futex: Always cleanup owner tid in unlock_pi
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * Basic futex operation and ordering guarantees:
74  *
75  * The waiter reads the futex value in user space and calls
76  * futex_wait(). This function computes the hash bucket and acquires
77  * the hash bucket lock. After that it reads the futex user space value
78  * again and verifies that the data has not changed. If it has not changed
79  * it enqueues itself into the hash bucket, releases the hash bucket lock
80  * and schedules.
81  *
82  * The waker side modifies the user space value of the futex and calls
83  * futex_wake(). This function computes the hash bucket and acquires the
84  * hash bucket lock. Then it looks for waiters on that futex in the hash
85  * bucket and wakes them.
86  *
87  * In futex wake up scenarios where no tasks are blocked on a futex, taking
88  * the hb spinlock can be avoided and simply return. In order for this
89  * optimization to work, ordering guarantees must exist so that the waiter
90  * being added to the list is acknowledged when the list is concurrently being
91  * checked by the waker, avoiding scenarios like the following:
92  *
93  * CPU 0                               CPU 1
94  * val = *futex;
95  * sys_futex(WAIT, futex, val);
96  *   futex_wait(futex, val);
97  *   uval = *futex;
98  *                                     *futex = newval;
99  *                                     sys_futex(WAKE, futex);
100  *                                       futex_wake(futex);
101  *                                       if (queue_empty())
102  *                                         return;
103  *   if (uval == val)
104  *      lock(hash_bucket(futex));
105  *      queue();
106  *     unlock(hash_bucket(futex));
107  *     schedule();
108  *
109  * This would cause the waiter on CPU 0 to wait forever because it
110  * missed the transition of the user space value from val to newval
111  * and the waker did not find the waiter in the hash bucket queue.
112  *
113  * The correct serialization ensures that a waiter either observes
114  * the changed user space value before blocking or is woken by a
115  * concurrent waker:
116  *
117  * CPU 0                                 CPU 1
118  * val = *futex;
119  * sys_futex(WAIT, futex, val);
120  *   futex_wait(futex, val);
121  *
122  *   waiters++;
123  *   mb(); (A) <-- paired with -.
124  *                              |
125  *   lock(hash_bucket(futex));  |
126  *                              |
127  *   uval = *futex;             |
128  *                              |        *futex = newval;
129  *                              |        sys_futex(WAKE, futex);
130  *                              |          futex_wake(futex);
131  *                              |
132  *                              `------->  mb(); (B)
133  *   if (uval == val)
134  *     queue();
135  *     unlock(hash_bucket(futex));
136  *     schedule();                         if (waiters)
137  *                                           lock(hash_bucket(futex));
138  *                                           wake_waiters(futex);
139  *                                           unlock(hash_bucket(futex));
140  *
141  * Where (A) orders the waiters increment and the futex value read -- this
142  * is guaranteed by the head counter in the hb spinlock; and where (B)
143  * orders the write to futex and the waiters read -- this is done by the
144  * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
145  * depending on the futex type.
146  *
147  * This yields the following case (where X:=waiters, Y:=futex):
148  *
149  *      X = Y = 0
150  *
151  *      w[X]=1          w[Y]=1
152  *      MB              MB
153  *      r[Y]=y          r[X]=x
154  *
155  * Which guarantees that x==0 && y==0 is impossible; which translates back into
156  * the guarantee that we cannot both miss the futex variable change and the
157  * enqueue.
158  */
159
160 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
161 int __read_mostly futex_cmpxchg_enabled;
162 #endif
163
164 /*
165  * Futex flags used to encode options to functions and preserve them across
166  * restarts.
167  */
168 #define FLAGS_SHARED            0x01
169 #define FLAGS_CLOCKRT           0x02
170 #define FLAGS_HAS_TIMEOUT       0x04
171
172 /*
173  * Priority Inheritance state:
174  */
175 struct futex_pi_state {
176         /*
177          * list of 'owned' pi_state instances - these have to be
178          * cleaned up in do_exit() if the task exits prematurely:
179          */
180         struct list_head list;
181
182         /*
183          * The PI object:
184          */
185         struct rt_mutex pi_mutex;
186
187         struct task_struct *owner;
188         atomic_t refcount;
189
190         union futex_key key;
191 };
192
193 /**
194  * struct futex_q - The hashed futex queue entry, one per waiting task
195  * @list:               priority-sorted list of tasks waiting on this futex
196  * @task:               the task waiting on the futex
197  * @lock_ptr:           the hash bucket lock
198  * @key:                the key the futex is hashed on
199  * @pi_state:           optional priority inheritance state
200  * @rt_waiter:          rt_waiter storage for use with requeue_pi
201  * @requeue_pi_key:     the requeue_pi target futex key
202  * @bitset:             bitset for the optional bitmasked wakeup
203  *
204  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
205  * we can wake only the relevant ones (hashed queues may be shared).
206  *
207  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
208  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
209  * The order of wakeup is always to make the first condition true, then
210  * the second.
211  *
212  * PI futexes are typically woken before they are removed from the hash list via
213  * the rt_mutex code. See unqueue_me_pi().
214  */
215 struct futex_q {
216         struct plist_node list;
217
218         struct task_struct *task;
219         spinlock_t *lock_ptr;
220         union futex_key key;
221         struct futex_pi_state *pi_state;
222         struct rt_mutex_waiter *rt_waiter;
223         union futex_key *requeue_pi_key;
224         u32 bitset;
225 };
226
227 static const struct futex_q futex_q_init = {
228         /* list gets initialized in queue_me()*/
229         .key = FUTEX_KEY_INIT,
230         .bitset = FUTEX_BITSET_MATCH_ANY
231 };
232
233 /*
234  * Hash buckets are shared by all the futex_keys that hash to the same
235  * location.  Each key may have multiple futex_q structures, one for each task
236  * waiting on a futex.
237  */
238 struct futex_hash_bucket {
239         atomic_t waiters;
240         spinlock_t lock;
241         struct plist_head chain;
242 } ____cacheline_aligned_in_smp;
243
244 static unsigned long __read_mostly futex_hashsize;
245
246 static struct futex_hash_bucket *futex_queues;
247
248 static inline void futex_get_mm(union futex_key *key)
249 {
250         atomic_inc(&key->private.mm->mm_count);
251         /*
252          * Ensure futex_get_mm() implies a full barrier such that
253          * get_futex_key() implies a full barrier. This is relied upon
254          * as full barrier (B), see the ordering comment above.
255          */
256         smp_mb__after_atomic_inc();
257 }
258
259 /*
260  * Reflects a new waiter being added to the waitqueue.
261  */
262 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
263 {
264 #ifdef CONFIG_SMP
265         atomic_inc(&hb->waiters);
266         /*
267          * Full barrier (A), see the ordering comment above.
268          */
269         smp_mb__after_atomic_inc();
270 #endif
271 }
272
273 /*
274  * Reflects a waiter being removed from the waitqueue by wakeup
275  * paths.
276  */
277 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
278 {
279 #ifdef CONFIG_SMP
280         atomic_dec(&hb->waiters);
281 #endif
282 }
283
284 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
285 {
286 #ifdef CONFIG_SMP
287         return atomic_read(&hb->waiters);
288 #else
289         return 1;
290 #endif
291 }
292
293 /*
294  * We hash on the keys returned from get_futex_key (see below).
295  */
296 static struct futex_hash_bucket *hash_futex(union futex_key *key)
297 {
298         u32 hash = jhash2((u32*)&key->both.word,
299                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
300                           key->both.offset);
301         return &futex_queues[hash & (futex_hashsize - 1)];
302 }
303
304 /*
305  * Return 1 if two futex_keys are equal, 0 otherwise.
306  */
307 static inline int match_futex(union futex_key *key1, union futex_key *key2)
308 {
309         return (key1 && key2
310                 && key1->both.word == key2->both.word
311                 && key1->both.ptr == key2->both.ptr
312                 && key1->both.offset == key2->both.offset);
313 }
314
315 /*
316  * Take a reference to the resource addressed by a key.
317  * Can be called while holding spinlocks.
318  *
319  */
320 static void get_futex_key_refs(union futex_key *key)
321 {
322         if (!key->both.ptr)
323                 return;
324
325         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
326         case FUT_OFF_INODE:
327                 ihold(key->shared.inode); /* implies MB (B) */
328                 break;
329         case FUT_OFF_MMSHARED:
330                 futex_get_mm(key); /* implies MB (B) */
331                 break;
332         }
333 }
334
335 /*
336  * Drop a reference to the resource addressed by a key.
337  * The hash bucket spinlock must not be held.
338  */
339 static void drop_futex_key_refs(union futex_key *key)
340 {
341         if (!key->both.ptr) {
342                 /* If we're here then we tried to put a key we failed to get */
343                 WARN_ON_ONCE(1);
344                 return;
345         }
346
347         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
348         case FUT_OFF_INODE:
349                 iput(key->shared.inode);
350                 break;
351         case FUT_OFF_MMSHARED:
352                 mmdrop(key->private.mm);
353                 break;
354         }
355 }
356
357 /**
358  * get_futex_key() - Get parameters which are the keys for a futex
359  * @uaddr:      virtual address of the futex
360  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
361  * @key:        address where result is stored.
362  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
363  *              VERIFY_WRITE)
364  *
365  * Return: a negative error code or 0
366  *
367  * The key words are stored in *key on success.
368  *
369  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
370  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
371  * We can usually work out the index without swapping in the page.
372  *
373  * lock_page() might sleep, the caller should not hold a spinlock.
374  */
375 static int
376 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
377 {
378         unsigned long address = (unsigned long)uaddr;
379         struct mm_struct *mm = current->mm;
380         struct page *page, *page_head;
381         int err, ro = 0;
382
383         /*
384          * The futex address must be "naturally" aligned.
385          */
386         key->both.offset = address % PAGE_SIZE;
387         if (unlikely((address % sizeof(u32)) != 0))
388                 return -EINVAL;
389         address -= key->both.offset;
390
391         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
392                 return -EFAULT;
393
394         /*
395          * PROCESS_PRIVATE futexes are fast.
396          * As the mm cannot disappear under us and the 'key' only needs
397          * virtual address, we dont even have to find the underlying vma.
398          * Note : We do have to check 'uaddr' is a valid user address,
399          *        but access_ok() should be faster than find_vma()
400          */
401         if (!fshared) {
402                 key->private.mm = mm;
403                 key->private.address = address;
404                 get_futex_key_refs(key);  /* implies MB (B) */
405                 return 0;
406         }
407
408 again:
409         err = get_user_pages_fast(address, 1, 1, &page);
410         /*
411          * If write access is not required (eg. FUTEX_WAIT), try
412          * and get read-only access.
