Merge remote-tracking branch 'stable/linux-5.10.y' into rpi-5.10.y
[platform/kernel/linux-rpi.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42
43 #include <asm/futex.h>
44
45 #include "locking/rtmutex_common.h"
46
47 /*
48  * READ this before attempting to hack on futexes!
49  *
50  * Basic futex operation and ordering guarantees
51  * =============================================
52  *
53  * The waiter reads the futex value in user space and calls
54  * futex_wait(). This function computes the hash bucket and acquires
55  * the hash bucket lock. After that it reads the futex user space value
56  * again and verifies that the data has not changed. If it has not changed
57  * it enqueues itself into the hash bucket, releases the hash bucket lock
58  * and schedules.
59  *
60  * The waker side modifies the user space value of the futex and calls
61  * futex_wake(). This function computes the hash bucket and acquires the
62  * hash bucket lock. Then it looks for waiters on that futex in the hash
63  * bucket and wakes them.
64  *
65  * In futex wake up scenarios where no tasks are blocked on a futex, taking
66  * the hb spinlock can be avoided and simply return. In order for this
67  * optimization to work, ordering guarantees must exist so that the waiter
68  * being added to the list is acknowledged when the list is concurrently being
69  * checked by the waker, avoiding scenarios like the following:
70  *
71  * CPU 0                               CPU 1
72  * val = *futex;
73  * sys_futex(WAIT, futex, val);
74  *   futex_wait(futex, val);
75  *   uval = *futex;
76  *                                     *futex = newval;
77  *                                     sys_futex(WAKE, futex);
78  *                                       futex_wake(futex);
79  *                                       if (queue_empty())
80  *                                         return;
81  *   if (uval == val)
82  *      lock(hash_bucket(futex));
83  *      queue();
84  *     unlock(hash_bucket(futex));
85  *     schedule();
86  *
87  * This would cause the waiter on CPU 0 to wait forever because it
88  * missed the transition of the user space value from val to newval
89  * and the waker did not find the waiter in the hash bucket queue.
90  *
91  * The correct serialization ensures that a waiter either observes
92  * the changed user space value before blocking or is woken by a
93  * concurrent waker:
94  *
95  * CPU 0                                 CPU 1
96  * val = *futex;
97  * sys_futex(WAIT, futex, val);
98  *   futex_wait(futex, val);
99  *
100  *   waiters++; (a)
101  *   smp_mb(); (A) <-- paired with -.
102  *                                  |
103  *   lock(hash_bucket(futex));      |
104  *                                  |
105  *   uval = *futex;                 |
106  *                                  |        *futex = newval;
107  *                                  |        sys_futex(WAKE, futex);
108  *                                  |          futex_wake(futex);
109  *                                  |
110  *                                  `--------> smp_mb(); (B)
111  *   if (uval == val)
112  *     queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();                         if (waiters)
115  *                                           lock(hash_bucket(futex));
116  *   else                                    wake_waiters(futex);
117  *     waiters--; (b)                        unlock(hash_bucket(futex));
118  *
119  * Where (A) orders the waiters increment and the futex value read through
120  * atomic operations (see hb_waiters_inc) and where (B) orders the write
121  * to futex and the waiters read (see hb_waiters_pending()).
122  *
123  * This yields the following case (where X:=waiters, Y:=futex):
124  *
125  *      X = Y = 0
126  *
127  *      w[X]=1          w[Y]=1
128  *      MB              MB
129  *      r[Y]=y          r[X]=x
130  *
131  * Which guarantees that x==0 && y==0 is impossible; which translates back into
132  * the guarantee that we cannot both miss the futex variable change and the
133  * enqueue.
134  *
135  * Note that a new waiter is accounted for in (a) even when it is possible that
136  * the wait call can return error, in which case we backtrack from it in (b).
137  * Refer to the comment in queue_lock().
138  *
139  * Similarly, in order to account for waiters being requeued on another
140  * address we always increment the waiters for the destination bucket before
141  * acquiring the lock. It then decrements them again  after releasing it -
142  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143  * will do the additional required waiter count housekeeping. This is done for
144  * double_lock_hb() and double_unlock_hb(), respectively.
145  */
146
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int  __read_mostly futex_cmpxchg_enabled;
151 #endif
152
153 /*
154  * Futex flags used to encode options to functions and preserve them across
155  * restarts.
156  */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED           0x01
159 #else
160 /*
161  * NOMMU does not have per process address space. Let the compiler optimize
162  * code away.
163  */
164 # define FLAGS_SHARED           0x00
165 #endif
166 #define FLAGS_CLOCKRT           0x02
167 #define FLAGS_HAS_TIMEOUT       0x04
168
169 /*
170  * Priority Inheritance state:
171  */
172 struct futex_pi_state {
173         /*
174          * list of 'owned' pi_state instances - these have to be
175          * cleaned up in do_exit() if the task exits prematurely:
176          */
177         struct list_head list;
178
179         /*
180          * The PI object:
181          */
182         struct rt_mutex pi_mutex;
183
184         struct task_struct *owner;
185         refcount_t refcount;
186
187         union futex_key key;
188 } __randomize_layout;
189
190 /**
191  * struct futex_q - The hashed futex queue entry, one per waiting task
192  * @list:               priority-sorted list of tasks waiting on this futex
193  * @task:               the task waiting on the futex
194  * @lock_ptr:           the hash bucket lock
195  * @key:                the key the futex is hashed on
196  * @pi_state:           optional priority inheritance state
197  * @rt_waiter:          rt_waiter storage for use with requeue_pi
198  * @requeue_pi_key:     the requeue_pi target futex key
199  * @bitset:             bitset for the optional bitmasked wakeup
200  *
201  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
202  * we can wake only the relevant ones (hashed queues may be shared).
