ARM: ux500: regulators: Remove misleading comment
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64
65 #include <asm/futex.h>
66
67 #include "rtmutex_common.h"
68
69 int __read_mostly futex_cmpxchg_enabled;
70
71 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72
73 /*
74  * Futex flags used to encode options to functions and preserve them across
75  * restarts.
76  */
77 #define FLAGS_SHARED            0x01
78 #define FLAGS_CLOCKRT           0x02
79 #define FLAGS_HAS_TIMEOUT       0x04
80
81 /*
82  * Priority Inheritance state:
83  */
84 struct futex_pi_state {
85         /*
86          * list of 'owned' pi_state instances - these have to be
87          * cleaned up in do_exit() if the task exits prematurely:
88          */
89         struct list_head list;
90
91         /*
92          * The PI object:
93          */
94         struct rt_mutex pi_mutex;
95
96         struct task_struct *owner;
97         atomic_t refcount;
98
99         union futex_key key;
100 };
101
102 /**
103  * struct futex_q - The hashed futex queue entry, one per waiting task
104  * @list:               priority-sorted list of tasks waiting on this futex
105  * @task:               the task waiting on the futex
106  * @lock_ptr:           the hash bucket lock
107  * @key:                the key the futex is hashed on
108  * @pi_state:           optional priority inheritance state
109  * @rt_waiter:          rt_waiter storage for use with requeue_pi
110  * @requeue_pi_key:     the requeue_pi target futex key
111  * @bitset:             bitset for the optional bitmasked wakeup
112  *
113  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
114  * we can wake only the relevant ones (hashed queues may be shared).
115  *
116  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
117  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
118  * The order of wakeup is always to make the first condition true, then
119  * the second.
120  *
121  * PI futexes are typically woken before they are removed from the hash list via
122  * the rt_mutex code. See unqueue_me_pi().
123  */
124 struct futex_q {
125         struct plist_node list;
126
127         struct task_struct *task;
128         spinlock_t *lock_ptr;
129         union futex_key key;
130         struct futex_pi_state *pi_state;
131         struct rt_mutex_waiter *rt_waiter;
132         union futex_key *requeue_pi_key;
133         u32 bitset;
134 };
135
136 static const struct futex_q futex_q_init = {
137         /* list gets initialized in queue_me()*/
138         .key = FUTEX_KEY_INIT,
139         .bitset = FUTEX_BITSET_MATCH_ANY
140 };
141
142 /*
143  * Hash buckets are shared by all the futex_keys that hash to the same
144  * location.  Each key may have multiple futex_q structures, one for each task
145  * waiting on a futex.
146  */
147 struct futex_hash_bucket {
148         spinlock_t lock;
149         struct plist_head chain;
150 };
151
152 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
153
154 /*
155  * We hash on the keys returned from get_futex_key (see below).
156  */
157 static struct futex_hash_bucket *hash_futex(union futex_key *key)
158 {
159         u32 hash = jhash2((u32*)&key->both.word,
160                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
161                           key->both.offset);
162         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
163 }
164
165 /*
166  * Return 1 if two futex_keys are equal, 0 otherwise.
167  */
168 static inline int match_futex(union futex_key *key1, union futex_key *key2)
169 {
170         return (key1 && key2
171                 && key1->both.word == key2->both.word
172                 && key1->both.ptr == key2->both.ptr
173                 && key1->both.offset == key2->both.offset);
174 }
175
176 /*
177  * Take a reference to the resource addressed by a key.
178  * Can be called while holding spinlocks.
179  *
180  */
181 static void get_futex_key_refs(union futex_key *key)
182 {
183         if (!key->both.ptr)
184                 return;
185
186         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
187         case FUT_OFF_INODE:
188                 ihold(key->shared.inode);
189                 break;
190         case FUT_OFF_MMSHARED:
191                 atomic_inc(&key->private.mm->mm_count);
192                 break;
193         }
194 }
195
196 /*
197  * Drop a reference to the resource addressed by a key.
198  * The hash bucket spinlock must not be held.
199  */
200 static void drop_futex_key_refs(union futex_key *key)
201 {
202         if (!key->both.ptr) {
203                 /* If we're here then we tried to put a key we failed to get */
204                 WARN_ON_ONCE(1);
205                 return;
206         }
207
208         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
209         case FUT_OFF_INODE:
210                 iput(key->shared.inode);
211                 break;
212         case FUT_OFF_MMSHARED:
213                 mmdrop(key->private.mm);
214                 break;
215         }
216 }
217
218 /**
219  * get_futex_key() - Get parameters which are the keys for a futex
220  * @uaddr:      virtual address of the futex
221  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
222  * @key:        address where result is stored.
223  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
224  *              VERIFY_WRITE)
225  *
226  * Return: a negative error code or 0
227  *
228  * The key words are stored in *key on success.
229  *
230  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
231  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
232  * We can usually work out the index without swapping in the page.
233  *
234  * lock_page() might sleep, the caller should not hold a spinlock.
235  */
236 static int
237 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
238 {
239         unsigned long address = (unsigned long)uaddr;
240         struct mm_struct *mm = current->mm;
241         struct page *page, *page_head;
242         int err, ro = 0;
243
244         /*
245          * The futex address must be "naturally" aligned.
246          */
247         key->both.offset = address % PAGE_SIZE;
248         if (unlikely((address % sizeof(u32)) != 0))
249                 return -EINVAL;
250         address -= key->both.offset;
251
252         /*
253          * PROCESS_PRIVATE futexes are fast.
254          * As the mm cannot disappear under us and the 'key' only needs
255          * virtual address, we dont even have to find the underlying vma.
256          * Note : We do have to check 'uaddr' is a valid user address,
257          *        but access_ok() should be faster than find_vma()
258          */
259         if (!fshared) {
260                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
261                         return -EFAULT;
262                 key->private.mm = mm;
263                 key->private.address = address;
264                 get_futex_key_refs(key);
265                 return 0;
266         }
267
268 again:
269         err = get_user_pages_fast(address, 1, 1, &page);
270         /*
271          * If write access is not required (eg. FUTEX_WAIT), try
272          * and get read-only access.
273          */
274         if (err == -EFAULT && rw == VERIFY_READ) {
275                 err = get_user_pages_fast(address, 1, 0, &page);
276                 ro = 1;
277         }
278         if (err < 0)
279                 return err;
280         else
281                 err = 0;
282
283 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
284         page_head = page;
285         if (unlikely(PageTail(page))) {
286                 put_page(page);
287                 /* serialize against __split_huge_page_splitting() */
288                 local_irq_disable();
289                 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
290                         page_head = compound_head(page);
291                         /*
292                          * page_head is valid pointer but we must pin
293                          * it before taking the PG_lock and/or
294                          * PG_compound_lock. The moment we re-enable
295                          * irqs __split_huge_page_splitting() can
296                          * return and the head page can be freed from
297                          * under us. We can't take the PG_lock and/or
298                          * PG_compound_lock on a page that could be
299                          * freed from under us.
300                          */
301                         if (page != page_head) {
302                                 get_page(page_head);
303                                 put_page(page);
304                         }
305                         local_irq_enable();
306                 } else {
307                         local_irq_enable();
308                         goto again;
309                 }
310         }
311 #else
312         page_head = compound_head(page);
313         if (page != page_head) {
314                 get_page(page_head);
315                 put_page(page);
316         }
317 #endif
318
319         lock_page(page_head);
320
321         /*
322          * If page_head->mapping is NULL, then it cannot be a PageAnon
323          * page; but it might be the ZERO_PAGE or in the gate area or
324          * in a special mapping (all cases which we are happy to fail);
325          * or it may have been a good file page when get_user_pages_fast
326          * found it, but truncated or holepunched or subjected to
327          * invalidate_complete_page2 before we got the page lock (also
328          * cases which we are happy to fail).  And we hold a reference,
329          * so refcount care in invalidate_complete_page's remove_mapping
330          * prevents drop_caches from setting mapping to NULL beneath us.
331          *
332          * The case we do have to guard against is when memory pressure made
333          * shmem_writepage move it from filecache to swapcache beneath us:
334          * an unlikely race, but we do need to retry for page_head->mapping.
335          */
336         if (!page_head->mapping) {
337                 int shmem_swizzled = PageSwapCache(page_head);
338                 unlock_page(page_head);
339                 put_page(page_head);
340                 if (shmem_swizzled)
341                         goto again;
342                 return -EFAULT;
343         }
344
345         /*
346          * Private mappings are handled in a simple way.
347          *
348          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
349          * it's a read-only handle, it's expected that futexes attach to
350          * the object not the particular process.
351          */
352         if (PageAnon(page_head)) {
353                 /*
354                  * A RO anonymous page will never change and thus doesn't make
355                  * sense for futex operations.
356                  */
357                 if (ro) {
358                         err = -EFAULT;
359                         goto out;
360                 }
361
362                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
363                 key->private.mm = mm;
364                 key->private.address = address;
365         } else {
366                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
367                 key->shared.inode = page_head->mapping->host;
368                 key->shared.pgoff = page_head->index;
369         }
370
371         get_futex_key_refs(key);
372
373 out:
374         unlock_page(page_head);
375         put_page(page_head);
376         return err;
377 }
378
379 static inline void put_futex_key(union futex_key *key)
380 {
381         drop_futex_key_refs(key);
382 }
383
384 /**
385  * fault_in_user_writeable() - Fault in user address and verify RW access
386  * @uaddr:      pointer to faulting user space address
387  *
388  * Slow path to fixup the fault we just took in the atomic write
389  * access to @uaddr.
390  *
391  * We have no generic implementation of a non-destructive write to the
392  * user address. We know that we faulted in the atomic pagefault
393  * disabled section so we can as well avoid the #PF overhead by
394  * calling get_user_pages() right away.
395  */
396 static int fault_in_user_writeable(u32 __user *uaddr)
397 {
398         struct mm_struct *mm = current->mm;
399         int ret;
400
401         down_read(&mm->mmap_sem);
402         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
403                                FAULT_FLAG_WRITE);
404         up_read(&mm->mmap_sem);
405
406         return ret < 0 ? ret : 0;
407 }
408
409 /**
410  * futex_top_waiter() - Return the highest priority waiter on a futex
411  * @hb:         the hash bucket the futex_q's reside in
412  * @key:        the futex key (to distinguish it from other futex futex_q's)
413  *
414  * Must be called with the hb lock held.
