owner() - Post lock pi_state and corner case management
2535  * @uaddr:      user address of the futex
2536  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2537  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2538  *
2539  * After attempting to lock an rt_mutex, this function is called to cleanup
2540  * the pi_state owner as well as handle race conditions that may allow us to
2541  * acquire the lock. Must be called with the hb lock held.
2542  *
2543  * Return:
2544  *  -  1 - success, lock taken;
2545  *  -  0 - success, lock not taken;
2546  *  - <0 - on error (-EFAULT)
2547  */
2548 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2549 {
2550         int ret = 0;
2551
2552         if (locked) {
2553                 /*
2554                  * Got the lock. We might not be the anticipated owner if we
2555                  * did a lock-steal - fix up the PI-state in that case:
2556                  *
2557                  * Speculative pi_state->owner read (we don't hold wait_lock);
2558                  * since we own the lock pi_state->owner == current is the
2559                  * stable state, anything else needs more attention.
2560                  */
2561                 if (q->pi_state->owner != current)
2562                         ret = fixup_pi_state_owner(uaddr, q, current);
2563                 goto out;
2564         }
2565
2566         /*
2567          * If we didn't get the lock; check if anybody stole it from us. In
2568          * that case, we need to fix up the uval to point to them instead of
2569          * us, otherwise bad things happen. [10]
2570          *
2571          * Another speculative read; pi_state->owner == current is unstable
2572          * but needs our attention.
2573          */
2574         if (q->pi_state->owner == current) {
2575                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2576                 goto out;
2577         }
2578
2579         /*
2580          * Paranoia check. If we did not take the lock, then we should not be
2581          * the owner of the rt_mutex.
2582          */
2583         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2584                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2585                                 "pi-state %p\n", ret,
2586                                 q->pi_state->pi_mutex.owner,
2587                                 q->pi_state->owner);
2588         }
2589
2590 out:
2591         return ret ? ret : locked;
2592 }
2593
2594 /**
2595  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2596  * @hb:         the futex hash bucket, must be locked by the caller
2597  * @q:          the futex_q to queue up on
2598  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2599  */
2600 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2601                                 struct hrtimer_sleeper *timeout)
2602 {
2603         /*
2604          * The task state is guaranteed to be set before another task can
2605          * wake it. set_current_state() is implemented using smp_store_mb() and
2606          * queue_me() calls spin_unlock() upon completion, both serializing
2607          * access to the hash list and forcing another memory barrier.
2608          */
2609         set_current_state(TASK_INTERRUPTIBLE);
2610         queue_me(q, hb);
2611
2612         /* Arm the timer */
2613         if (timeout)
2614                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2615
2616         /*
2617          * If we have been removed from the hash list, then another task
2618          * has tried to wake us, and we can skip the call to schedule().
2619          */
2620         if (likely(!plist_node_empty(&q->list))) {
2621                 /*
2622                  * If the timer has already expired, current will already be
2623                  * flagged for rescheduling. Only call schedule if there
2624                  * is no timeout, or if it has yet to expire.
2625                  */
2626                 if (!timeout || timeout->task)
2627                         freezable_schedule();
2628         }
2629         __set_current_state(TASK_RUNNING);
2630 }
2631
2632 /**
2633  * futex_wait_setup() - Prepare to wait on a futex
2634  * @uaddr:      the futex userspace address
2635  * @val:        the expected value
2636  * @flags:      futex flags (FLAGS_SHARED, etc.)
2637  * @q:          the associated futex_q
2638  * @hb:         storage for hash_bucket pointer to be returned to caller
2639  *
2640  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2641  * compare it with the expected value.  Handle atomic faults internally.
2642  * Return with the hb lock held and a q.key reference on success, and unlocked
2643  * with no q.key reference on failure.
2644  *
2645  * Return:
2646  *  -  0 - uaddr contains val and hb has been locked;
2647  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2648  */
2649 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2650                            struct futex_q *q, struct futex_hash_bucket **hb)
2651 {
2652         u32 uval;
2653         int ret;
2654
2655         /*
2656          * Access the page AFTER the hash-bucket is locked.
2657          * Order is important:
2658          *
2659          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2660          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2661          *
2662          * The basic logical guarantee of a futex is that it blocks ONLY
2663          * if cond(var) is known to be true at the time of blocking, for
2664          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2665          * would open a race condition where we could block indefinitely with
2666          * cond(var) false, which would violate the guarantee.
2667          *
2668          * On the other hand, we insert q and release the hash-bucket only
2669          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2670          * absorb a wakeup if *uaddr does not match the desired values
2671          * while the syscall executes.
2672          */
2673 retry:
2674         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2675         if (unlikely(ret != 0))
2676                 return ret;
2677
2678 retry_private:
2679         *hb = queue_lock(q);
2680
2681         ret = get_futex_value_locked(&uval, uaddr);
2682
2683         if (ret) {
2684                 queue_unlock(*hb);
2685
2686                 ret = get_user(uval, uaddr);
2687                 if (ret)
2688                         goto out;
2689
2690                 if (!(flags & FLAGS_SHARED))
2691                         goto retry_private;
2692
2693                 put_futex_key(&q->key);
2694                 goto retry;
2695         }
2696
2697         if (uval != val) {
2698                 queue_unlock(*hb);
2699                 ret = -EWOULDBLOCK;
2700         }
2701
2702 out:
2703         if (ret)
2704                 put_futex_key(&q->key);
2705         return ret;
2706 }
2707
2708 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2709                       ktime_t *abs_time, u32 bitset)
2710 {
2711         struct hrtimer_sleeper timeout, *to;
2712         struct restart_block *restart;
2713         struct futex_hash_bucket *hb;
2714         struct futex_q q = futex_q_init;
2715         int ret;
2716
2717         if (!bitset)
2718                 return -EINVAL;
2719         q.bitset = bitset;
2720
2721         to = futex_setup_timer(abs_time, &timeout, flags,
2722                                current->timer_slack_ns);
2723 retry:
2724         /*
2725          * Prepare to wait on uaddr. On success, holds hb lock and increments
2726          * q.key refs.