203  *
204  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
205  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
206  * The order of wakeup is always to make the first condition true, then
207  * the second.
208  *
209  * PI futexes are typically woken before they are removed from the hash list via
210  * the rt_mutex code. See unqueue_me_pi().
211  */
212 struct futex_q {
213         struct plist_node list;
214
215         struct task_struct *task;
216         spinlock_t *lock_ptr;
217         union futex_key key;
218         struct futex_pi_state *pi_state;
219         struct rt_mutex_waiter *rt_waiter;
220         union futex_key *requeue_pi_key;
221         u32 bitset;
222 } __randomize_layout;
223
224 static const struct futex_q futex_q_init = {
225         /* list gets initialized in queue_me()*/
226         .key = FUTEX_KEY_INIT,
227         .bitset = FUTEX_BITSET_MATCH_ANY
228 };
229
230 /*
231  * Hash buckets are shared by all the futex_keys that hash to the same
232  * location.  Each key may have multiple futex_q structures, one for each task
233  * waiting on a futex.
234  */
235 struct futex_hash_bucket {
236         atomic_t waiters;
237         spinlock_t lock;
238         struct plist_head chain;
239 } ____cacheline_aligned_in_smp;
240
241 /*
242  * The base of the bucket array and its size are always used together
243  * (after initialization only in hash_futex()), so ensure that they
244  * reside in the same cacheline.
245  */
246 static struct {
247         struct futex_hash_bucket *queues;
248         unsigned long            hashsize;
249 } __futex_data __read_mostly __aligned(2*sizeof(long));
250 #define futex_queues   (__futex_data.queues)
251 #define futex_hashsize (__futex_data.hashsize)
252
253
254 /*
255  * Fault injections for futexes.
256  */
257 #ifdef CONFIG_FAIL_FUTEX
258
259 static struct {
260         struct fault_attr attr;
261
262         bool ignore_private;
263 } fail_futex = {
264         .attr = FAULT_ATTR_INITIALIZER,
265         .ignore_private = false,
266 };
267
268 static int __init setup_fail_futex(char *str)
269 {
270         return setup_fault_attr(&fail_futex.attr, str);
271 }
272 __setup("fail_futex=", setup_fail_futex);
273
274 static bool should_fail_futex(bool fshared)
275 {
276         if (fail_futex.ignore_private && !fshared)
277                 return false;
278
279         return should_fail(&fail_futex.attr, 1);
280 }
281
282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283
284 static int __init fail_futex_debugfs(void)
285 {
286         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287         struct dentry *dir;
288
289         dir = fault_create_debugfs_attr("fail_futex", NULL,
290                                         &fail_futex.attr);
291         if (IS_ERR(dir))
292                 return PTR_ERR(dir);
293
294         debugfs_create_bool("ignore-private", mode, dir,
295                             &fail_futex.ignore_private);
296         return 0;
297 }
298
299 late_initcall(fail_futex_debugfs);
300
301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302
303 #else
304 static inline bool should_fail_futex(bool fshared)
305 {
306         return false;
307 }
308 #endif /* CONFIG_FAIL_FUTEX */
309
310 #ifdef CONFIG_COMPAT
311 static void compat_exit_robust_list(struct task_struct *curr);
312 #else
313 static inline void compat_exit_robust_list(struct task_struct *curr) { }
314 #endif
315
316 /*
317  * Reflects a new waiter being added to the waitqueue.
318  */
319 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
320 {
321 #ifdef CONFIG_SMP
322         atomic_inc(&hb->waiters);
323         /*
324          * Full barrier (A), see the ordering comment above.
325          */
326         smp_mb__after_atomic();
327 #endif
328 }
329
330 /*
331  * Reflects a waiter being removed from the waitqueue by wakeup
332  * paths.
333  */
334 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
335 {
336 #ifdef CONFIG_SMP
337         atomic_dec(&hb->waiters);
338 #endif
339 }
340
341 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
342 {
343 #ifdef CONFIG_SMP
344         /*
345          * Full barrier (B), see the ordering comment above.
346          */
347         smp_mb();
348         return atomic_read(&hb->waiters);
349 #else
350         return 1;
351 #endif
352 }
353
354 /**
355  * hash_futex - Return the hash bucket in the global hash
356  * @key:        Pointer to the futex key for which the hash is calculated
357  *
358  * We hash on the keys returned from get_futex_key (see below) and return the
359  * corresponding hash bucket in the global hash.
360  */
361 static struct futex_hash_bucket *hash_futex(union futex_key *key)
362 {
363         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
364                           key->both.offset);
365
366         return &futex_queues[hash & (futex_hashsize - 1)];
367 }
368
369
370 /**
371  * match_futex - Check whether two futex keys are equal
372  * @key1:       Pointer to key1
373  * @key2:       Pointer to key2
374  *
375  * Return 1 if two futex_keys are equal, 0 otherwise.
376  */
377 static inline int match_futex(union futex_key *key1, union futex_key *key2)
378 {
379         return (key1 && key2
380                 && key1->both.word == key2->both.word
381                 && key1->both.ptr == key2->both.ptr
382                 && key1->both.offset == key2->both.offset);
383 }
384
385 enum futex_access {
386         FUTEX_READ,
387         FUTEX_WRITE
388 };
389
390 /**
391  * futex_setup_timer - set up the sleeping hrtimer.