415  */
416 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
417                                         union futex_key *key)
418 {
419         struct futex_q *this;
420
421         plist_for_each_entry(this, &hb->chain, list) {
422                 if (match_futex(&this->key, key))
423                         return this;
424         }
425         return NULL;
426 }
427
428 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
429                                       u32 uval, u32 newval)
430 {
431         int ret;
432
433         pagefault_disable();
434         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
435         pagefault_enable();
436
437         return ret;
438 }
439
440 static int get_futex_value_locked(u32 *dest, u32 __user *from)
441 {
442         int ret;
443
444         pagefault_disable();
445         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
446         pagefault_enable();
447
448         return ret ? -EFAULT : 0;
449 }
450
451
452 /*
453  * PI code:
454  */
455 static int refill_pi_state_cache(void)
456 {
457         struct futex_pi_state *pi_state;
458
459         if (likely(current->pi_state_cache))
460                 return 0;
461
462         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
463
464         if (!pi_state)
465                 return -ENOMEM;
466
467         INIT_LIST_HEAD(&pi_state->list);
468         /* pi_mutex gets initialized later */
469         pi_state->owner = NULL;
470         atomic_set(&pi_state->refcount, 1);
471         pi_state->key = FUTEX_KEY_INIT;
472
473         current->pi_state_cache = pi_state;
474
475         return 0;
476 }
477
478 static struct futex_pi_state * alloc_pi_state(void)
479 {
480         struct futex_pi_state *pi_state = current->pi_state_cache;
481
482         WARN_ON(!pi_state);
483         current->pi_state_cache = NULL;
484
485         return pi_state;
486 }
487
488 static void free_pi_state(struct futex_pi_state *pi_state)
489 {
490         if (!atomic_dec_and_test(&pi_state->refcount))
491                 return;
492
493         /*
494          * If pi_state->owner is NULL, the owner is most probably dying
495          * and has cleaned up the pi_state already
496          */
497         if (pi_state->owner) {
498                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
499                 list_del_init(&pi_state->list);
500                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
501
502                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
503         }
504
505         if (current->pi_state_cache)
506                 kfree(pi_state);
507         else {
508                 /*
509                  * pi_state->list is already empty.
510                  * clear pi_state->owner.
511                  * refcount is at 0 - put it back to 1.
512                  */
513                 pi_state->owner = NULL;
514                 atomic_set(&pi_state->refcount, 1);
515                 current->pi_state_cache = pi_state;
516         }
517 }
518
519 /*
520  * Look up the task based on what TID userspace gave us.
521  * We dont trust it.
522  */
523 static struct task_struct * futex_find_get_task(pid_t pid)
524 {
525         struct task_struct *p;
526
527         rcu_read_lock();
528         p = find_task_by_vpid(pid);
529         if (p)
530                 get_task_struct(p);
531
532         rcu_read_unlock();
533
534         return p;
535 }
536
537 /*
538  * This task is holding PI mutexes at exit time => bad.
539  * Kernel cleans up PI-state, but userspace is likely hosed.
540  * (Robust-futex cleanup is separate and might save the day for userspace.)
541  */
542 void exit_pi_state_list(struct task_struct *curr)
543 {
544         struct list_head *next, *head = &curr->pi_state_list;
545         struct futex_pi_state *pi_state;
546         struct futex_hash_bucket *hb;
547         union futex_key key = FUTEX_KEY_INIT;
548
549         if (!futex_cmpxchg_enabled)
550                 return;
551         /*
552          * We are a ZOMBIE and nobody can enqueue itself on
553          * pi_state_list anymore, but we have to be careful
554          * versus waiters unqueueing themselves:
555          */
556         raw_spin_lock_irq(&curr->pi_lock);
557         while (!list_empty(head)) {
558
559                 next = head->next;
560                 pi_state = list_entry(next, struct futex_pi_state, list);
561                 key = pi_state->key;
562                 hb = hash_futex(&key);
563                 raw_spin_unlock_irq(&curr->pi_lock);
564
565                 spin_lock(&hb->lock);
566
567                 raw_spin_lock_irq(&curr->pi_lock);
568                 /*
569                  * We dropped the pi-lock, so re-check whether this
570                  * task still owns the PI-state:
571                  */
572                 if (head->next != next) {
573                         spin_unlock(&hb->lock);
574                         continue;
575                 }
576
577                 WARN_ON(pi_state->owner != curr);
578                 WARN_ON(list_empty(&pi_state->list));
579                 list_del_init(&pi_state->list);
580                 pi_state->owner = NULL;
581                 raw_spin_unlock_irq(&curr->pi_lock);
582
583                 rt_mutex_unlock(&pi_state->pi_mutex);
584
585                 spin_unlock(&hb->lock);
586
587                 raw_spin_lock_irq(&curr->pi_lock);
588         }
589         raw_spin_unlock_irq(&curr->pi_lock);
590 }
591
592 static int
593 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
594                 union futex_key *key, struct futex_pi_state **ps)
595 {
596         struct futex_pi_state *pi_state = NULL;
597         struct futex_q *this, *next;
598         struct plist_head *head;
599         struct task_struct *p;
600         pid_t pid = uval & FUTEX_TID_MASK;
601
602         head = &hb->chain;
603
604         plist_for_each_entry_safe(this, next, head, list) {
605                 if (match_futex(&this->key, key)) {
606                         /*
607                          * Another waiter already exists - bump up
608                          * the refcount and return its pi_state:
609                          */
610                         pi_state = this->pi_state;
611                         /*
612                          * Userspace might have messed up non-PI and PI futexes
613                          */
614                         if (unlikely(!pi_state))
615                                 return -EINVAL;
616
617                         WARN_ON(!atomic_read(&pi_state->refcount));
618
619                         /*
620                          * When pi_state->owner is NULL then the owner died
621                          * and another waiter is on the fly. pi_state->owner
622                          * is fixed up by the task which acquires
623                          * pi_state->rt_mutex.
624                          *
625                          * We do not check for pid == 0 which can happen when
626                          * the owner died and robust_list_exit() cleared the
627                          * TID.
628                          */
629                         if (pid && pi_state->owner) {
630                                 /*
631                                  * Bail out if user space manipulated the
632                                  * futex value.
633                                  */
634                                 if (pid != task_pid_vnr(pi_state->owner))
635                                         return -EINVAL;
636                         }
637
638                         atomic_inc(&pi_state->refcount);
639                         *ps = pi_state;
640
641                         return 0;
642                 }
643         }
644
645         /*
646          * We are the first waiter - try to look up the real owner and attach
647          * the new pi_state to it, but bail out when TID = 0
648          */
649         if (!pid)
650                 return -ESRCH;
651         p = futex_find_get_task(pid);
652         if (!p)
653                 return -ESRCH;
654
655         /*
656          * We need to look at the task state flags to figure out,
657          * whether the task is exiting. To protect against the do_exit
658          * change of the task flags, we do this protected by
659          * p->pi_lock:
660          */
661         raw_spin_lock_irq(&p->pi_lock);
662         if (unlikely(p->flags & PF_EXITING)) {
663                 /*
664                  * The task is on the way out. When PF_EXITPIDONE is
665                  * set, we know that the task has finished the
666                  * cleanup:
667                  */
668                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
669
670                 raw_spin_unlock_irq(&p->pi_lock);
671                 put_task_struct(p);
672                 return ret;
673         }
674
675         pi_state = alloc_pi_state();
676
677         /*
678          * Initialize the pi_mutex in locked state and make 'p'
679          * the owner of it:
680          */
681         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
682
683         /* Store the key for possible exit cleanups: */
684         pi_state->key = *key;
685
686         WARN_ON(!list_empty(&pi_state->list));
687         list_add(&pi_state->list, &p->pi_state_list);
688         pi_state->owner = p;
689         raw_spin_unlock_irq(&p->pi_lock);
690
691         put_task_struct(p);
692
693         *ps = pi_state;
694
695         return 0;
696 }
697
698 /**
699  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
700  * @uaddr:              the pi futex user address
701  * @hb:                 the pi futex hash bucket
702  * @key:                the futex key associated with uaddr and hb
703  * @ps:                 the pi_state pointer where we store the result of the
704  *                      lookup
705  * @task:               the task to perform the atomic lock work for.  This will
706  *                      be "current" except in the case of requeue pi.
707  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
708  *
709  * Return:
710  *  0 - ready to wait;
711  *  1 - acquired the lock;
712  * <0 - error
713  *
714  * The hb->lock and futex_key refs shall be held by the caller.
715  */
716 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
717                                 union futex_key *key,
718                                 struct futex_pi_state **ps,
719                                 struct task_struct *task, int set_waiters)
720 {
721         int lock_taken, ret, force_take = 0;
722         u32 uval, newval, curval, vpid = task_pid_vnr(task);
723
724 retry:
725         ret = lock_taken = 0;
726
727         /*
728          * To avoid races, we attempt to take the lock here again
729          * (by doing a 0 -> TID atomic cmpxchg), while holding all
730          * the locks. It will most likely not succeed.
731          */
732         newval = vpid;
733         if (set_waiters)
734                 newval |= FUTEX_WAITERS;
735
736         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
737                 return -EFAULT;
738
739         /*
740          * Detect deadlocks.
741          */
742         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
743                 return -EDEADLK;
744
745         /*
746          * Surprise - we got the lock. Just return to userspace:
747          */
748         if (unlikely(!curval))
749                 return 1;
750
751         uval = curval;
752
753         /*
754          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
755          * to wake at the next unlock.
756          */
757         newval = curval | FUTEX_WAITERS;
758
759         /*
760          * Should we force take the futex? See below.
761          */
762         if (unlikely(force_take)) {
763                 /*
764                  * Keep the OWNER_DIED and the WAITERS bit and set the
765                  * new TID value.