413          */
414         if (err == -EFAULT && rw == VERIFY_READ) {
415                 err = get_user_pages_fast(address, 1, 0, &page);
416                 ro = 1;
417         }
418         if (err < 0)
419                 return err;
420         else
421                 err = 0;
422
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424         page_head = page;
425         if (unlikely(PageTail(page))) {
426                 put_page(page);
427                 /* serialize against __split_huge_page_splitting() */
428                 local_irq_disable();
429                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
430                         page_head = compound_head(page);
431                         /*
432                          * page_head is valid pointer but we must pin
433                          * it before taking the PG_lock and/or
434                          * PG_compound_lock. The moment we re-enable
435                          * irqs __split_huge_page_splitting() can
436                          * return and the head page can be freed from
437                          * under us. We can't take the PG_lock and/or
438                          * PG_compound_lock on a page that could be
439                          * freed from under us.
440                          */
441                         if (page != page_head) {
442                                 get_page(page_head);
443                                 put_page(page);
444                         }
445                         local_irq_enable();
446                 } else {
447                         local_irq_enable();
448                         goto again;
449                 }
450         }
451 #else
452         page_head = compound_head(page);
453         if (page != page_head) {
454                 get_page(page_head);
455                 put_page(page);
456         }
457 #endif
458
459         lock_page(page_head);
460
461         /*
462          * If page_head->mapping is NULL, then it cannot be a PageAnon
463          * page; but it might be the ZERO_PAGE or in the gate area or
464          * in a special mapping (all cases which we are happy to fail);
465          * or it may have been a good file page when get_user_pages_fast
466          * found it, but truncated or holepunched or subjected to
467          * invalidate_complete_page2 before we got the page lock (also
468          * cases which we are happy to fail).  And we hold a reference,
469          * so refcount care in invalidate_complete_page's remove_mapping
470          * prevents drop_caches from setting mapping to NULL beneath us.
471          *
472          * The case we do have to guard against is when memory pressure made
473          * shmem_writepage move it from filecache to swapcache beneath us:
474          * an unlikely race, but we do need to retry for page_head->mapping.
475          */
476         if (!page_head->mapping) {
477                 int shmem_swizzled = PageSwapCache(page_head);
478                 unlock_page(page_head);
479                 put_page(page_head);
480                 if (shmem_swizzled)
481                         goto again;
482                 return -EFAULT;
483         }
484
485         /*
486          * Private mappings are handled in a simple way.
487          *
488          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
489          * it's a read-only handle, it's expected that futexes attach to
490          * the object not the particular process.
491          */
492         if (PageAnon(page_head)) {
493                 /*
494                  * A RO anonymous page will never change and thus doesn't make
495                  * sense for futex operations.
496                  */
497                 if (ro) {
498                         err = -EFAULT;
499                         goto out;
500                 }
501
502                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
503                 key->private.mm = mm;
504                 key->private.address = address;
505         } else {
506                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
507                 key->shared.inode = page_head->mapping->host;
508                 key->shared.pgoff = basepage_index(page);
509         }
510
511         get_futex_key_refs(key); /* implies MB (B) */
512
513 out:
514         unlock_page(page_head);
515         put_page(page_head);
516         return err;
517 }
518
519 static inline void put_futex_key(union futex_key *key)
520 {
521         drop_futex_key_refs(key);
522 }
523
524 /**
525  * fault_in_user_writeable() - Fault in user address and verify RW access
526  * @uaddr:      pointer to faulting user space address
527  *
528  * Slow path to fixup the fault we just took in the atomic write
529  * access to @uaddr.
530  *
531  * We have no generic implementation of a non-destructive write to the
532  * user address. We know that we faulted in the atomic pagefault
533  * disabled section so we can as well avoid the #PF overhead by
534  * calling get_user_pages() right away.
535  */
536 static int fault_in_user_writeable(u32 __user *uaddr)
537 {
538         struct mm_struct *mm = current->mm;
539         int ret;
540
541         down_read(&mm->mmap_sem);
542         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
543                                FAULT_FLAG_WRITE);
544         up_read(&mm->mmap_sem);
545
546         return ret < 0 ? ret : 0;
547 }
548
549 /**
550  * futex_top_waiter() - Return the highest priority waiter on a futex
551  * @hb:         the hash bucket the futex_q's reside in
552  * @key:        the futex key (to distinguish it from other futex futex_q's)
553  *
554  * Must be called with the hb lock held.
555  */
556 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
557                                         union futex_key *key)
558 {
559         struct futex_q *this;
560
561         plist_for_each_entry(this, &hb->chain, list) {
562                 if (match_futex(&this->key, key))
563                         return this;
564         }
565         return NULL;
566 }
567
568 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
569                                       u32 uval, u32 newval)
570 {
571         int ret;
572
573         pagefault_disable();
574         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
575         pagefault_enable();
576
577         return ret;
578 }
579
580 static int get_futex_value_locked(u32 *dest, u32 __user *from)
581 {
582         int ret;
583
584         pagefault_disable();
585         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
586         pagefault_enable();
587
588         return ret ? -EFAULT : 0;
589 }
590
591
592 /*
593  * PI code:
594  */
595 static int refill_pi_state_cache(void)
596 {
597         struct futex_pi_state *pi_state;
598
599         if (likely(current->pi_state_cache))
600                 return 0;
601
602         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
603
604         if (!pi_state)
605                 return -ENOMEM;
606
607         INIT_LIST_HEAD(&pi_state->list);
608         /* pi_mutex gets initialized later */
609         pi_state->owner = NULL;
610         atomic_set(&pi_state->refcount, 1);
611         pi_state->key = FUTEX_KEY_INIT;
612
613         current->pi_state_cache = pi_state;
614
615         return 0;
616 }
617
618 static struct futex_pi_state * alloc_pi_state(void)
619 {
620         struct futex_pi_state *pi_state = current->pi_state_cache;
621
622         WARN_ON(!pi_state);
623         current->pi_state_cache = NULL;
624
625         return pi_state;
626 }
627
628 static void free_pi_state(struct futex_pi_state *pi_state)
629 {
630         if (!atomic_dec_and_test(&pi_state->refcount))
631                 return;
632
633         /*
634          * If pi_state->owner is NULL, the owner is most probably dying
635          * and has cleaned up the pi_state already
636          */
637         if (pi_state->owner) {
638                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
639                 list_del_init(&pi_state->list);
640                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
641
642                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
643         }
644
645         if (current->pi_state_cache)
646                 kfree(pi_state);
647         else {
648                 /*
649                  * pi_state->list is already empty.
650                  * clear pi_state->owner.
651                  * refcount is at 0 - put it back to 1.
652                  */
653                 pi_state->owner = NULL;
654                 atomic_set(&pi_state->refcount, 1);
655                 current->pi_state_cache = pi_state;
656         }
657 }
658
659 /*
660  * Look up the task based on what TID userspace gave us.
661  * We dont trust it.
662  */
663 static struct task_struct * futex_find_get_task(pid_t pid)
664 {
665         struct task_struct *p;
666
667         rcu_read_lock();
668         p = find_task_by_vpid(pid);
669         if (p)
670                 get_task_struct(p);
671
672         rcu_read_unlock();
673
674         return p;
675 }
676
677 /*
678  * This task is holding PI mutexes at exit time => bad.
679  * Kernel cleans up PI-state, but userspace is likely hosed.
680  * (Robust-futex cleanup is separate and might save the day for userspace.)
681  */
682 void exit_pi_state_list(struct task_struct *curr)
683 {
684         struct list_head *next, *head = &curr->pi_state_list;
685         struct futex_pi_state *pi_state;
686         struct futex_hash_bucket *hb;
687         union futex_key key = FUTEX_KEY_INIT;
688
689         if (!futex_cmpxchg_enabled)
690                 return;
691         /*
692          * We are a ZOMBIE and nobody can enqueue itself on
693          * pi_state_list anymore, but we have to be careful
694          * versus waiters unqueueing themselves:
695          */
696         raw_spin_lock_irq(&curr->pi_lock);
697         while (!list_empty(head)) {
698
699                 next = head->next;
700                 pi_state = list_entry(next, struct futex_pi_state, list);
701                 key = pi_state->key;
702                 hb = hash_futex(&key);
703                 raw_spin_unlock_irq(&curr->pi_lock);
704
705                 spin_lock(&hb->lock);
706
707                 raw_spin_lock_irq(&curr->pi_lock);
708                 /*
709                  * We dropped the pi-lock, so re-check whether this
710                  * task still owns the PI-state:
711                  */
712                 if (head->next != next) {
713                         spin_unlock(&hb->lock);
714                         continue;
715                 }
716
717                 WARN_ON(pi_state->owner != curr);
718                 WARN_ON(list_empty(&pi_state->list));
719                 list_del_init(&pi_state->list);
720                 pi_state->owner = NULL;
721                 raw_spin_unlock_irq(&curr->pi_lock);
722
723                 rt_mutex_unlock(&pi_state->pi_mutex);
724
725                 spin_unlock(&hb->lock);
726
727                 raw_spin_lock_irq(&curr->pi_lock);
728         }
729         raw_spin_unlock_irq(&curr->pi_lock);
730 }
731
732 static int
733 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
734                 union futex_key *key, struct futex_pi_state **ps,
735                 struct task_struct *task)
736 {
737         struct futex_pi_state *pi_state = NULL;
738         struct futex_q *this, *next;
739         struct task_struct *p;
740         pid_t pid = uval & FUTEX_TID_MASK;
741
742         plist_for_each_entry_safe(this, next, &hb->chain, list) {
743                 if (match_futex(&this->key, key)) {
744                         /*
745                          * Another waiter already exists - bump up
746                          * the refcount and return its pi_state:
747                          */
748                         pi_state = this->pi_state;
749                         /*
750                          * Userspace might have messed up non-PI and PI futexes
751                          */
752                         if (unlikely(!pi_state))
753                                 return -EINVAL;
754
755                         WARN_ON(!atomic_read(&pi_state->refcount));
756
757                         /*
758                          * When pi_state->owner is NULL then the owner died
759                          * and another waiter is on the fly. pi_state->owner
760                          * is fixed up by the task which acquires
761                          * pi_state->rt_mutex.
762                          *
763                          * We do not check for pid == 0 which can happen when
764                          * the owner died and robust_list_exit() cleared the
765                          * TID.
766                          */
767                         if (pid && pi_state->owner) {
768                                 /*
769                                  * Bail out if user space manipulated the
770                                  * futex value.
771                                  */
772                                 if (pid != task_pid_vnr(pi_state->owner))
773                                         return -EINVAL;
774                         }
775
776                         /*
777                          * Protect against a corrupted uval. If uval
778                          * is 0x80000000 then pid is 0 and the waiter
779                          * bit is set. So the deadlock check in the
780                          * calling code has failed and we did not fall
781                          * into the check above due to !pid.