392  * @time:       ptr to the given timeout value
393  * @timeout:    the hrtimer_sleeper structure to be set up
394  * @flags:      futex flags
395  * @range_ns:   optional range in ns
396  *
397  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
398  *         value given
399  */
400 static inline struct hrtimer_sleeper *
401 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
402                   int flags, u64 range_ns)
403 {
404         if (!time)
405                 return NULL;
406
407         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
408                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
409                                       HRTIMER_MODE_ABS);
410         /*
411          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
412          * effectively the same as calling hrtimer_set_expires().
413          */
414         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
415
416         return timeout;
417 }
418
419 /*
420  * Generate a machine wide unique identifier for this inode.
421  *
422  * This relies on u64 not wrapping in the life-time of the machine; which with
423  * 1ns resolution means almost 585 years.
424  *
425  * This further relies on the fact that a well formed program will not unmap
426  * the file while it has a (shared) futex waiting on it. This mapping will have
427  * a file reference which pins the mount and inode.
428  *
429  * If for some reason an inode gets evicted and read back in again, it will get
430  * a new sequence number and will _NOT_ match, even though it is the exact same
431  * file.
432  *
433  * It is important that match_futex() will never have a false-positive, esp.
434  * for PI futexes that can mess up the state. The above argues that false-negatives
435  * are only possible for malformed programs.
436  */
437 static u64 get_inode_sequence_number(struct inode *inode)
438 {
439         static atomic64_t i_seq;
440         u64 old;
441
442         /* Does the inode already have a sequence number? */
443         old = atomic64_read(&inode->i_sequence);
444         if (likely(old))
445                 return old;
446
447         for (;;) {
448                 u64 new = atomic64_add_return(1, &i_seq);
449                 if (WARN_ON_ONCE(!new))
450                         continue;
451
452                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
453                 if (old)
454                         return old;
455                 return new;
456         }
457 }
458
459 /**
460  * get_futex_key() - Get parameters which are the keys for a futex
461  * @uaddr:      virtual address of the futex
462  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
463  * @key:        address where result is stored.
464  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
465  *              FUTEX_WRITE)
466  *
467  * Return: a negative error code or 0
468  *
469  * The key words are stored in @key on success.
470  *
471  * For shared mappings (when @fshared), the key is:
472  *
473  *   ( inode->i_sequence, page->index, offset_within_page )
474  *
475  * [ also see get_inode_sequence_number() ]
476  *
477  * For private mappings (or when !@fshared), the key is:
478  *
479  *   ( current->mm, address, 0 )
480  *
481  * This allows (cross process, where applicable) identification of the futex
482  * without keeping the page pinned for the duration of the FUTEX_WAIT.
483  *
484  * lock_page() might sleep, the caller should not hold a spinlock.
485  */
486 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
487                          enum futex_access rw)
488 {
489         unsigned long address = (unsigned long)uaddr;
490         struct mm_struct *mm = current->mm;
491         struct page *page, *tail;
492         struct address_space *mapping;
493         int err, ro = 0;
494
495         /*
496          * The futex address must be "naturally" aligned.
497          */
498         key->both.offset = address % PAGE_SIZE;
499         if (unlikely((address % sizeof(u32)) != 0))
500                 return -EINVAL;
501         address -= key->both.offset;
502
503         if (unlikely(!access_ok(uaddr, sizeof(u32))))
504                 return -EFAULT;
505
506         if (unlikely(should_fail_futex(fshared)))
507                 return -EFAULT;
508
509         /*
510          * PROCESS_PRIVATE futexes are fast.
511          * As the mm cannot disappear under us and the 'key' only needs
512          * virtual address, we dont even have to find the underlying vma.
513          * Note : We do have to check 'uaddr' is a valid user address,
514          *        but access_ok() should be faster than find_vma()
515          */
516         if (!fshared) {
517                 key->private.mm = mm;
518                 key->private.address = address;
519                 return 0;
520         }
521
522 again:
523         /* Ignore any VERIFY_READ mapping (futex common case) */
524         if (unlikely(should_fail_futex(true)))
525                 return -EFAULT;
526
527         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
528         /*
529          * If write access is not required (eg. FUTEX_WAIT), try
530          * and get read-only access.
531          */
532         if (err == -EFAULT && rw == FUTEX_READ) {
533                 err = get_user_pages_fast(address, 1, 0, &page);
534                 ro = 1;
535         }
536         if (err < 0)
537                 return err;
538         else
539                 err = 0;
540
541         /*
542          * The treatment of mapping from this point on is critical. The page
543          * lock protects many things but in this context the page lock
544          * stabilizes mapping, prevents inode freeing in the shared
545          * file-backed region case and guards against movement to swap cache.
546          *
547          * Strictly speaking the page lock is not needed in all cases being
548          * considered here and page lock forces unnecessarily serialization
549          * From this point on, mapping will be re-verified if necessary and
550          * page lock will be acquired only if it is unavoidable
551          *
552          * Mapping checks require the head page for any compound page so the
553          * head page and mapping is looked up now. For anonymous pages, it
554          * does not matter if the page splits in the future as the key is
555          * based on the address. For filesystem-backed pages, the tail is
556          * required as the index of the page determines the key. For
557          * base pages, there is no tail page and tail == page.