766                  */
767                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
768                 force_take = 0;
769                 lock_taken = 1;
770         }
771
772         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
773                 return -EFAULT;
774         if (unlikely(curval != uval))
775                 goto retry;
776
777         /*
778          * We took the lock due to forced take over.
779          */
780         if (unlikely(lock_taken))
781                 return 1;
782
783         /*
784          * We dont have the lock. Look up the PI state (or create it if
785          * we are the first waiter):
786          */
787         ret = lookup_pi_state(uval, hb, key, ps);
788
789         if (unlikely(ret)) {
790                 switch (ret) {
791                 case -ESRCH:
792                         /*
793                          * We failed to find an owner for this
794                          * futex. So we have no pi_state to block
795                          * on. This can happen in two cases:
796                          *
797                          * 1) The owner died
798                          * 2) A stale FUTEX_WAITERS bit
799                          *
800                          * Re-read the futex value.
801                          */
802                         if (get_futex_value_locked(&curval, uaddr))
803                                 return -EFAULT;
804
805                         /*
806                          * If the owner died or we have a stale
807                          * WAITERS bit the owner TID in the user space
808                          * futex is 0.
809                          */
810                         if (!(curval & FUTEX_TID_MASK)) {
811                                 force_take = 1;
812                                 goto retry;
813                         }
814                 default:
815                         break;
816                 }
817         }
818
819         return ret;
820 }
821
822 /**
823  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
824  * @q:  The futex_q to unqueue
825  *
826  * The q->lock_ptr must not be NULL and must be held by the caller.
827  */
828 static void __unqueue_futex(struct futex_q *q)
829 {
830         struct futex_hash_bucket *hb;
831
832         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
833             || WARN_ON(plist_node_empty(&q->list)))
834                 return;
835
836         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
837         plist_del(&q->list, &hb->chain);
838 }
839
840 /*
841  * The hash bucket lock must be held when this is called.
842  * Afterwards, the futex_q must not be accessed.
843  */
844 static void wake_futex(struct futex_q *q)
845 {
846         struct task_struct *p = q->task;
847
848         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
849                 return;
850
851         /*
852          * We set q->lock_ptr = NULL _before_ we wake up the task. If
853          * a non-futex wake up happens on another CPU then the task
854          * might exit and p would dereference a non-existing task
855          * struct. Prevent this by holding a reference on p across the
856          * wake up.
857          */
858         get_task_struct(p);
859
860         __unqueue_futex(q);
861         /*
862          * The waiting task can free the futex_q as soon as
863          * q->lock_ptr = NULL is written, without taking any locks. A
864          * memory barrier is required here to prevent the following
865          * store to lock_ptr from getting ahead of the plist_del.
866          */
867         smp_wmb();
868         q->lock_ptr = NULL;
869
870         wake_up_state(p, TASK_NORMAL);
871         put_task_struct(p);
872 }
873
874 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
875 {
876         struct task_struct *new_owner;
877         struct futex_pi_state *pi_state = this->pi_state;
878         u32 uninitialized_var(curval), newval;
879
880         if (!pi_state)
881                 return -EINVAL;
882
883         /*
884          * If current does not own the pi_state then the futex is
885          * inconsistent and user space fiddled with the futex value.
886          */
887         if (pi_state->owner != current)
888                 return -EINVAL;
889
890         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
891         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
892
893         /*
894          * It is possible that the next waiter (the one that brought
895          * this owner to the kernel) timed out and is no longer
896          * waiting on the lock.
897          */
898         if (!new_owner)
899                 new_owner = this->task;
900
901         /*
902          * We pass it to the next owner. (The WAITERS bit is always
903          * kept enabled while there is PI state around. We must also
904          * preserve the owner died bit.)
905          */
906         if (!(uval & FUTEX_OWNER_DIED)) {
907                 int ret = 0;
908
909                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
910
911                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
912                         ret = -EFAULT;
913                 else if (curval != uval)
914                         ret = -EINVAL;
915                 if (ret) {
916                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
917                         return ret;
918                 }
919         }
920
921         raw_spin_lock_irq(&pi_state->owner->pi_lock);
922         WARN_ON(list_empty(&pi_state->list));
923         list_del_init(&pi_state->list);
924         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
925
926         raw_spin_lock_irq(&new_owner->pi_lock);
927         WARN_ON(!list_empty(&pi_state->list));
928         list_add(&pi_state->list, &new_owner->pi_state_list);
929         pi_state->owner = new_owner;
930         raw_spin_unlock_irq(&new_owner->pi_lock);
931
932         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
933         rt_mutex_unlock(&pi_state->pi_mutex);
934
935         return 0;
936 }
937
938 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
939 {
940         u32 uninitialized_var(oldval);
941
942         /*
943          * There is no waiter, so we unlock the futex. The owner died
944          * bit has not to be preserved here. We are the owner:
945          */
946         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
947                 return -EFAULT;
948         if (oldval != uval)
949                 return -EAGAIN;
950
951         return 0;
952 }
953
954 /*
955  * Express the locking dependencies for lockdep:
956  */
957 static inline void
958 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
959 {
960         if (hb1 <= hb2) {
961                 spin_lock(&hb1->lock);
962                 if (hb1 < hb2)
963                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
964         } else { /* hb1 > hb2 */
965                 spin_lock(&hb2->lock);
966                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
967         }
968 }
969
970 static inline void
971 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
972 {
973         spin_unlock(&hb1->lock);
974         if (hb1 != hb2)
975                 spin_unlock(&hb2->lock);
976 }
977
978 /*
979  * Wake up waiters matching bitset queued on this futex (uaddr).
980  */
981 static int
982 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
983 {
984         struct futex_hash_bucket *hb;
985         struct futex_q *this, *next;
986         struct plist_head *head;
987         union futex_key key = FUTEX_KEY_INIT;
988         int ret;
989
990         if (!bitset)
991                 return -EINVAL;
992
993         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
994         if (unlikely(ret != 0))
995                 goto out;
996
997         hb = hash_futex(&key);
998         spin_lock(&hb->lock);
999         head = &hb->chain;
1000
1001         plist_for_each_entry_safe(this, next, head, list) {
1002                 if (match_futex (&this->key, &key)) {
1003                         if (this->pi_state || this->rt_waiter) {
1004                                 ret = -EINVAL;
1005                                 break;
1006                         }
1007
1008                         /* Check if one of the bits is set in both bitsets */
1009                         if (!(this->bitset & bitset))
1010                                 continue;
1011
1012                         wake_futex(this);
1013                         if (++ret >= nr_wake)
1014                                 break;
1015                 }
1016         }
1017
1018         spin_unlock(&hb->lock);
1019         put_futex_key(&key);
1020 out:
1021         return ret;
1022 }
1023
1024 /*
1025  * Wake up all waiters hashed on the physical page that is mapped
1026  * to this virtual address:
1027  */
1028 static int
1029 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1030               int nr_wake, int nr_wake2, int op)
1031 {
1032         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1033         struct futex_hash_bucket *hb1, *hb2;
1034         struct plist_head *head;
1035         struct futex_q *this, *next;
1036         int ret, op_ret;
1037
1038 retry:
1039         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1040         if (unlikely(ret != 0))
1041                 goto out;
1042         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1043         if (unlikely(ret != 0))
1044                 goto out_put_key1;
1045
1046         hb1 = hash_futex(&key1);
1047         hb2 = hash_futex(&key2);
1048
1049 retry_private:
1050         double_lock_hb(hb1, hb2);
1051         op_ret = futex_atomic_op_inuser(op, uaddr2);
1052         if (unlikely(op_ret < 0)) {
1053
1054                 double_unlock_hb(hb1, hb2);
1055
1056 #ifndef CONFIG_MMU
1057                 /*
1058                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1059                  * but we might get them from range checking
1060                  */
1061                 ret = op_ret;
1062                 goto out_put_keys;
1063 #endif
1064
1065                 if (unlikely(op_ret != -EFAULT)) {
1066                         ret = op_ret;
1067                         goto out_put_keys;
1068                 }
1069
1070                 ret = fault_in_user_writeable(uaddr2);
1071                 if (ret)
1072                         goto out_put_keys;
1073
1074                 if (!(flags & FLAGS_SHARED))
1075                         goto retry_private;
1076
1077                 put_futex_key(&key2);
1078                 put_futex_key(&key1);
1079                 goto retry;
1080         }
1081
1082         head = &hb1->chain;
1083
1084         plist_for_each_entry_safe(this, next, head, list) {
1085                 if (match_futex (&this->key, &key1)) {
1086                         if (this->pi_state || this->rt_waiter) {
1087                                 ret = -EINVAL;
1088                                 goto out_unlock;
1089                         }
1090                         wake_futex(this);
1091                         if (++ret >= nr_wake)
1092                                 break;
1093                 }
1094         }
1095
1096         if (op_ret > 0) {
1097                 head = &hb2->chain;
1098
1099                 op_ret = 0;
1100                 plist_for_each_entry_safe(this, next, head, list) {
1101                         if (match_futex (&this->key, &key2)) {
1102                                 if (this->pi_state || this->rt_waiter) {
1103                                         ret = -EINVAL;
1104                                         goto out_unlock;
1105                                 }
1106                                 wake_futex(this);
1107                                 if (++op_ret >= nr_wake2)
1108                                         break;
1109                         }
1110                 }
1111                 ret += op_ret;
1112         }
1113
1114 out_unlock:
1115         double_unlock_hb(hb1, hb2);
1116 out_put_keys:
1117         put_futex_key(&key2);
1118 out_put_key1:
1119         put_futex_key(&key1);
1120 out:
1121         return ret;
1122 }
1123
1124 /**
1125  * requeue_futex() - Requeue a futex_q from one hb to another
1126  * @q:          the futex_q to requeue
1127  * @hb1:        the source hash_bucket
1128  * @hb2:        the target hash_bucket
1129  * @key2:       the new key for the requeued futex_q
1130  */
1131 static inline
1132 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1133                    struct futex_hash_bucket *hb2, union futex_key *key2)
1134 {
1135
1136         /*
1137          * If key1 and key2 hash to the same bucket, no need to
1138          * requeue.