2727          */
2728         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2729         if (ret)
2730                 goto out;
2731
2732         /* queue_me and wait for wakeup, timeout, or a signal. */
2733         futex_wait_queue_me(hb, &q, to);
2734
2735         /* If we were woken (and unqueued), we succeeded, whatever. */
2736         ret = 0;
2737         /* unqueue_me() drops q.key ref */
2738         if (!unqueue_me(&q))
2739                 goto out;
2740         ret = -ETIMEDOUT;
2741         if (to && !to->task)
2742                 goto out;
2743
2744         /*
2745          * We expect signal_pending(current), but we might be the
2746          * victim of a spurious wakeup as well.
2747          */
2748         if (!signal_pending(current))
2749                 goto retry;
2750
2751         ret = -ERESTARTSYS;
2752         if (!abs_time)
2753                 goto out;
2754
2755         restart = &current->restart_block;
2756         restart->fn = futex_wait_restart;
2757         restart->futex.uaddr = uaddr;
2758         restart->futex.val = val;
2759         restart->futex.time = *abs_time;
2760         restart->futex.bitset = bitset;
2761         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2762
2763         ret = -ERESTART_RESTARTBLOCK;
2764
2765 out:
2766         if (to) {
2767                 hrtimer_cancel(&to->timer);
2768                 destroy_hrtimer_on_stack(&to->timer);
2769         }
2770         return ret;
2771 }
2772
2773
2774 static long futex_wait_restart(struct restart_block *restart)
2775 {
2776         u32 __user *uaddr = restart->futex.uaddr;
2777         ktime_t t, *tp = NULL;
2778
2779         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2780                 t = restart->futex.time;
2781                 tp = &t;
2782         }
2783         restart->fn = do_no_restart_syscall;
2784
2785         return (long)futex_wait(uaddr, restart->futex.flags,
2786                                 restart->futex.val, tp, restart->futex.bitset);
2787 }
2788
2789
2790 /*
2791  * Userspace tried a 0 -> TID atomic transition of the futex value
2792  * and failed. The kernel side here does the whole locking operation:
2793  * if there are waiters then it will block as a consequence of relying
2794  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2795  * a 0 value of the futex too.).
2796  *
2797  * Also serves as futex trylock_pi()'ing, and due semantics.
2798  */
2799 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2800                          ktime_t *time, int trylock)
2801 {
2802         struct hrtimer_sleeper timeout, *to;
2803         struct futex_pi_state *pi_state = NULL;
2804         struct rt_mutex_waiter rt_waiter;
2805         struct futex_hash_bucket *hb;
2806         struct futex_q q = futex_q_init;
2807         int res, ret;
2808
2809         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2810                 return -ENOSYS;
2811
2812         if (refill_pi_state_cache())
2813                 return -ENOMEM;
2814
2815         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2816
2817 retry:
2818         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2819         if (unlikely(ret != 0))
2820                 goto out;
2821
2822 retry_private:
2823         hb = queue_lock(&q);
2824
2825         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2826         if (unlikely(ret)) {
2827                 /*
2828                  * Atomic work succeeded and we got the lock,
2829                  * or failed. Either way, we do _not_ block.
2830                  */
2831                 switch (ret) {
2832                 case 1:
2833                         /* We got the lock. */
2834                         ret = 0;
2835                         goto out_unlock_put_key;
2836                 case -EFAULT:
2837                         goto uaddr_faulted;
2838                 case -EAGAIN:
2839                         /*
2840                          * Two reasons for this:
2841                          * - Task is exiting and we just wait for the
2842                          *   exit to complete.
2843                          * - The user space value changed.
2844                          */
2845                         queue_unlock(hb);
2846                         put_futex_key(&q.key);
2847                         cond_resched();
2848                         goto retry;
2849                 default:
2850                         goto out_unlock_put_key;
2851                 }
2852         }
2853
2854         WARN_ON(!q.pi_state);
2855
2856         /*
2857          * Only actually queue now that the atomic ops are done:
2858          */
2859         __queue_me(&q, hb);
2860
2861         if (trylock) {
2862                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2863                 /* Fixup the trylock return value: */
2864                 ret = ret ? 0 : -EWOULDBLOCK;
2865                 goto no_block;
2866         }
2867
2868         rt_mutex_init_waiter(&rt_waiter);
2869
2870         /*
2871          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2872          * hold it while doing rt_mutex_start_proxy(), because then it will
2873          * include hb->lock in the blocking chain, even through we'll not in
2874          * fact hold it while blocking. This will lead it to report -EDEADLK
2875          * and BUG when futex_unlock_pi() interleaves with this.