782                          */
783                         if (task && pi_state->owner == task)
784                                 return -EDEADLK;
785
786                         atomic_inc(&pi_state->refcount);
787                         *ps = pi_state;
788
789                         return 0;
790                 }
791         }
792
793         /*
794          * We are the first waiter - try to look up the real owner and attach
795          * the new pi_state to it, but bail out when TID = 0
796          */
797         if (!pid)
798                 return -ESRCH;
799         p = futex_find_get_task(pid);
800         if (!p)
801                 return -ESRCH;
802
803         if (!p->mm) {
804                 put_task_struct(p);
805                 return -EPERM;
806         }
807
808         /*
809          * We need to look at the task state flags to figure out,
810          * whether the task is exiting. To protect against the do_exit
811          * change of the task flags, we do this protected by
812          * p->pi_lock:
813          */
814         raw_spin_lock_irq(&p->pi_lock);
815         if (unlikely(p->flags & PF_EXITING)) {
816                 /*
817                  * The task is on the way out. When PF_EXITPIDONE is
818                  * set, we know that the task has finished the
819                  * cleanup:
820                  */
821                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
822
823                 raw_spin_unlock_irq(&p->pi_lock);
824                 put_task_struct(p);
825                 return ret;
826         }
827
828         pi_state = alloc_pi_state();
829
830         /*
831          * Initialize the pi_mutex in locked state and make 'p'
832          * the owner of it:
833          */
834         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
835
836         /* Store the key for possible exit cleanups: */
837         pi_state->key = *key;
838
839         WARN_ON(!list_empty(&pi_state->list));
840         list_add(&pi_state->list, &p->pi_state_list);
841         pi_state->owner = p;
842         raw_spin_unlock_irq(&p->pi_lock);
843
844         put_task_struct(p);
845
846         *ps = pi_state;
847
848         return 0;
849 }
850
851 /**
852  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
853  * @uaddr:              the pi futex user address
854  * @hb:                 the pi futex hash bucket
855  * @key:                the futex key associated with uaddr and hb
856  * @ps:                 the pi_state pointer where we store the result of the
857  *                      lookup
858  * @task:               the task to perform the atomic lock work for.  This will
859  *                      be "current" except in the case of requeue pi.
860  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
861  *
862  * Return:
863  *  0 - ready to wait;
864  *  1 - acquired the lock;
865  * <0 - error
866  *
867  * The hb->lock and futex_key refs shall be held by the caller.
868  */
869 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
870                                 union futex_key *key,
871                                 struct futex_pi_state **ps,
872                                 struct task_struct *task, int set_waiters)
873 {
874         int lock_taken, ret, force_take = 0;
875         u32 uval, newval, curval, vpid = task_pid_vnr(task);
876
877 retry:
878         ret = lock_taken = 0;
879
880         /*
881          * To avoid races, we attempt to take the lock here again
882          * (by doing a 0 -> TID atomic cmpxchg), while holding all
883          * the locks. It will most likely not succeed.
884          */
885         newval = vpid;
886         if (set_waiters)
887                 newval |= FUTEX_WAITERS;
888
889         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
890                 return -EFAULT;
891
892         /*
893          * Detect deadlocks.
894          */
895         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
896                 return -EDEADLK;
897
898         /*
899          * Surprise - we got the lock, but we do not trust user space at all.
900          */
901         if (unlikely(!curval)) {
902                 /*
903                  * We verify whether there is kernel state for this
904                  * futex. If not, we can safely assume, that the 0 ->
905                  * TID transition is correct. If state exists, we do
906                  * not bother to fixup the user space state as it was
907                  * corrupted already.
908                  */
909                 return futex_top_waiter(hb, key) ? -EINVAL : 1;
910         }
911
912         uval = curval;
913
914         /*
915          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
916          * to wake at the next unlock.
917          */
918         newval = curval | FUTEX_WAITERS;
919
920         /*
921          * Should we force take the futex? See below.
922          */
923         if (unlikely(force_take)) {
924                 /*
925                  * Keep the OWNER_DIED and the WAITERS bit and set the
926                  * new TID value.
927                  */
928                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
929                 force_take = 0;
930                 lock_taken = 1;
931         }
932
933         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
934                 return -EFAULT;
935         if (unlikely(curval != uval))
936                 goto retry;
937
938         /*
939          * We took the lock due to forced take over.
940          */
941         if (unlikely(lock_taken))
942                 return 1;
943
944         /*
945          * We dont have the lock. Look up the PI state (or create it if
946          * we are the first waiter):
947          */
948         ret = lookup_pi_state(uval, hb, key, ps, task);
949
950         if (unlikely(ret)) {
951                 switch (ret) {
952                 case -ESRCH:
953                         /*
954                          * We failed to find an owner for this
955                          * futex. So we have no pi_state to block
956                          * on. This can happen in two cases:
957                          *
958                          * 1) The owner died
959                          * 2) A stale FUTEX_WAITERS bit
960                          *
961                          * Re-read the futex value.
962                          */
963                         if (get_futex_value_locked(&curval, uaddr))
964                                 return -EFAULT;
965
966                         /*
967                          * If the owner died or we have a stale
968                          * WAITERS bit the owner TID in the user space
969                          * futex is 0.
970                          */
971                         if (!(curval & FUTEX_TID_MASK)) {
972                                 force_take = 1;
973                                 goto retry;
974                         }
975                 default:
976                         break;
977                 }
978         }
979
980         return ret;
981 }
982
983 /**
984  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
985  * @q:  The futex_q to unqueue
986  *
987  * The q->lock_ptr must not be NULL and must be held by the caller.
988  */
989 static void __unqueue_futex(struct futex_q *q)
990 {
991         struct futex_hash_bucket *hb;
992
993         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
994             || WARN_ON(plist_node_empty(&q->list)))
995                 return;
996
997         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
998         plist_del(&q->list, &hb->chain);
999         hb_waiters_dec(hb);
1000 }
1001
1002 /*
1003  * The hash bucket lock must be held when this is called.
1004  * Afterwards, the futex_q must not be accessed.
1005  */
1006 static void wake_futex(struct futex_q *q)
1007 {
1008         struct task_struct *p = q->task;
1009
1010         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1011                 return;
1012
1013         /*
1014          * We set q->lock_ptr = NULL _before_ we wake up the task. If
1015          * a non-futex wake up happens on another CPU then the task
1016          * might exit and p would dereference a non-existing task
1017          * struct. Prevent this by holding a reference on p across the
1018          * wake up.
1019          */
1020         get_task_struct(p);
1021
1022         __unqueue_futex(q);
1023         /*
1024          * The waiting task can free the futex_q as soon as
1025          * q->lock_ptr = NULL is written, without taking any locks. A
1026          * memory barrier is required here to prevent the following
1027          * store to lock_ptr from getting ahead of the plist_del.
1028          */
1029         smp_wmb();
1030         q->lock_ptr = NULL;
1031
1032         wake_up_state(p, TASK_NORMAL);
1033         put_task_struct(p);
1034 }
1035
1036 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1037 {
1038         struct task_struct *new_owner;
1039         struct futex_pi_state *pi_state = this->pi_state;
1040         u32 uninitialized_var(curval), newval;
1041         int ret = 0;
1042
1043         if (!pi_state)
1044                 return -EINVAL;
1045
1046         /*
1047          * If current does not own the pi_state then the futex is
1048          * inconsistent and user space fiddled with the futex value.
1049          */
1050         if (pi_state->owner != current)
1051                 return -EINVAL;
1052
1053         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1054         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1055
1056         /*
1057          * It is possible that the next waiter (the one that brought
1058          * this owner to the kernel) timed out and is no longer
1059          * waiting on the lock.
1060          */
1061         if (!new_owner)
1062                 new_owner = this->task;
1063
1064         /*
1065          * We pass it to the next owner. The WAITERS bit is always
1066          * kept enabled while there is PI state around. We cleanup the
1067          * owner died bit, because we are the owner.
1068          */
1069         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1070
1071         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1072                 ret = -EFAULT;
1073         else if (curval != uval)
1074                 ret = -EINVAL;
1075         if (ret) {
1076                 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1077                 return ret;
1078         }
1079
1080         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1081         WARN_ON(list_empty(&pi_state->list));
1082         list_del_init(&pi_state->list);
1083         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1084
1085         raw_spin_lock_irq(&new_owner->pi_lock);
1086         WARN_ON(!list_empty(&pi_state->list));
1087         list_add(&pi_state->list, &new_owner->pi_state_list);
1088         pi_state->owner = new_owner;
1089         raw_spin_unlock_irq(&new_owner->pi_lock);
1090
1091         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1092         rt_mutex_unlock(&pi_state->pi_mutex);
1093
1094         return 0;
1095 }
1096
1097 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1098 {
1099         u32 uninitialized_var(oldval);
1100
1101         /*
1102          * There is no waiter, so we unlock the futex. The owner died
1103          * bit has not to be preserved here. We are the owner:
1104          */
1105         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1106                 return -EFAULT;
1107         if (oldval != uval)
1108                 return -EAGAIN;
1109
1110         return 0;
1111 }
1112
1113 /*
1114  * Express the locking dependencies for lockdep:
1115  */
1116 static inline void
1117 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1118 {
1119         if (hb1 <= hb2) {
1120                 spin_lock(&hb1->lock);
1121                 if (hb1 < hb2)
1122                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1123         } else { /* hb1 > hb2 */
1124                 spin_lock(&hb2->lock);
1125                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1126         }
1127 }
1128
1129 static inline void
1130 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1131 {
1132         spin_unlock(&hb1->lock);
1133         if (hb1 != hb2)
1134                 spin_unlock(&hb2->lock);
1135 }
1136
1137 /*
1138  * Wake up waiters matching bitset queued on this futex (uaddr).