1139          */
1140         if (likely(&hb1->chain != &hb2->chain)) {
1141                 plist_del(&q->list, &hb1->chain);
1142                 plist_add(&q->list, &hb2->chain);
1143                 q->lock_ptr = &hb2->lock;
1144         }
1145         get_futex_key_refs(key2);
1146         q->key = *key2;
1147 }
1148
1149 /**
1150  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1151  * @q:          the futex_q
1152  * @key:        the key of the requeue target futex
1153  * @hb:         the hash_bucket of the requeue target futex
1154  *
1155  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1156  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1157  * to the requeue target futex so the waiter can detect the wakeup on the right
1158  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1159  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1160  * to protect access to the pi_state to fixup the owner later.  Must be called
1161  * with both q->lock_ptr and hb->lock held.
1162  */
1163 static inline
1164 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1165                            struct futex_hash_bucket *hb)
1166 {
1167         get_futex_key_refs(key);
1168         q->key = *key;
1169
1170         __unqueue_futex(q);
1171
1172         WARN_ON(!q->rt_waiter);
1173         q->rt_waiter = NULL;
1174
1175         q->lock_ptr = &hb->lock;
1176
1177         wake_up_state(q->task, TASK_NORMAL);
1178 }
1179
1180 /**
1181  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1182  * @pifutex:            the user address of the to futex
1183  * @hb1:                the from futex hash bucket, must be locked by the caller
1184  * @hb2:                the to futex hash bucket, must be locked by the caller
1185  * @key1:               the from futex key
1186  * @key2:               the to futex key
1187  * @ps:                 address to store the pi_state pointer
1188  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1189  *
1190  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1191  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1192  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1193  * hb1 and hb2 must be held by the caller.
1194  *
1195  * Return:
1196  *  0 - failed to acquire the lock atomically;
1197  *  1 - acquired the lock;
1198  * <0 - error
1199  */
1200 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1201                                  struct futex_hash_bucket *hb1,
1202                                  struct futex_hash_bucket *hb2,
1203                                  union futex_key *key1, union futex_key *key2,
1204                                  struct futex_pi_state **ps, int set_waiters)
1205 {
1206         struct futex_q *top_waiter = NULL;
1207         u32 curval;
1208         int ret;
1209
1210         if (get_futex_value_locked(&curval, pifutex))
1211                 return -EFAULT;
1212
1213         /*
1214          * Find the top_waiter and determine if there are additional waiters.
1215          * If the caller intends to requeue more than 1 waiter to pifutex,
1216          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1217          * as we have means to handle the possible fault.  If not, don't set
1218          * the bit unecessarily as it will force the subsequent unlock to enter
1219          * the kernel.
1220          */
1221         top_waiter = futex_top_waiter(hb1, key1);
1222
1223         /* There are no waiters, nothing for us to do. */
1224         if (!top_waiter)
1225                 return 0;
1226
1227         /* Ensure we requeue to the expected futex. */
1228         if (!match_futex(top_waiter->requeue_pi_key, key2))
1229                 return -EINVAL;
1230
1231         /*
1232          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1233          * the contended case or if set_waiters is 1.  The pi_state is returned
1234          * in ps in contended cases.
1235          */
1236         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1237                                    set_waiters);
1238         if (ret == 1)
1239                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1240
1241         return ret;
1242 }
1243
1244 /**
1245  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1246  * @uaddr1:     source futex user address
1247  * @flags:      futex flags (FLAGS_SHARED, etc.)
1248  * @uaddr2:     target futex user address
1249  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1250  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1251  * @cmpval:     @uaddr1 expected value (or %NULL)
1252  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1253  *              pi futex (pi to pi requeue is not supported)
1254  *
1255  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1256  * uaddr2 atomically on behalf of the top waiter.
1257  *
1258  * Return:
1259  * >=0 - on success, the number of tasks requeued or woken;
1260  *  <0 - on error
1261  */
1262 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1263                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1264                          u32 *cmpval, int requeue_pi)
1265 {
1266         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1267         int drop_count = 0, task_count = 0, ret;
1268         struct futex_pi_state *pi_state = NULL;
1269         struct futex_hash_bucket *hb1, *hb2;
1270         struct plist_head *head1;
1271         struct futex_q *this, *next;
1272         u32 curval2;
1273
1274         if (requeue_pi) {
1275                 /*
1276                  * requeue_pi requires a pi_state, try to allocate it now
1277                  * without any locks in case it fails.
1278                  */
1279                 if (refill_pi_state_cache())
1280                         return -ENOMEM;
1281                 /*
1282                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1283                  * + nr_requeue, since it acquires the rt_mutex prior to
1284                  * returning to userspace, so as to not leave the rt_mutex with
1285                  * waiters and no owner.  However, second and third wake-ups
1286                  * cannot be predicted as they involve race conditions with the
1287                  * first wake and a fault while looking up the pi_state.  Both
1288                  * pthread_cond_signal() and pthread_cond_broadcast() should
1289                  * use nr_wake=1.
1290                  */
1291                 if (nr_wake != 1)
1292                         return -EINVAL;
1293         }
1294
1295 retry:
1296         if (pi_state != NULL) {
1297                 /*
1298                  * We will have to lookup the pi_state again, so free this one
1299                  * to keep the accounting correct.
1300                  */
1301                 free_pi_state(pi_state);
1302                 pi_state = NULL;
1303         }
1304
1305         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1306         if (unlikely(ret != 0))
1307                 goto out;
1308         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1309                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1310         if (unlikely(ret != 0))
1311                 goto out_put_key1;
1312
1313         hb1 = hash_futex(&key1);
1314         hb2 = hash_futex(&key2);
1315
1316 retry_private:
1317         double_lock_hb(hb1, hb2);
1318
1319         if (likely(cmpval != NULL)) {
1320                 u32 curval;
1321
1322                 ret = get_futex_value_locked(&curval, uaddr1);
1323
1324                 if (unlikely(ret)) {
1325                         double_unlock_hb(hb1, hb2);
1326
1327                         ret = get_user(curval, uaddr1);
1328                         if (ret)
1329                                 goto out_put_keys;
1330
1331                         if (!(flags & FLAGS_SHARED))
1332                                 goto retry_private;
1333
1334                         put_futex_key(&key2);
1335                         put_futex_key(&key1);
1336                         goto retry;
1337                 }
1338                 if (curval != *cmpval) {
1339                         ret = -EAGAIN;
1340                         goto out_unlock;
1341                 }
1342         }
1343
1344         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1345                 /*
1346                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1347                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1348                  * bit.  We force this here where we are able to easily handle
1349                  * faults rather in the requeue loop below.
1350                  */
1351                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1352                                                  &key2, &pi_state, nr_requeue);
1353
1354                 /*
1355                  * At this point the top_waiter has either taken uaddr2 or is
1356                  * waiting on it.  If the former, then the pi_state will not
1357                  * exist yet, look it up one more time to ensure we have a
1358                  * reference to it.
1359                  */
1360                 if (ret == 1) {
1361                         WARN_ON(pi_state);
1362                         drop_count++;
1363                         task_count++;
1364                         ret = get_futex_value_locked(&curval2, uaddr2);
1365                         if (!ret)
1366                                 ret = lookup_pi_state(curval2, hb2, &key2,
1367                                                       &pi_state);
1368                 }
1369
1370                 switch (ret) {
1371                 case 0:
1372                         break;
1373                 case -EFAULT:
1374                         double_unlock_hb(hb1, hb2);
1375                         put_futex_key(&key2);
1376                         put_futex_key(&key1);
1377                         ret = fault_in_user_writeable(uaddr2);
1378                         if (!ret)
1379                                 goto retry;
1380                         goto out;
1381                 case -EAGAIN:
1382                         /* The owner was exiting, try again. */
1383                         double_unlock_hb(hb1, hb2);
1384                         put_futex_key(&key2);
1385                         put_futex_key(&key1);
1386                         cond_resched();
1387                         goto retry;
1388                 default:
1389                         goto out_unlock;
1390                 }
1391         }
1392
1393         head1 = &hb1->chain;
1394         plist_for_each_entry_safe(this, next, head1, list) {
1395                 if (task_count - nr_wake >= nr_requeue)
1396                         break;
1397
1398                 if (!match_futex(&this->key, &key1))
1399                         continue;
1400
1401                 /*
1402                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1403                  * be paired with each other and no other futex ops.
1404                  *
1405                  * We should never be requeueing a futex_q with a pi_state,
1406                  * which is awaiting a futex_unlock_pi().
1407                  */
1408                 if ((requeue_pi && !this->rt_waiter) ||
1409                     (!requeue_pi && this->rt_waiter) ||
1410                     this->pi_state) {
1411                         ret = -EINVAL;
1412                         break;
1413                 }
1414
1415                 /*
1416                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1417                  * lock, we already woke the top_waiter.  If not, it will be
1418                  * woken by futex_unlock_pi().
1419                  */
1420                 if (++task_count <= nr_wake && !requeue_pi) {
1421                         wake_futex(this);
1422                         continue;
1423                 }
1424
1425                 /* Ensure we requeue to the expected futex for requeue_pi. */
1426                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1427                         ret = -EINVAL;
1428                         break;
1429                 }
1430
1431                 /*
1432                  * Requeue nr_requeue waiters and possibly one more in the case
1433                  * of requeue_pi if we couldn't acquire the lock atomically.
1434                  */
1435                 if (requeue_pi) {
1436                         /* Prepare the waiter to take the rt_mutex. */
1437                         atomic_inc(&pi_state->refcount);
1438                         this->pi_state = pi_state;
1439                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1440                                                         this->rt_waiter,
1441                                                         this->task, 1);
1442                         if (ret == 1) {
1443                                 /* We got the lock. */
1444                                 requeue_pi_wake_futex(this, &key2, hb2);
1445                                 drop_count++;
1446                                 continue;
1447                         } else if (ret) {
1448                                 /* -EDEADLK */
1449                                 this->pi_state = NULL;
1450                                 free_pi_state(pi_state);
1451                                 goto out_unlock;
1452                         }
1453                 }
1454                 requeue_futex(this, hb1, hb2, &key2);
1455                 drop_count++;
1456         }
1457
1458 out_unlock:
1459         double_unlock_hb(hb1, hb2);
1460
1461         /*
1462          * drop_futex_key_refs() must be called outside the spinlocks. During
1463          * the requeue we moved futex_q's from the hash bucket at key1 to the
1464          * one at key2 and updated their key pointer.  We no longer need to
1465          * hold the references to key1.