2876          *
2877          * Therefore acquire wait_lock while holding hb->lock, but drop the
2878          * latter before calling __rt_mutex_start_proxy_lock(). This
2879          * interleaves with futex_unlock_pi() -- which does a similar lock
2880          * handoff -- such that the latter can observe the futex_q::pi_state
2881          * before __rt_mutex_start_proxy_lock() is done.
2882          */
2883         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2884         spin_unlock(q.lock_ptr);
2885         /*
2886          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2887          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2888          * it sees the futex_q::pi_state.
2889          */
2890         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2891         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2892
2893         if (ret) {
2894                 if (ret == 1)
2895                         ret = 0;
2896                 goto cleanup;
2897         }
2898
2899         if (unlikely(to))
2900                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2901
2902         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2903
2904 cleanup:
2905         spin_lock(q.lock_ptr);
2906         /*
2907          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2908          * first acquire the hb->lock before removing the lock from the
2909          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2910          * lists consistent.
2911          *
2912          * In particular; it is important that futex_unlock_pi() can not
2913          * observe this inconsistency.
2914          */
2915         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2916                 ret = 0;
2917
2918 no_block:
2919         /*
2920          * Fixup the pi_state owner and possibly acquire the lock if we
2921          * haven't already.
2922          */
2923         res = fixup_owner(uaddr, &q, !ret);
2924         /*
2925          * If fixup_owner() returned an error, proprogate that.  If it acquired
2926          * the lock, clear our -ETIMEDOUT or -EINTR.
2927          */
2928         if (res)
2929                 ret = (res < 0) ? res : 0;
2930
2931         /*
2932          * If fixup_owner() faulted and was unable to handle the fault, unlock
2933          * it and return the fault to userspace.
2934          */
2935         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2936                 pi_state = q.pi_state;
2937                 get_pi_state(pi_state);
2938         }
2939
2940         /* Unqueue and drop the lock */
2941         unqueue_me_pi(&q);
2942
2943         if (pi_state) {
2944                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2945                 put_pi_state(pi_state);
2946         }
2947
2948         goto out_put_key;
2949
2950 out_unlock_put_key:
2951         queue_unlock(hb);
2952
2953 out_put_key:
2954         put_futex_key(&q.key);
2955 out:
2956         if (to) {
2957                 hrtimer_cancel(&to->timer);
2958                 destroy_hrtimer_on_stack(&to->timer);
2959         }
2960         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2961
2962 uaddr_faulted:
2963         queue_unlock(hb);
2964
2965         ret = fault_in_user_writeable(uaddr);
2966         if (ret)
2967                 goto out_put_key;
2968
2969         if (!(flags & FLAGS_SHARED))
2970                 goto retry_private;
2971
2972         put_futex_key(&q.key);
2973         goto retry;
2974 }
2975
2976 /*
2977  * Userspace attempted a TID -> 0 atomic transition, and failed.
2978  * This is the in-kernel slowpath: we look up the PI state (if any),
2979  * and do the rt-mutex unlock.
2980  */
2981 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2982 {
2983         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2984         union futex_key key = FUTEX_KEY_INIT;
2985         struct futex_hash_bucket *hb;
2986         struct futex_q *top_waiter;
2987         int ret;
2988
2989         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2990                 return -ENOSYS;
2991
2992 retry:
2993         if (get_user(uval, uaddr))
2994                 return -EFAULT;
2995         /*
2996          * We release only a lock we actually own:
2997          */
2998         if ((uval & FUTEX_TID_MASK) != vpid)
2999                 return -EPERM;
3000
3001         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3002         if (ret)
3003                 return ret;
3004
3005         hb = hash_futex(&key);
3006         spin_lock(&hb->lock);
3007
3008         /*
3009          * Check waiters first. We do not trust user space values at
3010          * all and we at least want to know if user space fiddled
3011          * with the futex value instead of blindly unlocking.
3012          */
3013         top_waiter = futex_top_waiter(hb, &key);
3014         if (top_waiter) {
3015                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3016
3017                 ret = -EINVAL;
3018                 if (!pi_state)
3019                         goto out_unlock;
3020
3021                 /*
3022                  * If current does not own the pi_state then the futex is
3023                  * inconsistent and user space fiddled with the futex value.
3024                  */
3025                 if (pi_state->owner != current)
3026                         goto out_unlock;
3027
3028                 get_pi_state(pi_state);
3029                 /*
3030                  * By taking wait_lock while still holding hb->lock, we ensure
3031                  * there is no point where we hold neither; and therefore
3032                  * wake_futex_pi() must observe a state consistent with what we
3033                  * observed.
3034                  *
3035                  * In particular; this forces __rt_mutex_start_proxy() to
3036                  * complete such that we're guaranteed to observe the
3037                  * rt_waiter. Also see the WARN in wake_futex_pi().
3038                  */
3039                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3040                 spin_unlock(&hb->lock);
3041
3042                 /* drops pi_state->pi_mutex.wait_lock */
3043                 ret = wake_futex_pi(uaddr, uval, pi_state);
3044
3045                 put_pi_state(pi_state);
3046
3047                 /*
3048                  * Success, we're done! No tricky corner cases.
3049                  */
3050                 if (!ret)
3051                         goto out_putkey;
3052                 /*
3053                  * The atomic access to the futex value generated a
3054                  * pagefault, so retry the user-access and the wakeup:
3055                  */
3056                 if (ret == -EFAULT)
3057                         goto pi_faulted;
3058                 /*
3059                  * A unconditional UNLOCK_PI op raced against a waiter
3060                  * setting the FUTEX_WAITERS bit. Try again.