1139  */
1140 static int
1141 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1142 {
1143         struct futex_hash_bucket *hb;
1144         struct futex_q *this, *next;
1145         union futex_key key = FUTEX_KEY_INIT;
1146         int ret;
1147
1148         if (!bitset)
1149                 return -EINVAL;
1150
1151         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1152         if (unlikely(ret != 0))
1153                 goto out;
1154
1155         hb = hash_futex(&key);
1156
1157         /* Make sure we really have tasks to wakeup */
1158         if (!hb_waiters_pending(hb))
1159                 goto out_put_key;
1160
1161         spin_lock(&hb->lock);
1162
1163         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1164                 if (match_futex (&this->key, &key)) {
1165                         if (this->pi_state || this->rt_waiter) {
1166                                 ret = -EINVAL;
1167                                 break;
1168                         }
1169
1170                         /* Check if one of the bits is set in both bitsets */
1171                         if (!(this->bitset & bitset))
1172                                 continue;
1173
1174                         wake_futex(this);
1175                         if (++ret >= nr_wake)
1176                                 break;
1177                 }
1178         }
1179
1180         spin_unlock(&hb->lock);
1181 out_put_key:
1182         put_futex_key(&key);
1183 out:
1184         return ret;
1185 }
1186
1187 /*
1188  * Wake up all waiters hashed on the physical page that is mapped
1189  * to this virtual address:
1190  */
1191 static int
1192 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1193               int nr_wake, int nr_wake2, int op)
1194 {
1195         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1196         struct futex_hash_bucket *hb1, *hb2;
1197         struct futex_q *this, *next;
1198         int ret, op_ret;
1199
1200 retry:
1201         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1202         if (unlikely(ret != 0))
1203                 goto out;
1204         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1205         if (unlikely(ret != 0))
1206                 goto out_put_key1;
1207
1208         hb1 = hash_futex(&key1);
1209         hb2 = hash_futex(&key2);
1210
1211 retry_private:
1212         double_lock_hb(hb1, hb2);
1213         op_ret = futex_atomic_op_inuser(op, uaddr2);
1214         if (unlikely(op_ret < 0)) {
1215
1216                 double_unlock_hb(hb1, hb2);
1217
1218 #ifndef CONFIG_MMU
1219                 /*
1220                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1221                  * but we might get them from range checking
1222                  */
1223                 ret = op_ret;
1224                 goto out_put_keys;
1225 #endif
1226
1227                 if (unlikely(op_ret != -EFAULT)) {
1228                         ret = op_ret;
1229                         goto out_put_keys;
1230                 }
1231
1232                 ret = fault_in_user_writeable(uaddr2);
1233                 if (ret)
1234                         goto out_put_keys;
1235
1236                 if (!(flags & FLAGS_SHARED))
1237                         goto retry_private;
1238
1239                 put_futex_key(&key2);
1240                 put_futex_key(&key1);
1241                 goto retry;
1242         }
1243
1244         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1245                 if (match_futex (&this->key, &key1)) {
1246                         if (this->pi_state || this->rt_waiter) {
1247                                 ret = -EINVAL;
1248                                 goto out_unlock;
1249                         }
1250                         wake_futex(this);
1251                         if (++ret >= nr_wake)
1252                                 break;
1253                 }
1254         }
1255
1256         if (op_ret > 0) {
1257                 op_ret = 0;
1258                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1259                         if (match_futex (&this->key, &key2)) {
1260                                 if (this->pi_state || this->rt_waiter) {
1261                                         ret = -EINVAL;
1262                                         goto out_unlock;
1263                                 }
1264                                 wake_futex(this);
1265                                 if (++op_ret >= nr_wake2)
1266                                         break;
1267                         }
1268                 }
1269                 ret += op_ret;
1270         }
1271
1272 out_unlock:
1273         double_unlock_hb(hb1, hb2);
1274 out_put_keys:
1275         put_futex_key(&key2);
1276 out_put_key1:
1277         put_futex_key(&key1);
1278 out:
1279         return ret;
1280 }
1281
1282 /**
1283  * requeue_futex() - Requeue a futex_q from one hb to another
1284  * @q:          the futex_q to requeue
1285  * @hb1:        the source hash_bucket
1286  * @hb2:        the target hash_bucket
1287  * @key2:       the new key for the requeued futex_q
1288  */
1289 static inline
1290 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1291                    struct futex_hash_bucket *hb2, union futex_key *key2)
1292 {
1293
1294         /*
1295          * If key1 and key2 hash to the same bucket, no need to
1296          * requeue.
1297          */
1298         if (likely(&hb1->chain != &hb2->chain)) {
1299                 plist_del(&q->list, &hb1->chain);
1300                 hb_waiters_dec(hb1);
1301                 plist_add(&q->list, &hb2->chain);
1302                 hb_waiters_inc(hb2);
1303                 q->lock_ptr = &hb2->lock;
1304         }
1305         get_futex_key_refs(key2);
1306         q->key = *key2;
1307 }
1308
1309 /**
1310  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1311  * @q:          the futex_q
1312  * @key:        the key of the requeue target futex
1313  * @hb:         the hash_bucket of the requeue target futex
1314  *
1315  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1316  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1317  * to the requeue target futex so the waiter can detect the wakeup on the right
1318  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1319  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1320  * to protect access to the pi_state to fixup the owner later.  Must be called
1321  * with both q->lock_ptr and hb->lock held.
1322  */
1323 static inline
1324 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1325                            struct futex_hash_bucket *hb)
1326 {
1327         get_futex_key_refs(key);
1328         q->key = *key;
1329
1330         __unqueue_futex(q);
1331
1332         WARN_ON(!q->rt_waiter);
1333         q->rt_waiter = NULL;
1334
1335         q->lock_ptr = &hb->lock;
1336
1337         wake_up_state(q->task, TASK_NORMAL);
1338 }
1339
1340 /**
1341  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1342  * @pifutex:            the user address of the to futex
1343  * @hb1:                the from futex hash bucket, must be locked by the caller
1344  * @hb2:                the to futex hash bucket, must be locked by the caller
1345  * @key1:               the from futex key
1346  * @key2:               the to futex key
1347  * @ps:                 address to store the pi_state pointer
1348  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1349  *
1350  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1351  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1352  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1353  * hb1 and hb2 must be held by the caller.
1354  *
1355  * Return:
1356  *  0 - failed to acquire the lock atomically;
1357  * >0 - acquired the lock, return value is vpid of the top_waiter
1358  * <0 - error
1359  */
1360 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1361                                  struct futex_hash_bucket *hb1,
1362                                  struct futex_hash_bucket *hb2,
1363                                  union futex_key *key1, union futex_key *key2,
1364                                  struct futex_pi_state **ps, int set_waiters)
1365 {
1366         struct futex_q *top_waiter = NULL;
1367         u32 curval;
1368         int ret, vpid;
1369
1370         if (get_futex_value_locked(&curval, pifutex))
1371                 return -EFAULT;
1372
1373         /*
1374          * Find the top_waiter and determine if there are additional waiters.
1375          * If the caller intends to requeue more than 1 waiter to pifutex,
1376          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1377          * as we have means to handle the possible fault.  If not, don't set
1378          * the bit unecessarily as it will force the subsequent unlock to enter
1379          * the kernel.
1380          */
1381         top_waiter = futex_top_waiter(hb1, key1);
1382
1383         /* There are no waiters, nothing for us to do. */
1384         if (!top_waiter)
1385                 return 0;
1386
1387         /* Ensure we requeue to the expected futex. */
1388         if (!match_futex(top_waiter->requeue_pi_key, key2))
1389                 return -EINVAL;
1390
1391         /*
1392          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1393          * the contended case or if set_waiters is 1.  The pi_state is returned
1394          * in ps in contended cases.
1395          */
1396         vpid = task_pid_vnr(top_waiter->task);
1397         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1398                                    set_waiters);
1399         if (ret == 1) {
1400                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1401                 return vpid;
1402         }
1403         return ret;
1404 }
1405
1406 /**
1407  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1408  * @uaddr1:     source futex user address
1409  * @flags:      futex flags (FLAGS_SHARED, etc.)
1410  * @uaddr2:     target futex user address
1411  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1412  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1413  * @cmpval:     @uaddr1 expected value (or %NULL)
1414  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1415  *              pi futex (pi to pi requeue is not supported)
1416  *
1417  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1418  * uaddr2 atomically on behalf of the top waiter.
1419  *
1420  * Return:
1421  * >=0 - on success, the number of tasks requeued or woken;
1422  *  <0 - on error
1423  */
1424 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1425                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1426                          u32 *cmpval, int requeue_pi)
1427 {
1428         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1429         int drop_count = 0, task_count = 0, ret;
1430         struct futex_pi_state *pi_state = NULL;
1431         struct futex_hash_bucket *hb1, *hb2;
1432         struct futex_q *this, *next;
1433
1434         if (requeue_pi) {
1435                 /*
1436                  * Requeue PI only works on two distinct uaddrs. This
1437                  * check is only valid for private futexes. See below.
1438                  */
1439                 if (uaddr1 == uaddr2)
1440                         return -EINVAL;
1441
1442                 /*
1443                  * requeue_pi requires a pi_state, try to allocate it now
1444                  * without any locks in case it fails.
1445                  */
1446                 if (refill_pi_state_cache())
1447                         return -ENOMEM;
1448                 /*
1449                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1450                  * + nr_requeue, since it acquires the rt_mutex prior to
1451                  * returning to userspace, so as to not leave the rt_mutex with
1452                  * waiters and no owner.  However, second and third wake-ups
1453                  * cannot be predicted as they involve race conditions with the
1454                  * first wake and a fault while looking up the pi_state.  Both
1455                  * pthread_cond_signal() and pthread_cond_broadcast() should
1456                  * use nr_wake=1.
1457                  */
1458                 if (nr_wake != 1)
1459                         return -EINVAL;
1460         }
1461
1462 retry:
1463         if (pi_state != NULL) {
1464                 /*
1465                  * We will have to lookup the pi_state again, so free this one
1466                  * to keep the accounting correct.
1467                  */
1468                 free_pi_state(pi_state);
1469                 pi_state = NULL;
1470         }
1471
1472         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1473         if (unlikely(ret != 0))
1474                 goto out;
1475         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1476                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1477         if (unlikely(ret != 0))
1478                 goto out_put_key1;
1479
1480         /*
1481          * The check above which compares uaddrs is not sufficient for
1482          * shared futexes. We need to compare the keys:
1483          */
1484         if (requeue_pi && match_futex(&key1, &key2)) {
1485                 ret = -EINVAL;
1486                 goto out_put_keys;
1487         }
1488
1489         hb1 = hash_futex(&key1);
1490         hb2 = hash_futex(&key2);
1491
1492 retry_private:
1493         hb_waiters_inc(hb2);
1494         double_lock_hb(hb1, hb2);
1495
1496         if (likely(cmpval != NULL)) {
1497                 u32 curval;
1498
1499                 ret = get_futex_value_locked(&curval, uaddr1);
1500
1501                 if (unlikely(ret)) {
1502                         double_unlock_hb(hb1, hb2);
1503                         hb_waiters_dec(hb2);
1504
1505                         ret = get_user(curval, uaddr1);
1506                         if (ret)
1507                                 goto out_put_keys;
1508
1509                         if (!(flags & FLAGS_SHARED))
1510                                 goto retry_private;
1511
1512                         put_futex_key(&key2);
1513                         put_futex_key(&key1);
1514                         goto retry;
1515                 }
1516                 if (curval != *cmpval) {
1517                         ret = -EAGAIN;
1518                         goto out_unlock;
1519                 }
1520         }
1521
1522         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1523                 /*
1524                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1525                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1526                  * bit.  We force this here where we are able to easily handle
1527                  * faults rather in the requeue loop below.
1528                  */
1529                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1530                                                  &key2, &pi_state, nr_requeue);
1531
1532                 /*
1533                  * At this point the top_waiter has either taken uaddr2 or is
1534                  * waiting on it.  If the former, then the pi_state will not
1535                  * exist yet, look it up one more time to ensure we have a
1536                  * reference to it. If the lock was taken, ret contains the
1537                  * vpid of the top waiter task.
1538                  */
1539                 if (ret > 0) {
1540                         WARN_ON(pi_state);
1541                         drop_count++;
1542                         task_count++;
1543                         /*
1544                          * If we acquired the lock, then the user
1545                          * space value of uaddr2 should be vpid. It
1546                          * cannot be changed by the top waiter as it
1547                          * is blocked on hb2 lock if it tries to do
1548                          * so. If something fiddled with it behind our
1549                          * back the pi state lookup might unearth
1550                          * it. So we rather use the known value than
1551                          * rereading and handing potential crap to
1552                          * lookup_pi_state.
