patch-5.10.100-rt62.patch
[platform/kernel/linux-rpi.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42
43 #include <asm/futex.h>
44
45 #include "locking/rtmutex_common.h"
46
47 /*
48  * READ this before attempting to hack on futexes!
49  *
50  * Basic futex operation and ordering guarantees
51  * =============================================
52  *
53  * The waiter reads the futex value in user space and calls
54  * futex_wait(). This function computes the hash bucket and acquires
55  * the hash bucket lock. After that it reads the futex user space value
56  * again and verifies that the data has not changed. If it has not changed
57  * it enqueues itself into the hash bucket, releases the hash bucket lock
58  * and schedules.
59  *
60  * The waker side modifies the user space value of the futex and calls
61  * futex_wake(). This function computes the hash bucket and acquires the
62  * hash bucket lock. Then it looks for waiters on that futex in the hash
63  * bucket and wakes them.
64  *
65  * In futex wake up scenarios where no tasks are blocked on a futex, taking
66  * the hb spinlock can be avoided and simply return. In order for this
67  * optimization to work, ordering guarantees must exist so that the waiter
68  * being added to the list is acknowledged when the list is concurrently being
69  * checked by the waker, avoiding scenarios like the following:
70  *
71  * CPU 0                               CPU 1
72  * val = *futex;
73  * sys_futex(WAIT, futex, val);
74  *   futex_wait(futex, val);
75  *   uval = *futex;
76  *                                     *futex = newval;
77  *                                     sys_futex(WAKE, futex);
78  *                                       futex_wake(futex);
79  *                                       if (queue_empty())
80  *                                         return;
81  *   if (uval == val)
82  *      lock(hash_bucket(futex));
83  *      queue();
84  *     unlock(hash_bucket(futex));
85  *     schedule();
86  *
87  * This would cause the waiter on CPU 0 to wait forever because it
88  * missed the transition of the user space value from val to newval
89  * and the waker did not find the waiter in the hash bucket queue.
90  *
91  * The correct serialization ensures that a waiter either observes
92  * the changed user space value before blocking or is woken by a
93  * concurrent waker:
94  *
95  * CPU 0                                 CPU 1
96  * val = *futex;
97  * sys_futex(WAIT, futex, val);
98  *   futex_wait(futex, val);
99  *
100  *   waiters++; (a)
101  *   smp_mb(); (A) <-- paired with -.
102  *                                  |
103  *   lock(hash_bucket(futex));      |
104  *                                  |
105  *   uval = *futex;                 |
106  *                                  |        *futex = newval;
107  *                                  |        sys_futex(WAKE, futex);
108  *                                  |          futex_wake(futex);
109  *                                  |
110  *                                  `--------> smp_mb(); (B)
111  *   if (uval == val)
112  *     queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();                         if (waiters)
115  *                                           lock(hash_bucket(futex));
116  *   else                                    wake_waiters(futex);
117  *     waiters--; (b)                        unlock(hash_bucket(futex));
118  *
119  * Where (A) orders the waiters increment and the futex value read through
120  * atomic operations (see hb_waiters_inc) and where (B) orders the write
121  * to futex and the waiters read (see hb_waiters_pending()).
122  *
123  * This yields the following case (where X:=waiters, Y:=futex):
124  *
125  *      X = Y = 0
126  *
127  *      w[X]=1          w[Y]=1
128  *      MB              MB
129  *      r[Y]=y          r[X]=x
130  *
131  * Which guarantees that x==0 && y==0 is impossible; which translates back into
132  * the guarantee that we cannot both miss the futex variable change and the
133  * enqueue.
134  *
135  * Note that a new waiter is accounted for in (a) even when it is possible that
136  * the wait call can return error, in which case we backtrack from it in (b).
137  * Refer to the comment in queue_lock().
138  *
139  * Similarly, in order to account for waiters being requeued on another
140  * address we always increment the waiters for the destination bucket before
141  * acquiring the lock. It then decrements them again  after releasing it -
142  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143  * will do the additional required waiter count housekeeping. This is done for
144  * double_lock_hb() and double_unlock_hb(), respectively.
145  */
146
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int  __read_mostly futex_cmpxchg_enabled;
151 #endif
152
153 /*
154  * Futex flags used to encode options to functions and preserve them across
155  * restarts.
156  */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED           0x01
159 #else
160 /*
161  * NOMMU does not have per process address space. Let the compiler optimize
162  * code away.
163  */
164 # define FLAGS_SHARED           0x00
165 #endif
166 #define FLAGS_CLOCKRT           0x02
167 #define FLAGS_HAS_TIMEOUT       0x04
168
169 /*
170  * Priority Inheritance state:
171  */
172 struct futex_pi_state {
173         /*
174          * list of 'owned' pi_state instances - these have to be
175          * cleaned up in do_exit() if the task exits prematurely:
176          */
177         struct list_head list;
178
179         /*
180          * The PI object:
181          */
182         struct rt_mutex pi_mutex;
183
184         struct task_struct *owner;
185         refcount_t refcount;
186
187         union futex_key key;
188 } __randomize_layout;
189
190 /**
191  * struct futex_q - The hashed futex queue entry, one per waiting task
192  * @list:               priority-sorted list of tasks waiting on this futex
193  * @task:               the task waiting on the futex
194  * @lock_ptr:           the hash bucket lock
195  * @key:                the key the futex is hashed on
196  * @pi_state:           optional priority inheritance state
197  * @rt_waiter:          rt_waiter storage for use with requeue_pi
198  * @requeue_pi_key:     the requeue_pi target futex key
199  * @bitset:             bitset for the optional bitmasked wakeup
200  *
201  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
202  * we can wake only the relevant ones (hashed queues may be shared).
203  *
204  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
205  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
206  * The order of wakeup is always to make the first condition true, then
207  * the second.
208  *
209  * PI futexes are typically woken before they are removed from the hash list via
210  * the rt_mutex code. See unqueue_me_pi().
211  */
212 struct futex_q {
213         struct plist_node list;
214
215         struct task_struct *task;
216         spinlock_t *lock_ptr;
217         union futex_key key;
218         struct futex_pi_state *pi_state;
219         struct rt_mutex_waiter *rt_waiter;
220         union futex_key *requeue_pi_key;
221         u32 bitset;
222 } __randomize_layout;
223
224 static const struct futex_q futex_q_init = {
225         /* list gets initialized in queue_me()*/
226         .key = FUTEX_KEY_INIT,
227         .bitset = FUTEX_BITSET_MATCH_ANY
228 };
229
230 /*
231  * Hash buckets are shared by all the futex_keys that hash to the same
232  * location.  Each key may have multiple futex_q structures, one for each task
233  * waiting on a futex.
234  */
235 struct futex_hash_bucket {
236         atomic_t waiters;
237         spinlock_t lock;
238         struct plist_head chain;
239 } ____cacheline_aligned_in_smp;
240
241 /*
242  * The base of the bucket array and its size are always used together
243  * (after initialization only in hash_futex()), so ensure that they
244  * reside in the same cacheline.
245  */
246 static struct {
247         struct futex_hash_bucket *queues;
248         unsigned long            hashsize;
249 } __futex_data __read_mostly __aligned(2*sizeof(long));
250 #define futex_queues   (__futex_data.queues)
251 #define futex_hashsize (__futex_data.hashsize)
252
253
254 /*
255  * Fault injections for futexes.
256  */
257 #ifdef CONFIG_FAIL_FUTEX
258
259 static struct {
260         struct fault_attr attr;
261
262         bool ignore_private;
263 } fail_futex = {
264         .attr = FAULT_ATTR_INITIALIZER,
265         .ignore_private = false,
266 };
267
268 static int __init setup_fail_futex(char *str)
269 {
270         return setup_fault_attr(&fail_futex.attr, str);
271 }
272 __setup("fail_futex=", setup_fail_futex);
273
274 static bool should_fail_futex(bool fshared)
275 {
276         if (fail_futex.ignore_private && !fshared)
277                 return false;
278
279         return should_fail(&fail_futex.attr, 1);
280 }
281
282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283
284 static int __init fail_futex_debugfs(void)
285 {
286         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287         struct dentry *dir;
288
289         dir = fault_create_debugfs_attr("fail_futex", NULL,
290                                         &fail_futex.attr);
291         if (IS_ERR(dir))
292                 return PTR_ERR(dir);
293
294         debugfs_create_bool("ignore-private", mode, dir,
295                             &fail_futex.ignore_private);
296         return 0;
297 }
298
299 late_initcall(fail_futex_debugfs);
300
301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302
303 #else
304 static inline bool should_fail_futex(bool fshared)
305 {
306         return false;
307 }
308 #endif /* CONFIG_FAIL_FUTEX */
309
310 #ifdef CONFIG_COMPAT
311 static void compat_exit_robust_list(struct task_struct *curr);
312 #else
313 static inline void compat_exit_robust_list(struct task_struct *curr) { }
314 #endif
315
316 /*
317  * Reflects a new waiter being added to the waitqueue.
318  */
319 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
320 {
321 #ifdef CONFIG_SMP
322         atomic_inc(&hb->waiters);
323         /*
324          * Full barrier (A), see the ordering comment above.
325          */
326         smp_mb__after_atomic();
327 #endif
328 }
329
330 /*
331  * Reflects a waiter being removed from the waitqueue by wakeup
332  * paths.
333  */
334 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
335 {
336 #ifdef CONFIG_SMP
337         atomic_dec(&hb->waiters);
338 #endif
339 }
340
341 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
342 {
343 #ifdef CONFIG_SMP
344         /*
345          * Full barrier (B), see the ordering comment above.
346          */
347         smp_mb();
348         return atomic_read(&hb->waiters);
349 #else
350         return 1;
351 #endif
352 }
353
354 /**
355  * hash_futex - Return the hash bucket in the global hash
356  * @key:        Pointer to the futex key for which the hash is calculated
357  *
358  * We hash on the keys returned from get_futex_key (see below) and return the
359  * corresponding hash bucket in the global hash.
360  */
361 static struct futex_hash_bucket *hash_futex(union futex_key *key)
362 {
363         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
364                           key->both.offset);
365
366         return &futex_queues[hash & (futex_hashsize - 1)];
367 }
368
369
370 /**
371  * match_futex - Check whether two futex keys are equal
372  * @key1:       Pointer to key1
373  * @key2:       Pointer to key2
374  *
375  * Return 1 if two futex_keys are equal, 0 otherwise.
376  */
377 static inline int match_futex(union futex_key *key1, union futex_key *key2)
378 {
379         return (key1 && key2
380                 && key1->both.word == key2->both.word
381                 && key1->both.ptr == key2->both.ptr
382                 && key1->both.offset == key2->both.offset);
383 }
384
385 enum futex_access {
386         FUTEX_READ,
387         FUTEX_WRITE
388 };
389
390 /**
391  * futex_setup_timer - set up the sleeping hrtimer.
392  * @time:       ptr to the given timeout value
393  * @timeout:    the hrtimer_sleeper structure to be set up
394  * @flags:      futex flags
395  * @range_ns:   optional range in ns
396  *
397  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
398  *         value given
399  */
400 static inline struct hrtimer_sleeper *
401 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
402                   int flags, u64 range_ns)
403 {
404         if (!time)
405                 return NULL;
406
407         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
408                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
409                                       HRTIMER_MODE_ABS);
410         /*
411          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
412          * effectively the same as calling hrtimer_set_expires().
413          */
414         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
415
416         return timeout;
417 }
418
419 /*
420  * Generate a machine wide unique identifier for this inode.
421  *
422  * This relies on u64 not wrapping in the life-time of the machine; which with
423  * 1ns resolution means almost 585 years.
424  *
425  * This further relies on the fact that a well formed program will not unmap
426  * the file while it has a (shared) futex waiting on it. This mapping will have
427  * a file reference which pins the mount and inode.
428  *
429  * If for some reason an inode gets evicted and read back in again, it will get
430  * a new sequence number and will _NOT_ match, even though it is the exact same
431  * file.
432  *
433  * It is important that match_futex() will never have a false-positive, esp.
434  * for PI futexes that can mess up the state. The above argues that false-negatives
435  * are only possible for malformed programs.
436  */
437 static u64 get_inode_sequence_number(struct inode *inode)
438 {
439         static atomic64_t i_seq;
440         u64 old;
441
442         /* Does the inode already have a sequence number? */
443         old = atomic64_read(&inode->i_sequence);
444         if (likely(old))
445                 return old;
446
447         for (;;) {
448                 u64 new = atomic64_add_return(1, &i_seq);
449                 if (WARN_ON_ONCE(!new))
450                         continue;
451
452                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
453                 if (old)
454                         return old;
455                 return new;
456         }
457 }
458
459 /**
460  * get_futex_key() - Get parameters which are the keys for a futex
461  * @uaddr:      virtual address of the futex
462  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
463  * @key:        address where result is stored.
464  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
465  *              FUTEX_WRITE)
466  *
467  * Return: a negative error code or 0
468  *
469  * The key words are stored in @key on success.
470  *
471  * For shared mappings (when @fshared), the key is:
472  *
473  *   ( inode->i_sequence, page->index, offset_within_page )
474  *
475  * [ also see get_inode_sequence_number() ]
476  *
477  * For private mappings (or when !@fshared), the key is:
478  *
479  *   ( current->mm, address, 0 )
480  *
481  * This allows (cross process, where applicable) identification of the futex
482  * without keeping the page pinned for the duration of the FUTEX_WAIT.
483  *
484  * lock_page() might sleep, the caller should not hold a spinlock.
485  */
486 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
487                          enum futex_access rw)
488 {
489         unsigned long address = (unsigned long)uaddr;
490         struct mm_struct *mm = current->mm;
491         struct page *page, *tail;
492         struct address_space *mapping;
493         int err, ro = 0;
494
495         /*
496          * The futex address must be "naturally" aligned.
497          */
498         key->both.offset = address % PAGE_SIZE;
499         if (unlikely((address % sizeof(u32)) != 0))
500                 return -EINVAL;
501         address -= key->both.offset;
502
503         if (unlikely(!access_ok(uaddr, sizeof(u32))))
504                 return -EFAULT;
505
506         if (unlikely(should_fail_futex(fshared)))
507                 return -EFAULT;
508
509         /*
510          * PROCESS_PRIVATE futexes are fast.
511          * As the mm cannot disappear under us and the 'key' only needs
512          * virtual address, we dont even have to find the underlying vma.
513          * Note : We do have to check 'uaddr' is a valid user address,
514          *        but access_ok() should be faster than find_vma()
515          */
516         if (!fshared) {
517                 key->private.mm = mm;
518                 key->private.address = address;
519                 return 0;
520         }
521
522 again:
523         /* Ignore any VERIFY_READ mapping (futex common case) */
524         if (unlikely(should_fail_futex(true)))
525                 return -EFAULT;
526
527         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
528         /*
529          * If write access is not required (eg. FUTEX_WAIT), try
530          * and get read-only access.
531          */
532         if (err == -EFAULT && rw == FUTEX_READ) {
533                 err = get_user_pages_fast(address, 1, 0, &page);
534                 ro = 1;
535         }
536         if (err < 0)
537                 return err;
538         else
539                 err = 0;
540
541         /*
542          * The treatment of mapping from this point on is critical. The page
543          * lock protects many things but in this context the page lock
544          * stabilizes mapping, prevents inode freeing in the shared
545          * file-backed region case and guards against movement to swap cache.