3061                  */
3062                 if (ret == -EAGAIN)
3063                         goto pi_retry;
3064                 /*
3065                  * wake_futex_pi has detected invalid state. Tell user
3066                  * space.
3067                  */
3068                 goto out_putkey;
3069         }
3070
3071         /*
3072          * We have no kernel internal state, i.e. no waiters in the
3073          * kernel. Waiters which are about to queue themselves are stuck
3074          * on hb->lock. So we can safely ignore them. We do neither
3075          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3076          * owner.
3077          */
3078         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3079                 spin_unlock(&hb->lock);
3080                 switch (ret) {
3081                 case -EFAULT:
3082                         goto pi_faulted;
3083
3084                 case -EAGAIN:
3085                         goto pi_retry;
3086
3087                 default:
3088                         WARN_ON_ONCE(1);
3089                         goto out_putkey;
3090                 }
3091         }
3092
3093         /*
3094          * If uval has changed, let user space handle it.
3095          */
3096         ret = (curval == uval) ? 0 : -EAGAIN;
3097
3098 out_unlock:
3099         spin_unlock(&hb->lock);
3100 out_putkey:
3101         put_futex_key(&key);
3102         return ret;
3103
3104 pi_retry:
3105         put_futex_key(&key);
3106         cond_resched();
3107         goto retry;
3108
3109 pi_faulted:
3110         put_futex_key(&key);
3111
3112         ret = fault_in_user_writeable(uaddr);
3113         if (!ret)
3114                 goto retry;
3115
3116         return ret;
3117 }
3118
3119 /**
3120  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3121  * @hb:         the hash_bucket futex_q was original enqueued on
3122  * @q:          the futex_q woken while waiting to be requeued
3123  * @key2:       the futex_key of the requeue target futex
3124  * @timeout:    the timeout associated with the wait (NULL if none)
3125  *
3126  * Detect if the task was woken on the initial futex as opposed to the requeue
3127  * target futex.  If so, determine if it was a timeout or a signal that caused
3128  * the wakeup and return the appropriate error code to the caller.  Must be
3129  * called with the hb lock held.
3130  *
3131  * Return:
3132  *  -  0 = no early wakeup detected;
3133  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3134  */
3135 static inline
3136 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3137                                    struct futex_q *q, union futex_key *key2,
3138                                    struct hrtimer_sleeper *timeout)
3139 {
3140         int ret = 0;
3141
3142         /*
3143          * With the hb lock held, we avoid races while we process the wakeup.
3144          * We only need to hold hb (and not hb2) to ensure atomicity as the
3145          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3146          * It can't be requeued from uaddr2 to something else since we don't
3147          * support a PI aware source futex for requeue.
3148          */
3149         if (!match_futex(&q->key, key2)) {
3150                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3151                 /*
3152                  * We were woken prior to requeue by a timeout or a signal.
3153                  * Unqueue the futex_q and determine which it was.
3154                  */
3155                 plist_del(&q->list, &hb->chain);
3156                 hb_waiters_dec(hb);
3157
3158                 /* Handle spurious wakeups gracefully */
3159                 ret = -EWOULDBLOCK;
3160                 if (timeout && !timeout->task)
3161                         ret = -ETIMEDOUT;
3162                 else if (signal_pending(current))
3163                         ret = -ERESTARTNOINTR;
3164         }
3165         return ret;
3166 }
3167
3168 /**
3169  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3170  * @uaddr:      the futex we initially wait on (non-pi)
3171  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3172  *              the same type, no requeueing from private to shared, etc.
3173  * @val:        the expected value of uaddr
3174  * @abs_time:   absolute timeout
3175  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3176  * @uaddr2:     the pi futex we will take prior to returning to user-space
3177  *
3178  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3179  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3180  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3181  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3182  * without one, the pi logic would not know which task to boost/deboost, if
3183  * there was a need to.
3184  *
3185  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3186  * via the following--
3187  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3188  * 2) wakeup on uaddr2 after a requeue
3189  * 3) signal
3190  * 4) timeout
3191  *
3192  * If 3, cleanup and return -ERESTARTNOINTR.
3193  *
3194  * If 2, we may then block on trying to take the rt_mutex and return via:
3195  * 5) successful lock
3196  * 6) signal
3197  * 7) timeout
3198  * 8) other lock acquisition failure
3199  *
3200  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3201  *
3202  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3203  *
3204  * Return:
3205  *  -  0 - On success;
3206  *  - <0 - On error
3207  */
3208 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3209                                  u32 val, ktime_t *abs_time, u32 bitset,
3210                                  u32 __user *uaddr2)
3211 {
3212         struct hrtimer_sleeper timeout, *to;
3213         struct futex_pi_state *pi_state = NULL;
3214         struct rt_mutex_waiter rt_waiter;
3215         struct futex_hash_bucket *hb;
3216         union futex_key key2 = FUTEX_KEY_INIT;
3217         struct futex_q q = futex_q_init;
3218         int res, ret;
3219
3220         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3221                 return -ENOSYS;
3222
3223         if (uaddr == uaddr2)
3224                 return -EINVAL;
3225
3226         if (!bitset)
3227                 return -EINVAL;
3228
3229         to = futex_setup_timer(abs_time, &timeout, flags,
3230                                current->timer_slack_ns);
3231
3232         /*
3233          * The waiter is allocated on our stack, manipulated by the requeue
3234          * code while we sleep on uaddr.