1466          */
1467         while (--drop_count >= 0)
1468                 drop_futex_key_refs(&key1);
1469
1470 out_put_keys:
1471         put_futex_key(&key2);
1472 out_put_key1:
1473         put_futex_key(&key1);
1474 out:
1475         if (pi_state != NULL)
1476                 free_pi_state(pi_state);
1477         return ret ? ret : task_count;
1478 }
1479
1480 /* The key must be already stored in q->key. */
1481 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1482         __acquires(&hb->lock)
1483 {
1484         struct futex_hash_bucket *hb;
1485
1486         hb = hash_futex(&q->key);
1487         q->lock_ptr = &hb->lock;
1488
1489         spin_lock(&hb->lock);
1490         return hb;
1491 }
1492
1493 static inline void
1494 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1495         __releases(&hb->lock)
1496 {
1497         spin_unlock(&hb->lock);
1498 }
1499
1500 /**
1501  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1502  * @q:  The futex_q to enqueue
1503  * @hb: The destination hash bucket
1504  *
1505  * The hb->lock must be held by the caller, and is released here. A call to
1506  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1507  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1508  * or nothing if the unqueue is done as part of the wake process and the unqueue
1509  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1510  * an example).
1511  */
1512 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1513         __releases(&hb->lock)
1514 {
1515         int prio;
1516
1517         /*
1518          * The priority used to register this element is
1519          * - either the real thread-priority for the real-time threads
1520          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1521          * - or MAX_RT_PRIO for non-RT threads.
1522          * Thus, all RT-threads are woken first in priority order, and
1523          * the others are woken last, in FIFO order.
1524          */
1525         prio = min(current->normal_prio, MAX_RT_PRIO);
1526
1527         plist_node_init(&q->list, prio);
1528         plist_add(&q->list, &hb->chain);
1529         q->task = current;
1530         spin_unlock(&hb->lock);
1531 }
1532
1533 /**
1534  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1535  * @q:  The futex_q to unqueue
1536  *
1537  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1538  * be paired with exactly one earlier call to queue_me().
1539  *
1540  * Return:
1541  *   1 - if the futex_q was still queued (and we removed unqueued it);
1542  *   0 - if the futex_q was already removed by the waking thread
1543  */
1544 static int unqueue_me(struct futex_q *q)
1545 {
1546         spinlock_t *lock_ptr;
1547         int ret = 0;
1548
1549         /* In the common case we don't take the spinlock, which is nice. */
1550 retry:
1551         lock_ptr = q->lock_ptr;
1552         barrier();
1553         if (lock_ptr != NULL) {
1554                 spin_lock(lock_ptr);
1555                 /*
1556                  * q->lock_ptr can change between reading it and
1557                  * spin_lock(), causing us to take the wrong lock.  This
1558                  * corrects the race condition.
1559                  *
1560                  * Reasoning goes like this: if we have the wrong lock,
1561                  * q->lock_ptr must have changed (maybe several times)
1562                  * between reading it and the spin_lock().  It can
1563                  * change again after the spin_lock() but only if it was
1564                  * already changed before the spin_lock().  It cannot,
1565                  * however, change back to the original value.  Therefore
1566                  * we can detect whether we acquired the correct lock.
1567                  */
1568                 if (unlikely(lock_ptr != q->lock_ptr)) {
1569                         spin_unlock(lock_ptr);
1570                         goto retry;
1571                 }
1572                 __unqueue_futex(q);
1573
1574                 BUG_ON(q->pi_state);
1575
1576                 spin_unlock(lock_ptr);
1577                 ret = 1;
1578         }
1579
1580         drop_futex_key_refs(&q->key);
1581         return ret;
1582 }
1583
1584 /*
1585  * PI futexes can not be requeued and must remove themself from the
1586  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1587  * and dropped here.
1588  */
1589 static void unqueue_me_pi(struct futex_q *q)
1590         __releases(q->lock_ptr)
1591 {
1592         __unqueue_futex(q);
1593
1594         BUG_ON(!q->pi_state);
1595         free_pi_state(q->pi_state);
1596         q->pi_state = NULL;
1597
1598         spin_unlock(q->lock_ptr);
1599 }
1600
1601 /*
1602  * Fixup the pi_state owner with the new owner.
1603  *
1604  * Must be called with hash bucket lock held and mm->sem held for non
1605  * private futexes.
1606  */
1607 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1608                                 struct task_struct *newowner)
1609 {
1610         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1611         struct futex_pi_state *pi_state = q->pi_state;
1612         struct task_struct *oldowner = pi_state->owner;
1613         u32 uval, uninitialized_var(curval), newval;
1614         int ret;
1615
1616         /* Owner died? */
1617         if (!pi_state->owner)
1618                 newtid |= FUTEX_OWNER_DIED;
1619
1620         /*
1621          * We are here either because we stole the rtmutex from the
1622          * previous highest priority waiter or we are the highest priority
1623          * waiter but failed to get the rtmutex the first time.
1624          * We have to replace the newowner TID in the user space variable.
1625          * This must be atomic as we have to preserve the owner died bit here.
1626          *
1627          * Note: We write the user space value _before_ changing the pi_state
1628          * because we can fault here. Imagine swapped out pages or a fork
1629          * that marked all the anonymous memory readonly for cow.
1630          *
1631          * Modifying pi_state _before_ the user space value would
1632          * leave the pi_state in an inconsistent state when we fault
1633          * here, because we need to drop the hash bucket lock to
1634          * handle the fault. This might be observed in the PID check
1635          * in lookup_pi_state.
1636          */
1637 retry:
1638         if (get_futex_value_locked(&uval, uaddr))
1639                 goto handle_fault;
1640
1641         while (1) {
1642                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1643
1644                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1645                         goto handle_fault;
1646                 if (curval == uval)
1647                         break;
1648                 uval = curval;
1649         }
1650
1651         /*
1652          * We fixed up user space. Now we need to fix the pi_state
1653          * itself.
1654          */
1655         if (pi_state->owner != NULL) {
1656                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1657                 WARN_ON(list_empty(&pi_state->list));
1658                 list_del_init(&pi_state->list);
1659                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1660         }
1661
1662         pi_state->owner = newowner;
1663
1664         raw_spin_lock_irq(&newowner->pi_lock);
1665         WARN_ON(!list_empty(&pi_state->list));
1666         list_add(&pi_state->list, &newowner->pi_state_list);
1667         raw_spin_unlock_irq(&newowner->pi_lock);
1668         return 0;
1669
1670         /*
1671          * To handle the page fault we need to drop the hash bucket
1672          * lock here. That gives the other task (either the highest priority
1673          * waiter itself or the task which stole the rtmutex) the
1674          * chance to try the fixup of the pi_state. So once we are
1675          * back from handling the fault we need to check the pi_state
1676          * after reacquiring the hash bucket lock and before trying to
1677          * do another fixup. When the fixup has been done already we
1678          * simply return.
1679          */
1680 handle_fault:
1681         spin_unlock(q->lock_ptr);
1682
1683         ret = fault_in_user_writeable(uaddr);
1684
1685         spin_lock(q->lock_ptr);
1686
1687         /*
1688          * Check if someone else fixed it for us:
1689          */
1690         if (pi_state->owner != oldowner)
1691                 return 0;
1692
1693         if (ret)
1694                 return ret;
1695
1696         goto retry;
1697 }
1698
1699 static long futex_wait_restart(struct restart_block *restart);
1700
1701 /**
1702  * fixup_owner() - Post lock pi_state and corner case management
1703  * @uaddr:      user address of the futex
1704  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1705  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1706  *
1707  * After attempting to lock an rt_mutex, this function is called to cleanup
1708  * the pi_state owner as well as handle race conditions that may allow us to
1709  * acquire the lock. Must be called with the hb lock held.
1710  *
1711  * Return:
1712  *  1 - success, lock taken;
1713  *  0 - success, lock not taken;
1714  * <0 - on error (-EFAULT)
1715  */
1716 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1717 {
1718         struct task_struct *owner;
1719         int ret = 0;
1720
1721         if (locked) {
1722                 /*
1723                  * Got the lock. We might not be the anticipated owner if we
1724                  * did a lock-steal - fix up the PI-state in that case:
1725                  */
1726                 if (q->pi_state->owner != current)
1727                         ret = fixup_pi_state_owner(uaddr, q, current);
1728                 goto out;
1729         }
1730
1731         /*
1732          * Catch the rare case, where the lock was released when we were on the
1733          * way back before we locked the hash bucket.
1734          */
1735         if (q->pi_state->owner == current) {
1736                 /*
1737                  * Try to get the rt_mutex now. This might fail as some other
1738                  * task acquired the rt_mutex after we removed ourself from the
1739                  * rt_mutex waiters list.
1740                  */
1741                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1742                         locked = 1;
1743                         goto out;
1744                 }
1745
1746                 /*
1747                  * pi_state is incorrect, some other task did a lock steal and
1748                  * we returned due to timeout or signal without taking the
1749                  * rt_mutex. Too late.
1750                  */
1751                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1752                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1753                 if (!owner)
1754                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1755                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1756                 ret = fixup_pi_state_owner(uaddr, q, owner);
1757                 goto out;
1758         }
1759
1760         /*
1761          * Paranoia check. If we did not take the lock, then we should not be
1762          * the owner of the rt_mutex.