546          *
547          * Strictly speaking the page lock is not needed in all cases being
548          * considered here and page lock forces unnecessarily serialization
549          * From this point on, mapping will be re-verified if necessary and
550          * page lock will be acquired only if it is unavoidable
551          *
552          * Mapping checks require the head page for any compound page so the
553          * head page and mapping is looked up now. For anonymous pages, it
554          * does not matter if the page splits in the future as the key is
555          * based on the address. For filesystem-backed pages, the tail is
556          * required as the index of the page determines the key. For
557          * base pages, there is no tail page and tail == page.
558          */
559         tail = page;
560         page = compound_head(page);
561         mapping = READ_ONCE(page->mapping);
562
563         /*
564          * If page->mapping is NULL, then it cannot be a PageAnon
565          * page; but it might be the ZERO_PAGE or in the gate area or
566          * in a special mapping (all cases which we are happy to fail);
567          * or it may have been a good file page when get_user_pages_fast
568          * found it, but truncated or holepunched or subjected to
569          * invalidate_complete_page2 before we got the page lock (also
570          * cases which we are happy to fail).  And we hold a reference,
571          * so refcount care in invalidate_complete_page's remove_mapping
572          * prevents drop_caches from setting mapping to NULL beneath us.
573          *
574          * The case we do have to guard against is when memory pressure made
575          * shmem_writepage move it from filecache to swapcache beneath us:
576          * an unlikely race, but we do need to retry for page->mapping.
577          */
578         if (unlikely(!mapping)) {
579                 int shmem_swizzled;
580
581                 /*
582                  * Page lock is required to identify which special case above
583                  * applies. If this is really a shmem page then the page lock
584                  * will prevent unexpected transitions.
585                  */
586                 lock_page(page);
587                 shmem_swizzled = PageSwapCache(page) || page->mapping;
588                 unlock_page(page);
589                 put_page(page);
590
591                 if (shmem_swizzled)
592                         goto again;
593
594                 return -EFAULT;
595         }
596
597         /*
598          * Private mappings are handled in a simple way.
599          *
600          * If the futex key is stored on an anonymous page, then the associated
601          * object is the mm which is implicitly pinned by the calling process.
602          *
603          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
604          * it's a read-only handle, it's expected that futexes attach to
605          * the object not the particular process.
606          */
607         if (PageAnon(page)) {
608                 /*
609                  * A RO anonymous page will never change and thus doesn't make
610                  * sense for futex operations.
611                  */
612                 if (unlikely(should_fail_futex(true)) || ro) {
613                         err = -EFAULT;
614                         goto out;
615                 }
616
617                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
618                 key->private.mm = mm;
619                 key->private.address = address;
620
621         } else {
622                 struct inode *inode;
623
624                 /*
625                  * The associated futex object in this case is the inode and
626                  * the page->mapping must be traversed. Ordinarily this should
627                  * be stabilised under page lock but it's not strictly
628                  * necessary in this case as we just want to pin the inode, not
629                  * update the radix tree or anything like that.
630                  *
631                  * The RCU read lock is taken as the inode is finally freed
632                  * under RCU. If the mapping still matches expectations then the
633                  * mapping->host can be safely accessed as being a valid inode.
634                  */
635                 rcu_read_lock();
636
637                 if (READ_ONCE(page->mapping) != mapping) {
638                         rcu_read_unlock();
639                         put_page(page);
640
641                         goto again;
642                 }
643
644                 inode = READ_ONCE(mapping->host);
645                 if (!inode) {
646                         rcu_read_unlock();
647                         put_page(page);
648
649                         goto again;
650                 }
651
652                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
653                 key->shared.i_seq = get_inode_sequence_number(inode);
654                 key->shared.pgoff = page_to_pgoff(tail);
655                 rcu_read_unlock();
656         }
657
658 out:
659         put_page(page);
660         return err;
661 }
662
663 /**
664  * fault_in_user_writeable() - Fault in user address and verify RW access
665  * @uaddr:      pointer to faulting user space address
666  *
667  * Slow path to fixup the fault we just took in the atomic write
668  * access to @uaddr.
669  *
670  * We have no generic implementation of a non-destructive write to the
671  * user address. We know that we faulted in the atomic pagefault
672  * disabled section so we can as well avoid the #PF overhead by
673  * calling get_user_pages() right away.
674  */
675 static int fault_in_user_writeable(u32 __user *uaddr)
676 {
677         struct mm_struct *mm = current->mm;
678         int ret;
679
680         mmap_read_lock(mm);
681         ret = fixup_user_fault(mm, (unsigned long)uaddr,
682                                FAULT_FLAG_WRITE, NULL);
683         mmap_read_unlock(mm);
684
685         return ret < 0 ? ret : 0;
686 }
687
688 /**
689  * futex_top_waiter() - Return the highest priority waiter on a futex
690  * @hb:         the hash bucket the futex_q's reside in
691  * @key:        the futex key (to distinguish it from other futex futex_q's)
692  *
693  * Must be called with the hb lock held.
694  */
695 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
696                                         union futex_key *key)
697 {
698         struct futex_q *this;
699
700         plist_for_each_entry(this, &hb->chain, list) {
701                 if (match_futex(&this->key, key))
702                         return this;
703         }
704         return NULL;
705 }
706
707 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
708                                       u32 uval, u32 newval)
709 {
710         int ret;
711
712         pagefault_disable();
713         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
714         pagefault_enable();
715
716         return ret;
717 }
718
719 static int get_futex_value_locked(u32 *dest, u32 __user *from)
720 {
721         int ret;
722
723         pagefault_disable();
724         ret = __get_user(*dest, from);
725         pagefault_enable();
726
727         return ret ? -EFAULT : 0;
728 }
729
730
731 /*
732  * PI code:
733  */
734 static int refill_pi_state_cache(void)
735 {
736         struct futex_pi_state *pi_state;
737
738         if (likely(current->pi_state_cache))
739                 return 0;
740
741         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
742
743         if (!pi_state)
744                 return -ENOMEM;
745
746         INIT_LIST_HEAD(&pi_state->list);
747         /* pi_mutex gets initialized later */
748         pi_state->owner = NULL;
749         refcount_set(&pi_state->refcount, 1);
750         pi_state->key = FUTEX_KEY_INIT;
751
752         current->pi_state_cache = pi_state;
753
754         return 0;
755 }
756
757 static struct futex_pi_state *alloc_pi_state(void)
758 {
759         struct futex_pi_state *pi_state = current->pi_state_cache;
760
761         WARN_ON(!pi_state);
762         current->pi_state_cache = NULL;
763
764         return pi_state;
765 }
766
767 static void pi_state_update_owner(struct futex_pi_state *pi_state,
768                                   struct task_struct *new_owner)
769 {
770         struct task_struct *old_owner = pi_state->owner;
771
772         lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
773
774         if (old_owner) {
775                 raw_spin_lock(&old_owner->pi_lock);
776                 WARN_ON(list_empty(&pi_state->list));
777                 list_del_init(&pi_state->list);
778                 raw_spin_unlock(&old_owner->pi_lock);
779         }
780
781         if (new_owner) {
782                 raw_spin_lock(&new_owner->pi_lock);
783                 WARN_ON(!list_empty(&pi_state->list));
784                 list_add(&pi_state->list, &new_owner->pi_state_list);
785                 pi_state->owner = new_owner;
786                 raw_spin_unlock(&new_owner->pi_lock);
787         }
788 }
789
790 static void get_pi_state(struct futex_pi_state *pi_state)
791 {
792         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
793 }
794
795 /*
796  * Drops a reference to the pi_state object and frees or caches it
797  * when the last reference is gone.
798  */
799 static void put_pi_state(struct futex_pi_state *pi_state)
800 {
801         if (!pi_state)
802                 return;
803
804         if (!refcount_dec_and_test(&pi_state->refcount))
805                 return;
806
807         /*
808          * If pi_state->owner is NULL, the owner is most probably dying
809          * and has cleaned up the pi_state already
810          */
811         if (pi_state->owner) {
812                 unsigned long flags;
813
814                 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
815                 pi_state_update_owner(pi_state, NULL);
816                 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
817                 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
818         }
819
820         if (current->pi_state_cache) {
821                 kfree(pi_state);
822         } else {
823                 /*
824                  * pi_state->list is already empty.
825                  * clear pi_state->owner.
826                  * refcount is at 0 - put it back to 1.
827                  */
828                 pi_state->owner = NULL;
829                 refcount_set(&pi_state->refcount, 1);
830                 current->pi_state_cache = pi_state;
831         }
832 }
833
834 #ifdef CONFIG_FUTEX_PI
835
836 /*
837  * This task is holding PI mutexes at exit time => bad.
838  * Kernel cleans up PI-state, but userspace is likely hosed.
839  * (Robust-futex cleanup is separate and might save the day for userspace.)
840  */
841 static void exit_pi_state_list(struct task_struct *curr)
842 {
843         struct list_head *next, *head = &curr->pi_state_list;
844         struct futex_pi_state *pi_state;
845         struct futex_hash_bucket *hb;
846         union futex_key key = FUTEX_KEY_INIT;
847
848         if (!futex_cmpxchg_enabled)
849                 return;
850         /*
851          * We are a ZOMBIE and nobody can enqueue itself on
852          * pi_state_list anymore, but we have to be careful
853          * versus waiters unqueueing themselves:
854          */
855         raw_spin_lock_irq(&curr->pi_lock);
856         while (!list_empty(head)) {
857                 next = head->next;
858                 pi_state = list_entry(next, struct futex_pi_state, list);
859                 key = pi_state->key;
860                 hb = hash_futex(&key);
861
862                 /*
863                  * We can race against put_pi_state() removing itself from the
864                  * list (a waiter going away). put_pi_state() will first
865                  * decrement the reference count and then modify the list, so
866                  * its possible to see the list entry but fail this reference
867                  * acquire.
868                  *
869                  * In that case; drop the locks to let put_pi_state() make
870                  * progress and retry the loop.
871                  */
872                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
873                         raw_spin_unlock_irq(&curr->pi_lock);
874                         cpu_relax();
875                         raw_spin_lock_irq(&curr->pi_lock);
876                         continue;
877                 }
878                 raw_spin_unlock_irq(&curr->pi_lock);
879
880                 spin_lock(&hb->lock);
881                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
882                 raw_spin_lock(&curr->pi_lock);
883                 /*
884                  * We dropped the pi-lock, so re-check whether this
885                  * task still owns the PI-state:
886                  */
887                 if (head->next != next) {
888                         /* retain curr->pi_lock for the loop invariant */
889                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
890                         spin_unlock(&hb->lock);
891                         put_pi_state(pi_state);
892                         continue;
893                 }
894
895                 WARN_ON(pi_state->owner != curr);
896                 WARN_ON(list_empty(&pi_state->list));
897                 list_del_init(&pi_state->list);
898                 pi_state->owner = NULL;
899
900                 raw_spin_unlock(&curr->pi_lock);
901                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
902                 spin_unlock(&hb->lock);
903
904                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
905                 put_pi_state(pi_state);
906
907                 raw_spin_lock_irq(&curr->pi_lock);
908         }
909         raw_spin_unlock_irq(&curr->pi_lock);
910 }
911 #else
912 static inline void exit_pi_state_list(struct task_struct *curr) { }
913 #endif
914
915 /*
916  * We need to check the following states:
917  *
918  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
919  *
920  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
921  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
922  *
923  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
924  *
925  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
926  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
927  *
928  * [6]  Found  | Found    | task      | 0         | 1      | Valid
929  *
930  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
931  *
932  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
933  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
934  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
935  *
936  * [1]  Indicates that the kernel can acquire the futex atomically. We
937  *      came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
938  *
939  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
940  *      thread is found then it indicates that the owner TID has died.
941  *
942  * [3]  Invalid. The waiter is queued on a non PI futex
943  *
944  * [4]  Valid state after exit_robust_list(), which sets the user space
945  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
946  *
947  * [5]  The user space value got manipulated between exit_robust_list()
948  *      and exit_pi_state_list()
949  *
950  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
951  *      the pi_state but cannot access the user space value.
952  *
953  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
954  *
955  * [8]  Owner and user space value match
956  *
957  * [9]  There is no transient state which sets the user space TID to 0
958  *      except exit_robust_list(), but this is indicated by the
959  *      FUTEX_OWNER_DIED bit. See [4]
960  *
961  * [10] There is no transient state which leaves owner and user space
962  *      TID out of sync. Except one error case where the kernel is denied
963  *      write access to the user address, see fixup_pi_state_owner().
964  *
965  *
966  * Serialization and lifetime rules:
967  *
968  * hb->lock:
969  *
970  *      hb -> futex_q, relation
971  *      futex_q -> pi_state, relation
972  *
973  *      (cannot be raw because hb can contain arbitrary amount
974  *       of futex_q's)
975  *
976  * pi_mutex->wait_lock:
977  *
978  *      {uval, pi_state}
979  *
980  *      (and pi_mutex 'obviously')
981  *
982  * p->pi_lock:
983  *
984  *      p->pi_state_list -> pi_state->list, relation
985  *
986  * pi_state->refcount:
987  *
988  *      pi_state lifetime
989  *
990  *
991  * Lock order:
992  *
993  *   hb->lock
994  *     pi_mutex->wait_lock
995  *       p->pi_lock
996  *
997  */
998
999 /*
1000  * Validate that the existing waiter has a pi_state and sanity check
1001  * the pi_state against the user space value. If correct, attach to
1002  * it.
1003  */
1004 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1005                               struct futex_pi_state *pi_state,
1006                               struct futex_pi_state **ps)
1007 {
1008         pid_t pid = uval & FUTEX_TID_MASK;
1009         u32 uval2;
1010         int ret;
1011
1012         /*
1013          * Userspace might have messed up non-PI and PI futexes [3]
1014          */
1015         if (unlikely(!pi_state))
1016                 return -EINVAL;
1017
1018         /*
1019          * We get here with hb->lock held, and having found a
1020          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1021          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1022          * which in turn means that futex_lock_pi() still has a reference on
1023          * our pi_state.
1024          *
1025          * The waiter holding a reference on @pi_state also protects against
1026          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1027          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1028          * free pi_state before we can take a reference ourselves.
1029          */
1030         WARN_ON(!refcount_read(&pi_state->refcount));
1031
1032         /*
1033          * Now that we have a pi_state, we can acquire wait_lock
1034          * and do the state validation.
1035          */
1036         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1037
1038         /*
1039          * Since {uval, pi_state} is serialized by wait_lock, and our current
1040          * uval was read without holding it, it can have changed. Verify it
1041          * still is what we expect it to be, otherwise retry the entire
1042          * operation.
1043          */
1044         if (get_futex_value_locked(&uval2, uaddr))
1045                 goto out_efault;
1046
1047         if (uval != uval2)
1048                 goto out_eagain;
1049
1050         /*
1051          * Handle the owner died case:
1052          */
1053         if (uval & FUTEX_OWNER_DIED) {
1054                 /*
1055                  * exit_pi_state_list sets owner to NULL and wakes the
1056                  * topmost waiter. The task which acquires the
1057                  * pi_state->rt_mutex will fixup owner.
1058                  */
1059                 if (!pi_state->owner) {
1060                         /*
1061                          * No pi state owner, but the user space TID
1062                          * is not 0. Inconsistent state. [5]
1063                          */
1064                         if (pid)
1065                                 goto out_einval;
1066                         /*
1067                          * Take a ref on the state and return success. [4]
1068                          */
1069                         goto out_attach;
1070                 }
1071
1072                 /*
1073                  * If TID is 0, then either the dying owner has not
1074                  * yet executed exit_pi_state_list() or some waiter
1075                  * acquired the rtmutex in the pi state, but did not
1076                  * yet fixup the TID in user space.