3235          */
3236         rt_mutex_init_waiter(&rt_waiter);
3237
3238         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3239         if (unlikely(ret != 0))
3240                 goto out;
3241
3242         q.bitset = bitset;
3243         q.rt_waiter = &rt_waiter;
3244         q.requeue_pi_key = &key2;
3245
3246         /*
3247          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3248          * count.
3249          */
3250         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3251         if (ret)
3252                 goto out_key2;
3253
3254         /*
3255          * The check above which compares uaddrs is not sufficient for
3256          * shared futexes. We need to compare the keys:
3257          */
3258         if (match_futex(&q.key, &key2)) {
3259                 queue_unlock(hb);
3260                 ret = -EINVAL;
3261                 goto out_put_keys;
3262         }
3263
3264         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3265         futex_wait_queue_me(hb, &q, to);
3266
3267         spin_lock(&hb->lock);
3268         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3269         spin_unlock(&hb->lock);
3270         if (ret)
3271                 goto out_put_keys;
3272
3273         /*
3274          * In order for us to be here, we know our q.key == key2, and since
3275          * we took the hb->lock above, we also know that futex_requeue() has
3276          * completed and we no longer have to concern ourselves with a wakeup
3277          * race with the atomic proxy lock acquisition by the requeue code. The
3278          * futex_requeue dropped our key1 reference and incremented our key2
3279          * reference count.
3280          */
3281
3282         /* Check if the requeue code acquired the second futex for us. */
3283         if (!q.rt_waiter) {
3284                 /*
3285                  * Got the lock. We might not be the anticipated owner if we
3286                  * did a lock-steal - fix up the PI-state in that case.
3287                  */
3288                 if (q.pi_state && (q.pi_state->owner != current)) {
3289                         spin_lock(q.lock_ptr);
3290                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3291                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3292                                 pi_state = q.pi_state;
3293                                 get_pi_state(pi_state);
3294                         }
3295                         /*
3296                          * Drop the reference to the pi state which
3297                          * the requeue_pi() code acquired for us.
3298                          */
3299                         put_pi_state(q.pi_state);
3300                         spin_unlock(q.lock_ptr);
3301                 }
3302         } else {
3303                 struct rt_mutex *pi_mutex;
3304
3305                 /*
3306                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3307                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3308                  * the pi_state.
3309                  */
3310                 WARN_ON(!q.pi_state);
3311                 pi_mutex = &q.pi_state->pi_mutex;
3312                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3313
3314                 spin_lock(q.lock_ptr);
3315                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3316                         ret = 0;
3317
3318                 debug_rt_mutex_free_waiter(&rt_waiter);
3319                 /*
3320                  * Fixup the pi_state owner and possibly acquire the lock if we
3321                  * haven't already.
3322                  */
3323                 res = fixup_owner(uaddr2, &q, !ret);
3324                 /*
3325                  * If fixup_owner() returned an error, proprogate that.  If it
3326                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3327                  */
3328                 if (res)
3329                         ret = (res < 0) ? res : 0;
3330
3331                 /*
3332                  * If fixup_pi_state_owner() faulted and was unable to handle
3333                  * the fault, unlock the rt_mutex and return the fault to
3334                  * userspace.
3335                  */
3336                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3337                         pi_state = q.pi_state;
3338                         get_pi_state(pi_state);
3339                 }
3340
3341                 /* Unqueue and drop the lock. */
3342                 unqueue_me_pi(&q);
3343         }
3344
3345         if (pi_state) {
3346                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3347                 put_pi_state(pi_state);
3348         }
3349
3350         if (ret == -EINTR) {
3351                 /*
3352                  * We've already been requeued, but cannot restart by calling
3353                  * futex_lock_pi() directly. We could restart this syscall, but
3354                  * it would detect that the user space "val" changed and return
3355                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3356                  * -EWOULDBLOCK directly.
3357                  */
3358                 ret = -EWOULDBLOCK;
3359         }
3360
3361 out_put_keys:
3362         put_futex_key(&q.key);
3363 out_key2:
3364         put_futex_key(&key2);
3365
3366 out:
3367         if (to) {
3368                 hrtimer_cancel(&to->timer);
3369                 destroy_hrtimer_on_stack(&to->timer);
3370         }
3371         return ret;
3372 }
3373
3374 /*
3375  * Support for robust futexes: the kernel cleans up held futexes at
3376  * thread exit time.
3377  *
3378  * Implementation: user-space maintains a per-thread list of locks it
3379  * is holding. Upon do_exit(), the kernel carefully walks this list,
3380  * and marks all locks that are owned by this thread with the
3381  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3382  * always manipulated with the lock held, so the list is private and
3383  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3384  * field, to allow the kernel to clean up if the thread dies after
3385  * acquiring the lock, but just before it could have added itself to
3386  * the list. There can only be one such pending lock.