1553                          */
1554                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1555                 }
1556
1557                 switch (ret) {
1558                 case 0:
1559                         break;
1560                 case -EFAULT:
1561                         double_unlock_hb(hb1, hb2);
1562                         hb_waiters_dec(hb2);
1563                         put_futex_key(&key2);
1564                         put_futex_key(&key1);
1565                         ret = fault_in_user_writeable(uaddr2);
1566                         if (!ret)
1567                                 goto retry;
1568                         goto out;
1569                 case -EAGAIN:
1570                         /* The owner was exiting, try again. */
1571                         double_unlock_hb(hb1, hb2);
1572                         hb_waiters_dec(hb2);
1573                         put_futex_key(&key2);
1574                         put_futex_key(&key1);
1575                         cond_resched();
1576                         goto retry;
1577                 default:
1578                         goto out_unlock;
1579                 }
1580         }
1581
1582         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1583                 if (task_count - nr_wake >= nr_requeue)
1584                         break;
1585
1586                 if (!match_futex(&this->key, &key1))
1587                         continue;
1588
1589                 /*
1590                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1591                  * be paired with each other and no other futex ops.
1592                  *
1593                  * We should never be requeueing a futex_q with a pi_state,
1594                  * which is awaiting a futex_unlock_pi().
1595                  */
1596                 if ((requeue_pi && !this->rt_waiter) ||
1597                     (!requeue_pi && this->rt_waiter) ||
1598                     this->pi_state) {
1599                         ret = -EINVAL;
1600                         break;
1601                 }
1602
1603                 /*
1604                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1605                  * lock, we already woke the top_waiter.  If not, it will be
1606                  * woken by futex_unlock_pi().
1607                  */
1608                 if (++task_count <= nr_wake && !requeue_pi) {
1609                         wake_futex(this);
1610                         continue;
1611                 }
1612
1613                 /* Ensure we requeue to the expected futex for requeue_pi. */
1614                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1615                         ret = -EINVAL;
1616                         break;
1617                 }
1618
1619                 /*
1620                  * Requeue nr_requeue waiters and possibly one more in the case
1621                  * of requeue_pi if we couldn't acquire the lock atomically.
1622                  */
1623                 if (requeue_pi) {
1624                         /* Prepare the waiter to take the rt_mutex. */
1625                         atomic_inc(&pi_state->refcount);
1626                         this->pi_state = pi_state;
1627                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1628                                                         this->rt_waiter,
1629                                                         this->task, 1);
1630                         if (ret == 1) {
1631                                 /* We got the lock. */
1632                                 requeue_pi_wake_futex(this, &key2, hb2);
1633                                 drop_count++;
1634                                 continue;
1635                         } else if (ret) {
1636                                 /* -EDEADLK */
1637                                 this->pi_state = NULL;
1638                                 free_pi_state(pi_state);
1639                                 goto out_unlock;
1640                         }
1641                 }
1642                 requeue_futex(this, hb1, hb2, &key2);
1643                 drop_count++;
1644         }
1645
1646 out_unlock:
1647         double_unlock_hb(hb1, hb2);
1648         hb_waiters_dec(hb2);
1649
1650         /*
1651          * drop_futex_key_refs() must be called outside the spinlocks. During
1652          * the requeue we moved futex_q's from the hash bucket at key1 to the
1653          * one at key2 and updated their key pointer.  We no longer need to
1654          * hold the references to key1.
1655          */
1656         while (--drop_count >= 0)
1657                 drop_futex_key_refs(&key1);
1658
1659 out_put_keys:
1660         put_futex_key(&key2);
1661 out_put_key1:
1662         put_futex_key(&key1);
1663 out:
1664         if (pi_state != NULL)
1665                 free_pi_state(pi_state);
1666         return ret ? ret : task_count;
1667 }
1668
1669 /* The key must be already stored in q->key. */
1670 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1671         __acquires(&hb->lock)
1672 {
1673         struct futex_hash_bucket *hb;
1674
1675         hb = hash_futex(&q->key);
1676
1677         /*
1678          * Increment the counter before taking the lock so that
1679          * a potential waker won't miss a to-be-slept task that is
1680          * waiting for the spinlock. This is safe as all queue_lock()
1681          * users end up calling queue_me(). Similarly, for housekeeping,
1682          * decrement the counter at queue_unlock() when some error has
1683          * occurred and we don't end up adding the task to the list.
1684          */
1685         hb_waiters_inc(hb);
1686
1687         q->lock_ptr = &hb->lock;
1688
1689         spin_lock(&hb->lock); /* implies MB (A) */
1690         return hb;
1691 }
1692
1693 static inline void
1694 queue_unlock(struct futex_hash_bucket *hb)
1695         __releases(&hb->lock)
1696 {
1697         spin_unlock(&hb->lock);
1698         hb_waiters_dec(hb);
1699 }
1700
1701 /**
1702  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1703  * @q:  The futex_q to enqueue
1704  * @hb: The destination hash bucket
1705  *
1706  * The hb->lock must be held by the caller, and is released here. A call to
1707  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1708  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1709  * or nothing if the unqueue is done as part of the wake process and the unqueue
1710  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1711  * an example).
1712  */
1713 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1714         __releases(&hb->lock)
1715 {
1716         int prio;
1717
1718         /*
1719          * The priority used to register this element is
1720          * - either the real thread-priority for the real-time threads
1721          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1722          * - or MAX_RT_PRIO for non-RT threads.
1723          * Thus, all RT-threads are woken first in priority order, and
1724          * the others are woken last, in FIFO order.
1725          */
1726         prio = min(current->normal_prio, MAX_RT_PRIO);
1727
1728         plist_node_init(&q->list, prio);
1729         plist_add(&q->list, &hb->chain);
1730         q->task = current;
1731         spin_unlock(&hb->lock);
1732 }
1733
1734 /**
1735  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1736  * @q:  The futex_q to unqueue
1737  *
1738  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1739  * be paired with exactly one earlier call to queue_me().
1740  *
1741  * Return:
1742  *   1 - if the futex_q was still queued (and we removed unqueued it);
1743  *   0 - if the futex_q was already removed by the waking thread
1744  */
1745 static int unqueue_me(struct futex_q *q)
1746 {
1747         spinlock_t *lock_ptr;
1748         int ret = 0;
1749
1750         /* In the common case we don't take the spinlock, which is nice. */
1751 retry:
1752         lock_ptr = q->lock_ptr;
1753         barrier();
1754         if (lock_ptr != NULL) {
1755                 spin_lock(lock_ptr);
1756                 /*
1757                  * q->lock_ptr can change between reading it and
1758                  * spin_lock(), causing us to take the wrong lock.  This
1759                  * corrects the race condition.
1760                  *
1761                  * Reasoning goes like this: if we have the wrong lock,
1762                  * q->lock_ptr must have changed (maybe several times)
1763                  * between reading it and the spin_lock().  It can
1764                  * change again after the spin_lock() but only if it was
1765                  * already changed before the spin_lock().  It cannot,
1766                  * however, change back to the original value.  Therefore
1767                  * we can detect whether we acquired the correct lock.
1768                  */
1769                 if (unlikely(lock_ptr != q->lock_ptr)) {
1770                         spin_unlock(lock_ptr);
1771                         goto retry;
1772                 }
1773                 __unqueue_futex(q);
1774
1775                 BUG_ON(q->pi_state);
1776
1777                 spin_unlock(lock_ptr);
1778                 ret = 1;
1779         }
1780
1781         drop_futex_key_refs(&q->key);
1782         return ret;
1783 }
1784
1785 /*
1786  * PI futexes can not be requeued and must remove themself from the
1787  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1788  * and dropped here.
1789  */
1790 static void unqueue_me_pi(struct futex_q *q)
1791         __releases(q->lock_ptr)
1792 {
1793         __unqueue_futex(q);
1794
1795         BUG_ON(!q->pi_state);
1796         free_pi_state(q->pi_state);
1797         q->pi_state = NULL;
1798
1799         spin_unlock(q->lock_ptr);
1800 }
1801
1802 /*
1803  * Fixup the pi_state owner with the new owner.
1804  *
1805  * Must be called with hash bucket lock held and mm->sem held for non
1806  * private futexes.
1807  */
1808 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1809                                 struct task_struct *newowner)
1810 {
1811         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1812         struct futex_pi_state *pi_state = q->pi_state;
1813         struct task_struct *oldowner = pi_state->owner;
1814         u32 uval, uninitialized_var(curval), newval;
1815         int ret;
1816
1817         /* Owner died? */
1818         if (!pi_state->owner)
1819                 newtid |= FUTEX_OWNER_DIED;
1820
1821         /*
1822          * We are here either because we stole the rtmutex from the
1823          * previous highest priority waiter or we are the highest priority
1824          * waiter but failed to get the rtmutex the first time.
1825          * We have to replace the newowner TID in the user space variable.
1826          * This must be atomic as we have to preserve the owner died bit here.
1827          *
1828          * Note: We write the user space value _before_ changing the pi_state
1829          * because we can fault here. Imagine swapped out pages or a fork
1830          * that marked all the anonymous memory readonly for cow.
1831          *
1832          * Modifying pi_state _before_ the user space value would
1833          * leave the pi_state in an inconsistent state when we fault
1834          * here, because we need to drop the hash bucket lock to
1835          * handle the fault. This might be observed in the PID check
1836          * in lookup_pi_state.
1837          */
1838 retry:
1839         if (get_futex_value_locked(&uval, uaddr))
1840                 goto handle_fault;
1841
1842         while (1) {
1843                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1844
1845                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1846                         goto handle_fault;
1847                 if (curval == uval)
1848                         break;
1849                 uval = curval;
1850         }
1851
1852         /*
1853          * We fixed up user space. Now we need to fix the pi_state
1854          * itself.
1855          */
1856         if (pi_state->owner != NULL) {
1857                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1858                 WARN_ON(list_empty(&pi_state->list));
1859                 list_del_init(&pi_state->list);
1860                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1861         }
1862
1863         pi_state->owner = newowner;
1864
1865         raw_spin_lock_irq(&newowner->pi_lock);
1866         WARN_ON(!list_empty(&pi_state->list));
1867         list_add(&pi_state->list, &newowner->pi_state_list);
1868         raw_spin_unlock_irq(&newowner->pi_lock);
1869         return 0;
1870
1871         /*
1872          * To handle the page fault we need to drop the hash bucket
1873          * lock here. That gives the other task (either the highest priority
1874          * waiter itself or the task which stole the rtmutex) the
1875          * chance to try the fixup of the pi_state. So once we are
1876          * back from handling the fault we need to check the pi_state
1877          * after reacquiring the hash bucket lock and before trying to
1878          * do another fixup. When the fixup has been done already we
1879          * simply return.
1880          */
1881 handle_fault:
1882         spin_unlock(q->lock_ptr);
1883
1884         ret = fault_in_user_writeable(uaddr);
1885
1886         spin_lock(q->lock_ptr);
1887
1888         /*
1889          * Check if someone else fixed it for us:
1890          */
1891         if (pi_state->owner != oldowner)
1892                 return 0;
1893
1894         if (ret)
1895                 return ret;
1896
1897         goto retry;
1898 }
1899
1900 static long futex_wait_restart(struct restart_block *restart);
1901
1902 /**
1903  * fixup_owner() - Post lock pi_state and corner case management
1904  * @uaddr:      user address of the futex
1905  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1906  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1907  *
1908  * After attempting to lock an rt_mutex, this function is called to cleanup
1909  * the pi_state owner as well as handle race conditions that may allow us to
1910  * acquire the lock. Must be called with the hb lock held.