1077                  *
1078                  * Take a ref on the state and return success. [6]
1079                  */
1080                 if (!pid)
1081                         goto out_attach;
1082         } else {
1083                 /*
1084                  * If the owner died bit is not set, then the pi_state
1085                  * must have an owner. [7]
1086                  */
1087                 if (!pi_state->owner)
1088                         goto out_einval;
1089         }
1090
1091         /*
1092          * Bail out if user space manipulated the futex value. If pi
1093          * state exists then the owner TID must be the same as the
1094          * user space TID. [9/10]
1095          */
1096         if (pid != task_pid_vnr(pi_state->owner))
1097                 goto out_einval;
1098
1099 out_attach:
1100         get_pi_state(pi_state);
1101         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1102         *ps = pi_state;
1103         return 0;
1104
1105 out_einval:
1106         ret = -EINVAL;
1107         goto out_error;
1108
1109 out_eagain:
1110         ret = -EAGAIN;
1111         goto out_error;
1112
1113 out_efault:
1114         ret = -EFAULT;
1115         goto out_error;
1116
1117 out_error:
1118         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1119         return ret;
1120 }
1121
1122 /**
1123  * wait_for_owner_exiting - Block until the owner has exited
1124  * @ret: owner's current futex lock status
1125  * @exiting:    Pointer to the exiting task
1126  *
1127  * Caller must hold a refcount on @exiting.
1128  */
1129 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1130 {
1131         if (ret != -EBUSY) {
1132                 WARN_ON_ONCE(exiting);
1133                 return;
1134         }
1135
1136         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1137                 return;
1138
1139         mutex_lock(&exiting->futex_exit_mutex);
1140         /*
1141          * No point in doing state checking here. If the waiter got here
1142          * while the task was in exec()->exec_futex_release() then it can
1143          * have any FUTEX_STATE_* value when the waiter has acquired the
1144          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1145          * already. Highly unlikely and not a problem. Just one more round
1146          * through the futex maze.
1147          */
1148         mutex_unlock(&exiting->futex_exit_mutex);
1149
1150         put_task_struct(exiting);
1151 }
1152
1153 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1154                             struct task_struct *tsk)
1155 {
1156         u32 uval2;
1157
1158         /*
1159          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1160          * caller that the alleged owner is busy.
1161          */
1162         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1163                 return -EBUSY;
1164
1165         /*
1166          * Reread the user space value to handle the following situation:
1167          *
1168          * CPU0                         CPU1
1169          *
1170          * sys_exit()                   sys_futex()
1171          *  do_exit()                    futex_lock_pi()
1172          *                                futex_lock_pi_atomic()
1173          *   exit_signals(tsk)              No waiters:
1174          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1175          *  mm_release(tsk)                 Set waiter bit
1176          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1177          *      Set owner died              attach_to_pi_owner() {
1178          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1179          *   }                               if (!tsk->flags & PF_EXITING) {
1180          *  ...                                attach();
1181          *  tsk->futex_state =               } else {
1182          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1183          *                                        FUTEX_STATE_DEAD)
1184          *                                       return -EAGAIN;
1185          *                                     return -ESRCH; <--- FAIL
1186          *                                   }
1187          *
1188          * Returning ESRCH unconditionally is wrong here because the
1189          * user space value has been changed by the exiting task.
1190          *
1191          * The same logic applies to the case where the exiting task is
1192          * already gone.
1193          */
1194         if (get_futex_value_locked(&uval2, uaddr))
1195                 return -EFAULT;
1196
1197         /* If the user space value has changed, try again. */
1198         if (uval2 != uval)
1199                 return -EAGAIN;
1200
1201         /*
1202          * The exiting task did not have a robust list, the robust list was
1203          * corrupted or the user space value in *uaddr is simply bogus.
1204          * Give up and tell user space.
1205          */
1206         return -ESRCH;
1207 }
1208
1209 /*
1210  * Lookup the task for the TID provided from user space and attach to
1211  * it after doing proper sanity checks.
1212  */
1213 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1214                               struct futex_pi_state **ps,
1215                               struct task_struct **exiting)
1216 {
1217         pid_t pid = uval & FUTEX_TID_MASK;
1218         struct futex_pi_state *pi_state;
1219         struct task_struct *p;
1220
1221         /*
1222          * We are the first waiter - try to look up the real owner and attach
1223          * the new pi_state to it, but bail out when TID = 0 [1]
1224          *
1225          * The !pid check is paranoid. None of the call sites should end up
1226          * with pid == 0, but better safe than sorry. Let the caller retry
1227          */
1228         if (!pid)
1229                 return -EAGAIN;
1230         p = find_get_task_by_vpid(pid);
1231         if (!p)
1232                 return handle_exit_race(uaddr, uval, NULL);
1233
1234         if (unlikely(p->flags & PF_KTHREAD)) {
1235                 put_task_struct(p);
1236                 return -EPERM;
1237         }
1238
1239         /*
1240          * We need to look at the task state to figure out, whether the
1241          * task is exiting. To protect against the change of the task state
1242          * in futex_exit_release(), we do this protected by p->pi_lock:
1243          */
1244         raw_spin_lock_irq(&p->pi_lock);
1245         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1246                 /*
1247                  * The task is on the way out. When the futex state is
1248                  * FUTEX_STATE_DEAD, we know that the task has finished
1249                  * the cleanup:
1250                  */
1251                 int ret = handle_exit_race(uaddr, uval, p);
1252
1253                 raw_spin_unlock_irq(&p->pi_lock);
1254                 /*
1255                  * If the owner task is between FUTEX_STATE_EXITING and
1256                  * FUTEX_STATE_DEAD then store the task pointer and keep
1257                  * the reference on the task struct. The calling code will
1258                  * drop all locks, wait for the task to reach
1259                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1260                  * required to prevent a live lock when the current task
1261                  * preempted the exiting task between the two states.
1262                  */
1263                 if (ret == -EBUSY)
1264                         *exiting = p;
1265                 else
1266                         put_task_struct(p);
1267                 return ret;
1268         }
1269
1270         /*
1271          * No existing pi state. First waiter. [2]
1272          *
1273          * This creates pi_state, we have hb->lock held, this means nothing can
1274          * observe this state, wait_lock is irrelevant.
1275          */
1276         pi_state = alloc_pi_state();
1277
1278         /*
1279          * Initialize the pi_mutex in locked state and make @p
1280          * the owner of it:
1281          */
1282         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1283
1284         /* Store the key for possible exit cleanups: */
1285         pi_state->key = *key;
1286
1287         WARN_ON(!list_empty(&pi_state->list));
1288         list_add(&pi_state->list, &p->pi_state_list);
1289         /*
1290          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1291          * because there is no concurrency as the object is not published yet.
1292          */
1293         pi_state->owner = p;
1294         raw_spin_unlock_irq(&p->pi_lock);
1295
1296         put_task_struct(p);
1297
1298         *ps = pi_state;
1299
1300         return 0;
1301 }
1302
1303 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1304                            struct futex_hash_bucket *hb,
1305                            union futex_key *key, struct futex_pi_state **ps,
1306                            struct task_struct **exiting)
1307 {
1308         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1309
1310         /*
1311          * If there is a waiter on that futex, validate it and
1312          * attach to the pi_state when the validation succeeds.
1313          */
1314         if (top_waiter)
1315                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1316
1317         /*
1318          * We are the first waiter - try to look up the owner based on
1319          * @uval and attach to it.
1320          */
1321         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1322 }
1323
1324 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1325 {
1326         int err;
1327         u32 curval;
1328
1329         if (unlikely(should_fail_futex(true)))
1330                 return -EFAULT;
1331
1332         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1333         if (unlikely(err))
1334                 return err;
1335
1336         /* If user space value changed, let the caller retry */
1337         return curval != uval ? -EAGAIN : 0;
1338 }
1339
1340 /**
1341  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1342  * @uaddr:              the pi futex user address
1343  * @hb:                 the pi futex hash bucket
1344  * @key:                the futex key associated with uaddr and hb
1345  * @ps:                 the pi_state pointer where we store the result of the
1346  *                      lookup
1347  * @task:               the task to perform the atomic lock work for.  This will
1348  *                      be "current" except in the case of requeue pi.
1349  * @exiting:            Pointer to store the task pointer of the owner task
1350  *                      which is in the middle of exiting
1351  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1352  *
1353  * Return:
1354  *  -  0 - ready to wait;
1355  *  -  1 - acquired the lock;
1356  *  - <0 - error
1357  *
1358  * The hb->lock and futex_key refs shall be held by the caller.
1359  *
1360  * @exiting is only set when the return value is -EBUSY. If so, this holds
1361  * a refcount on the exiting task on return and the caller needs to drop it
1362  * after waiting for the exit to complete.
1363  */
1364 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1365                                 union futex_key *key,
1366                                 struct futex_pi_state **ps,
1367                                 struct task_struct *task,
1368                                 struct task_struct **exiting,
1369                                 int set_waiters)
1370 {
1371         u32 uval, newval, vpid = task_pid_vnr(task);
1372         struct futex_q *top_waiter;
1373         int ret;
1374
1375         /*
1376          * Read the user space value first so we can validate a few
1377          * things before proceeding further.
1378          */
1379         if (get_futex_value_locked(&uval, uaddr))
1380                 return -EFAULT;
1381
1382         if (unlikely(should_fail_futex(true)))
1383                 return -EFAULT;
1384
1385         /*
1386          * Detect deadlocks.
1387          */
1388         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1389                 return -EDEADLK;
1390
1391         if ((unlikely(should_fail_futex(true))))
1392                 return -EDEADLK;
1393
1394         /*
1395          * Lookup existing state first. If it exists, try to attach to
1396          * its pi_state.
1397          */
1398         top_waiter = futex_top_waiter(hb, key);
1399         if (top_waiter)
1400                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1401
1402         /*
1403          * No waiter and user TID is 0. We are here because the
1404          * waiters or the owner died bit is set or called from
1405          * requeue_cmp_pi or for whatever reason something took the
1406          * syscall.
1407          */
1408         if (!(uval & FUTEX_TID_MASK)) {
1409                 /*
1410                  * We take over the futex. No other waiters and the user space
1411                  * TID is 0. We preserve the owner died bit.
1412                  */
1413                 newval = uval & FUTEX_OWNER_DIED;
1414                 newval |= vpid;
1415
1416                 /* The futex requeue_pi code can enforce the waiters bit */
1417                 if (set_waiters)
1418                         newval |= FUTEX_WAITERS;
1419
1420                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1421                 /* If the take over worked, return 1 */
1422                 return ret < 0 ? ret : 1;
1423         }
1424
1425         /*
1426          * First waiter. Set the waiters bit before attaching ourself to
1427          * the owner. If owner tries to unlock, it will be forced into
1428          * the kernel and blocked on hb->lock.
1429          */
1430         newval = uval | FUTEX_WAITERS;
1431         ret = lock_pi_update_atomic(uaddr, uval, newval);
1432         if (ret)
1433                 return ret;
1434         /*
1435          * If the update of the user space value succeeded, we try to
1436          * attach to the owner. If that fails, no harm done, we only
1437          * set the FUTEX_WAITERS bit in the user space variable.
1438          */
1439         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1440 }
1441
1442 /**
1443  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1444  * @q:  The futex_q to unqueue
1445  *
1446  * The q->lock_ptr must not be NULL and must be held by the caller.
1447  */
1448 static void __unqueue_futex(struct futex_q *q)
1449 {
1450         struct futex_hash_bucket *hb;
1451
1452         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1453                 return;
1454         lockdep_assert_held(q->lock_ptr);
1455
1456         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1457         plist_del(&q->list, &hb->chain);
1458         hb_waiters_dec(hb);
1459 }
1460
1461 /*
1462  * The hash bucket lock must be held when this is called.
1463  * Afterwards, the futex_q must not be accessed. Callers
1464  * must ensure to later call wake_up_q() for the actual
1465  * wakeups to occur.
1466  */
1467 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1468 {
1469         struct task_struct *p = q->task;
1470
1471         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1472                 return;
1473
1474         get_task_struct(p);
1475         __unqueue_futex(q);
1476         /*
1477          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1478          * is written, without taking any locks. This is possible in the event
1479          * of a spurious wakeup, for example. A memory barrier is required here
1480          * to prevent the following store to lock_ptr from getting ahead of the
1481          * plist_del in __unqueue_futex().
1482          */
1483         smp_store_release(&q->lock_ptr, NULL);
1484
1485         /*
1486          * Queue the task for later wakeup for after we've released
1487          * the hb->lock.
1488          */
1489         wake_q_add_safe(wake_q, p);
1490 }
1491
1492 /*
1493  * Caller must hold a reference on @pi_state.
1494  */
1495 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1496 {
1497         u32 curval, newval;
1498         struct task_struct *new_owner;
1499         bool postunlock = false;
1500         DEFINE_WAKE_Q(wake_q);
1501         DEFINE_WAKE_Q(wake_sleeper_q);
1502         int ret = 0;
1503
1504         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1505         if (WARN_ON_ONCE(!new_owner)) {
1506                 /*
1507                  * As per the comment in futex_unlock_pi() this should not happen.
1508                  *
1509                  * When this happens, give up our locks and try again, giving
1510                  * the futex_lock_pi() instance time to complete, either by
1511                  * waiting on the rtmutex or removing itself from the futex
1512                  * queue.
1513                  */
1514                 ret = -EAGAIN;
1515                 goto out_unlock;
1516         }
1517
1518         /*
1519          * We pass it to the next owner. The WAITERS bit is always kept
1520          * enabled while there is PI state around. We cleanup the owner
1521          * died bit, because we are the owner.
1522          */
1523         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1524
1525         if (unlikely(should_fail_futex(true))) {
1526                 ret = -EFAULT;
1527                 goto out_unlock;
1528         }
1529
1530         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1531         if (!ret && (curval != uval)) {
1532                 /*
1533                  * If a unconditional UNLOCK_PI operation (user space did not
1534                  * try the TID->0 transition) raced with a waiter setting the
1535                  * FUTEX_WAITERS flag between get_user() and locking the hash
1536                  * bucket lock, retry the operation.
1537                  */
1538                 if ((FUTEX_TID_MASK & curval) == uval)
1539                         ret = -EAGAIN;
1540                 else
1541                         ret = -EINVAL;
1542         }
1543
1544         if (!ret) {
1545                 /*
1546                  * This is a point of no return; once we modified the uval
1547                  * there is no going back and subsequent operations must
1548                  * not fail.
1549                  */
1550                 pi_state_update_owner(pi_state, new_owner);
1551                 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q,
1552                                                      &wake_sleeper_q);
1553         }
1554
1555 out_unlock:
1556         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1557
1558         if (postunlock)
1559                 rt_mutex_postunlock(&wake_q, &wake_sleeper_q);
1560
1561         return ret;
1562 }
1563
1564 /*
1565  * Express the locking dependencies for lockdep:
1566  */
1567 static inline void
1568 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1569 {
1570         if (hb1 <= hb2) {
1571                 spin_lock(&hb1->lock);
1572                 if (hb1 < hb2)
1573                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1574         } else { /* hb1 > hb2 */
1575                 spin_lock(&hb2->lock);
1576                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1577         }
1578 }
1579
1580 static inline void
1581 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1582 {
1583         spin_unlock(&hb1->lock);
1584         if (hb1 != hb2)
1585                 spin_unlock(&hb2->lock);
1586 }
1587
1588 /*
1589  * Wake up waiters matching bitset queued on this futex (uaddr).