3387  */
3388
3389 /**
3390  * sys_set_robust_list() - Set the robust-futex list head of a task
3391  * @head:       pointer to the list-head
3392  * @len:        length of the list-head, as userspace expects
3393  */
3394 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3395                 size_t, len)
3396 {
3397         if (!futex_cmpxchg_enabled)
3398                 return -ENOSYS;
3399         /*
3400          * The kernel knows only one size for now:
3401          */
3402         if (unlikely(len != sizeof(*head)))
3403                 return -EINVAL;
3404
3405         current->robust_list = head;
3406
3407         return 0;
3408 }
3409
3410 /**
3411  * sys_get_robust_list() - Get the robust-futex list head of a task
3412  * @pid:        pid of the process [zero for current task]
3413  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3414  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3415  */
3416 SYSCALL_DEFINE3(get_robust_list, int, pid,
3417                 struct robust_list_head __user * __user *, head_ptr,
3418                 size_t __user *, len_ptr)
3419 {
3420         struct robust_list_head __user *head;
3421         unsigned long ret;
3422         struct task_struct *p;
3423
3424         if (!futex_cmpxchg_enabled)
3425                 return -ENOSYS;
3426
3427         rcu_read_lock();
3428
3429         ret = -ESRCH;
3430         if (!pid)
3431                 p = current;
3432         else {
3433                 p = find_task_by_vpid(pid);
3434                 if (!p)
3435                         goto err_unlock;
3436         }
3437
3438         ret = -EPERM;
3439         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3440                 goto err_unlock;
3441
3442         head = p->robust_list;
3443         rcu_read_unlock();
3444
3445         if (put_user(sizeof(*head), len_ptr))
3446                 return -EFAULT;
3447         return put_user(head, head_ptr);
3448
3449 err_unlock:
3450         rcu_read_unlock();
3451
3452         return ret;
3453 }
3454
3455 /*
3456  * Process a futex-list entry, check whether it's owned by the
3457  * dying task, and do notification if so:
3458  */
3459 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3460 {
3461         u32 uval, uninitialized_var(nval), mval;
3462         int err;
3463
3464         /* Futex address must be 32bit aligned */
3465         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3466                 return -1;
3467
3468 retry:
3469         if (get_user(uval, uaddr))
3470                 return -1;
3471
3472         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3473                 return 0;
3474
3475         /*
3476          * Ok, this dying thread is truly holding a futex
3477          * of interest. Set the OWNER_DIED bit atomically
3478          * via cmpxchg, and if the value had FUTEX_WAITERS
3479          * set, wake up a waiter (if any). (We have to do a
3480          * futex_wake() even if OWNER_DIED is already set -
3481          * to handle the rare but possible case of recursive
3482          * thread-death.) The rest of the cleanup is done in
3483          * userspace.
3484          */
3485         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3486
3487         /*
3488          * We are not holding a lock here, but we want to have
3489          * the pagefault_disable/enable() protection because
3490          * we want to handle the fault gracefully. If the
3491          * access fails we try to fault in the futex with R/W
3492          * verification via get_user_pages. get_user() above
3493          * does not guarantee R/W access. If that fails we
3494          * give up and leave the futex locked.
3495          */
3496         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3497                 switch (err) {
3498                 case -EFAULT:
3499                         if (fault_in_user_writeable(uaddr))
3500                                 return -1;
3501                         goto retry;
3502
3503                 case -EAGAIN:
3504                         cond_resched();
3505                         goto retry;
3506
3507                 default:
3508                         WARN_ON_ONCE(1);
3509                         return err;
3510                 }
3511         }
3512
3513         if (nval != uval)
3514                 goto retry;
3515
3516         /*
3517          * Wake robust non-PI futexes here. The wakeup of
3518          * PI futexes happens in exit_pi_state():
3519          */
3520         if (!pi && (uval & FUTEX_WAITERS))
3521                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3522
3523         return 0;
3524 }
3525
3526 /*
3527  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3528  */
3529 static inline int fetch_robust_entry(struct robust_list __user **entry,
3530                                      struct robust_list __user * __user *head,
3531                                      unsigned int *pi)
3532 {
3533         unsigned long uentry;
3534
3535         if (get_user(uentry, (unsigned long __user *)head))
3536                 return -EFAULT;
3537
3538         *entry = (void __user *)(uentry & ~1UL);
3539         *pi = uentry & 1;
3540
3541         return 0;
3542 }
3543
3544 /*
3545  * Walk curr->robust_list (very carefully, it's a userspace list!)
3546  * and mark any locks found there dead, and notify any waiters.
3547  *
3548  * We silently return on any sign of list-walking problem.