558          */
559         tail = page;
560         page = compound_head(page);
561         mapping = READ_ONCE(page->mapping);
562
563         /*
564          * If page->mapping is NULL, then it cannot be a PageAnon
565          * page; but it might be the ZERO_PAGE or in the gate area or
566          * in a special mapping (all cases which we are happy to fail);
567          * or it may have been a good file page when get_user_pages_fast
568          * found it, but truncated or holepunched or subjected to
569          * invalidate_complete_page2 before we got the page lock (also
570          * cases which we are happy to fail).  And we hold a reference,
571          * so refcount care in invalidate_complete_page's remove_mapping
572          * prevents drop_caches from setting mapping to NULL beneath us.
573          *
574          * The case we do have to guard against is when memory pressure made
575          * shmem_writepage move it from filecache to swapcache beneath us:
576          * an unlikely race, but we do need to retry for page->mapping.
577          */
578         if (unlikely(!mapping)) {
579                 int shmem_swizzled;
580
581                 /*
582                  * Page lock is required to identify which special case above
583                  * applies. If this is really a shmem page then the page lock
584                  * will prevent unexpected transitions.
585                  */
586                 lock_page(page);
587                 shmem_swizzled = PageSwapCache(page) || page->mapping;
588                 unlock_page(page);
589                 put_page(page);
590
591                 if (shmem_swizzled)
592                         goto again;
593
594                 return -EFAULT;
595         }
596
597         /*
598          * Private mappings are handled in a simple way.
599          *
600          * If the futex key is stored on an anonymous page, then the associated
601          * object is the mm which is implicitly pinned by the calling process.
602          *
603          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
604          * it's a read-only handle, it's expected that futexes attach to
605          * the object not the particular process.
606          */
607         if (PageAnon(page)) {
608                 /*
609                  * A RO anonymous page will never change and thus doesn't make
610                  * sense for futex operations.
611                  */
612                 if (unlikely(should_fail_futex(true)) || ro) {
613                         err = -EFAULT;
614                         goto out;
615                 }
616
617                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
618                 key->private.mm = mm;
619                 key->private.address = address;
620
621         } else {
622                 struct inode *inode;
623
624                 /*
625                  * The associated futex object in this case is the inode and
626                  * the page->mapping must be traversed. Ordinarily this should
627                  * be stabilised under page lock but it's not strictly
628                  * necessary in this case as we just want to pin the inode, not
629                  * update the radix tree or anything like that.
630                  *
631                  * The RCU read lock is taken as the inode is finally freed
632                  * under RCU. If the mapping still matches expectations then the
633                  * mapping->host can be safely accessed as being a valid inode.
634                  */
635                 rcu_read_lock();
636
637                 if (READ_ONCE(page->mapping) != mapping) {
638                         rcu_read_unlock();
639                         put_page(page);
640
641                         goto again;
642                 }
643
644                 inode = READ_ONCE(mapping->host);
645                 if (!inode) {
646                         rcu_read_unlock();
647                         put_page(page);
648
649                         goto again;
650                 }
651
652                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
653                 key->shared.i_seq = get_inode_sequence_number(inode);
654                 key->shared.pgoff = page_to_pgoff(tail);
655                 rcu_read_unlock();
656         }
657
658 out:
659         put_page(page);
660         return err;
661 }
662
663 /**
664  * fault_in_user_writeable() - Fault in user address and verify RW access
665  * @uaddr:      pointer to faulting user space address
666  *
667  * Slow path to fixup the fault we just took in the atomic write
668  * access to @uaddr.
669  *
670  * We have no generic implementation of a non-destructive write to the
671  * user address. We know that we faulted in the atomic pagefault
672  * disabled section so we can as well avoid the #PF overhead by
673  * calling get_user_pages() right away.
674  */
675 static int fault_in_user_writeable(u32 __user *uaddr)
676 {
677         struct mm_struct *mm = current->mm;
678         int ret;
679
680         mmap_read_lock(mm);
681         ret = fixup_user_fault(mm, (unsigned long)uaddr,
682                                FAULT_FLAG_WRITE, NULL);
683         mmap_read_unlock(mm);
684
685         return ret < 0 ? ret : 0;
686 }
687
688 /**
689  * futex_top_waiter() - Return the highest priority waiter on a futex
690  * @hb:         the hash bucket the futex_q's reside in
691  * @key:        the futex key (to distinguish it from other futex futex_q's)
692  *
693  * Must be called with the hb lock held.
694  */
695 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
696                                         union futex_key *key)
697 {
698         struct futex_q *this;
699
700         plist_for_each_entry(this, &hb->chain, list) {
701                 if (match_futex(&this->key, key))
702                         return this;
703         }
704         return NULL;
705 }
706
707 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
708                                       u32 uval, u32 newval)
709 {
710         int ret;
711
712         pagefault_disable();
713         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
714         pagefault_enable();
715
716         return ret;
717 }
718
719 static int get_futex_value_locked(u32 *dest, u32 __user *from)
720 {
721         int ret;
722
723         pagefault_disable();
724         ret = __get_user(*dest, from);
725         pagefault_enable();
726
727         return ret ? -EFAULT : 0;
728 }
729
730
731 /*
732  * PI code:
733  */
734 static int refill_pi_state_cache(void)
735 {
736         struct futex_pi_state *pi_state;
737
738         if (likely(current->pi_state_cache))
739                 return 0;
740
741         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
742
743         if (!pi_state)
744                 return -ENOMEM;
745
746         INIT_LIST_HEAD(&pi_state->list);
747         /* pi_mutex gets initialized later */
748         pi_state->owner = NULL;
749         refcount_set(&pi_state->refcount, 1);
750         pi_state->key = FUTEX_KEY_INIT;
751
752         current->pi_state_cache = pi_state;
753
754         return 0;
755 }
756
757 static struct futex_pi_state *alloc_pi_state(void)
758 {
759         struct futex_pi_state *pi_state = current->pi_state_cache;
760
761         WARN_ON(!pi_state);
762         current->pi_state_cache = NULL;
763
764         return pi_state;
765 }
766
767 static void pi_state_update_owner(struct futex_pi_state *pi_state,
768                                   struct task_struct *new_owner)
769 {
770         struct task_struct *old_owner = pi_state->owner;
771
772         lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
773
774         if (old_owner) {
775                 raw_spin_lock(&old_owner->pi_lock);
776                 WARN_ON(list_empty(&pi_state->list));
777                 list_del_init(&pi_state->list);
778                 raw_spin_unlock(&old_owner->pi_lock);
779         }
780
781         if (new_owner) {
782                 raw_spin_lock(&new_owner->pi_lock);
783                 WARN_ON(!list_empty(&pi_state->list));
784                 list_add(&pi_state->list, &new_owner->pi_state_list);
785                 pi_state->owner = new_owner;
786                 raw_spin_unlock(&new_owner->pi_lock);
787         }
788 }
789
790 static void get_pi_state(struct futex_pi_state *pi_state)
791 {
792         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
793 }
794
795 /*
796  * Drops a reference to the pi_state object and frees or caches it
797  * when the last reference is gone.