1911  *
1912  * Return:
1913  *  1 - success, lock taken;
1914  *  0 - success, lock not taken;
1915  * <0 - on error (-EFAULT)
1916  */
1917 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1918 {
1919         struct task_struct *owner;
1920         int ret = 0;
1921
1922         if (locked) {
1923                 /*
1924                  * Got the lock. We might not be the anticipated owner if we
1925                  * did a lock-steal - fix up the PI-state in that case:
1926                  */
1927                 if (q->pi_state->owner != current)
1928                         ret = fixup_pi_state_owner(uaddr, q, current);
1929                 goto out;
1930         }
1931
1932         /*
1933          * Catch the rare case, where the lock was released when we were on the
1934          * way back before we locked the hash bucket.
1935          */
1936         if (q->pi_state->owner == current) {
1937                 /*
1938                  * Try to get the rt_mutex now. This might fail as some other
1939                  * task acquired the rt_mutex after we removed ourself from the
1940                  * rt_mutex waiters list.
1941                  */
1942                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1943                         locked = 1;
1944                         goto out;
1945                 }
1946
1947                 /*
1948                  * pi_state is incorrect, some other task did a lock steal and
1949                  * we returned due to timeout or signal without taking the
1950                  * rt_mutex. Too late.
1951                  */
1952                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1953                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1954                 if (!owner)
1955                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1956                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1957                 ret = fixup_pi_state_owner(uaddr, q, owner);
1958                 goto out;
1959         }
1960
1961         /*
1962          * Paranoia check. If we did not take the lock, then we should not be
1963          * the owner of the rt_mutex.
1964          */
1965         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1966                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1967                                 "pi-state %p\n", ret,
1968                                 q->pi_state->pi_mutex.owner,
1969                                 q->pi_state->owner);
1970
1971 out:
1972         return ret ? ret : locked;
1973 }
1974
1975 /**
1976  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1977  * @hb:         the futex hash bucket, must be locked by the caller
1978  * @q:          the futex_q to queue up on
1979  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1980  */
1981 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1982                                 struct hrtimer_sleeper *timeout)
1983 {
1984         /*
1985          * The task state is guaranteed to be set before another task can
1986          * wake it. set_current_state() is implemented using set_mb() and
1987          * queue_me() calls spin_unlock() upon completion, both serializing
1988          * access to the hash list and forcing another memory barrier.
1989          */
1990         set_current_state(TASK_INTERRUPTIBLE);
1991         queue_me(q, hb);
1992
1993         /* Arm the timer */
1994         if (timeout) {
1995                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1996                 if (!hrtimer_active(&timeout->timer))
1997                         timeout->task = NULL;
1998         }
1999
2000         /*
2001          * If we have been removed from the hash list, then another task
2002          * has tried to wake us, and we can skip the call to schedule().
2003          */
2004         if (likely(!plist_node_empty(&q->list))) {
2005                 /*
2006                  * If the timer has already expired, current will already be
2007                  * flagged for rescheduling. Only call schedule if there
2008                  * is no timeout, or if it has yet to expire.
2009                  */
2010                 if (!timeout || timeout->task)
2011                         freezable_schedule();
2012         }
2013         __set_current_state(TASK_RUNNING);
2014 }
2015
2016 /**
2017  * futex_wait_setup() - Prepare to wait on a futex
2018  * @uaddr:      the futex userspace address
2019  * @val:        the expected value
2020  * @flags:      futex flags (FLAGS_SHARED, etc.)
2021  * @q:          the associated futex_q
2022  * @hb:         storage for hash_bucket pointer to be returned to caller
2023  *
2024  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2025  * compare it with the expected value.  Handle atomic faults internally.
2026  * Return with the hb lock held and a q.key reference on success, and unlocked
2027  * with no q.key reference on failure.
2028  *
2029  * Return:
2030  *  0 - uaddr contains val and hb has been locked;
2031  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2032  */
2033 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2034                            struct futex_q *q, struct futex_hash_bucket **hb)
2035 {
2036         u32 uval;
2037         int ret;
2038
2039         /*
2040          * Access the page AFTER the hash-bucket is locked.
2041          * Order is important:
2042          *
2043          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2044          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2045          *
2046          * The basic logical guarantee of a futex is that it blocks ONLY
2047          * if cond(var) is known to be true at the time of blocking, for
2048          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2049          * would open a race condition where we could block indefinitely with
2050          * cond(var) false, which would violate the guarantee.
2051          *
2052          * On the other hand, we insert q and release the hash-bucket only
2053          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2054          * absorb a wakeup if *uaddr does not match the desired values
2055          * while the syscall executes.
2056          */
2057 retry:
2058         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2059         if (unlikely(ret != 0))
2060                 return ret;
2061
2062 retry_private:
2063         *hb = queue_lock(q);
2064
2065         ret = get_futex_value_locked(&uval, uaddr);
2066
2067         if (ret) {
2068                 queue_unlock(*hb);
2069
2070                 ret = get_user(uval, uaddr);
2071                 if (ret)
2072                         goto out;
2073
2074                 if (!(flags & FLAGS_SHARED))
2075                         goto retry_private;
2076
2077                 put_futex_key(&q->key);
2078                 goto retry;
2079         }
2080
2081         if (uval != val) {
2082                 queue_unlock(*hb);
2083                 ret = -EWOULDBLOCK;
2084         }
2085
2086 out:
2087         if (ret)
2088                 put_futex_key(&q->key);
2089         return ret;
2090 }
2091
2092 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2093                       ktime_t *abs_time, u32 bitset)
2094 {
2095         struct hrtimer_sleeper timeout, *to = NULL;
2096         struct restart_block *restart;
2097         struct futex_hash_bucket *hb;
2098         struct futex_q q = futex_q_init;
2099         int ret;
2100
2101         if (!bitset)
2102                 return -EINVAL;
2103         q.bitset = bitset;
2104
2105         if (abs_time) {
2106                 to = &timeout;
2107
2108                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2109                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2110                                       HRTIMER_MODE_ABS);
2111                 hrtimer_init_sleeper(to, current);
2112                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2113                                              current->timer_slack_ns);
2114         }
2115
2116 retry:
2117         /*
2118          * Prepare to wait on uaddr. On success, holds hb lock and increments
2119          * q.key refs.
2120          */
2121         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2122         if (ret)
2123                 goto out;
2124
2125         /* queue_me and wait for wakeup, timeout, or a signal. */
2126         futex_wait_queue_me(hb, &q, to);
2127
2128         /* If we were woken (and unqueued), we succeeded, whatever. */
2129         ret = 0;
2130         /* unqueue_me() drops q.key ref */
2131         if (!unqueue_me(&q))
2132                 goto out;
2133         ret = -ETIMEDOUT;
2134         if (to && !to->task)
2135                 goto out;
2136
2137         /*
2138          * We expect signal_pending(current), but we might be the
2139          * victim of a spurious wakeup as well.
2140          */
2141         if (!signal_pending(current))
2142                 goto retry;
2143
2144         ret = -ERESTARTSYS;
2145         if (!abs_time)
2146                 goto out;
2147
2148         restart = &current_thread_info()->restart_block;
2149         restart->fn = futex_wait_restart;
2150         restart->futex.uaddr = uaddr;
2151         restart->futex.val = val;
2152         restart->futex.time = abs_time->tv64;
2153         restart->futex.bitset = bitset;
2154         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2155
2156         ret = -ERESTART_RESTARTBLOCK;
2157
2158 out:
2159         if (to) {
2160                 hrtimer_cancel(&to->timer);
2161                 destroy_hrtimer_on_stack(&to->timer);
2162         }
2163         return ret;
2164 }
2165
2166
2167 static long futex_wait_restart(struct restart_block *restart)
2168 {
2169         u32 __user *uaddr = restart->futex.uaddr;
2170         ktime_t t, *tp = NULL;
2171
2172         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2173                 t.tv64 = restart->futex.time;
2174                 tp = &t;
2175         }
2176         restart->fn = do_no_restart_syscall;
2177
2178         return (long)futex_wait(uaddr, restart->futex.flags,
2179                                 restart->futex.val, tp, restart->futex.bitset);
2180 }
2181
2182
2183 /*
2184  * Userspace tried a 0 -> TID atomic transition of the futex value
2185  * and failed. The kernel side here does the whole locking operation:
2186  * if there are waiters then it will block, it does PI, etc. (Due to
2187  * races the kernel might see a 0 value of the futex too.)
2188  */
2189 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2190                          ktime_t *time, int trylock)
2191 {
2192         struct hrtimer_sleeper timeout, *to = NULL;
2193         struct futex_hash_bucket *hb;
2194         struct futex_q q = futex_q_init;
2195         int res, ret;
2196
2197         if (refill_pi_state_cache())
2198                 return -ENOMEM;
2199
2200         if (time) {
2201                 to = &timeout;
2202                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2203                                       HRTIMER_MODE_ABS);
2204                 hrtimer_init_sleeper(to, current);
2205                 hrtimer_set_expires(&to->timer, *time);
2206         }
2207
2208 retry:
2209         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2210         if (unlikely(ret != 0))
2211                 goto out;
2212
2213 retry_private:
2214         hb = queue_lock(&q);
2215
2216         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2217         if (unlikely(ret)) {
2218                 switch (ret) {
2219                 case 1:
2220                         /* We got the lock. */
2221                         ret = 0;
2222                         goto out_unlock_put_key;
2223                 case -EFAULT:
2224                         goto uaddr_faulted;
2225                 case -EAGAIN:
2226                         /*
2227                          * Task is exiting and we just wait for the
2228                          * exit to complete.
2229                          */
2230                         queue_unlock(hb);
2231                         put_futex_key(&q.key);
2232                         cond_resched();
2233                         goto retry;
2234                 default:
2235                         goto out_unlock_put_key;
2236                 }
2237         }
2238
2239         /*
2240          * Only actually queue now that the atomic ops are done:
2241          */
2242         queue_me(&q, hb);
2243
2244         WARN_ON(!q.pi_state);
2245         /*
2246          * Block on the PI mutex:
2247          */
2248         if (!trylock)
2249                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2250         else {
2251                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2252                 /* Fixup the trylock return value: */
2253                 ret = ret ? 0 : -EWOULDBLOCK;
2254         }
2255
2256         spin_lock(q.lock_ptr);
2257         /*
2258          * Fixup the pi_state owner and possibly acquire the lock if we
2259          * haven't already.
2260          */
2261         res = fixup_owner(uaddr, &q, !ret);
2262         /*
2263          * If fixup_owner() returned an error, proprogate that.  If it acquired
2264          * the lock, clear our -ETIMEDOUT or -EINTR.
2265          */
2266         if (res)
2267                 ret = (res < 0) ? res : 0;
2268
2269         /*
2270          * If fixup_owner() faulted and was unable to handle the fault, unlock
2271          * it and return the fault to userspace.