3549  */
3550 void exit_robust_list(struct task_struct *curr)
3551 {
3552         struct robust_list_head __user *head = curr->robust_list;
3553         struct robust_list __user *entry, *next_entry, *pending;
3554         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3555         unsigned int uninitialized_var(next_pi);
3556         unsigned long futex_offset;
3557         int rc;
3558
3559         if (!futex_cmpxchg_enabled)
3560                 return;
3561
3562         /*
3563          * Fetch the list head (which was registered earlier, via
3564          * sys_set_robust_list()):
3565          */
3566         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3567                 return;
3568         /*
3569          * Fetch the relative futex offset:
3570          */
3571         if (get_user(futex_offset, &head->futex_offset))
3572                 return;
3573         /*
3574          * Fetch any possibly pending lock-add first, and handle it
3575          * if it exists:
3576          */
3577         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3578                 return;
3579
3580         next_entry = NULL;      /* avoid warning with gcc */
3581         while (entry != &head->list) {
3582                 /*
3583                  * Fetch the next entry in the list before calling
3584                  * handle_futex_death:
3585                  */
3586                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3587                 /*
3588                  * A pending lock might already be on the list, so
3589                  * don't process it twice:
3590                  */
3591                 if (entry != pending)
3592                         if (handle_futex_death((void __user *)entry + futex_offset,
3593                                                 curr, pi))
3594                                 return;
3595                 if (rc)
3596                         return;
3597                 entry = next_entry;
3598                 pi = next_pi;
3599                 /*
3600                  * Avoid excessively long or circular lists:
3601                  */
3602                 if (!--limit)
3603                         break;
3604
3605                 cond_resched();
3606         }
3607
3608         if (pending)
3609                 handle_futex_death((void __user *)pending + futex_offset,
3610                                    curr, pip);
3611 }
3612
3613 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3614                 u32 __user *uaddr2, u32 val2, u32 val3)
3615 {
3616         int cmd = op & FUTEX_CMD_MASK;
3617         unsigned int flags = 0;
3618
3619         if (!(op & FUTEX_PRIVATE_FLAG))
3620                 flags |= FLAGS_SHARED;
3621
3622         if (op & FUTEX_CLOCK_REALTIME) {
3623                 flags |= FLAGS_CLOCKRT;
3624                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3625                     cmd != FUTEX_WAIT_REQUEUE_PI)
3626                         return -ENOSYS;
3627         }
3628
3629         switch (cmd) {
3630         case FUTEX_LOCK_PI:
3631         case FUTEX_UNLOCK_PI:
3632         case FUTEX_TRYLOCK_PI:
3633         case FUTEX_WAIT_REQUEUE_PI:
3634         case FUTEX_CMP_REQUEUE_PI:
3635                 if (!futex_cmpxchg_enabled)
3636                         return -ENOSYS;
3637         }
3638
3639         switch (cmd) {
3640         case FUTEX_WAIT:
3641                 val3 = FUTEX_BITSET_MATCH_ANY;
3642                 /* fall through */
3643         case FUTEX_WAIT_BITSET:
3644                 return futex_wait(uaddr, flags, val, timeout, val3);
3645         case FUTEX_WAKE:
3646                 val3 = FUTEX_BITSET_MATCH_ANY;
3647                 /* fall through */
3648         case FUTEX_WAKE_BITSET:
3649                 return futex_wake(uaddr, flags, val, val3);
3650         case FUTEX_REQUEUE:
3651                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3652         case FUTEX_CMP_REQUEUE:
3653                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3654         case FUTEX_WAKE_OP:
3655                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3656         case FUTEX_LOCK_PI:
3657                 return futex_lock_pi(uaddr, flags, timeout, 0);
3658         case FUTEX_UNLOCK_PI:
3659                 return futex_unlock_pi(uaddr, flags);
3660         case FUTEX_TRYLOCK_PI:
3661                 return futex_lock_pi(uaddr, flags, NULL, 1);
3662         case FUTEX_WAIT_REQUEUE_PI:
3663                 val3 = FUTEX_BITSET_MATCH_ANY;
3664                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3665                                              uaddr2);
3666         case FUTEX_CMP_REQUEUE_PI:
3667                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3668         }
3669         return -ENOSYS;
3670 }
3671
3672
3673 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3674                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3675                 u32, val3)
3676 {
3677         struct timespec64 ts;
3678         ktime_t t, *tp = NULL;
3679         u32 val2 = 0;
3680         int cmd = op & FUTEX_CMD_MASK;
3681
3682         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3683                       cmd == FUTEX_WAIT_BITSET ||
3684                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3685                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3686                         return -EFAULT;
3687                 if (get_timespec64(&ts, utime))
3688                         return -EFAULT;
3689                 if (!timespec64_valid(&ts))
3690                         return -EINVAL;
3691
3692                 t = timespec64_to_ktime(ts);
3693                 if (cmd == FUTEX_WAIT)
3694                         t = ktime_add_safe(ktime_get(), t);
3695                 tp = &t;
3696         }
3697         /*
3698          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3699          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3700          */
3701         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3702             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3703                 val2 = (u32) (unsigned long) utime;
3704
3705         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3706 }
3707
3708 #ifdef CONFIG_COMPAT
3709 /*
3710  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3711  */
3712 static inline int
3713 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3714                    compat_uptr_t __user *head, unsigned int *pi)
3715 {
3716         if (get_user(*uentry, head))
3717                 return -EFAULT;
3718
3719         *entry = compat_ptr((*uentry) & ~1);
3720         *pi = (unsigned int)(*uentry) & 1;
3721
3722         return 0;
3723 }
3724
3725 static void __user *futex_uaddr(struct robust_list __user *entry,
3726                                 compat_long_t futex_offset)
3727 {
3728         compat_uptr_t base = ptr_to_compat(entry);
3729         void __user *uaddr = compat_ptr(base + futex_offset);
3730
3731         return uaddr;
3732 }
3733
3734 /*
3735  * Walk curr->robust_list (very carefully, it's a userspace list!)
3736  * and mark any locks found there dead, and notify any waiters.
3737  *
3738  * We silently return on any sign of list-walking problem.