798  */
799 static void put_pi_state(struct futex_pi_state *pi_state)
800 {
801         if (!pi_state)
802                 return;
803
804         if (!refcount_dec_and_test(&pi_state->refcount))
805                 return;
806
807         /*
808          * If pi_state->owner is NULL, the owner is most probably dying
809          * and has cleaned up the pi_state already
810          */
811         if (pi_state->owner) {
812                 unsigned long flags;
813
814                 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
815                 pi_state_update_owner(pi_state, NULL);
816                 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
817                 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
818         }
819
820         if (current->pi_state_cache) {
821                 kfree(pi_state);
822         } else {
823                 /*
824                  * pi_state->list is already empty.
825                  * clear pi_state->owner.
826                  * refcount is at 0 - put it back to 1.
827                  */
828                 pi_state->owner = NULL;
829                 refcount_set(&pi_state->refcount, 1);
830                 current->pi_state_cache = pi_state;
831         }
832 }
833
834 #ifdef CONFIG_FUTEX_PI
835
836 /*
837  * This task is holding PI mutexes at exit time => bad.
838  * Kernel cleans up PI-state, but userspace is likely hosed.
839  * (Robust-futex cleanup is separate and might save the day for userspace.)
840  */
841 static void exit_pi_state_list(struct task_struct *curr)
842 {
843         struct list_head *next, *head = &curr->pi_state_list;
844         struct futex_pi_state *pi_state;
845         struct futex_hash_bucket *hb;
846         union futex_key key = FUTEX_KEY_INIT;
847
848         if (!futex_cmpxchg_enabled)
849                 return;
850         /*
851          * We are a ZOMBIE and nobody can enqueue itself on
852          * pi_state_list anymore, but we have to be careful
853          * versus waiters unqueueing themselves:
854          */
855         raw_spin_lock_irq(&curr->pi_lock);
856         while (!list_empty(head)) {
857                 next = head->next;
858                 pi_state = list_entry(next, struct futex_pi_state, list);
859                 key = pi_state->key;
860                 hb = hash_futex(&key);
861
862                 /*
863                  * We can race against put_pi_state() removing itself from the
864                  * list (a waiter going away). put_pi_state() will first
865                  * decrement the reference count and then modify the list, so
866                  * its possible to see the list entry but fail this reference
867                  * acquire.
868                  *
869                  * In that case; drop the locks to let put_pi_state() make
870                  * progress and retry the loop.
871                  */
872                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
873                         raw_spin_unlock_irq(&curr->pi_lock);
874                         cpu_relax();
875                         raw_spin_lock_irq(&curr->pi_lock);
876                         continue;
877                 }
878                 raw_spin_unlock_irq(&curr->pi_lock);
879
880                 spin_lock(&hb->lock);
881                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
882                 raw_spin_lock(&curr->pi_lock);
883                 /*
884                  * We dropped the pi-lock, so re-check whether this
885                  * task still owns the PI-state:
886                  */
887                 if (head->next != next) {
888                         /* retain curr->pi_lock for the loop invariant */
889                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
890                         spin_unlock(&hb->lock);
891                         put_pi_state(pi_state);
892                         continue;
893                 }
894
895                 WARN_ON(pi_state->owner != curr);
896                 WARN_ON(list_empty(&pi_state->list));
897                 list_del_init(&pi_state->list);
898                 pi_state->owner = NULL;
899
900                 raw_spin_unlock(&curr->pi_lock);
901                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
902                 spin_unlock(&hb->lock);
903
904                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
905                 put_pi_state(pi_state);
906
907                 raw_spin_lock_irq(&curr->pi_lock);
908         }
909         raw_spin_unlock_irq(&curr->pi_lock);
910 }
911 #else
912 static inline void exit_pi_state_list(struct task_struct *curr) { }
913 #endif
914
915 /*
916  * We need to check the following states:
917  *
918  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
919  *
920  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
921  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
922  *
923  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
924  *
925  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
926  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
927  *
928  * [6]  Found  | Found    | task      | 0         | 1      | Valid
929  *
930  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
931  *
932  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
933  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
934  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
935  *
936  * [1]  Indicates that the kernel can acquire the futex atomically. We
937  *      came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
938  *
939  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
940  *      thread is found then it indicates that the owner TID has died.