1763          */
1764         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1765                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1766                                 "pi-state %p\n", ret,
1767                                 q->pi_state->pi_mutex.owner,
1768                                 q->pi_state->owner);
1769
1770 out:
1771         return ret ? ret : locked;
1772 }
1773
1774 /**
1775  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1776  * @hb:         the futex hash bucket, must be locked by the caller
1777  * @q:          the futex_q to queue up on
1778  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1779  */
1780 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1781                                 struct hrtimer_sleeper *timeout)
1782 {
1783         /*
1784          * The task state is guaranteed to be set before another task can
1785          * wake it. set_current_state() is implemented using set_mb() and
1786          * queue_me() calls spin_unlock() upon completion, both serializing
1787          * access to the hash list and forcing another memory barrier.
1788          */
1789         set_current_state(TASK_INTERRUPTIBLE);
1790         queue_me(q, hb);
1791
1792         /* Arm the timer */
1793         if (timeout) {
1794                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1795                 if (!hrtimer_active(&timeout->timer))
1796                         timeout->task = NULL;
1797         }
1798
1799         /*
1800          * If we have been removed from the hash list, then another task
1801          * has tried to wake us, and we can skip the call to schedule().
1802          */
1803         if (likely(!plist_node_empty(&q->list))) {
1804                 /*
1805                  * If the timer has already expired, current will already be
1806                  * flagged for rescheduling. Only call schedule if there
1807                  * is no timeout, or if it has yet to expire.
1808                  */
1809                 if (!timeout || timeout->task)
1810                         schedule();
1811         }
1812         __set_current_state(TASK_RUNNING);
1813 }
1814
1815 /**
1816  * futex_wait_setup() - Prepare to wait on a futex
1817  * @uaddr:      the futex userspace address
1818  * @val:        the expected value
1819  * @flags:      futex flags (FLAGS_SHARED, etc.)
1820  * @q:          the associated futex_q
1821  * @hb:         storage for hash_bucket pointer to be returned to caller
1822  *
1823  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1824  * compare it with the expected value.  Handle atomic faults internally.
1825  * Return with the hb lock held and a q.key reference on success, and unlocked
1826  * with no q.key reference on failure.
1827  *
1828  * Return:
1829  *  0 - uaddr contains val and hb has been locked;
1830  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1831  */
1832 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1833                            struct futex_q *q, struct futex_hash_bucket **hb)
1834 {
1835         u32 uval;
1836         int ret;
1837
1838         /*
1839          * Access the page AFTER the hash-bucket is locked.
1840          * Order is important:
1841          *
1842          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1843          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1844          *
1845          * The basic logical guarantee of a futex is that it blocks ONLY
1846          * if cond(var) is known to be true at the time of blocking, for
1847          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1848          * would open a race condition where we could block indefinitely with
1849          * cond(var) false, which would violate the guarantee.
1850          *
1851          * On the other hand, we insert q and release the hash-bucket only
1852          * after testing *uaddr.  This guarantees that futex_wait() will NOT
1853          * absorb a wakeup if *uaddr does not match the desired values
1854          * while the syscall executes.
1855          */
1856 retry:
1857         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1858         if (unlikely(ret != 0))
1859                 return ret;
1860
1861 retry_private:
1862         *hb = queue_lock(q);
1863
1864         ret = get_futex_value_locked(&uval, uaddr);
1865
1866         if (ret) {
1867                 queue_unlock(q, *hb);
1868
1869                 ret = get_user(uval, uaddr);
1870                 if (ret)
1871                         goto out;
1872
1873                 if (!(flags & FLAGS_SHARED))
1874                         goto retry_private;
1875
1876                 put_futex_key(&q->key);
1877                 goto retry;
1878         }
1879
1880         if (uval != val) {
1881                 queue_unlock(q, *hb);
1882                 ret = -EWOULDBLOCK;
1883         }
1884
1885 out:
1886         if (ret)
1887                 put_futex_key(&q->key);
1888         return ret;
1889 }
1890
1891 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1892                       ktime_t *abs_time, u32 bitset)
1893 {
1894         struct hrtimer_sleeper timeout, *to = NULL;
1895         struct restart_block *restart;
1896         struct futex_hash_bucket *hb;
1897         struct futex_q q = futex_q_init;
1898         int ret;
1899
1900         if (!bitset)
1901                 return -EINVAL;
1902         q.bitset = bitset;
1903
1904         if (abs_time) {
1905                 to = &timeout;
1906
1907                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1908                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
1909                                       HRTIMER_MODE_ABS);
1910                 hrtimer_init_sleeper(to, current);
1911                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1912                                              current->timer_slack_ns);
1913         }
1914
1915 retry:
1916         /*
1917          * Prepare to wait on uaddr. On success, holds hb lock and increments
1918          * q.key refs.
1919          */
1920         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1921         if (ret)
1922                 goto out;
1923
1924         /* queue_me and wait for wakeup, timeout, or a signal. */
1925         futex_wait_queue_me(hb, &q, to);
1926
1927         /* If we were woken (and unqueued), we succeeded, whatever. */
1928         ret = 0;
1929         /* unqueue_me() drops q.key ref */
1930         if (!unqueue_me(&q))
1931                 goto out;
1932         ret = -ETIMEDOUT;
1933         if (to && !to->task)
1934                 goto out;
1935
1936         /*
1937          * We expect signal_pending(current), but we might be the
1938          * victim of a spurious wakeup as well.
1939          */
1940         if (!signal_pending(current))
1941                 goto retry;
1942
1943         ret = -ERESTARTSYS;
1944         if (!abs_time)
1945                 goto out;
1946
1947         restart = &current_thread_info()->restart_block;
1948         restart->fn = futex_wait_restart;
1949         restart->futex.uaddr = uaddr;
1950         restart->futex.val = val;
1951         restart->futex.time = abs_time->tv64;
1952         restart->futex.bitset = bitset;
1953         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1954
1955         ret = -ERESTART_RESTARTBLOCK;
1956
1957 out:
1958         if (to) {
1959                 hrtimer_cancel(&to->timer);
1960                 destroy_hrtimer_on_stack(&to->timer);
1961         }
1962         return ret;
1963 }
1964
1965
1966 static long futex_wait_restart(struct restart_block *restart)
1967 {
1968         u32 __user *uaddr = restart->futex.uaddr;
1969         ktime_t t, *tp = NULL;
1970
1971         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1972                 t.tv64 = restart->futex.time;
1973                 tp = &t;
1974         }
1975         restart->fn = do_no_restart_syscall;
1976
1977         return (long)futex_wait(uaddr, restart->futex.flags,
1978                                 restart->futex.val, tp, restart->futex.bitset);
1979 }
1980
1981
1982 /*
1983  * Userspace tried a 0 -> TID atomic transition of the futex value
1984  * and failed. The kernel side here does the whole locking operation:
1985  * if there are waiters then it will block, it does PI, etc. (Due to
1986  * races the kernel might see a 0 value of the futex too.)
1987  */
1988 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1989                          ktime_t *time, int trylock)
1990 {
1991         struct hrtimer_sleeper timeout, *to = NULL;
1992         struct futex_hash_bucket *hb;
1993         struct futex_q q = futex_q_init;
1994         int res, ret;
1995
1996         if (refill_pi_state_cache())
1997                 return -ENOMEM;
1998
1999         if (time) {
2000                 to = &timeout;
2001                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2002                                       HRTIMER_MODE_ABS);
2003                 hrtimer_init_sleeper(to, current);
2004                 hrtimer_set_expires(&to->timer, *time);
2005         }
2006
2007 retry:
2008         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2009         if (unlikely(ret != 0))
2010                 goto out;
2011
2012 retry_private:
2013         hb = queue_lock(&q);
2014
2015         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2016         if (unlikely(ret)) {
2017                 switch (ret) {
2018                 case 1:
2019                         /* We got the lock. */
2020                         ret = 0;
2021                         goto out_unlock_put_key;
2022                 case -EFAULT:
2023                         goto uaddr_faulted;
2024                 case -EAGAIN:
2025                         /*
2026                          * Task is exiting and we just wait for the
2027                          * exit to complete.
2028                          */
2029                         queue_unlock(&q, hb);
2030                         put_futex_key(&q.key);
2031                         cond_resched();
2032                         goto retry;
2033                 default:
2034                         goto out_unlock_put_key;
2035                 }
2036         }
2037
2038         /*
2039          * Only actually queue now that the atomic ops are done:
2040          */
2041         queue_me(&q, hb);
2042
2043         WARN_ON(!q.pi_state);
2044         /*
2045          * Block on the PI mutex:
2046          */
2047         if (!trylock)
2048                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2049         else {
2050                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2051                 /* Fixup the trylock return value: */
2052                 ret = ret ? 0 : -EWOULDBLOCK;
2053         }
2054
2055         spin_lock(q.lock_ptr);
2056         /*
2057          * Fixup the pi_state owner and possibly acquire the lock if we
2058          * haven't already.
2059          */
2060         res = fixup_owner(uaddr, &q, !ret);
2061         /*
2062          * If fixup_owner() returned an error, proprogate that.  If it acquired
2063          * the lock, clear our -ETIMEDOUT or -EINTR.
2064          */
2065         if (res)
2066                 ret = (res < 0) ? res : 0;
2067
2068         /*
2069          * If fixup_owner() faulted and was unable to handle the fault, unlock
2070          * it and return the fault to userspace.
2071          */
2072         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2073                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2074
2075         /* Unqueue and drop the lock */
2076         unqueue_me_pi(&q);
2077
2078         goto out_put_key;
2079
2080 out_unlock_put_key:
2081         queue_unlock(&q, hb);
2082
2083 out_put_key:
2084         put_futex_key(&q.key);
2085 out:
2086         if (to)
2087                 destroy_hrtimer_on_stack(&to->timer);
2088         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2089
2090 uaddr_faulted:
2091         queue_unlock(&q, hb);
2092
2093         ret = fault_in_user_writeable(uaddr);
2094         if (ret)
2095                 goto out_put_key;
2096
2097         if (!(flags & FLAGS_SHARED))
2098                 goto retry_private;
2099
2100         put_futex_key(&q.key);
2101         goto retry;
2102 }
2103
2104 /*
2105  * Userspace attempted a TID -> 0 atomic transition, and failed.
2106  * This is the in-kernel slowpath: we look up the PI state (if any),
2107  * and do the rt-mutex unlock.