2272          */
2273         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2274                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2275
2276         /* Unqueue and drop the lock */
2277         unqueue_me_pi(&q);
2278
2279         goto out_put_key;
2280
2281 out_unlock_put_key:
2282         queue_unlock(hb);
2283
2284 out_put_key:
2285         put_futex_key(&q.key);
2286 out:
2287         if (to)
2288                 destroy_hrtimer_on_stack(&to->timer);
2289         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2290
2291 uaddr_faulted:
2292         queue_unlock(hb);
2293
2294         ret = fault_in_user_writeable(uaddr);
2295         if (ret)
2296                 goto out_put_key;
2297
2298         if (!(flags & FLAGS_SHARED))
2299                 goto retry_private;
2300
2301         put_futex_key(&q.key);
2302         goto retry;
2303 }
2304
2305 /*
2306  * Userspace attempted a TID -> 0 atomic transition, and failed.
2307  * This is the in-kernel slowpath: we look up the PI state (if any),
2308  * and do the rt-mutex unlock.
2309  */
2310 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2311 {
2312         struct futex_hash_bucket *hb;
2313         struct futex_q *this, *next;
2314         union futex_key key = FUTEX_KEY_INIT;
2315         u32 uval, vpid = task_pid_vnr(current);
2316         int ret;
2317
2318 retry:
2319         if (get_user(uval, uaddr))
2320                 return -EFAULT;
2321         /*
2322          * We release only a lock we actually own:
2323          */
2324         if ((uval & FUTEX_TID_MASK) != vpid)
2325                 return -EPERM;
2326
2327         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2328         if (unlikely(ret != 0))
2329                 goto out;
2330
2331         hb = hash_futex(&key);
2332         spin_lock(&hb->lock);
2333
2334         /*
2335          * To avoid races, try to do the TID -> 0 atomic transition
2336          * again. If it succeeds then we can return without waking
2337          * anyone else up. We only try this if neither the waiters nor
2338          * the owner died bit are set.
2339          */
2340         if (!(uval & ~FUTEX_TID_MASK) &&
2341             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2342                 goto pi_faulted;
2343         /*
2344          * Rare case: we managed to release the lock atomically,
2345          * no need to wake anyone else up:
2346          */
2347         if (unlikely(uval == vpid))
2348                 goto out_unlock;
2349
2350         /*
2351          * Ok, other tasks may need to be woken up - check waiters
2352          * and do the wakeup if necessary:
2353          */
2354         plist_for_each_entry_safe(this, next, &hb->chain, list) {
2355                 if (!match_futex (&this->key, &key))
2356                         continue;
2357                 ret = wake_futex_pi(uaddr, uval, this);
2358                 /*
2359                  * The atomic access to the futex value
2360                  * generated a pagefault, so retry the
2361                  * user-access and the wakeup:
2362                  */
2363                 if (ret == -EFAULT)
2364                         goto pi_faulted;
2365                 goto out_unlock;
2366         }
2367         /*
2368          * No waiters - kernel unlocks the futex:
2369          */
2370         ret = unlock_futex_pi(uaddr, uval);
2371         if (ret == -EFAULT)
2372                 goto pi_faulted;
2373
2374 out_unlock:
2375         spin_unlock(&hb->lock);
2376         put_futex_key(&key);
2377
2378 out:
2379         return ret;
2380
2381 pi_faulted:
2382         spin_unlock(&hb->lock);
2383         put_futex_key(&key);
2384
2385         ret = fault_in_user_writeable(uaddr);
2386         if (!ret)
2387                 goto retry;
2388
2389         return ret;
2390 }
2391
2392 /**
2393  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2394  * @hb:         the hash_bucket futex_q was original enqueued on
2395  * @q:          the futex_q woken while waiting to be requeued
2396  * @key2:       the futex_key of the requeue target futex
2397  * @timeout:    the timeout associated with the wait (NULL if none)
2398  *
2399  * Detect if the task was woken on the initial futex as opposed to the requeue
2400  * target futex.  If so, determine if it was a timeout or a signal that caused
2401  * the wakeup and return the appropriate error code to the caller.  Must be
2402  * called with the hb lock held.
2403  *
2404  * Return:
2405  *  0 = no early wakeup detected;
2406  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2407  */
2408 static inline
2409 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2410                                    struct futex_q *q, union futex_key *key2,
2411                                    struct hrtimer_sleeper *timeout)
2412 {
2413         int ret = 0;
2414
2415         /*
2416          * With the hb lock held, we avoid races while we process the wakeup.
2417          * We only need to hold hb (and not hb2) to ensure atomicity as the
2418          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2419          * It can't be requeued from uaddr2 to something else since we don't
2420          * support a PI aware source futex for requeue.
2421          */
2422         if (!match_futex(&q->key, key2)) {
2423                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2424                 /*
2425                  * We were woken prior to requeue by a timeout or a signal.
2426                  * Unqueue the futex_q and determine which it was.
2427                  */
2428                 plist_del(&q->list, &hb->chain);
2429                 hb_waiters_dec(hb);
2430
2431                 /* Handle spurious wakeups gracefully */
2432                 ret = -EWOULDBLOCK;
2433                 if (timeout && !timeout->task)
2434                         ret = -ETIMEDOUT;
2435                 else if (signal_pending(current))
2436                         ret = -ERESTARTNOINTR;
2437         }
2438         return ret;
2439 }
2440
2441 /**
2442  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2443  * @uaddr:      the futex we initially wait on (non-pi)
2444  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2445  *              the same type, no requeueing from private to shared, etc.
2446  * @val:        the expected value of uaddr
2447  * @abs_time:   absolute timeout
2448  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2449  * @uaddr2:     the pi futex we will take prior to returning to user-space
2450  *
2451  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2452  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2453  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2454  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2455  * without one, the pi logic would not know which task to boost/deboost, if
2456  * there was a need to.
2457  *
2458  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2459  * via the following--
2460  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2461  * 2) wakeup on uaddr2 after a requeue
2462  * 3) signal
2463  * 4) timeout
2464  *
2465  * If 3, cleanup and return -ERESTARTNOINTR.
2466  *
2467  * If 2, we may then block on trying to take the rt_mutex and return via:
2468  * 5) successful lock
2469  * 6) signal
2470  * 7) timeout
2471  * 8) other lock acquisition failure
2472  *
2473  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2474  *
2475  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2476  *
2477  * Return:
2478  *  0 - On success;
2479  * <0 - On error
2480  */
2481 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2482                                  u32 val, ktime_t *abs_time, u32 bitset,
2483                                  u32 __user *uaddr2)
2484 {
2485         struct hrtimer_sleeper timeout, *to = NULL;
2486         struct rt_mutex_waiter rt_waiter;
2487         struct rt_mutex *pi_mutex = NULL;
2488         struct futex_hash_bucket *hb;
2489         union futex_key key2 = FUTEX_KEY_INIT;
2490         struct futex_q q = futex_q_init;
2491         int res, ret;
2492
2493         if (uaddr == uaddr2)
2494                 return -EINVAL;
2495
2496         if (!bitset)
2497                 return -EINVAL;
2498
2499         if (abs_time) {
2500                 to = &timeout;
2501                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2502                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2503                                       HRTIMER_MODE_ABS);
2504                 hrtimer_init_sleeper(to, current);
2505                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2506                                              current->timer_slack_ns);
2507         }
2508
2509         /*
2510          * The waiter is allocated on our stack, manipulated by the requeue
2511          * code while we sleep on uaddr.
2512          */
2513         debug_rt_mutex_init_waiter(&rt_waiter);
2514         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2515         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2516         rt_waiter.task = NULL;
2517
2518         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2519         if (unlikely(ret != 0))
2520                 goto out;
2521
2522         q.bitset = bitset;
2523         q.rt_waiter = &rt_waiter;
2524         q.requeue_pi_key = &key2;
2525
2526         /*
2527          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2528          * count.
2529          */
2530         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2531         if (ret)
2532                 goto out_key2;
2533
2534         /*
2535          * The check above which compares uaddrs is not sufficient for
2536          * shared futexes. We need to compare the keys:
2537          */
2538         if (match_futex(&q.key, &key2)) {
2539                 ret = -EINVAL;
2540                 goto out_put_keys;
2541         }
2542
2543         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2544         futex_wait_queue_me(hb, &q, to);
2545
2546         spin_lock(&hb->lock);
2547         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2548         spin_unlock(&hb->lock);
2549         if (ret)
2550                 goto out_put_keys;
2551
2552         /*
2553          * In order for us to be here, we know our q.key == key2, and since
2554          * we took the hb->lock above, we also know that futex_requeue() has
2555          * completed and we no longer have to concern ourselves with a wakeup
2556          * race with the atomic proxy lock acquisition by the requeue code. The
2557          * futex_requeue dropped our key1 reference and incremented our key2
2558          * reference count.
2559          */
2560
2561         /* Check if the requeue code acquired the second futex for us. */
2562         if (!q.rt_waiter) {
2563                 /*
2564                  * Got the lock. We might not be the anticipated owner if we
2565                  * did a lock-steal - fix up the PI-state in that case.
2566                  */
2567                 if (q.pi_state && (q.pi_state->owner != current)) {
2568                         spin_lock(q.lock_ptr);
2569                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2570                         spin_unlock(q.lock_ptr);
2571                 }
2572         } else {
2573                 /*
2574                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2575                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2576                  * the pi_state.
2577                  */
2578                 WARN_ON(!q.pi_state);
2579                 pi_mutex = &q.pi_state->pi_mutex;
2580                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2581                 debug_rt_mutex_free_waiter(&rt_waiter);
2582
2583                 spin_lock(q.lock_ptr);
2584                 /*
2585                  * Fixup the pi_state owner and possibly acquire the lock if we
2586                  * haven't already.
2587                  */
2588                 res = fixup_owner(uaddr2, &q, !ret);
2589                 /*
2590                  * If fixup_owner() returned an error, proprogate that.  If it
2591                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2592                  */
2593                 if (res)
2594                         ret = (res < 0) ? res : 0;
2595
2596                 /* Unqueue and drop the lock. */
2597                 unqueue_me_pi(&q);
2598         }
2599
2600         /*
2601          * If fixup_pi_state_owner() faulted and was unable to handle the
2602          * fault, unlock the rt_mutex and return the fault to userspace.
2603          */
2604         if (ret == -EFAULT) {
2605                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2606                         rt_mutex_unlock(pi_mutex);
2607         } else if (ret == -EINTR) {
2608                 /*
2609                  * We've already been requeued, but cannot restart by calling
2610                  * futex_lock_pi() directly. We could restart this syscall, but
2611                  * it would detect that the user space "val" changed and return
2612                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2613                  * -EWOULDBLOCK directly.
2614                  */
2615                 ret = -EWOULDBLOCK;
2616         }
2617
2618 out_put_keys:
2619         put_futex_key(&q.key);
2620 out_key2:
2621         put_futex_key(&key2);
2622
2623 out:
2624         if (to) {
2625                 hrtimer_cancel(&to->timer);
2626                 destroy_hrtimer_on_stack(&to->timer);
2627         }
2628         return ret;
2629 }
2630
2631 /*
2632  * Support for robust futexes: the kernel cleans up held futexes at
2633  * thread exit time.