941  *
942  * [3]  Invalid. The waiter is queued on a non PI futex
943  *
944  * [4]  Valid state after exit_robust_list(), which sets the user space
945  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
946  *
947  * [5]  The user space value got manipulated between exit_robust_list()
948  *      and exit_pi_state_list()
949  *
950  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
951  *      the pi_state but cannot access the user space value.
952  *
953  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
954  *
955  * [8]  Owner and user space value match
956  *
957  * [9]  There is no transient state which sets the user space TID to 0
958  *      except exit_robust_list(), but this is indicated by the
959  *      FUTEX_OWNER_DIED bit. See [4]
960  *
961  * [10] There is no transient state which leaves owner and user space
962  *      TID out of sync. Except one error case where the kernel is denied
963  *      write access to the user address, see fixup_pi_state_owner().
964  *
965  *
966  * Serialization and lifetime rules:
967  *
968  * hb->lock:
969  *
970  *      hb -> futex_q, relation
971  *      futex_q -> pi_state, relation
972  *
973  *      (cannot be raw because hb can contain arbitrary amount
974  *       of futex_q's)
975  *
976  * pi_mutex->wait_lock:
977  *
978  *      {uval, pi_state}
979  *
980  *      (and pi_mutex 'obviously')
981  *
982  * p->pi_lock:
983  *
984  *      p->pi_state_list -> pi_state->list, relation
985  *
986  * pi_state->refcount:
987  *
988  *      pi_state lifetime
989  *
990  *
991  * Lock order:
992  *
993  *   hb->lock
994  *     pi_mutex->wait_lock
995  *       p->pi_lock
996  *
997  */
998
999 /*
1000  * Validate that the existing waiter has a pi_state and sanity check
1001  * the pi_state against the user space value. If correct, attach to
1002  * it.
1003  */
1004 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1005                               struct futex_pi_state *pi_state,
1006                               struct futex_pi_state **ps)
1007 {
1008         pid_t pid = uval & FUTEX_TID_MASK;
1009         u32 uval2;
1010         int ret;
1011
1012         /*
1013          * Userspace might have messed up non-PI and PI futexes [3]
1014          */
1015         if (unlikely(!pi_state))
1016                 return -EINVAL;
1017
1018         /*
1019          * We get here with hb->lock held, and having found a
1020          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1021          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1022          * which in turn means that futex_lock_pi() still has a reference on
1023          * our pi_state.
1024          *
1025          * The waiter holding a reference on @pi_state also protects against
1026          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1027          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1028          * free pi_state before we can take a reference ourselves.
1029          */
1030         WARN_ON(!refcount_read(&pi_state->refcount));
1031
1032         /*
1033          * Now that we have a pi_state, we can acquire wait_lock
1034          * and do the state validation.
1035          */
1036         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1037
1038         /*
1039          * Since {uval, pi_state} is serialized by wait_lock, and our current
1040          * uval was read without holding it, it can have changed. Verify it
1041          * still is what we expect it to be, otherwise retry the entire
1042          * operation.
1043          */
1044         if (get_futex_value_locked(&uval2, uaddr))
1045                 goto out_efault;
1046
1047         if (uval != uval2)
1048                 goto out_eagain;
1049
1050         /*
1051          * Handle the owner died case:
1052          */
1053         if (uval & FUTEX_OWNER_DIED) {
1054                 /*
1055                  * exit_pi_state_list sets owner to NULL and wakes the
1056                  * topmost waiter. The task which acquires the
1057                  * pi_state->rt_mutex will fixup owner.
1058                  */
1059                 if (!pi_state->owner) {
1060                         /*
1061                          * No pi state owner, but the user space TID
1062                          * is not 0. Inconsistent state. [5]
1063                          */
1064                         if (pid)
1065                                 goto out_einval;
1066                         /*
1067                          * Take a ref on the state and return success. [4]
1068                          */
1069                         goto out_attach;
1070                 }
1071
1072                 /*
1073                  * If TID is 0, then either the dying owner has not
1074                  * yet executed exit_pi_state_list() or some waiter
1075                  * acquired the rtmutex in the pi state, but did not
1076                  * yet fixup the TID in user space.
1077                  *
1078                  * Take a ref on the state and return success. [6]
1079                  */
1080                 if (!pid)
1081                         goto out_attach;
1082         } else {
1083                 /*
1084                  * If the owner died bit is not set, then the pi_state
1085                  * must have an owner. [7]
1086                  */
1087                 if (!pi_state->owner)
1088                         goto out_einval;
1089         }
1090
1091         /*
1092          * Bail out if user space manipulated the futex value. If pi
1093          * state exists then the owner TID must be the same as the
1094          * user space TID. [9/10]
1095          */
1096         if (pid != task_pid_vnr(pi_state->owner))
1097                 goto out_einval;
1098
1099 out_attach:
1100         get_pi_state(pi_state);
1101         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1102         *ps = pi_state;
1103         return 0;
1104
1105 out_einval:
1106         ret = -EINVAL;
1107         goto out_error;
1108
1109 out_eagain:
1110         ret = -EAGAIN;
1111         goto out_error;
1112
1113 out_efault:
1114         ret = -EFAULT;
1115         goto out_error;
1116
1117 out_error:
1118         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1119         return ret;
1120 }
1121
1122 /**
1123  * wait_for_owner_exiting - Block until the owner has exited
1124  * @ret: owner's current futex lock status
1125  * @exiting:    Pointer to the exiting task
1126  *
1127  * Caller must hold a refcount on @exiting.