2108  */
2109 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2110 {
2111         struct futex_hash_bucket *hb;
2112         struct futex_q *this, *next;
2113         struct plist_head *head;
2114         union futex_key key = FUTEX_KEY_INIT;
2115         u32 uval, vpid = task_pid_vnr(current);
2116         int ret;
2117
2118 retry:
2119         if (get_user(uval, uaddr))
2120                 return -EFAULT;
2121         /*
2122          * We release only a lock we actually own:
2123          */
2124         if ((uval & FUTEX_TID_MASK) != vpid)
2125                 return -EPERM;
2126
2127         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2128         if (unlikely(ret != 0))
2129                 goto out;
2130
2131         hb = hash_futex(&key);
2132         spin_lock(&hb->lock);
2133
2134         /*
2135          * To avoid races, try to do the TID -> 0 atomic transition
2136          * again. If it succeeds then we can return without waking
2137          * anyone else up:
2138          */
2139         if (!(uval & FUTEX_OWNER_DIED) &&
2140             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2141                 goto pi_faulted;
2142         /*
2143          * Rare case: we managed to release the lock atomically,
2144          * no need to wake anyone else up:
2145          */
2146         if (unlikely(uval == vpid))
2147                 goto out_unlock;
2148
2149         /*
2150          * Ok, other tasks may need to be woken up - check waiters
2151          * and do the wakeup if necessary:
2152          */
2153         head = &hb->chain;
2154
2155         plist_for_each_entry_safe(this, next, head, list) {
2156                 if (!match_futex (&this->key, &key))
2157                         continue;
2158                 ret = wake_futex_pi(uaddr, uval, this);
2159                 /*
2160                  * The atomic access to the futex value
2161                  * generated a pagefault, so retry the
2162                  * user-access and the wakeup:
2163                  */
2164                 if (ret == -EFAULT)
2165                         goto pi_faulted;
2166                 goto out_unlock;
2167         }
2168         /*
2169          * No waiters - kernel unlocks the futex:
2170          */
2171         if (!(uval & FUTEX_OWNER_DIED)) {
2172                 ret = unlock_futex_pi(uaddr, uval);
2173                 if (ret == -EFAULT)
2174                         goto pi_faulted;
2175         }
2176
2177 out_unlock:
2178         spin_unlock(&hb->lock);
2179         put_futex_key(&key);
2180
2181 out:
2182         return ret;
2183
2184 pi_faulted:
2185         spin_unlock(&hb->lock);
2186         put_futex_key(&key);
2187
2188         ret = fault_in_user_writeable(uaddr);
2189         if (!ret)
2190                 goto retry;
2191
2192         return ret;
2193 }
2194
2195 /**
2196  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2197  * @hb:         the hash_bucket futex_q was original enqueued on
2198  * @q:          the futex_q woken while waiting to be requeued
2199  * @key2:       the futex_key of the requeue target futex
2200  * @timeout:    the timeout associated with the wait (NULL if none)
2201  *
2202  * Detect if the task was woken on the initial futex as opposed to the requeue
2203  * target futex.  If so, determine if it was a timeout or a signal that caused
2204  * the wakeup and return the appropriate error code to the caller.  Must be
2205  * called with the hb lock held.
2206  *
2207  * Return:
2208  *  0 = no early wakeup detected;
2209  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2210  */
2211 static inline
2212 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2213                                    struct futex_q *q, union futex_key *key2,
2214                                    struct hrtimer_sleeper *timeout)
2215 {
2216         int ret = 0;
2217
2218         /*
2219          * With the hb lock held, we avoid races while we process the wakeup.
2220          * We only need to hold hb (and not hb2) to ensure atomicity as the
2221          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2222          * It can't be requeued from uaddr2 to something else since we don't
2223          * support a PI aware source futex for requeue.
2224          */
2225         if (!match_futex(&q->key, key2)) {
2226                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2227                 /*
2228                  * We were woken prior to requeue by a timeout or a signal.
2229                  * Unqueue the futex_q and determine which it was.
2230                  */
2231                 plist_del(&q->list, &hb->chain);
2232
2233                 /* Handle spurious wakeups gracefully */
2234                 ret = -EWOULDBLOCK;
2235                 if (timeout && !timeout->task)
2236                         ret = -ETIMEDOUT;
2237                 else if (signal_pending(current))
2238                         ret = -ERESTARTNOINTR;
2239         }
2240         return ret;
2241 }
2242
2243 /**
2244  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2245  * @uaddr:      the futex we initially wait on (non-pi)
2246  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2247  *              the same type, no requeueing from private to shared, etc.
2248  * @val:        the expected value of uaddr
2249  * @abs_time:   absolute timeout
2250  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2251  * @uaddr2:     the pi futex we will take prior to returning to user-space
2252  *
2253  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2254  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2255  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2256  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2257  * without one, the pi logic would not know which task to boost/deboost, if
2258  * there was a need to.
2259  *
2260  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2261  * via the following--
2262  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2263  * 2) wakeup on uaddr2 after a requeue
2264  * 3) signal
2265  * 4) timeout
2266  *
2267  * If 3, cleanup and return -ERESTARTNOINTR.
2268  *
2269  * If 2, we may then block on trying to take the rt_mutex and return via:
2270  * 5) successful lock
2271  * 6) signal
2272  * 7) timeout
2273  * 8) other lock acquisition failure
2274  *
2275  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2276  *
2277  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2278  *
2279  * Return:
2280  *  0 - On success;
2281  * <0 - On error
2282  */
2283 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2284                                  u32 val, ktime_t *abs_time, u32 bitset,
2285                                  u32 __user *uaddr2)
2286 {
2287         struct hrtimer_sleeper timeout, *to = NULL;
2288         struct rt_mutex_waiter rt_waiter;
2289         struct rt_mutex *pi_mutex = NULL;
2290         struct futex_hash_bucket *hb;
2291         union futex_key key2 = FUTEX_KEY_INIT;
2292         struct futex_q q = futex_q_init;
2293         int res, ret;
2294
2295         if (uaddr == uaddr2)
2296                 return -EINVAL;
2297
2298         if (!bitset)
2299                 return -EINVAL;
2300
2301         if (abs_time) {
2302                 to = &timeout;
2303                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2304                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2305                                       HRTIMER_MODE_ABS);
2306                 hrtimer_init_sleeper(to, current);
2307                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2308                                              current->timer_slack_ns);
2309         }
2310
2311         /*
2312          * The waiter is allocated on our stack, manipulated by the requeue
2313          * code while we sleep on uaddr.
2314          */
2315         debug_rt_mutex_init_waiter(&rt_waiter);
2316         rt_waiter.task = NULL;
2317
2318         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2319         if (unlikely(ret != 0))
2320                 goto out;
2321
2322         q.bitset = bitset;
2323         q.rt_waiter = &rt_waiter;
2324         q.requeue_pi_key = &key2;
2325
2326         /*
2327          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2328          * count.
2329          */
2330         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2331         if (ret)
2332                 goto out_key2;
2333
2334         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2335         futex_wait_queue_me(hb, &q, to);
2336
2337         spin_lock(&hb->lock);
2338         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2339         spin_unlock(&hb->lock);
2340         if (ret)
2341                 goto out_put_keys;
2342
2343         /*
2344          * In order for us to be here, we know our q.key == key2, and since
2345          * we took the hb->lock above, we also know that futex_requeue() has
2346          * completed and we no longer have to concern ourselves with a wakeup
2347          * race with the atomic proxy lock acquisition by the requeue code. The
2348          * futex_requeue dropped our key1 reference and incremented our key2
2349          * reference count.
2350          */
2351
2352         /* Check if the requeue code acquired the second futex for us. */
2353         if (!q.rt_waiter) {
2354                 /*
2355                  * Got the lock. We might not be the anticipated owner if we
2356                  * did a lock-steal - fix up the PI-state in that case.
2357                  */
2358                 if (q.pi_state && (q.pi_state->owner != current)) {
2359                         spin_lock(q.lock_ptr);
2360                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2361                         spin_unlock(q.lock_ptr);
2362                 }
2363         } else {
2364                 /*
2365                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2366                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2367                  * the pi_state.
2368                  */
2369                 WARN_ON(!q.pi_state);
2370                 pi_mutex = &q.pi_state->pi_mutex;
2371                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2372                 debug_rt_mutex_free_waiter(&rt_waiter);
2373
2374                 spin_lock(q.lock_ptr);
2375                 /*
2376                  * Fixup the pi_state owner and possibly acquire the lock if we
2377                  * haven't already.
2378                  */
2379                 res = fixup_owner(uaddr2, &q, !ret);
2380                 /*
2381                  * If fixup_owner() returned an error, proprogate that.  If it
2382                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2383                  */
2384                 if (res)
2385                         ret = (res < 0) ? res : 0;
2386
2387                 /* Unqueue and drop the lock. */
2388                 unqueue_me_pi(&q);
2389         }
2390
2391         /*
2392          * If fixup_pi_state_owner() faulted and was unable to handle the
2393          * fault, unlock the rt_mutex and return the fault to userspace.
2394          */
2395         if (ret == -EFAULT) {
2396                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2397                         rt_mutex_unlock(pi_mutex);
2398         } else if (ret == -EINTR) {
2399                 /*
2400                  * We've already been requeued, but cannot restart by calling
2401                  * futex_lock_pi() directly. We could restart this syscall, but
2402                  * it would detect that the user space "val" changed and return
2403                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2404                  * -EWOULDBLOCK directly.
2405                  */
2406                 ret = -EWOULDBLOCK;
2407         }
2408
2409 out_put_keys:
2410         put_futex_key(&q.key);
2411 out_key2:
2412         put_futex_key(&key2);
2413
2414 out:
2415         if (to) {
2416                 hrtimer_cancel(&to->timer);
2417                 destroy_hrtimer_on_stack(&to->timer);
2418         }
2419         return ret;
2420 }
2421
2422 /*
2423  * Support for robust futexes: the kernel cleans up held futexes at
2424  * thread exit time.