1590  */
1591 static int
1592 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1593 {
1594         struct futex_hash_bucket *hb;
1595         struct futex_q *this, *next;
1596         union futex_key key = FUTEX_KEY_INIT;
1597         int ret;
1598         DEFINE_WAKE_Q(wake_q);
1599
1600         if (!bitset)
1601                 return -EINVAL;
1602
1603         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1604         if (unlikely(ret != 0))
1605                 return ret;
1606
1607         hb = hash_futex(&key);
1608
1609         /* Make sure we really have tasks to wakeup */
1610         if (!hb_waiters_pending(hb))
1611                 return ret;
1612
1613         spin_lock(&hb->lock);
1614
1615         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1616                 if (match_futex (&this->key, &key)) {
1617                         if (this->pi_state || this->rt_waiter) {
1618                                 ret = -EINVAL;
1619                                 break;
1620                         }
1621
1622                         /* Check if one of the bits is set in both bitsets */
1623                         if (!(this->bitset & bitset))
1624                                 continue;
1625
1626                         mark_wake_futex(&wake_q, this);
1627                         if (++ret >= nr_wake)
1628                                 break;
1629                 }
1630         }
1631
1632         spin_unlock(&hb->lock);
1633         wake_up_q(&wake_q);
1634         return ret;
1635 }
1636
1637 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1638 {
1639         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1640         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1641         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1642         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1643         int oldval, ret;
1644
1645         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1646                 if (oparg < 0 || oparg > 31) {
1647                         char comm[sizeof(current->comm)];
1648                         /*
1649                          * kill this print and return -EINVAL when userspace
1650                          * is sane again
1651                          */
1652                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1653                                         get_task_comm(comm, current), oparg);
1654                         oparg &= 31;
1655                 }
1656                 oparg = 1 << oparg;
1657         }
1658
1659         pagefault_disable();
1660         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1661         pagefault_enable();
1662         if (ret)
1663                 return ret;
1664
1665         switch (cmp) {
1666         case FUTEX_OP_CMP_EQ:
1667                 return oldval == cmparg;
1668         case FUTEX_OP_CMP_NE:
1669                 return oldval != cmparg;
1670         case FUTEX_OP_CMP_LT:
1671                 return oldval < cmparg;
1672         case FUTEX_OP_CMP_GE:
1673                 return oldval >= cmparg;
1674         case FUTEX_OP_CMP_LE:
1675                 return oldval <= cmparg;
1676         case FUTEX_OP_CMP_GT:
1677                 return oldval > cmparg;
1678         default:
1679                 return -ENOSYS;
1680         }
1681 }
1682
1683 /*
1684  * Wake up all waiters hashed on the physical page that is mapped
1685  * to this virtual address:
1686  */
1687 static int
1688 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1689               int nr_wake, int nr_wake2, int op)
1690 {
1691         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1692         struct futex_hash_bucket *hb1, *hb2;
1693         struct futex_q *this, *next;
1694         int ret, op_ret;
1695         DEFINE_WAKE_Q(wake_q);
1696
1697 retry:
1698         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1699         if (unlikely(ret != 0))
1700                 return ret;
1701         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1702         if (unlikely(ret != 0))
1703                 return ret;
1704
1705         hb1 = hash_futex(&key1);
1706         hb2 = hash_futex(&key2);
1707
1708 retry_private:
1709         double_lock_hb(hb1, hb2);
1710         op_ret = futex_atomic_op_inuser(op, uaddr2);
1711         if (unlikely(op_ret < 0)) {
1712                 double_unlock_hb(hb1, hb2);
1713
1714                 if (!IS_ENABLED(CONFIG_MMU) ||
1715                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1716                         /*
1717                          * we don't get EFAULT from MMU faults if we don't have
1718                          * an MMU, but we might get them from range checking
1719                          */
1720                         ret = op_ret;
1721                         return ret;
1722                 }
1723
1724                 if (op_ret == -EFAULT) {
1725                         ret = fault_in_user_writeable(uaddr2);
1726                         if (ret)
1727                                 return ret;
1728                 }
1729
1730                 if (!(flags & FLAGS_SHARED)) {
1731                         cond_resched();
1732                         goto retry_private;
1733                 }
1734
1735                 cond_resched();
1736                 goto retry;
1737         }
1738
1739         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1740                 if (match_futex (&this->key, &key1)) {
1741                         if (this->pi_state || this->rt_waiter) {
1742                                 ret = -EINVAL;
1743                                 goto out_unlock;
1744                         }
1745                         mark_wake_futex(&wake_q, this);
1746                         if (++ret >= nr_wake)
1747                                 break;
1748                 }
1749         }
1750
1751         if (op_ret > 0) {
1752                 op_ret = 0;
1753                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1754                         if (match_futex (&this->key, &key2)) {
1755                                 if (this->pi_state || this->rt_waiter) {
1756                                         ret = -EINVAL;
1757                                         goto out_unlock;
1758                                 }
1759                                 mark_wake_futex(&wake_q, this);
1760                                 if (++op_ret >= nr_wake2)
1761                                         break;
1762                         }
1763                 }
1764                 ret += op_ret;
1765         }
1766
1767 out_unlock:
1768         double_unlock_hb(hb1, hb2);
1769         wake_up_q(&wake_q);
1770         return ret;
1771 }
1772
1773 /**
1774  * requeue_futex() - Requeue a futex_q from one hb to another
1775  * @q:          the futex_q to requeue
1776  * @hb1:        the source hash_bucket
1777  * @hb2:        the target hash_bucket
1778  * @key2:       the new key for the requeued futex_q
1779  */
1780 static inline
1781 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1782                    struct futex_hash_bucket *hb2, union futex_key *key2)
1783 {
1784
1785         /*
1786          * If key1 and key2 hash to the same bucket, no need to
1787          * requeue.
1788          */
1789         if (likely(&hb1->chain != &hb2->chain)) {
1790                 plist_del(&q->list, &hb1->chain);
1791                 hb_waiters_dec(hb1);
1792                 hb_waiters_inc(hb2);
1793                 plist_add(&q->list, &hb2->chain);
1794                 q->lock_ptr = &hb2->lock;
1795         }
1796         q->key = *key2;
1797 }
1798
1799 /**
1800  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1801  * @q:          the futex_q
1802  * @key:        the key of the requeue target futex
1803  * @hb:         the hash_bucket of the requeue target futex
1804  *
1805  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1806  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1807  * to the requeue target futex so the waiter can detect the wakeup on the right
1808  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1809  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1810  * to protect access to the pi_state to fixup the owner later.  Must be called
1811  * with both q->lock_ptr and hb->lock held.
1812  */
1813 static inline
1814 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1815                            struct futex_hash_bucket *hb)
1816 {
1817         q->key = *key;
1818
1819         __unqueue_futex(q);
1820
1821         WARN_ON(!q->rt_waiter);
1822         q->rt_waiter = NULL;
1823
1824         q->lock_ptr = &hb->lock;
1825
1826         wake_up_state(q->task, TASK_NORMAL);
1827 }
1828
1829 /**
1830  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1831  * @pifutex:            the user address of the to futex
1832  * @hb1:                the from futex hash bucket, must be locked by the caller
1833  * @hb2:                the to futex hash bucket, must be locked by the caller
1834  * @key1:               the from futex key
1835  * @key2:               the to futex key
1836  * @ps:                 address to store the pi_state pointer
1837  * @exiting:            Pointer to store the task pointer of the owner task
1838  *                      which is in the middle of exiting
1839  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1840  *
1841  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1842  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1843  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1844  * hb1 and hb2 must be held by the caller.
1845  *
1846  * @exiting is only set when the return value is -EBUSY. If so, this holds
1847  * a refcount on the exiting task on return and the caller needs to drop it
1848  * after waiting for the exit to complete.
1849  *
1850  * Return:
1851  *  -  0 - failed to acquire the lock atomically;
1852  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1853  *  - <0 - error
1854  */
1855 static int
1856 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1857                            struct futex_hash_bucket *hb2, union futex_key *key1,
1858                            union futex_key *key2, struct futex_pi_state **ps,
1859                            struct task_struct **exiting, int set_waiters)
1860 {
1861         struct futex_q *top_waiter = NULL;
1862         u32 curval;
1863         int ret, vpid;
1864
1865         if (get_futex_value_locked(&curval, pifutex))
1866                 return -EFAULT;
1867
1868         if (unlikely(should_fail_futex(true)))
1869                 return -EFAULT;
1870
1871         /*
1872          * Find the top_waiter and determine if there are additional waiters.
1873          * If the caller intends to requeue more than 1 waiter to pifutex,
1874          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1875          * as we have means to handle the possible fault.  If not, don't set
1876          * the bit unecessarily as it will force the subsequent unlock to enter
1877          * the kernel.
1878          */
1879         top_waiter = futex_top_waiter(hb1, key1);
1880
1881         /* There are no waiters, nothing for us to do. */
1882         if (!top_waiter)
1883                 return 0;
1884
1885         /* Ensure we requeue to the expected futex. */
1886         if (!match_futex(top_waiter->requeue_pi_key, key2))
1887                 return -EINVAL;
1888
1889         /*
1890          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1891          * the contended case or if set_waiters is 1.  The pi_state is returned
1892          * in ps in contended cases.
1893          */
1894         vpid = task_pid_vnr(top_waiter->task);
1895         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1896                                    exiting, set_waiters);
1897         if (ret == 1) {
1898                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1899                 return vpid;
1900         }
1901         return ret;
1902 }
1903
1904 /**
1905  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1906  * @uaddr1:     source futex user address
1907  * @flags:      futex flags (FLAGS_SHARED, etc.)
1908  * @uaddr2:     target futex user address
1909  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1910  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1911  * @cmpval:     @uaddr1 expected value (or %NULL)
1912  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1913  *              pi futex (pi to pi requeue is not supported)
1914  *
1915  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1916  * uaddr2 atomically on behalf of the top waiter.
1917  *
1918  * Return:
1919  *  - >=0 - on success, the number of tasks requeued or woken;
1920  *  -  <0 - on error
1921  */
1922 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1923                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1924                          u32 *cmpval, int requeue_pi)
1925 {
1926         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1927         int task_count = 0, ret;
1928         struct futex_pi_state *pi_state = NULL;
1929         struct futex_hash_bucket *hb1, *hb2;
1930         struct futex_q *this, *next;
1931         DEFINE_WAKE_Q(wake_q);
1932
1933         if (nr_wake < 0 || nr_requeue < 0)
1934                 return -EINVAL;
1935
1936         /*
1937          * When PI not supported: return -ENOSYS if requeue_pi is true,
1938          * consequently the compiler knows requeue_pi is always false past
1939          * this point which will optimize away all the conditional code
1940          * further down.
1941          */
1942         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1943                 return -ENOSYS;
1944
1945         if (requeue_pi) {
1946                 /*
1947                  * Requeue PI only works on two distinct uaddrs. This
1948                  * check is only valid for private futexes. See below.
1949                  */
1950                 if (uaddr1 == uaddr2)
1951                         return -EINVAL;
1952
1953                 /*
1954                  * requeue_pi requires a pi_state, try to allocate it now
1955                  * without any locks in case it fails.
1956                  */
1957                 if (refill_pi_state_cache())
1958                         return -ENOMEM;
1959                 /*
1960                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1961                  * + nr_requeue, since it acquires the rt_mutex prior to
1962                  * returning to userspace, so as to not leave the rt_mutex with
1963                  * waiters and no owner.  However, second and third wake-ups
1964                  * cannot be predicted as they involve race conditions with the
1965                  * first wake and a fault while looking up the pi_state.  Both
1966                  * pthread_cond_signal() and pthread_cond_broadcast() should
1967                  * use nr_wake=1.
1968                  */
1969                 if (nr_wake != 1)
1970                         return -EINVAL;
1971         }
1972
1973 retry:
1974         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1975         if (unlikely(ret != 0))
1976                 return ret;
1977         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1978                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1979         if (unlikely(ret != 0))
1980                 return ret;
1981
1982         /*
1983          * The check above which compares uaddrs is not sufficient for
1984          * shared futexes. We need to compare the keys:
1985          */
1986         if (requeue_pi && match_futex(&key1, &key2))
1987                 return -EINVAL;
1988
1989         hb1 = hash_futex(&key1);
1990         hb2 = hash_futex(&key2);
1991
1992 retry_private:
1993         hb_waiters_inc(hb2);
1994         double_lock_hb(hb1, hb2);
1995
1996         if (likely(cmpval != NULL)) {
1997                 u32 curval;
1998
1999                 ret = get_futex_value_locked(&curval, uaddr1);
2000
2001                 if (unlikely(ret)) {
2002                         double_unlock_hb(hb1, hb2);
2003                         hb_waiters_dec(hb2);
2004
2005                         ret = get_user(curval, uaddr1);
2006                         if (ret)
2007                                 return ret;
2008
2009                         if (!(flags & FLAGS_SHARED))
2010                                 goto retry_private;
2011
2012                         goto retry;
2013                 }
2014                 if (curval != *cmpval) {
2015                         ret = -EAGAIN;
2016                         goto out_unlock;
2017                 }
2018         }
2019
2020         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2021                 struct task_struct *exiting = NULL;
2022
2023                 /*
2024                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2025                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2026                  * bit.  We force this here where we are able to easily handle
2027                  * faults rather in the requeue loop below.
2028                  */
2029                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2030                                                  &key2, &pi_state,
2031                                                  &exiting, nr_requeue);
2032
2033                 /*
2034                  * At this point the top_waiter has either taken uaddr2 or is
2035                  * waiting on it.  If the former, then the pi_state will not
2036                  * exist yet, look it up one more time to ensure we have a
2037                  * reference to it. If the lock was taken, ret contains the
2038                  * vpid of the top waiter task.
2039                  * If the lock was not taken, we have pi_state and an initial
2040                  * refcount on it. In case of an error we have nothing.
2041                  */
2042                 if (ret > 0) {
2043                         WARN_ON(pi_state);
2044                         task_count++;
2045                         /*
2046                          * If we acquired the lock, then the user space value
2047                          * of uaddr2 should be vpid. It cannot be changed by
2048                          * the top waiter as it is blocked on hb2 lock if it
2049                          * tries to do so. If something fiddled with it behind
2050                          * our back the pi state lookup might unearth it. So
2051                          * we rather use the known value than rereading and
2052                          * handing potential crap to lookup_pi_state.
2053                          *
2054                          * If that call succeeds then we have pi_state and an
2055                          * initial refcount on it.
2056                          */
2057                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2058                                               &pi_state, &exiting);
2059                 }
2060
2061                 switch (ret) {
2062                 case 0:
2063                         /* We hold a reference on the pi state. */
2064                         break;
2065
2066                         /* If the above failed, then pi_state is NULL */
2067                 case -EFAULT:
2068                         double_unlock_hb(hb1, hb2);
2069                         hb_waiters_dec(hb2);
2070                         ret = fault_in_user_writeable(uaddr2);
2071                         if (!ret)
2072                                 goto retry;
2073                         return ret;
2074                 case -EBUSY:
2075                 case -EAGAIN:
2076                         /*
2077                          * Two reasons for this:
2078                          * - EBUSY: Owner is exiting and we just wait for the
2079                          *   exit to complete.
2080                          * - EAGAIN: The user space value changed.
2081                          */
2082                         double_unlock_hb(hb1, hb2);
2083                         hb_waiters_dec(hb2);
2084                         /*
2085                          * Handle the case where the owner is in the middle of
2086                          * exiting. Wait for the exit to complete otherwise
2087                          * this task might loop forever, aka. live lock.