1128  */
1129 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1130 {
1131         if (ret != -EBUSY) {
1132                 WARN_ON_ONCE(exiting);
1133                 return;
1134         }
1135
1136         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1137                 return;
1138
1139         mutex_lock(&exiting->futex_exit_mutex);
1140         /*
1141          * No point in doing state checking here. If the waiter got here
1142          * while the task was in exec()->exec_futex_release() then it can
1143          * have any FUTEX_STATE_* value when the waiter has acquired the
1144          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1145          * already. Highly unlikely and not a problem. Just one more round
1146          * through the futex maze.
1147          */
1148         mutex_unlock(&exiting->futex_exit_mutex);
1149
1150         put_task_struct(exiting);
1151 }
1152
1153 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1154                             struct task_struct *tsk)
1155 {
1156         u32 uval2;
1157
1158         /*
1159          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1160          * caller that the alleged owner is busy.
1161          */
1162         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1163                 return -EBUSY;
1164
1165         /*
1166          * Reread the user space value to handle the following situation:
1167          *
1168          * CPU0                         CPU1
1169          *
1170          * sys_exit()                   sys_futex()
1171          *  do_exit()                    futex_lock_pi()
1172          *                                futex_lock_pi_atomic()
1173          *   exit_signals(tsk)              No waiters:
1174          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1175          *  mm_release(tsk)                 Set waiter bit
1176          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1177          *      Set owner died              attach_to_pi_owner() {
1178          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1179          *   }                               if (!tsk->flags & PF_EXITING) {
1180          *  ...                                attach();
1181          *  tsk->futex_state =               } else {
1182          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1183          *                                        FUTEX_STATE_DEAD)
1184          *                                       return -EAGAIN;
1185          *                                     return -ESRCH; <--- FAIL
1186          *                                   }
1187          *
1188          * Returning ESRCH unconditionally is wrong here because the
1189          * user space value has been changed by the exiting task.
1190          *
1191          * The same logic applies to the case where the exiting task is
1192          * already gone.
1193          */
1194         if (get_futex_value_locked(&uval2, uaddr))
1195                 return -EFAULT;
1196
1197         /* If the user space value has changed, try again. */
1198         if (uval2 != uval)
1199                 return -EAGAIN;
1200
1201         /*
1202          * The exiting task did not have a robust list, the robust list was
1203          * corrupted or the user space value in *uaddr is simply bogus.
1204          * Give up and tell user space.
1205          */
1206         return -ESRCH;
1207 }
1208
1209 /*
1210  * Lookup the task for the TID provided from user space and attach to
1211  * it after doing proper sanity checks.
1212  */
1213 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1214                               struct futex_pi_state **ps,
1215                               struct task_struct **exiting)
1216 {
1217         pid_t pid = uval & FUTEX_TID_MASK;
1218         struct futex_pi_state *pi_state;
1219         struct task_struct *p;
1220
1221         /*
1222          * We are the first waiter - try to look up the real owner and attach
1223          * the new pi_state to it, but bail out when TID = 0 [1]
1224          *
1225          * The !pid check is paranoid. None of the call sites should end up
1226          * with pid == 0, but better safe than sorry. Let the caller retry
1227          */
1228         if (!pid)
1229                 return -EAGAIN;
1230         p = find_get_task_by_vpid(pid);
1231         if (!p)
1232                 return handle_exit_race(uaddr, uval, NULL);
1233
1234         if (unlikely(p->flags & PF_KTHREAD)) {
1235                 put_task_struct(p);
1236                 return -EPERM;
1237         }
1238
1239         /*
1240          * We need to look at the task state to figure out, whether the
1241          * task is exiting. To protect against the change of the task state
1242          * in futex_exit_release(), we do this protected by p->pi_lock:
1243          */
1244         raw_spin_lock_irq(&p->pi_lock);
1245         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1246                 /*
1247                  * The task is on the way out. When the futex state is
1248                  * FUTEX_STATE_DEAD, we know that the task has finished
1249                  * the cleanup:
1250                  */
1251                 int ret = handle_exit_race(uaddr, uval, p);
1252
1253                 raw_spin_unlock_irq(&p->pi_lock);
1254                 /*
1255                  * If the owner task is between FUTEX_STATE_EXITING and
1256                  * FUTEX_STATE_DEAD then store the task pointer and keep
1257                  * the reference on the task struct. The calling code will
1258                  * drop all locks, wait for the task to reach
1259                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1260                  * required to prevent a live lock when the current task
1261                  * preempted the exiting task between the two states.
1262                  */
1263                 if (ret == -EBUSY)
1264                         *exiting = p;
1265                 else
1266                         put_task_struct(p);
1267                 return ret;
1268         }
1269
1270         /*
1271          * No existing pi state. First waiter. [2]
1272          *
1273          * This creates pi_state, we have hb->lock held, this means nothing can
1274          * observe this state, wait_lock is irrelevant.
1275          */
1276         pi_state = alloc_pi_state();
1277
1278         /*
1279          * Initialize the pi_mutex in locked state and make @p
1280          * the owner of it:
1281          */
1282         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1283
1284         /* Store the key for possible exit cleanups: */
1285         pi_state->key = *key;
1286
1287         WARN_ON(!list_empty(&pi_state->list));
1288         list_add(&pi_state->list, &p->pi_state_list);
1289         /*
1290          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1291          * because there is no concurrency as the object is not published yet.