2425  *
2426  * Implementation: user-space maintains a per-thread list of locks it
2427  * is holding. Upon do_exit(), the kernel carefully walks this list,
2428  * and marks all locks that are owned by this thread with the
2429  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2430  * always manipulated with the lock held, so the list is private and
2431  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2432  * field, to allow the kernel to clean up if the thread dies after
2433  * acquiring the lock, but just before it could have added itself to
2434  * the list. There can only be one such pending lock.
2435  */
2436
2437 /**
2438  * sys_set_robust_list() - Set the robust-futex list head of a task
2439  * @head:       pointer to the list-head
2440  * @len:        length of the list-head, as userspace expects
2441  */
2442 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2443                 size_t, len)
2444 {
2445         if (!futex_cmpxchg_enabled)
2446                 return -ENOSYS;
2447         /*
2448          * The kernel knows only one size for now:
2449          */
2450         if (unlikely(len != sizeof(*head)))
2451                 return -EINVAL;
2452
2453         current->robust_list = head;
2454
2455         return 0;
2456 }
2457
2458 /**
2459  * sys_get_robust_list() - Get the robust-futex list head of a task
2460  * @pid:        pid of the process [zero for current task]
2461  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2462  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2463  */
2464 SYSCALL_DEFINE3(get_robust_list, int, pid,
2465                 struct robust_list_head __user * __user *, head_ptr,
2466                 size_t __user *, len_ptr)
2467 {
2468         struct robust_list_head __user *head;
2469         unsigned long ret;
2470         struct task_struct *p;
2471
2472         if (!futex_cmpxchg_enabled)
2473                 return -ENOSYS;
2474
2475         rcu_read_lock();
2476
2477         ret = -ESRCH;
2478         if (!pid)
2479                 p = current;
2480         else {
2481                 p = find_task_by_vpid(pid);
2482                 if (!p)
2483                         goto err_unlock;
2484         }
2485
2486         ret = -EPERM;
2487         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2488                 goto err_unlock;
2489
2490         head = p->robust_list;
2491         rcu_read_unlock();
2492
2493         if (put_user(sizeof(*head), len_ptr))
2494                 return -EFAULT;
2495         return put_user(head, head_ptr);
2496
2497 err_unlock:
2498         rcu_read_unlock();
2499
2500         return ret;
2501 }
2502
2503 /*
2504  * Process a futex-list entry, check whether it's owned by the
2505  * dying task, and do notification if so:
2506  */
2507 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2508 {
2509         u32 uval, uninitialized_var(nval), mval;
2510
2511 retry:
2512         if (get_user(uval, uaddr))
2513                 return -1;
2514
2515         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2516                 /*
2517                  * Ok, this dying thread is truly holding a futex
2518                  * of interest. Set the OWNER_DIED bit atomically
2519                  * via cmpxchg, and if the value had FUTEX_WAITERS
2520                  * set, wake up a waiter (if any). (We have to do a
2521                  * futex_wake() even if OWNER_DIED is already set -
2522                  * to handle the rare but possible case of recursive
2523                  * thread-death.) The rest of the cleanup is done in
2524                  * userspace.
2525                  */
2526                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2527                 /*
2528                  * We are not holding a lock here, but we want to have
2529                  * the pagefault_disable/enable() protection because
2530                  * we want to handle the fault gracefully. If the
2531                  * access fails we try to fault in the futex with R/W
2532                  * verification via get_user_pages. get_user() above
2533                  * does not guarantee R/W access. If that fails we
2534                  * give up and leave the futex locked.
2535                  */
2536                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2537                         if (fault_in_user_writeable(uaddr))
2538                                 return -1;
2539                         goto retry;
2540                 }
2541                 if (nval != uval)
2542                         goto retry;
2543
2544                 /*
2545                  * Wake robust non-PI futexes here. The wakeup of
2546                  * PI futexes happens in exit_pi_state():
2547                  */
2548                 if (!pi && (uval & FUTEX_WAITERS))
2549                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2550         }
2551         return 0;
2552 }
2553
2554 /*
2555  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2556  */
2557 static inline int fetch_robust_entry(struct robust_list __user **entry,
2558                                      struct robust_list __user * __user *head,
2559                                      unsigned int *pi)
2560 {
2561         unsigned long uentry;
2562
2563         if (get_user(uentry, (unsigned long __user *)head))
2564                 return -EFAULT;
2565
2566         *entry = (void __user *)(uentry & ~1UL);
2567         *pi = uentry & 1;
2568
2569         return 0;
2570 }
2571
2572 /*
2573  * Walk curr->robust_list (very carefully, it's a userspace list!)
2574  * and mark any locks found there dead, and notify any waiters.
2575  *
2576  * We silently return on any sign of list-walking problem.
2577  */
2578 void exit_robust_list(struct task_struct *curr)
2579 {
2580         struct robust_list_head __user *head = curr->robust_list;
2581         struct robust_list __user *entry, *next_entry, *pending;
2582         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2583         unsigned int uninitialized_var(next_pi);
2584         unsigned long futex_offset;
2585         int rc;
2586
2587         if (!futex_cmpxchg_enabled)
2588                 return;
2589
2590         /*
2591          * Fetch the list head (which was registered earlier, via
2592          * sys_set_robust_list()):
2593          */
2594         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2595                 return;
2596         /*
2597          * Fetch the relative futex offset:
2598          */
2599         if (get_user(futex_offset, &head->futex_offset))
2600                 return;
2601         /*
2602          * Fetch any possibly pending lock-add first, and handle it
2603          * if it exists:
2604          */
2605         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2606                 return;
2607
2608         next_entry = NULL;      /* avoid warning with gcc */
2609         while (entry != &head->list) {
2610                 /*
2611                  * Fetch the next entry in the list before calling
2612                  * handle_futex_death:
2613                  */
2614                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2615                 /*
2616                  * A pending lock might already be on the list, so
2617                  * don't process it twice:
2618                  */
2619                 if (entry != pending)
2620                         if (handle_futex_death((void __user *)entry + futex_offset,
2621                                                 curr, pi))
2622                                 return;
2623                 if (rc)
2624                         return;
2625                 entry = next_entry;
2626                 pi = next_pi;
2627                 /*
2628                  * Avoid excessively long or circular lists:
2629                  */
2630                 if (!--limit)
2631                         break;
2632
2633                 cond_resched();
2634         }
2635
2636         if (pending)
2637                 handle_futex_death((void __user *)pending + futex_offset,
2638                                    curr, pip);
2639 }
2640
2641 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2642                 u32 __user *uaddr2, u32 val2, u32 val3)
2643 {
2644         int cmd = op & FUTEX_CMD_MASK;
2645         unsigned int flags = 0;
2646
2647         if (!(op & FUTEX_PRIVATE_FLAG))
2648                 flags |= FLAGS_SHARED;
2649
2650         if (op & FUTEX_CLOCK_REALTIME) {
2651                 flags |= FLAGS_CLOCKRT;
2652                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2653                         return -ENOSYS;
2654         }
2655
2656         switch (cmd) {
2657         case FUTEX_LOCK_PI:
2658         case FUTEX_UNLOCK_PI:
2659         case FUTEX_TRYLOCK_PI:
2660         case FUTEX_WAIT_REQUEUE_PI:
2661         case FUTEX_CMP_REQUEUE_PI:
2662                 if (!futex_cmpxchg_enabled)
2663                         return -ENOSYS;
2664         }
2665
2666         switch (cmd) {
2667         case FUTEX_WAIT:
2668                 val3 = FUTEX_BITSET_MATCH_ANY;
2669         case FUTEX_WAIT_BITSET:
2670                 return futex_wait(uaddr, flags, val, timeout, val3);
2671         case FUTEX_WAKE:
2672                 val3 = FUTEX_BITSET_MATCH_ANY;
2673         case FUTEX_WAKE_BITSET:
2674                 return futex_wake(uaddr, flags, val, val3);
2675         case FUTEX_REQUEUE:
2676                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2677         case FUTEX_CMP_REQUEUE:
2678                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2679         case FUTEX_WAKE_OP:
2680                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2681         case FUTEX_LOCK_PI:
2682                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2683         case FUTEX_UNLOCK_PI:
2684                 return futex_unlock_pi(uaddr, flags);
2685         case FUTEX_TRYLOCK_PI:
2686                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2687         case FUTEX_WAIT_REQUEUE_PI:
2688                 val3 = FUTEX_BITSET_MATCH_ANY;
2689                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2690                                              uaddr2);
2691         case FUTEX_CMP_REQUEUE_PI:
2692                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2693         }
2694         return -ENOSYS;
2695 }
2696
2697
2698 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2699                 struct timespec __user *, utime, u32 __user *, uaddr2,
2700                 u32, val3)
2701 {
2702         struct timespec ts;
2703         ktime_t t, *tp = NULL;
2704         u32 val2 = 0;
2705         int cmd = op & FUTEX_CMD_MASK;
2706
2707         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2708                       cmd == FUTEX_WAIT_BITSET ||
2709                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2710                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2711                         return -EFAULT;
2712                 if (!timespec_valid(&ts))
2713                         return -EINVAL;
2714
2715                 t = timespec_to_ktime(ts);
2716                 if (cmd == FUTEX_WAIT)
2717                         t = ktime_add_safe(ktime_get(), t);
2718                 tp = &t;
2719         }
2720         /*
2721          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2722          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2723          */
2724         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2725             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2726                 val2 = (u32) (unsigned long) utime;
2727
2728         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2729 }
2730
2731 static int __init futex_init(void)
2732 {
2733         u32 curval;
2734         int i;
2735
2736         /*
2737          * This will fail and we want it. Some arch implementations do
2738          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2739          * functionality. We want to know that before we call in any
2740          * of the complex code paths. Also we want to prevent
2741          * registration of robust lists in that case. NULL is
2742          * guaranteed to fault and we get -EFAULT on functional
2743          * implementation, the non-functional ones will return
2744          * -ENOSYS.
2745          */
2746         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2747                 futex_cmpxchg_enabled = 1;
2748
2749         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2750                 plist_head_init(&futex_queues[i].chain);
2751                 spin_lock_init(&futex_queues[i].lock);
2752         }
2753
2754         return 0;
2755 }
2756 __initcall(futex_init);