2088                          */
2089                         wait_for_owner_exiting(ret, exiting);
2090                         cond_resched();
2091                         goto retry;
2092                 default:
2093                         goto out_unlock;
2094                 }
2095         }
2096
2097         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2098                 if (task_count - nr_wake >= nr_requeue)
2099                         break;
2100
2101                 if (!match_futex(&this->key, &key1))
2102                         continue;
2103
2104                 /*
2105                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2106                  * be paired with each other and no other futex ops.
2107                  *
2108                  * We should never be requeueing a futex_q with a pi_state,
2109                  * which is awaiting a futex_unlock_pi().
2110                  */
2111                 if ((requeue_pi && !this->rt_waiter) ||
2112                     (!requeue_pi && this->rt_waiter) ||
2113                     this->pi_state) {
2114                         ret = -EINVAL;
2115                         break;
2116                 }
2117
2118                 /*
2119                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2120                  * lock, we already woke the top_waiter.  If not, it will be
2121                  * woken by futex_unlock_pi().
2122                  */
2123                 if (++task_count <= nr_wake && !requeue_pi) {
2124                         mark_wake_futex(&wake_q, this);
2125                         continue;
2126                 }
2127
2128                 /* Ensure we requeue to the expected futex for requeue_pi. */
2129                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2130                         ret = -EINVAL;
2131                         break;
2132                 }
2133
2134                 /*
2135                  * Requeue nr_requeue waiters and possibly one more in the case
2136                  * of requeue_pi if we couldn't acquire the lock atomically.
2137                  */
2138                 if (requeue_pi) {
2139                         /*
2140                          * Prepare the waiter to take the rt_mutex. Take a
2141                          * refcount on the pi_state and store the pointer in
2142                          * the futex_q object of the waiter.
2143                          */
2144                         get_pi_state(pi_state);
2145                         this->pi_state = pi_state;
2146                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2147                                                         this->rt_waiter,
2148                                                         this->task);
2149                         if (ret == 1) {
2150                                 /*
2151                                  * We got the lock. We do neither drop the
2152                                  * refcount on pi_state nor clear
2153                                  * this->pi_state because the waiter needs the
2154                                  * pi_state for cleaning up the user space
2155                                  * value. It will drop the refcount after
2156                                  * doing so.
2157                                  */
2158                                 requeue_pi_wake_futex(this, &key2, hb2);
2159                                 continue;
2160                         } else if (ret == -EAGAIN) {
2161                                 /*
2162                                  * Waiter was woken by timeout or
2163                                  * signal and has set pi_blocked_on to
2164                                  * PI_WAKEUP_INPROGRESS before we
2165                                  * tried to enqueue it on the rtmutex.
2166                                  */
2167                                 this->pi_state = NULL;
2168                                 put_pi_state(pi_state);
2169                                 continue;
2170                         } else if (ret) {
2171                                 /*
2172                                  * rt_mutex_start_proxy_lock() detected a
2173                                  * potential deadlock when we tried to queue
2174                                  * that waiter. Drop the pi_state reference
2175                                  * which we took above and remove the pointer
2176                                  * to the state from the waiters futex_q
2177                                  * object.
2178                                  */
2179                                 this->pi_state = NULL;
2180                                 put_pi_state(pi_state);
2181                                 /*
2182                                  * We stop queueing more waiters and let user
2183                                  * space deal with the mess.
2184                                  */
2185                                 break;
2186                         }
2187                 }
2188                 requeue_futex(this, hb1, hb2, &key2);
2189         }
2190
2191         /*
2192          * We took an extra initial reference to the pi_state either
2193          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2194          * need to drop it here again.
2195          */
2196         put_pi_state(pi_state);
2197
2198 out_unlock:
2199         double_unlock_hb(hb1, hb2);
2200         wake_up_q(&wake_q);
2201         hb_waiters_dec(hb2);
2202         return ret ? ret : task_count;
2203 }
2204
2205 /* The key must be already stored in q->key. */
2206 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2207         __acquires(&hb->lock)
2208 {
2209         struct futex_hash_bucket *hb;
2210
2211         hb = hash_futex(&q->key);
2212
2213         /*
2214          * Increment the counter before taking the lock so that
2215          * a potential waker won't miss a to-be-slept task that is
2216          * waiting for the spinlock. This is safe as all queue_lock()
2217          * users end up calling queue_me(). Similarly, for housekeeping,
2218          * decrement the counter at queue_unlock() when some error has
2219          * occurred and we don't end up adding the task to the list.
2220          */
2221         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2222
2223         q->lock_ptr = &hb->lock;
2224
2225         spin_lock(&hb->lock);
2226         return hb;
2227 }
2228
2229 static inline void
2230 queue_unlock(struct futex_hash_bucket *hb)
2231         __releases(&hb->lock)
2232 {
2233         spin_unlock(&hb->lock);
2234         hb_waiters_dec(hb);
2235 }
2236
2237 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2238 {
2239         int prio;
2240
2241         /*
2242          * The priority used to register this element is
2243          * - either the real thread-priority for the real-time threads
2244          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2245          * - or MAX_RT_PRIO for non-RT threads.
2246          * Thus, all RT-threads are woken first in priority order, and
2247          * the others are woken last, in FIFO order.
2248          */
2249         prio = min(current->normal_prio, MAX_RT_PRIO);
2250
2251         plist_node_init(&q->list, prio);
2252         plist_add(&q->list, &hb->chain);
2253         q->task = current;
2254 }
2255
2256 /**
2257  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2258  * @q:  The futex_q to enqueue
2259  * @hb: The destination hash bucket
2260  *
2261  * The hb->lock must be held by the caller, and is released here. A call to
2262  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2263  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2264  * or nothing if the unqueue is done as part of the wake process and the unqueue
2265  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2266  * an example).
2267  */
2268 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2269         __releases(&hb->lock)
2270 {
2271         __queue_me(q, hb);
2272         spin_unlock(&hb->lock);
2273 }
2274
2275 /**
2276  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2277  * @q:  The futex_q to unqueue
2278  *
2279  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2280  * be paired with exactly one earlier call to queue_me().
2281  *
2282  * Return:
2283  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2284  *  - 0 - if the futex_q was already removed by the waking thread
2285  */
2286 static int unqueue_me(struct futex_q *q)
2287 {
2288         spinlock_t *lock_ptr;
2289         int ret = 0;
2290
2291         /* In the common case we don't take the spinlock, which is nice. */
2292 retry:
2293         /*
2294          * q->lock_ptr can change between this read and the following spin_lock.
2295          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2296          * optimizing lock_ptr out of the logic below.
2297          */
2298         lock_ptr = READ_ONCE(q->lock_ptr);
2299         if (lock_ptr != NULL) {
2300                 spin_lock(lock_ptr);
2301                 /*
2302                  * q->lock_ptr can change between reading it and
2303                  * spin_lock(), causing us to take the wrong lock.  This
2304                  * corrects the race condition.
2305                  *
2306                  * Reasoning goes like this: if we have the wrong lock,
2307                  * q->lock_ptr must have changed (maybe several times)
2308                  * between reading it and the spin_lock().  It can
2309                  * change again after the spin_lock() but only if it was
2310                  * already changed before the spin_lock().  It cannot,
2311                  * however, change back to the original value.  Therefore
2312                  * we can detect whether we acquired the correct lock.
2313                  */
2314                 if (unlikely(lock_ptr != q->lock_ptr)) {
2315                         spin_unlock(lock_ptr);
2316                         goto retry;
2317                 }
2318                 __unqueue_futex(q);
2319
2320                 BUG_ON(q->pi_state);
2321
2322                 spin_unlock(lock_ptr);
2323                 ret = 1;
2324         }
2325
2326         return ret;
2327 }
2328
2329 /*
2330  * PI futexes can not be requeued and must remove themself from the
2331  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2332  * and dropped here.
2333  */
2334 static void unqueue_me_pi(struct futex_q *q)
2335         __releases(q->lock_ptr)
2336 {
2337         __unqueue_futex(q);
2338
2339         BUG_ON(!q->pi_state);
2340         put_pi_state(q->pi_state);
2341         q->pi_state = NULL;
2342
2343         spin_unlock(q->lock_ptr);
2344 }
2345
2346 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2347                                   struct task_struct *argowner)
2348 {
2349         struct futex_pi_state *pi_state = q->pi_state;
2350         struct task_struct *oldowner, *newowner;
2351         u32 uval, curval, newval, newtid;
2352         int err = 0;
2353
2354         oldowner = pi_state->owner;
2355
2356         /*
2357          * We are here because either:
2358          *
2359          *  - we stole the lock and pi_state->owner needs updating to reflect
2360          *    that (@argowner == current),
2361          *
2362          * or:
2363          *
2364          *  - someone stole our lock and we need to fix things to point to the
2365          *    new owner (@argowner == NULL).
2366          *
2367          * Either way, we have to replace the TID in the user space variable.
2368          * This must be atomic as we have to preserve the owner died bit here.
2369          *
2370          * Note: We write the user space value _before_ changing the pi_state
2371          * because we can fault here. Imagine swapped out pages or a fork
2372          * that marked all the anonymous memory readonly for cow.
2373          *
2374          * Modifying pi_state _before_ the user space value would leave the
2375          * pi_state in an inconsistent state when we fault here, because we
2376          * need to drop the locks to handle the fault. This might be observed
2377          * in the PID check in lookup_pi_state.
2378          */
2379 retry:
2380         if (!argowner) {
2381                 if (oldowner != current) {
2382                         /*
2383                          * We raced against a concurrent self; things are
2384                          * already fixed up. Nothing to do.
2385                          */
2386                         return 0;
2387                 }
2388
2389                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2390                         /* We got the lock. pi_state is correct. Tell caller. */
2391                         return 1;
2392                 }
2393
2394                 /*
2395                  * The trylock just failed, so either there is an owner or
2396                  * there is a higher priority waiter than this one.
2397                  */
2398                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2399                 /*
2400                  * If the higher priority waiter has not yet taken over the
2401                  * rtmutex then newowner is NULL. We can't return here with
2402                  * that state because it's inconsistent vs. the user space
2403                  * state. So drop the locks and try again. It's a valid
2404                  * situation and not any different from the other retry
2405                  * conditions.
2406                  */
2407                 if (unlikely(!newowner)) {
2408                         err = -EAGAIN;
2409                         goto handle_err;
2410                 }
2411         } else {
2412                 WARN_ON_ONCE(argowner != current);
2413                 if (oldowner == current) {
2414                         /*
2415                          * We raced against a concurrent self; things are
2416                          * already fixed up. Nothing to do.
2417                          */
2418                         return 1;
2419                 }
2420                 newowner = argowner;
2421         }
2422
2423         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2424         /* Owner died? */
2425         if (!pi_state->owner)
2426                 newtid |= FUTEX_OWNER_DIED;
2427
2428         err = get_futex_value_locked(&uval, uaddr);
2429         if (err)
2430                 goto handle_err;
2431
2432         for (;;) {
2433                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2434
2435                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2436                 if (err)
2437                         goto handle_err;
2438
2439                 if (curval == uval)
2440                         break;
2441                 uval = curval;
2442         }
2443
2444         /*
2445          * We fixed up user space. Now we need to fix the pi_state
2446          * itself.
2447          */
2448         pi_state_update_owner(pi_state, newowner);
2449
2450         return argowner == current;
2451
2452         /*
2453          * In order to reschedule or handle a page fault, we need to drop the
2454          * locks here. In the case of a fault, this gives the other task
2455          * (either the highest priority waiter itself or the task which stole
2456          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2457          * are back from handling the fault we need to check the pi_state after
2458          * reacquiring the locks and before trying to do another fixup. When
2459          * the fixup has been done already we simply return.
2460          *
2461          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2462          * drop hb->lock since the caller owns the hb -> futex_q relation.
2463          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2464          */
2465 handle_err:
2466         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2467         spin_unlock(q->lock_ptr);
2468
2469         switch (err) {
2470         case -EFAULT:
2471                 err = fault_in_user_writeable(uaddr);
2472                 break;
2473
2474         case -EAGAIN:
2475                 cond_resched();
2476                 err = 0;
2477                 break;
2478
2479         default:
2480                 WARN_ON_ONCE(1);
2481                 break;
2482         }
2483
2484         spin_lock(q->lock_ptr);
2485         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2486
2487         /*
2488          * Check if someone else fixed it for us:
2489          */
2490         if (pi_state->owner != oldowner)
2491                 return argowner == current;
2492
2493         /* Retry if err was -EAGAIN or the fault in succeeded */
2494         if (!err)
2495                 goto retry;
2496
2497         /*
2498          * fault_in_user_writeable() failed so user state is immutable. At
2499          * best we can make the kernel state consistent but user state will
2500          * be most likely hosed and any subsequent unlock operation will be
2501          * rejected due to PI futex rule [10].
2502          *
2503          * Ensure that the rtmutex owner is also the pi_state owner despite
2504          * the user space value claiming something different. There is no
2505          * point in unlocking the rtmutex if current is the owner as it
2506          * would need to wait until the next waiter has taken the rtmutex
2507          * to guarantee consistent state. Keep it simple. Userspace asked
2508          * for this wreckaged state.
2509          *
2510          * The rtmutex has an owner - either current or some other
2511          * task. See the EAGAIN loop above.
2512          */
2513         pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2514
2515         return err;
2516 }
2517
2518 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2519                                 struct task_struct *argowner)
2520 {
2521         struct futex_pi_state *pi_state = q->pi_state;
2522         int ret;
2523
2524         lockdep_assert_held(q->lock_ptr);
2525
2526         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2527         ret = __fixup_pi_state_owner(uaddr, q, argowner);
2528         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2529         return ret;
2530 }
2531
2532 static long futex_wait_restart(struct restart_block *restart);
2533
2534 /**
2535  * fixup_owner() - Post lock pi_state and corner case management
2536  * @uaddr:      user address of the futex
2537  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2538  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2539  *
2540  * After attempting to lock an rt_mutex, this function is called to cleanup
2541  * the pi_state owner as well as handle race conditions that may allow us to
2542  * acquire the lock. Must be called with the hb lock held.
2543  *
2544  * Return:
2545  *  -  1 - success, lock taken;
2546  *  -  0 - success, lock not taken;
2547  *  - <0 - on error (-EFAULT)
2548  */
2549 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2550 {
2551         if (locked) {
2552                 /*
2553                  * Got the lock. We might not be the anticipated owner if we
2554                  * did a lock-steal - fix up the PI-state in that case:
2555                  *
2556                  * Speculative pi_state->owner read (we don't hold wait_lock);
2557                  * since we own the lock pi_state->owner == current is the
2558                  * stable state, anything else needs more attention.
2559                  */
2560                 if (q->pi_state->owner != current)
2561                         return fixup_pi_state_owner(uaddr, q, current);
2562                 return 1;
2563         }
2564
2565         /*
2566          * If we didn't get the lock; check if anybody stole it from us. In
2567          * that case, we need to fix up the uval to point to them instead of
2568          * us, otherwise bad things happen. [10]
2569          *
2570          * Another speculative read; pi_state->owner == current is unstable
2571          * but needs our attention.
2572          */
2573         if (q->pi_state->owner == current)
2574                 return fixup_pi_state_owner(uaddr, q, NULL);
2575
2576         /*
2577          * Paranoia check. If we did not take the lock, then we should not be
2578          * the owner of the rt_mutex. Warn and establish consistent state.