2634  *
2635  * Implementation: user-space maintains a per-thread list of locks it
2636  * is holding. Upon do_exit(), the kernel carefully walks this list,
2637  * and marks all locks that are owned by this thread with the
2638  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2639  * always manipulated with the lock held, so the list is private and
2640  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2641  * field, to allow the kernel to clean up if the thread dies after
2642  * acquiring the lock, but just before it could have added itself to
2643  * the list. There can only be one such pending lock.
2644  */
2645
2646 /**
2647  * sys_set_robust_list() - Set the robust-futex list head of a task
2648  * @head:       pointer to the list-head
2649  * @len:        length of the list-head, as userspace expects
2650  */
2651 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2652                 size_t, len)
2653 {
2654         if (!futex_cmpxchg_enabled)
2655                 return -ENOSYS;
2656         /*
2657          * The kernel knows only one size for now:
2658          */
2659         if (unlikely(len != sizeof(*head)))
2660                 return -EINVAL;
2661
2662         current->robust_list = head;
2663
2664         return 0;
2665 }
2666
2667 /**
2668  * sys_get_robust_list() - Get the robust-futex list head of a task
2669  * @pid:        pid of the process [zero for current task]
2670  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2671  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2672  */
2673 SYSCALL_DEFINE3(get_robust_list, int, pid,
2674                 struct robust_list_head __user * __user *, head_ptr,
2675                 size_t __user *, len_ptr)
2676 {
2677         struct robust_list_head __user *head;
2678         unsigned long ret;
2679         struct task_struct *p;
2680
2681         if (!futex_cmpxchg_enabled)
2682                 return -ENOSYS;
2683
2684         rcu_read_lock();
2685
2686         ret = -ESRCH;
2687         if (!pid)
2688                 p = current;
2689         else {
2690                 p = find_task_by_vpid(pid);
2691                 if (!p)
2692                         goto err_unlock;
2693         }
2694
2695         ret = -EPERM;
2696         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2697                 goto err_unlock;
2698
2699         head = p->robust_list;
2700         rcu_read_unlock();
2701
2702         if (put_user(sizeof(*head), len_ptr))
2703                 return -EFAULT;
2704         return put_user(head, head_ptr);
2705
2706 err_unlock:
2707         rcu_read_unlock();
2708
2709         return ret;
2710 }
2711
2712 /*
2713  * Process a futex-list entry, check whether it's owned by the
2714  * dying task, and do notification if so:
2715  */
2716 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2717 {
2718         u32 uval, uninitialized_var(nval), mval;
2719
2720 retry:
2721         if (get_user(uval, uaddr))
2722                 return -1;
2723
2724         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2725                 /*
2726                  * Ok, this dying thread is truly holding a futex
2727                  * of interest. Set the OWNER_DIED bit atomically
2728                  * via cmpxchg, and if the value had FUTEX_WAITERS
2729                  * set, wake up a waiter (if any). (We have to do a
2730                  * futex_wake() even if OWNER_DIED is already set -
2731                  * to handle the rare but possible case of recursive
2732                  * thread-death.) The rest of the cleanup is done in
2733                  * userspace.
2734                  */
2735                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2736                 /*
2737                  * We are not holding a lock here, but we want to have
2738                  * the pagefault_disable/enable() protection because
2739                  * we want to handle the fault gracefully. If the
2740                  * access fails we try to fault in the futex with R/W
2741                  * verification via get_user_pages. get_user() above
2742                  * does not guarantee R/W access. If that fails we
2743                  * give up and leave the futex locked.
2744                  */
2745                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2746                         if (fault_in_user_writeable(uaddr))
2747                                 return -1;
2748                         goto retry;
2749                 }
2750                 if (nval != uval)
2751                         goto retry;
2752
2753                 /*
2754                  * Wake robust non-PI futexes here. The wakeup of
2755                  * PI futexes happens in exit_pi_state():
2756                  */
2757                 if (!pi && (uval & FUTEX_WAITERS))
2758                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2759         }
2760         return 0;
2761 }
2762
2763 /*
2764  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2765  */
2766 static inline int fetch_robust_entry(struct robust_list __user **entry,
2767                                      struct robust_list __user * __user *head,
2768                                      unsigned int *pi)
2769 {
2770         unsigned long uentry;
2771
2772         if (get_user(uentry, (unsigned long __user *)head))
2773                 return -EFAULT;
2774
2775         *entry = (void __user *)(uentry & ~1UL);
2776         *pi = uentry & 1;
2777
2778         return 0;
2779 }
2780
2781 /*
2782  * Walk curr->robust_list (very carefully, it's a userspace list!)
2783  * and mark any locks found there dead, and notify any waiters.
2784  *
2785  * We silently return on any sign of list-walking problem.
2786  */
2787 void exit_robust_list(struct task_struct *curr)
2788 {
2789         struct robust_list_head __user *head = curr->robust_list;
2790         struct robust_list __user *entry, *next_entry, *pending;
2791         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2792         unsigned int uninitialized_var(next_pi);
2793         unsigned long futex_offset;
2794         int rc;
2795
2796         if (!futex_cmpxchg_enabled)
2797                 return;
2798
2799         /*
2800          * Fetch the list head (which was registered earlier, via
2801          * sys_set_robust_list()):
2802          */
2803         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2804                 return;
2805         /*
2806          * Fetch the relative futex offset:
2807          */
2808         if (get_user(futex_offset, &head->futex_offset))
2809                 return;
2810         /*
2811          * Fetch any possibly pending lock-add first, and handle it
2812          * if it exists:
2813          */
2814         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2815                 return;
2816
2817         next_entry = NULL;      /* avoid warning with gcc */
2818         while (entry != &head->list) {
2819                 /*
2820                  * Fetch the next entry in the list before calling
2821                  * handle_futex_death:
2822                  */
2823                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2824                 /*
2825                  * A pending lock might already be on the list, so
2826                  * don't process it twice:
2827                  */
2828                 if (entry != pending)
2829                         if (handle_futex_death((void __user *)entry + futex_offset,
2830                                                 curr, pi))
2831                                 return;
2832                 if (rc)
2833                         return;
2834                 entry = next_entry;
2835                 pi = next_pi;
2836                 /*
2837                  * Avoid excessively long or circular lists:
2838                  */
2839                 if (!--limit)
2840                         break;
2841
2842                 cond_resched();
2843         }
2844
2845         if (pending)
2846                 handle_futex_death((void __user *)pending + futex_offset,
2847                                    curr, pip);
2848 }
2849
2850 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2851                 u32 __user *uaddr2, u32 val2, u32 val3)
2852 {
2853         int cmd = op & FUTEX_CMD_MASK;
2854         unsigned int flags = 0;
2855
2856         if (!(op & FUTEX_PRIVATE_FLAG))
2857                 flags |= FLAGS_SHARED;
2858
2859         if (op & FUTEX_CLOCK_REALTIME) {
2860                 flags |= FLAGS_CLOCKRT;
2861                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2862                         return -ENOSYS;
2863         }
2864
2865         switch (cmd) {
2866         case FUTEX_LOCK_PI:
2867         case FUTEX_UNLOCK_PI:
2868         case FUTEX_TRYLOCK_PI:
2869         case FUTEX_WAIT_REQUEUE_PI:
2870         case FUTEX_CMP_REQUEUE_PI:
2871                 if (!futex_cmpxchg_enabled)
2872                         return -ENOSYS;
2873         }
2874
2875         switch (cmd) {
2876         case FUTEX_WAIT:
2877                 val3 = FUTEX_BITSET_MATCH_ANY;
2878         case FUTEX_WAIT_BITSET:
2879                 return futex_wait(uaddr, flags, val, timeout, val3);
2880         case FUTEX_WAKE:
2881                 val3 = FUTEX_BITSET_MATCH_ANY;
2882         case FUTEX_WAKE_BITSET:
2883                 return futex_wake(uaddr, flags, val, val3);
2884         case FUTEX_REQUEUE:
2885                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2886         case FUTEX_CMP_REQUEUE:
2887                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2888         case FUTEX_WAKE_OP:
2889                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2890         case FUTEX_LOCK_PI:
2891                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2892         case FUTEX_UNLOCK_PI:
2893                 return futex_unlock_pi(uaddr, flags);
2894         case FUTEX_TRYLOCK_PI:
2895                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2896         case FUTEX_WAIT_REQUEUE_PI:
2897                 val3 = FUTEX_BITSET_MATCH_ANY;
2898                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2899                                              uaddr2);
2900         case FUTEX_CMP_REQUEUE_PI:
2901                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2902         }
2903         return -ENOSYS;
2904 }
2905
2906
2907 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2908                 struct timespec __user *, utime, u32 __user *, uaddr2,
2909                 u32, val3)
2910 {
2911         struct timespec ts;
2912         ktime_t t, *tp = NULL;
2913         u32 val2 = 0;
2914         int cmd = op & FUTEX_CMD_MASK;
2915
2916         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2917                       cmd == FUTEX_WAIT_BITSET ||
2918                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2919                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2920                         return -EFAULT;
2921                 if (!timespec_valid(&ts))
2922                         return -EINVAL;
2923
2924                 t = timespec_to_ktime(ts);
2925                 if (cmd == FUTEX_WAIT)
2926                         t = ktime_add_safe(ktime_get(), t);
2927                 tp = &t;
2928         }
2929         /*
2930          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2931          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2932          */
2933         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2934             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2935                 val2 = (u32) (unsigned long) utime;
2936
2937         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2938 }
2939
2940 static void __init futex_detect_cmpxchg(void)
2941 {
2942 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2943         u32 curval;
2944
2945         /*
2946          * This will fail and we want it. Some arch implementations do
2947          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2948          * functionality. We want to know that before we call in any
2949          * of the complex code paths. Also we want to prevent
2950          * registration of robust lists in that case. NULL is
2951          * guaranteed to fault and we get -EFAULT on functional
2952          * implementation, the non-functional ones will return
2953          * -ENOSYS.
2954          */
2955         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2956                 futex_cmpxchg_enabled = 1;
2957 #endif
2958 }
2959
2960 static int __init futex_init(void)
2961 {
2962         unsigned int futex_shift;
2963         unsigned long i;
2964
2965 #if CONFIG_BASE_SMALL
2966         futex_hashsize = 16;
2967 #else
2968         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2969 #endif
2970
2971         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2972                                                futex_hashsize, 0,
2973                                                futex_hashsize < 256 ? HASH_SMALL : 0,
2974                                                &futex_shift, NULL,
2975                                                futex_hashsize, futex_hashsize);
2976         futex_hashsize = 1UL << futex_shift;
2977
2978         futex_detect_cmpxchg();
2979
2980         for (i = 0; i < futex_hashsize; i++) {
2981                 atomic_set(&futex_queues[i].waiters, 0);
2982                 plist_head_init(&futex_queues[i].chain);
2983                 spin_lock_init(&futex_queues[i].lock);
2984         }
2985
2986         return 0;
2987 }
2988 __initcall(futex_init);