3739  */
3740 void compat_exit_robust_list(struct task_struct *curr)
3741 {
3742         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3743         struct robust_list __user *entry, *next_entry, *pending;
3744         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3745         unsigned int uninitialized_var(next_pi);
3746         compat_uptr_t uentry, next_uentry, upending;
3747         compat_long_t futex_offset;
3748         int rc;
3749
3750         if (!futex_cmpxchg_enabled)
3751                 return;
3752
3753         /*
3754          * Fetch the list head (which was registered earlier, via
3755          * sys_set_robust_list()):
3756          */
3757         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3758                 return;
3759         /*
3760          * Fetch the relative futex offset:
3761          */
3762         if (get_user(futex_offset, &head->futex_offset))
3763                 return;
3764         /*
3765          * Fetch any possibly pending lock-add first, and handle it
3766          * if it exists:
3767          */
3768         if (compat_fetch_robust_entry(&upending, &pending,
3769                                &head->list_op_pending, &pip))
3770                 return;
3771
3772         next_entry = NULL;      /* avoid warning with gcc */
3773         while (entry != (struct robust_list __user *) &head->list) {
3774                 /*
3775                  * Fetch the next entry in the list before calling
3776                  * handle_futex_death:
3777                  */
3778                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3779                         (compat_uptr_t __user *)&entry->next, &next_pi);
3780                 /*
3781                  * A pending lock might already be on the list, so
3782                  * dont process it twice:
3783                  */
3784                 if (entry != pending) {
3785                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3786
3787                         if (handle_futex_death(uaddr, curr, pi))
3788                                 return;
3789                 }
3790                 if (rc)
3791                         return;
3792                 uentry = next_uentry;
3793                 entry = next_entry;
3794                 pi = next_pi;
3795                 /*
3796                  * Avoid excessively long or circular lists:
3797                  */
3798                 if (!--limit)
3799                         break;
3800
3801                 cond_resched();
3802         }
3803         if (pending) {
3804                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3805
3806                 handle_futex_death(uaddr, curr, pip);
3807         }
3808 }
3809
3810 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3811                 struct compat_robust_list_head __user *, head,
3812                 compat_size_t, len)
3813 {
3814         if (!futex_cmpxchg_enabled)
3815                 return -ENOSYS;
3816
3817         if (unlikely(len != sizeof(*head)))
3818                 return -EINVAL;
3819
3820         current->compat_robust_list = head;
3821
3822         return 0;
3823 }
3824
3825 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3826                         compat_uptr_t __user *, head_ptr,
3827                         compat_size_t __user *, len_ptr)
3828 {
3829         struct compat_robust_list_head __user *head;
3830         unsigned long ret;
3831         struct task_struct *p;
3832
3833         if (!futex_cmpxchg_enabled)
3834                 return -ENOSYS;
3835
3836         rcu_read_lock();
3837
3838         ret = -ESRCH;
3839         if (!pid)
3840                 p = current;
3841         else {
3842                 p = find_task_by_vpid(pid);
3843                 if (!p)
3844                         goto err_unlock;
3845         }
3846
3847         ret = -EPERM;
3848         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3849                 goto err_unlock;
3850
3851         head = p->compat_robust_list;
3852         rcu_read_unlock();
3853
3854         if (put_user(sizeof(*head), len_ptr))
3855                 return -EFAULT;
3856         return put_user(ptr_to_compat(head), head_ptr);
3857
3858 err_unlock:
3859         rcu_read_unlock();
3860
3861         return ret;
3862 }
3863 #endif /* CONFIG_COMPAT */
3864
3865 #ifdef CONFIG_COMPAT_32BIT_TIME
3866 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3867                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3868                 u32, val3)
3869 {
3870         struct timespec64 ts;
3871         ktime_t t, *tp = NULL;
3872         int val2 = 0;
3873         int cmd = op & FUTEX_CMD_MASK;
3874
3875         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3876                       cmd == FUTEX_WAIT_BITSET ||
3877                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3878                 if (get_old_timespec32(&ts, utime))
3879                         return -EFAULT;
3880                 if (!timespec64_valid(&ts))
3881                         return -EINVAL;
3882
3883                 t = timespec64_to_ktime(ts);
3884                 if (cmd == FUTEX_WAIT)
3885                         t = ktime_add_safe(ktime_get(), t);
3886                 tp = &t;
3887         }
3888         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3889             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3890                 val2 = (int) (unsigned long) utime;
3891
3892         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3893 }
3894 #endif /* CONFIG_COMPAT_32BIT_TIME */
3895
3896 static void __init futex_detect_cmpxchg(void)
3897 {
3898 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3899         u32 curval;
3900
3901         /*
3902          * This will fail and we want it. Some arch implementations do
3903          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3904          * functionality. We want to know that before we call in any
3905          * of the complex code paths. Also we want to prevent
3906          * registration of robust lists in that case. NULL is
3907          * guaranteed to fault and we get -EFAULT on functional
3908          * implementation, the non-functional ones will return
3909          * -ENOSYS.
3910          */
3911         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3912                 futex_cmpxchg_enabled = 1;
3913 #endif
3914 }
3915
3916 static int __init futex_init(void)
3917 {
3918         unsigned int futex_shift;
3919         unsigned long i;
3920
3921 #if CONFIG_BASE_SMALL
3922         futex_hashsize = 16;
3923 #else
3924         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3925 #endif
3926
3927         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3928                                                futex_hashsize, 0,
3929                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3930                                                &futex_shift, NULL,
3931                                                futex_hashsize, futex_hashsize);
3932         futex_hashsize = 1UL << futex_shift;
3933
3934         futex_detect_cmpxchg();
3935
3936         for (i = 0; i < futex_hashsize; i++) {
3937                 atomic_set(&futex_queues[i].waiters, 0);
3938                 plist_head_init(&futex_queues[i].chain);
3939                 spin_lock_init(&futex_queues[i].lock);
3940         }
3941
3942         return 0;
3943 }
3944 core_initcall(futex_init);