2579          */
2580         if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2581                 return fixup_pi_state_owner(uaddr, q, current);
2582
2583         return 0;
2584 }
2585
2586 /**
2587  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2588  * @hb:         the futex hash bucket, must be locked by the caller
2589  * @q:          the futex_q to queue up on
2590  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2591  */
2592 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2593                                 struct hrtimer_sleeper *timeout)
2594 {
2595         /*
2596          * The task state is guaranteed to be set before another task can
2597          * wake it. set_current_state() is implemented using smp_store_mb() and
2598          * queue_me() calls spin_unlock() upon completion, both serializing
2599          * access to the hash list and forcing another memory barrier.
2600          */
2601         set_current_state(TASK_INTERRUPTIBLE);
2602         queue_me(q, hb);
2603
2604         /* Arm the timer */
2605         if (timeout)
2606                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2607
2608         /*
2609          * If we have been removed from the hash list, then another task
2610          * has tried to wake us, and we can skip the call to schedule().
2611          */
2612         if (likely(!plist_node_empty(&q->list))) {
2613                 /*
2614                  * If the timer has already expired, current will already be
2615                  * flagged for rescheduling. Only call schedule if there
2616                  * is no timeout, or if it has yet to expire.
2617                  */
2618                 if (!timeout || timeout->task)
2619                         freezable_schedule();
2620         }
2621         __set_current_state(TASK_RUNNING);
2622 }
2623
2624 /**
2625  * futex_wait_setup() - Prepare to wait on a futex
2626  * @uaddr:      the futex userspace address
2627  * @val:        the expected value
2628  * @flags:      futex flags (FLAGS_SHARED, etc.)
2629  * @q:          the associated futex_q
2630  * @hb:         storage for hash_bucket pointer to be returned to caller
2631  *
2632  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2633  * compare it with the expected value.  Handle atomic faults internally.
2634  * Return with the hb lock held and a q.key reference on success, and unlocked
2635  * with no q.key reference on failure.
2636  *
2637  * Return:
2638  *  -  0 - uaddr contains val and hb has been locked;
2639  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2640  */
2641 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2642                            struct futex_q *q, struct futex_hash_bucket **hb)
2643 {
2644         u32 uval;
2645         int ret;
2646
2647         /*
2648          * Access the page AFTER the hash-bucket is locked.
2649          * Order is important:
2650          *
2651          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2652          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2653          *
2654          * The basic logical guarantee of a futex is that it blocks ONLY
2655          * if cond(var) is known to be true at the time of blocking, for
2656          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2657          * would open a race condition where we could block indefinitely with
2658          * cond(var) false, which would violate the guarantee.
2659          *
2660          * On the other hand, we insert q and release the hash-bucket only
2661          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2662          * absorb a wakeup if *uaddr does not match the desired values
2663          * while the syscall executes.
2664          */
2665 retry:
2666         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2667         if (unlikely(ret != 0))
2668                 return ret;
2669
2670 retry_private:
2671         *hb = queue_lock(q);
2672
2673         ret = get_futex_value_locked(&uval, uaddr);
2674
2675         if (ret) {
2676                 queue_unlock(*hb);
2677
2678                 ret = get_user(uval, uaddr);
2679                 if (ret)
2680                         return ret;
2681
2682                 if (!(flags & FLAGS_SHARED))
2683                         goto retry_private;
2684
2685                 goto retry;
2686         }
2687
2688         if (uval != val) {
2689                 queue_unlock(*hb);
2690                 ret = -EWOULDBLOCK;
2691         }
2692
2693         return ret;
2694 }
2695
2696 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2697                       ktime_t *abs_time, u32 bitset)
2698 {
2699         struct hrtimer_sleeper timeout, *to;
2700         struct restart_block *restart;
2701         struct futex_hash_bucket *hb;
2702         struct futex_q q = futex_q_init;
2703         int ret;
2704
2705         if (!bitset)
2706                 return -EINVAL;
2707         q.bitset = bitset;
2708
2709         to = futex_setup_timer(abs_time, &timeout, flags,
2710                                current->timer_slack_ns);
2711 retry:
2712         /*
2713          * Prepare to wait on uaddr. On success, holds hb lock and increments
2714          * q.key refs.
2715          */
2716         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2717         if (ret)
2718                 goto out;
2719
2720         /* queue_me and wait for wakeup, timeout, or a signal. */
2721         futex_wait_queue_me(hb, &q, to);
2722
2723         /* If we were woken (and unqueued), we succeeded, whatever. */
2724         ret = 0;
2725         /* unqueue_me() drops q.key ref */
2726         if (!unqueue_me(&q))
2727                 goto out;
2728         ret = -ETIMEDOUT;
2729         if (to && !to->task)
2730                 goto out;
2731
2732         /*
2733          * We expect signal_pending(current), but we might be the
2734          * victim of a spurious wakeup as well.
2735          */
2736         if (!signal_pending(current))
2737                 goto retry;
2738
2739         ret = -ERESTARTSYS;
2740         if (!abs_time)
2741                 goto out;
2742
2743         restart = &current->restart_block;
2744         restart->futex.uaddr = uaddr;
2745         restart->futex.val = val;
2746         restart->futex.time = *abs_time;
2747         restart->futex.bitset = bitset;
2748         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2749
2750         ret = set_restart_fn(restart, futex_wait_restart);
2751
2752 out:
2753         if (to) {
2754                 hrtimer_cancel(&to->timer);
2755                 destroy_hrtimer_on_stack(&to->timer);
2756         }
2757         return ret;
2758 }
2759
2760
2761 static long futex_wait_restart(struct restart_block *restart)
2762 {
2763         u32 __user *uaddr = restart->futex.uaddr;
2764         ktime_t t, *tp = NULL;
2765
2766         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2767                 t = restart->futex.time;
2768                 tp = &t;
2769         }
2770         restart->fn = do_no_restart_syscall;
2771
2772         return (long)futex_wait(uaddr, restart->futex.flags,
2773                                 restart->futex.val, tp, restart->futex.bitset);
2774 }
2775
2776
2777 /*
2778  * Userspace tried a 0 -> TID atomic transition of the futex value
2779  * and failed. The kernel side here does the whole locking operation:
2780  * if there are waiters then it will block as a consequence of relying
2781  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2782  * a 0 value of the futex too.).
2783  *
2784  * Also serves as futex trylock_pi()'ing, and due semantics.
2785  */
2786 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2787                          ktime_t *time, int trylock)
2788 {
2789         struct hrtimer_sleeper timeout, *to;
2790         struct task_struct *exiting = NULL;
2791         struct rt_mutex_waiter rt_waiter;
2792         struct futex_hash_bucket *hb;
2793         struct futex_q q = futex_q_init;
2794         int res, ret;
2795
2796         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2797                 return -ENOSYS;
2798
2799         if (refill_pi_state_cache())
2800                 return -ENOMEM;
2801
2802         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2803
2804 retry:
2805         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2806         if (unlikely(ret != 0))
2807                 goto out;
2808
2809 retry_private:
2810         hb = queue_lock(&q);
2811
2812         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2813                                    &exiting, 0);
2814         if (unlikely(ret)) {
2815                 /*
2816                  * Atomic work succeeded and we got the lock,
2817                  * or failed. Either way, we do _not_ block.
2818                  */
2819                 switch (ret) {
2820                 case 1:
2821                         /* We got the lock. */
2822                         ret = 0;
2823                         goto out_unlock_put_key;
2824                 case -EFAULT:
2825                         goto uaddr_faulted;
2826                 case -EBUSY:
2827                 case -EAGAIN:
2828                         /*
2829                          * Two reasons for this:
2830                          * - EBUSY: Task is exiting and we just wait for the
2831                          *   exit to complete.
2832                          * - EAGAIN: The user space value changed.
2833                          */
2834                         queue_unlock(hb);
2835                         /*
2836                          * Handle the case where the owner is in the middle of
2837                          * exiting. Wait for the exit to complete otherwise
2838                          * this task might loop forever, aka. live lock.
2839                          */
2840                         wait_for_owner_exiting(ret, exiting);
2841                         cond_resched();
2842                         goto retry;
2843                 default:
2844                         goto out_unlock_put_key;
2845                 }
2846         }
2847
2848         WARN_ON(!q.pi_state);
2849
2850         /*
2851          * Only actually queue now that the atomic ops are done:
2852          */
2853         __queue_me(&q, hb);
2854
2855         if (trylock) {
2856                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2857                 /* Fixup the trylock return value: */
2858                 ret = ret ? 0 : -EWOULDBLOCK;
2859                 goto no_block;
2860         }
2861
2862         rt_mutex_init_waiter(&rt_waiter, false);
2863
2864         /*
2865          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2866          * hold it while doing rt_mutex_start_proxy(), because then it will
2867          * include hb->lock in the blocking chain, even through we'll not in
2868          * fact hold it while blocking. This will lead it to report -EDEADLK
2869          * and BUG when futex_unlock_pi() interleaves with this.
2870          *
2871          * Therefore acquire wait_lock while holding hb->lock, but drop the
2872          * latter before calling __rt_mutex_start_proxy_lock(). This
2873          * interleaves with futex_unlock_pi() -- which does a similar lock
2874          * handoff -- such that the latter can observe the futex_q::pi_state
2875          * before __rt_mutex_start_proxy_lock() is done.
2876          */
2877         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2878         spin_unlock(q.lock_ptr);
2879         /*
2880          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2881          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2882          * it sees the futex_q::pi_state.
2883          */
2884         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2885         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2886
2887         if (ret) {
2888                 if (ret == 1)
2889                         ret = 0;
2890                 goto cleanup;
2891         }
2892
2893         if (unlikely(to))
2894                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2895
2896         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2897
2898 cleanup:
2899         spin_lock(q.lock_ptr);
2900         /*
2901          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2902          * first acquire the hb->lock before removing the lock from the
2903          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2904          * lists consistent.
2905          *
2906          * In particular; it is important that futex_unlock_pi() can not
2907          * observe this inconsistency.
2908          */
2909         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2910                 ret = 0;
2911
2912 no_block:
2913         /*
2914          * Fixup the pi_state owner and possibly acquire the lock if we
2915          * haven't already.
2916          */
2917         res = fixup_owner(uaddr, &q, !ret);
2918         /*
2919          * If fixup_owner() returned an error, proprogate that.  If it acquired
2920          * the lock, clear our -ETIMEDOUT or -EINTR.
2921          */
2922         if (res)
2923                 ret = (res < 0) ? res : 0;
2924
2925         /* Unqueue and drop the lock */
2926         unqueue_me_pi(&q);
2927         goto out;
2928
2929 out_unlock_put_key:
2930         queue_unlock(hb);
2931
2932 out:
2933         if (to) {
2934                 hrtimer_cancel(&to->timer);
2935                 destroy_hrtimer_on_stack(&to->timer);
2936         }
2937         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2938
2939 uaddr_faulted:
2940         queue_unlock(hb);
2941
2942         ret = fault_in_user_writeable(uaddr);
2943         if (ret)
2944                 goto out;
2945
2946         if (!(flags & FLAGS_SHARED))
2947                 goto retry_private;
2948
2949         goto retry;
2950 }
2951
2952 /*
2953  * Userspace attempted a TID -> 0 atomic transition, and failed.
2954  * This is the in-kernel slowpath: we look up the PI state (if any),
2955  * and do the rt-mutex unlock.
2956  */
2957 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2958 {
2959         u32 curval, uval, vpid = task_pid_vnr(current);
2960         union futex_key key = FUTEX_KEY_INIT;
2961         struct futex_hash_bucket *hb;
2962         struct futex_q *top_waiter;
2963         int ret;
2964
2965         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2966                 return -ENOSYS;
2967
2968 retry:
2969         if (get_user(uval, uaddr))
2970                 return -EFAULT;
2971         /*
2972          * We release only a lock we actually own:
2973          */
2974         if ((uval & FUTEX_TID_MASK) != vpid)
2975                 return -EPERM;
2976
2977         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2978         if (ret)
2979                 return ret;
2980
2981         hb = hash_futex(&key);
2982         spin_lock(&hb->lock);
2983
2984         /*
2985          * Check waiters first. We do not trust user space values at
2986          * all and we at least want to know if user space fiddled
2987          * with the futex value instead of blindly unlocking.
2988          */
2989         top_waiter = futex_top_waiter(hb, &key);
2990         if (top_waiter) {
2991                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2992
2993                 ret = -EINVAL;
2994                 if (!pi_state)
2995                         goto out_unlock;
2996
2997                 /*
2998                  * If current does not own the pi_state then the futex is
2999                  * inconsistent and user space fiddled with the futex value.
3000                  */
3001                 if (pi_state->owner != current)
3002                         goto out_unlock;
3003
3004                 get_pi_state(pi_state);
3005                 /*
3006                  * By taking wait_lock while still holding hb->lock, we ensure
3007                  * there is no point where we hold neither; and therefore
3008                  * wake_futex_pi() must observe a state consistent with what we
3009                  * observed.
3010                  *
3011                  * In particular; this forces __rt_mutex_start_proxy() to
3012                  * complete such that we're guaranteed to observe the
3013                  * rt_waiter. Also see the WARN in wake_futex_pi().
3014                  */
3015                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3016                 spin_unlock(&hb->lock);
3017
3018                 /* drops pi_state->pi_mutex.wait_lock */
3019                 ret = wake_futex_pi(uaddr, uval, pi_state);
3020
3021                 put_pi_state(pi_state);
3022
3023                 /*
3024                  * Success, we're done! No tricky corner cases.
3025                  */
3026                 if (!ret)
3027                         goto out_putkey;
3028                 /*
3029                  * The atomic access to the futex value generated a
3030                  * pagefault, so retry the user-access and the wakeup:
3031                  */
3032                 if (ret == -EFAULT)
3033                         goto pi_faulted;
3034                 /*
3035                  * A unconditional UNLOCK_PI op raced against a waiter
3036                  * setting the FUTEX_WAITERS bit. Try again.
3037                  */
3038                 if (ret == -EAGAIN)
3039                         goto pi_retry;
3040                 /*
3041                  * wake_futex_pi has detected invalid state. Tell user
3042                  * space.
3043                  */
3044                 goto out_putkey;
3045         }
3046
3047         /*
3048          * We have no kernel internal state, i.e. no waiters in the
3049          * kernel. Waiters which are about to queue themselves are stuck
3050          * on hb->lock. So we can safely ignore them. We do neither
3051          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3052          * owner.
3053          */
3054         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3055                 spin_unlock(&hb->lock);
3056                 switch (ret) {
3057                 case -EFAULT:
3058                         goto pi_faulted;
3059
3060                 case -EAGAIN:
3061                         goto pi_retry;
3062
3063                 default:
3064                         WARN_ON_ONCE(1);
3065                         goto out_putkey;
3066                 }
3067         }
3068
3069         /*
3070          * If uval has changed, let user space handle it.
3071          */
3072         ret = (curval == uval) ? 0 : -EAGAIN;
3073
3074 out_unlock:
3075         spin_unlock(&hb->lock);
3076 out_putkey:
3077         return ret;
3078
3079 pi_retry:
3080         cond_resched();
3081         goto retry;
3082
3083 pi_faulted:
3084
3085         ret = fault_in_user_writeable(uaddr);
3086         if (!ret)
3087                 goto retry;
3088
3089         return ret;
3090 }
3091
3092 /**
3093  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3094  * @hb:         the hash_bucket futex_q was original enqueued on
3095  * @q:          the futex_q woken while waiting to be requeued
3096  * @key2:       the futex_key of the requeue target futex
3097  * @timeout:    the timeout associated with the wait (NULL if none)
3098  *
3099  * Detect if the task was woken on the initial futex as opposed to the requeue
3100  * target futex.  If so, determine if it was a timeout or a signal that caused
3101  * the wakeup and return the appropriate error code to the caller.  Must be
3102  * called with the hb lock held.
3103  *
3104  * Return:
3105  *  -  0 = no early wakeup detected;
3106  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3107  */
3108 static inline
3109 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3110                                    struct futex_q *q, union futex_key *key2,
3111                                    struct hrtimer_sleeper *timeout)
3112 {
3113         int ret = 0;
3114
3115         /*
3116          * With the hb lock held, we avoid races while we process the wakeup.
3117          * We only need to hold hb (and not hb2) to ensure atomicity as the
3118          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3119          * It can't be requeued from uaddr2 to something else since we don't
3120          * support a PI aware source futex for requeue.
3121          */
3122         if (!match_futex(&q->key, key2)) {
3123                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3124                 /*
3125                  * We were woken prior to requeue by a timeout or a signal.
3126                  * Unqueue the futex_q and determine which it was.
3127                  */
3128                 plist_del(&q->list, &hb->chain);
3129                 hb_waiters_dec(hb);
3130
3131                 /* Handle spurious wakeups gracefully */
3132                 ret = -EWOULDBLOCK;
3133                 if (timeout && !timeout->task)
3134                         ret = -ETIMEDOUT;
3135                 else if (signal_pending(current))
3136                         ret = -ERESTARTNOINTR;
3137         }
3138         return ret;
3139 }
3140
3141 /**
3142  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3143  * @uaddr:      the futex we initially wait on (non-pi)
3144  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3145  *              the same type, no requeueing from private to shared, etc.
3146  * @val:        the expected value of uaddr
3147  * @abs_time:   absolute timeout
3148  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3149  * @uaddr2:     the pi futex we will take prior to returning to user-space
3150  *
3151  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3152  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3153  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3154  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3155  * without one, the pi logic would not know which task to boost/deboost, if
3156  * there was a need to.
3157  *
3158  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3159  * via the following--
3160  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3161  * 2) wakeup on uaddr2 after a requeue
3162  * 3) signal
3163  * 4) timeout
3164  *
3165  * If 3, cleanup and return -ERESTARTNOINTR.
3166  *
3167  * If 2, we may then block on trying to take the rt_mutex and return via:
3168  * 5) successful lock
3169  * 6) signal
3170  * 7) timeout
3171  * 8) other lock acquisition failure
3172  *
3173  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3174  *
3175  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3176  *
3177  * Return:
3178  *  -  0 - On success;
3179  *  - <0 - On error
3180  */
3181 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3182                                  u32 val, ktime_t *abs_time, u32 bitset,
3183                                  u32 __user *uaddr2)
3184 {
3185         struct hrtimer_sleeper timeout, *to;
3186         struct rt_mutex_waiter rt_waiter;
3187         struct futex_hash_bucket *hb, *hb2;
3188         union futex_key key2 = FUTEX_KEY_INIT;
3189         struct futex_q q = futex_q_init;
3190         int res, ret;
3191
3192         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3193                 return -ENOSYS;
3194
3195         if (uaddr == uaddr2)
3196                 return -EINVAL;
3197
3198         if (!bitset)
3199                 return -EINVAL;
3200
3201         to = futex_setup_timer(abs_time, &timeout, flags,
3202                                current->timer_slack_ns);
3203
3204         /*
3205          * The waiter is allocated on our stack, manipulated by the requeue
3206          * code while we sleep on uaddr.
3207          */
3208         rt_mutex_init_waiter(&rt_waiter, false);
3209
3210         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3211         if (unlikely(ret != 0))
3212                 goto out;
3213
3214         q.bitset = bitset;
3215         q.rt_waiter = &rt_waiter;
3216         q.requeue_pi_key = &key2;
3217
3218         /*
3219          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3220          * count.
3221          */
3222         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3223         if (ret)
3224                 goto out;
3225
3226         /*
3227          * The check above which compares uaddrs is not sufficient for
3228          * shared futexes. We need to compare the keys:
3229          */
3230         if (match_futex(&q.key, &key2)) {
3231                 queue_unlock(hb);
3232                 ret = -EINVAL;
3233                 goto out;
3234         }
3235
3236         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3237         futex_wait_queue_me(hb, &q, to);
3238
3239         /*
3240          * On RT we must avoid races with requeue and trying to block
3241          * on two mutexes (hb->lock and uaddr2's rtmutex) by
3242          * serializing access to pi_blocked_on with pi_lock.
3243          */
3244         raw_spin_lock_irq(&current->pi_lock);
3245         if (current->pi_blocked_on) {
3246                 /*
3247                  * We have been requeued or are in the process of
3248                  * being requeued.
3249                  */
3250                 raw_spin_unlock_irq(&current->pi_lock);
3251         } else {
3252                 /*
3253                  * Setting pi_blocked_on to PI_WAKEUP_INPROGRESS
3254                  * prevents a concurrent requeue from moving us to the
3255                  * uaddr2 rtmutex. After that we can safely acquire
3256                  * (and possibly block on) hb->lock.
3257                  */
3258                 current->pi_blocked_on = PI_WAKEUP_INPROGRESS;
3259                 raw_spin_unlock_irq(&current->pi_lock);
3260
3261                 spin_lock(&hb->lock);
3262
3263                 /*
3264                  * Clean up pi_blocked_on. We might leak it otherwise
3265                  * when we succeeded with the hb->lock in the fast
3266                  * path.
3267                  */
3268                 raw_spin_lock_irq(&current->pi_lock);
3269                 current->pi_blocked_on = NULL;
3270                 raw_spin_unlock_irq(&current->pi_lock);
3271
3272                 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3273                 spin_unlock(&hb->lock);
3274                 if (ret)
3275                         goto out;
3276         }
3277
3278         /*
3279          * In order to be here, we have either been requeued, are in
3280          * the process of being requeued, or requeue successfully
3281          * acquired uaddr2 on our behalf.  If pi_blocked_on was
3282          * non-null above, we may be racing with a requeue.  Do not
3283          * rely on q->lock_ptr to be hb2->lock until after blocking on
3284          * hb->lock or hb2->lock. The futex_requeue dropped our key1
3285          * reference and incremented our key2 reference count.
3286          */
3287         hb2 = hash_futex(&key2);
3288
3289         /* Check if the requeue code acquired the second futex for us. */
3290         if (!q.rt_waiter) {
3291                 /*
3292                  * Got the lock. We might not be the anticipated owner if we
3293                  * did a lock-steal - fix up the PI-state in that case.
3294                  */
3295                 if (q.pi_state && (q.pi_state->owner != current)) {
3296                         spin_lock(&hb2->lock);
3297                         BUG_ON(&hb2->lock != q.lock_ptr);
3298                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3299                         /*
3300                          * Drop the reference to the pi state which
3301                          * the requeue_pi() code acquired for us.
3302                          */
3303                         put_pi_state(q.pi_state);
3304                         spin_unlock(&hb2->lock);
3305                         /*
3306                          * Adjust the return value. It's either -EFAULT or
3307                          * success (1) but the caller expects 0 for success.
3308                          */
3309                         ret = ret < 0 ? ret : 0;
3310                 }
3311         } else {
3312                 struct rt_mutex *pi_mutex;
3313
3314                 /*
3315                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3316                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3317                  * the pi_state.
3318                  */
3319                 WARN_ON(!q.pi_state);
3320                 pi_mutex = &q.pi_state->pi_mutex;
3321                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3322
3323                 spin_lock(&hb2->lock);
3324                 BUG_ON(&hb2->lock != q.lock_ptr);
3325                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3326                         ret = 0;
3327
3328                 debug_rt_mutex_free_waiter(&rt_waiter);
3329                 /*
3330                  * Fixup the pi_state owner and possibly acquire the lock if we
3331                  * haven't already.
3332                  */
3333                 res = fixup_owner(uaddr2, &q, !ret);
3334                 /*
3335                  * If fixup_owner() returned an error, proprogate that.  If it
3336                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3337                  */
3338                 if (res)
3339                         ret = (res < 0) ? res : 0;
3340
3341                 /* Unqueue and drop the lock. */
3342                 unqueue_me_pi(&q);
3343         }
3344
3345         if (ret == -EINTR) {
3346                 /*
3347                  * We've already been requeued, but cannot restart by calling
3348                  * futex_lock_pi() directly. We could restart this syscall, but
3349                  * it would detect that the user space "val" changed and return
3350                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3351                  * -EWOULDBLOCK directly.
3352                  */
3353                 ret = -EWOULDBLOCK;
3354         }
3355
3356 out:
3357         if (to) {
3358                 hrtimer_cancel(&to->timer);
3359                 destroy_hrtimer_on_stack(&to->timer);
3360         }
3361         return ret;
3362 }
3363
3364 /*
3365  * Support for robust futexes: the kernel cleans up held futexes at
3366  * thread exit time.
3367  *
3368  * Implementation: user-space maintains a per-thread list of locks it
3369  * is holding. Upon do_exit(), the kernel carefully walks this list,
3370  * and marks all locks that are owned by this thread with the
3371  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3372  * always manipulated with the lock held, so the list is private and
3373  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3374  * field, to allow the kernel to clean up if the thread dies after
3375  * acquiring the lock, but just before it could have added itself to
3376  * the list. There can only be one such pending lock.
3377  */
3378
3379 /**
3380  * sys_set_robust_list() - Set the robust-futex list head of a task
3381  * @head:       pointer to the list-head
3382  * @len:        length of the list-head, as userspace expects
3383  */
3384 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3385                 size_t, len)
3386 {
3387         if (!futex_cmpxchg_enabled)
3388                 return -ENOSYS;
3389         /*
3390          * The kernel knows only one size for now:
3391          */
3392         if (unlikely(len != sizeof(*head)))
3393                 return -EINVAL;
3394
3395         current->robust_list = head;
3396
3397         return 0;
3398 }
3399
3400 /**
3401  * sys_get_robust_list() - Get the robust-futex list head of a task
3402  * @pid:        pid of the process [zero for current task]
3403  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3404  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3405  */
3406 SYSCALL_DEFINE3(get_robust_list, int, pid,
3407                 struct robust_list_head __user * __user *, head_ptr,
3408                 size_t __user *, len_ptr)
3409 {
3410         struct robust_list_head __user *head;
3411         unsigned long ret;
3412         struct task_struct *p;
3413
3414         if (!futex_cmpxchg_enabled)
3415                 return -ENOSYS;
3416
3417         rcu_read_lock();
3418
3419         ret = -ESRCH;
3420         if (!pid)
3421                 p = current;
3422         else {
3423                 p = find_task_by_vpid(pid);
3424                 if (!p)
3425                         goto err_unlock;
3426         }
3427
3428         ret = -EPERM;
3429         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3430                 goto err_unlock;
3431
3432         head = p->robust_list;
3433         rcu_read_unlock();
3434
3435         if (put_user(sizeof(*head), len_ptr))
3436                 return -EFAULT;
3437         return put_user(head, head_ptr);
3438
3439 err_unlock:
3440         rcu_read_unlock();
3441
3442         return ret;
3443 }
3444
3445 /* Constants for the pending_op argument of handle_futex_death */
3446 #define HANDLE_DEATH_PENDING    true
3447 #define HANDLE_DEATH_LIST       false
3448
3449 /*
3450  * Process a futex-list entry, check whether it's owned by the
3451  * dying task, and do notification if so:
3452  */
3453 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3454                               bool pi, bool pending_op)
3455 {
3456         u32 uval, nval, mval;
3457         int err;
3458
3459         /* Futex address must be 32bit aligned */
3460         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3461                 return -1;
3462
3463 retry:
3464         if (get_user(uval, uaddr))
3465                 return -1;
3466
3467         /*
3468          * Special case for regular (non PI) futexes. The unlock path in
3469          * user space has two race scenarios:
3470          *
3471          * 1. The unlock path releases the user space futex value and
3472          *    before it can execute the futex() syscall to wake up
3473          *    waiters it is killed.
3474          *
3475          * 2. A woken up waiter is killed before it can acquire the
3476          *    futex in user space.
3477          *
3478          * In both cases the TID validation below prevents a wakeup of
3479          * potential waiters which can cause these waiters to block
3480          * forever.
3481          *
3482          * In both cases the following conditions are met:
3483          *
3484          *      1) task->robust_list->list_op_pending != NULL
3485          *         @pending_op == true
3486          *      2) User space futex value == 0
3487          *      3) Regular futex: @pi == false
3488          *
3489          * If these conditions are met, it is safe to attempt waking up a
3490          * potential waiter without touching the user space futex value and
3491          * trying to set the OWNER_DIED bit. The user space futex value is
3492          * uncontended and the rest of the user space mutex state is
3493          * consistent, so a woken waiter will just take over the
3494          * uncontended futex. Setting the OWNER_DIED bit would create
3495          * inconsistent state and malfunction of the user space owner died
3496          * handling.
3497          */
3498         if (pending_op && !pi && !uval) {
3499                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3500                 return 0;
3501         }
3502
3503         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3504                 return 0;
3505
3506         /*
3507          * Ok, this dying thread is truly holding a futex
3508          * of interest. Set the OWNER_DIED bit atomically
3509          * via cmpxchg, and if the value had FUTEX_WAITERS
3510          * set, wake up a waiter (if any). (We have to do a
3511          * futex_wake() even if OWNER_DIED is already set -
3512          * to handle the rare but possible case of recursive
3513          * thread-death.) The rest of the cleanup is done in
3514          * userspace.
3515          */
3516         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3517
3518         /*
3519          * We are not holding a lock here, but we want to have
3520          * the pagefault_disable/enable() protection because
3521          * we want to handle the fault gracefully. If the
3522          * access fails we try to fault in the futex with R/W
3523          * verification via get_user_pages. get_user() above
3524          * does not guarantee R/W access. If that fails we
3525          * give up and leave the futex locked.
3526          */
3527         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3528                 switch (err) {
3529                 case -EFAULT:
3530                         if (fault_in_user_writeable(uaddr))
3531                                 return -1;
3532                         goto retry;
3533
3534                 case -EAGAIN:
3535                         cond_resched();
3536                         goto retry;
3537
3538                 default:
3539                         WARN_ON_ONCE(1);
3540                         return err;
3541                 }
3542         }
3543
3544         if (nval != uval)
3545                 goto retry;
3546
3547         /*
3548          * Wake robust non-PI futexes here. The wakeup of
3549          * PI futexes happens in exit_pi_state():
3550          */
3551         if (!pi && (uval & FUTEX_WAITERS))
3552                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3553
3554         return 0;
3555 }
3556
3557 /*
3558  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3559  */
3560 static inline int fetch_robust_entry(struct robust_list __user **entry,
3561                                      struct robust_list __user * __user *head,
3562                                      unsigned int *pi)
3563 {
3564         unsigned long uentry;
3565
3566         if (get_user(uentry, (unsigned long __user *)head))
3567                 return -EFAULT;
3568
3569         *entry = (void __user *)(uentry & ~1UL);
3570         *pi = uentry & 1;
3571
3572         return 0;
3573 }
3574
3575 /*
3576  * Walk curr->robust_list (very carefully, it's a userspace list!)
3577  * and mark any locks found there dead, and notify any waiters.
3578  *
3579  * We silently return on any sign of list-walking problem.
3580  */
3581 static void exit_robust_list(struct task_struct *curr)
3582 {
3583         struct robust_list_head __user *head = curr->robust_list;
3584         struct robust_list __user *entry, *next_entry, *pending;
3585         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3586         unsigned int next_pi;
3587         unsigned long futex_offset;
3588         int rc;
3589
3590         if (!futex_cmpxchg_enabled)
3591                 return;
3592
3593         /*
3594          * Fetch the list head (which was registered earlier, via
3595          * sys_set_robust_list()):
3596          */
3597         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3598                 return;
3599         /*
3600          * Fetch the relative futex offset:
3601          */
3602         if (get_user(futex_offset, &head->futex_offset))
3603                 return;
3604         /*
3605          * Fetch any possibly pending lock-add first, and handle it
3606          * if it exists:
3607          */
3608         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3609                 return;
3610
3611         next_entry = NULL;      /* avoid warning with gcc */
3612         while (entry != &head->list) {
3613                 /*
3614                  * Fetch the next entry in the list before calling
3615                  * handle_futex_death:
3616                  */
3617                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3618                 /*
3619                  * A pending lock might already be on the list, so
3620                  * don't process it twice:
3621                  */
3622                 if (entry != pending) {
3623                         if (handle_futex_death((void __user *)entry + futex_offset,
3624                                                 curr, pi, HANDLE_DEATH_LIST))
3625                                 return;
3626                 }
3627                 if (rc)
3628                         return;
3629                 entry = next_entry;
3630                 pi = next_pi;
3631                 /*
3632                  * Avoid excessively long or circular lists:
3633                  */
3634                 if (!--limit)
3635                         break;
3636
3637                 cond_resched();
3638         }
3639
3640         if (pending) {
3641                 handle_futex_death((void __user *)pending + futex_offset,
3642                                    curr, pip, HANDLE_DEATH_PENDING);
3643         }
3644 }
3645
3646 static void futex_cleanup(struct task_struct *tsk)
3647 {
3648         if (unlikely(tsk->robust_list)) {
3649                 exit_robust_list(tsk);
3650                 tsk->robust_list = NULL;
3651         }
3652
3653 #ifdef CONFIG_COMPAT
3654         if (unlikely(tsk->compat_robust_list)) {
3655                 compat_exit_robust_list(tsk);
3656                 tsk->compat_robust_list = NULL;
3657         }
3658 #endif
3659
3660         if (unlikely(!list_empty(&tsk->pi_state_list)))
3661                 exit_pi_state_list(tsk);
3662 }
3663
3664 /**
3665  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3666  * @tsk:        task to set the state on
3667  *
3668  * Set the futex exit state of the task lockless. The futex waiter code
3669  * observes that state when a task is exiting and loops until the task has
3670  * actually finished the futex cleanup. The worst case for this is that the
3671  * waiter runs through the wait loop until the state becomes visible.
3672  *
3673  * This is called from the recursive fault handling path in do_exit().
3674  *
3675  * This is best effort. Either the futex exit code has run already or
3676  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3677  * take it over. If not, the problem is pushed back to user space. If the
3678  * futex exit code did not run yet, then an already queued waiter might
3679  * block forever, but there is nothing which can be done about that.
3680  */
3681 void futex_exit_recursive(struct task_struct *tsk)
3682 {
3683         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3684         if (tsk->futex_state == FUTEX_STATE_EXITING)
3685                 mutex_unlock(&tsk->futex_exit_mutex);
3686         tsk->futex_state = FUTEX_STATE_DEAD;
3687 }
3688
3689 static void futex_cleanup_begin(struct task_struct *tsk)
3690 {
3691         /*
3692          * Prevent various race issues against a concurrent incoming waiter
3693          * including live locks by forcing the waiter to block on
3694          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3695          * attach_to_pi_owner().
3696          */
3697         mutex_lock(&tsk->futex_exit_mutex);
3698
3699         /*
3700          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3701          *
3702          * This ensures that all subsequent checks of tsk->futex_state in
3703          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3704          * tsk->pi_lock held.
3705          *
3706          * It guarantees also that a pi_state which was queued right before
3707          * the state change under tsk->pi_lock by a concurrent waiter must
3708          * be observed in exit_pi_state_list().
3709          */
3710         raw_spin_lock_irq(&tsk->pi_lock);
3711         tsk->futex_state = FUTEX_STATE_EXITING;
3712         raw_spin_unlock_irq(&tsk->pi_lock);
3713 }
3714
3715 static void futex_cleanup_end(struct task_struct *tsk, int state)
3716 {
3717         /*
3718          * Lockless store. The only side effect is that an observer might
3719          * take another loop until it becomes visible.
3720          */
3721         tsk->futex_state = state;
3722         /*
3723          * Drop the exit protection. This unblocks waiters which observed
3724          * FUTEX_STATE_EXITING to reevaluate the state.
3725          */
3726         mutex_unlock(&tsk->futex_exit_mutex);
3727 }
3728
3729 void futex_exec_release(struct task_struct *tsk)
3730 {
3731         /*
3732          * The state handling is done for consistency, but in the case of
3733          * exec() there is no way to prevent futher damage as the PID stays
3734          * the same. But for the unlikely and arguably buggy case that a
3735          * futex is held on exec(), this provides at least as much state
3736          * consistency protection which is possible.
3737          */
3738         futex_cleanup_begin(tsk);
3739         futex_cleanup(tsk);
3740         /*
3741          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3742          * exec a new binary.
3743          */
3744         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3745 }
3746
3747 void futex_exit_release(struct task_struct *tsk)
3748 {
3749         futex_cleanup_begin(tsk);
3750         futex_cleanup(tsk);
3751         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3752 }
3753
3754 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3755                 u32 __user *uaddr2, u32 val2, u32 val3)
3756 {
3757         int cmd = op & FUTEX_CMD_MASK;
3758         unsigned int flags = 0;
3759
3760         if (!(op & FUTEX_PRIVATE_FLAG))
3761                 flags |= FLAGS_SHARED;
3762
3763         if (op & FUTEX_CLOCK_REALTIME) {
3764                 flags |= FLAGS_CLOCKRT;
3765                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3766                         return -ENOSYS;
3767         }
3768
3769         switch (cmd) {
3770         case FUTEX_LOCK_PI:
3771         case FUTEX_UNLOCK_PI:
3772         case FUTEX_TRYLOCK_PI:
3773         case FUTEX_WAIT_REQUEUE_PI:
3774         case FUTEX_CMP_REQUEUE_PI:
3775                 if (!futex_cmpxchg_enabled)
3776                         return -ENOSYS;
3777         }
3778
3779         switch (cmd) {
3780         case FUTEX_WAIT:
3781                 val3 = FUTEX_BITSET_MATCH_ANY;
3782                 fallthrough;
3783         case FUTEX_WAIT_BITSET:
3784                 return futex_wait(uaddr, flags, val, timeout, val3);
3785         case FUTEX_WAKE:
3786                 val3 = FUTEX_BITSET_MATCH_ANY;
3787                 fallthrough;
3788         case FUTEX_WAKE_BITSET:
3789                 return futex_wake(uaddr, flags, val, val3);
3790         case FUTEX_REQUEUE:
3791                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3792         case FUTEX_CMP_REQUEUE:
3793                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3794         case FUTEX_WAKE_OP:
3795                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3796         case FUTEX_LOCK_PI:
3797                 return futex_lock_pi(uaddr, flags, timeout, 0);
3798         case FUTEX_UNLOCK_PI:
3799                 return futex_unlock_pi(uaddr, flags);
3800         case FUTEX_TRYLOCK_PI:
3801                 return futex_lock_pi(uaddr, flags, NULL, 1);
3802         case FUTEX_WAIT_REQUEUE_PI:
3803                 val3 = FUTEX_BITSET_MATCH_ANY;
3804                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3805                                              uaddr2);
3806         case FUTEX_CMP_REQUEUE_PI:
3807                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3808         }
3809         return -ENOSYS;
3810 }
3811
3812
3813 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3814                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3815                 u32, val3)
3816 {
3817         struct timespec64 ts;
3818         ktime_t t, *tp = NULL;
3819         u32 val2 = 0;
3820         int cmd = op & FUTEX_CMD_MASK;
3821
3822         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3823                       cmd == FUTEX_WAIT_BITSET ||
3824                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3825                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3826                         return -EFAULT;
3827                 if (get_timespec64(&ts, utime))
3828                         return -EFAULT;
3829                 if (!timespec64_valid(&ts))
3830                         return -EINVAL;
3831
3832                 t = timespec64_to_ktime(ts);
3833                 if (cmd == FUTEX_WAIT)
3834                         t = ktime_add_safe(ktime_get(), t);
3835                 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3836                         t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3837                 tp = &t;
3838         }
3839         /*
3840          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3841          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3842          */
3843         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3844             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3845                 val2 = (u32) (unsigned long) utime;
3846
3847         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3848 }
3849
3850 #ifdef CONFIG_COMPAT
3851 /*
3852  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3853  */
3854 static inline int
3855 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3856                    compat_uptr_t __user *head, unsigned int *pi)
3857 {
3858         if (get_user(*uentry, head))
3859                 return -EFAULT;
3860
3861         *entry = compat_ptr((*uentry) & ~1);
3862         *pi = (unsigned int)(*uentry) & 1;
3863
3864         return 0;
3865 }
3866
3867 static void __user *futex_uaddr(struct robust_list __user *entry,
3868                                 compat_long_t futex_offset)
3869 {
3870         compat_uptr_t base = ptr_to_compat(entry);
3871         void __user *uaddr = compat_ptr(base + futex_offset);
3872
3873         return uaddr;
3874 }
3875
3876 /*
3877  * Walk curr->robust_list (very carefully, it's a userspace list!)
3878  * and mark any locks found there dead, and notify any waiters.
3879  *
3880  * We silently return on any sign of list-walking problem.
3881  */
3882 static void compat_exit_robust_list(struct task_struct *curr)
3883 {
3884         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3885         struct robust_list __user *entry, *next_entry, *pending;
3886         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3887         unsigned int next_pi;
3888         compat_uptr_t uentry, next_uentry, upending;
3889         compat_long_t futex_offset;
3890         int rc;
3891
3892         if (!futex_cmpxchg_enabled)
3893                 return;
3894
3895         /*
3896          * Fetch the list head (which was registered earlier, via
3897          * sys_set_robust_list()):
3898          */
3899         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3900                 return;
3901         /*
3902          * Fetch the relative futex offset:
3903          */
3904         if (get_user(futex_offset, &head->futex_offset))
3905                 return;
3906         /*
3907          * Fetch any possibly pending lock-add first, and handle it
3908          * if it exists:
3909          */
3910         if (compat_fetch_robust_entry(&upending, &pending,
3911                                &head->list_op_pending, &pip))
3912                 return;
3913
3914         next_entry = NULL;      /* avoid warning with gcc */
3915         while (entry != (struct robust_list __user *) &head->list) {
3916                 /*
3917                  * Fetch the next entry in the list before calling
3918                  * handle_futex_death:
3919                  */
3920                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3921                         (compat_uptr_t __user *)&entry->next, &next_pi);
3922                 /*
3923                  * A pending lock might already be on the list, so
3924                  * dont process it twice:
3925                  */
3926                 if (entry != pending) {
3927                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3928
3929                         if (handle_futex_death(uaddr, curr, pi,
3930                                                HANDLE_DEATH_LIST))
3931                                 return;
3932                 }
3933                 if (rc)
3934                         return;
3935                 uentry = next_uentry;
3936                 entry = next_entry;
3937                 pi = next_pi;
3938                 /*
3939                  * Avoid excessively long or circular lists:
3940                  */
3941                 if (!--limit)
3942                         break;
3943
3944                 cond_resched();
3945         }
3946         if (pending) {
3947                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3948
3949                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3950         }
3951 }
3952
3953 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3954                 struct compat_robust_list_head __user *, head,
3955                 compat_size_t, len)
3956 {
3957         if (!futex_cmpxchg_enabled)
3958                 return -ENOSYS;
3959
3960         if (unlikely(len != sizeof(*head)))
3961                 return -EINVAL;
3962
3963         current->compat_robust_list = head;
3964
3965         return 0;
3966 }
3967
3968 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3969                         compat_uptr_t __user *, head_ptr,
3970                         compat_size_t __user *, len_ptr)
3971 {
3972         struct compat_robust_list_head __user *head;
3973         unsigned long ret;
3974         struct task_struct *p;
3975
3976         if (!futex_cmpxchg_enabled)
3977                 return -ENOSYS;
3978
3979         rcu_read_lock();
3980
3981         ret = -ESRCH;
3982         if (!pid)
3983                 p = current;
3984         else {
3985                 p = find_task_by_vpid(pid);
3986                 if (!p)
3987                         goto err_unlock;
3988         }
3989
3990         ret = -EPERM;
3991         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3992                 goto err_unlock;
3993
3994         head = p->compat_robust_list;
3995         rcu_read_unlock();
3996
3997         if (put_user(sizeof(*head), len_ptr))
3998                 return -EFAULT;
3999         return put_user(ptr_to_compat(head), head_ptr);
4000
4001 err_unlock:
4002         rcu_read_unlock();
4003
4004         return ret;
4005 }
4006 #endif /* CONFIG_COMPAT */
4007
4008 #ifdef CONFIG_COMPAT_32BIT_TIME
4009 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4010                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4011                 u32, val3)
4012 {
4013         struct timespec64 ts;
4014         ktime_t t, *tp = NULL;
4015         int val2 = 0;
4016         int cmd = op & FUTEX_CMD_MASK;
4017
4018         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4019                       cmd == FUTEX_WAIT_BITSET ||
4020                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
4021                 if (get_old_timespec32(&ts, utime))
4022                         return -EFAULT;
4023                 if (!timespec64_valid(&ts))
4024                         return -EINVAL;
4025
4026                 t = timespec64_to_ktime(ts);
4027                 if (cmd == FUTEX_WAIT)
4028                         t = ktime_add_safe(ktime_get(), t);
4029                 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
4030                         t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
4031                 tp = &t;
4032         }
4033         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4034             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4035                 val2 = (int) (unsigned long) utime;
4036
4037         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4038 }
4039 #endif /* CONFIG_COMPAT_32BIT_TIME */
4040
4041 static void __init futex_detect_cmpxchg(void)
4042 {
4043 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4044         u32 curval;
4045
4046         /*
4047          * This will fail and we want it. Some arch implementations do
4048          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4049          * functionality. We want to know that before we call in any
4050          * of the complex code paths. Also we want to prevent
4051          * registration of robust lists in that case. NULL is
4052          * guaranteed to fault and we get -EFAULT on functional
4053          * implementation, the non-functional ones will return
4054          * -ENOSYS.
4055          */
4056         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4057                 futex_cmpxchg_enabled = 1;
4058 #endif
4059 }
4060
4061 static int __init futex_init(void)
4062 {
4063         unsigned int futex_shift;
4064         unsigned long i;
4065
4066 #if CONFIG_BASE_SMALL
4067         futex_hashsize = 16;
4068 #else
4069         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4070 #endif
4071
4072         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4073                                                futex_hashsize, 0,
4074                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4075                                                &futex_shift, NULL,
4076                                                futex_hashsize, futex_hashsize);
4077         futex_hashsize = 1UL << futex_shift;
4078
4079         futex_detect_cmpxchg();
4080
4081         for (i = 0; i < futex_hashsize; i++) {
4082                 atomic_set(&futex_queues[i].waiters, 0);
4083                 plist_head_init(&futex_queues[i].chain);
4084                 spin_lock_init(&futex_queues[i].lock);
4085         }
4086
4087         return 0;
4088 }
4089 core_initcall(futex_init);