1292          */
1293         pi_state->owner = p;
1294         raw_spin_unlock_irq(&p->pi_lock);
1295
1296         put_task_struct(p);
1297
1298         *ps = pi_state;
1299
1300         return 0;
1301 }
1302
1303 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1304                            struct futex_hash_bucket *hb,
1305                            union futex_key *key, struct futex_pi_state **ps,
1306                            struct task_struct **exiting)
1307 {
1308         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1309
1310         /*
1311          * If there is a waiter on that futex, validate it and
1312          * attach to the pi_state when the validation succeeds.
1313          */
1314         if (top_waiter)
1315                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1316
1317         /*
1318          * We are the first waiter - try to look up the owner based on
1319          * @uval and attach to it.
1320          */
1321         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1322 }
1323
1324 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1325 {
1326         int err;
1327         u32 curval;
1328
1329         if (unlikely(should_fail_futex(true)))
1330                 return -EFAULT;
1331
1332         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1333         if (unlikely(err))
1334                 return err;
1335
1336         /* If user space value changed, let the caller retry */
1337         return curval != uval ? -EAGAIN : 0;
1338 }
1339
1340 /**
1341  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1342  * @uaddr:              the pi futex user address
1343  * @hb:                 the pi futex hash bucket
1344  * @key:                the futex key associated with uaddr and hb
1345  * @ps:                 the pi_state pointer where we store the result of the
1346  *                      lookup
1347  * @task:               the task to perform the atomic lock work for.  This will
1348  *                      be "current" except in the case of requeue pi.
1349  * @exiting:            Pointer to store the task pointer of the owner task
1350  *                      which is in the middle of exiting
1351  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1352  *
1353  * Return:
1354  *  -  0 - ready to wait;
1355  *  -  1 - acquired the lock;
1356  *  - <0 - error
1357  *
1358  * The hb->lock and futex_key refs shall be held by the caller.
1359  *
1360  * @exiting is only set when the return value is -EBUSY. If so, this holds
1361  * a refcount on the exiting task on return and the caller needs to drop it
1362  * after waiting for the exit to complete.
1363  */
1364 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1365                                 union futex_key *key,
1366                                 struct futex_pi_state **ps,
1367                                 struct task_struct *task,
1368                                 struct task_struct **exiting,
1369                                 int set_waiters)
1370 {
1371         u32 uval, newval, vpid = task_pid_vnr(task);
1372         struct futex_q *top_waiter;
1373         int ret;
1374
1375         /*
1376          * Read the user space value first so we can validate a few
1377          * things before proceeding further.
1378          */
1379         if (get_futex_value_locked(&uval, uaddr))
1380                 return -EFAULT;
1381
1382         if (unlikely(should_fail_futex(true)))
1383                 return -EFAULT;
1384
1385         /*
1386          * Detect deadlocks.
1387          */
1388         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1389                 return -EDEADLK;
1390
1391         if ((unlikely(should_fail_futex(true))))
1392                 return -EDEADLK;
1393
1394         /*
1395          * Lookup existing state first. If it exists, try to attach to
1396          * its pi_state.
1397          */
1398         top_waiter = futex_top_waiter(hb, key);
1399         if (top_waiter)
1400                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1401
1402         /*
1403          * No waiter and user TID is 0. We are here because the
1404          * waiters or the owner died bit is set or called from
1405          * requeue_cmp_pi or for whatever reason something took the
1406          * syscall.
1407          */
1408         if (!(uval & FUTEX_TID_MASK)) {
1409                 /*
1410                  * We take over the futex. No other waiters and the user space
1411                  * TID is 0. We preserve the owner died bit.
1412                  */
1413                 newval = uval & FUTEX_OWNER_DIED;
1414                 newval |= vpid;
1415
1416                 /* The futex requeue_pi code can enforce the waiters bit */
1417                 if (set_waiters)
1418                         newval |= FUTEX_WAITERS;
1419
1420                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1421                 /* If the take over worked, return 1 */
1422                 return ret < 0 ? ret : 1;
1423         }
1424
1425         /*
1426          * First waiter. Set the waiters bit before attaching ourself to
1427          * the owner. If owner tries to unlock, it will be forced into
1428          * the kernel and blocked on hb->lock.
1429          */
1430         newval = uval | FUTEX_WAITERS;
1431         ret = lock_pi_update_atomic(uaddr, uval, newval);
1432         if (ret)
1433                 return ret;
1434         /*
1435          * If the update of the user space value succeeded, we try to
1436          * attach to the owner. If that fails, no harm done, we only
1437          * set the FUTEX_WAITERS bit in the user space variable.
1438          */
1439         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1440 }
1441
1442 /**
1443  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1444  * @q:  The futex_q to unqueue
1445  *
1446  * The q->lock_ptr must not be NULL and must be held by the caller.
1447  */
1448 static void __unqueue_futex(struct futex_q *q)
1449 {
1450         struct futex_hash_bucket *hb;
1451
1452         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1453                 return;
1454         lockdep_assert_held(q->lock_ptr);
1455
1456         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1457         plist_del(&q->list, &hb->chain);
1458         hb_waiters_dec(hb);
1459 }
1460
1461 /*
1462  * The hash bucket lock must be held when this is called.
1463  * Afterwards, the futex_q must not be accessed. Callers
1464  * must ensure to later call wake_up_q() for the actual
1465  * wakeups to occur.
1466  */
1467 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1468 {
1469         struct task_struct *p = q->task;
1470
1471         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1472                 return;
1473
1474         get_task_struct(p);
1475         __unqueue_futex(q);
1476         /*
1477          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1478          * is written, without taking any locks. This is possible in the event
1479          * of a spurious wakeup, for example. A memory barrier is required here
1480          * to prevent the following store to lock_ptr from getting ahead of the
1481          * plist_del in __unqueue_futex().
1482          */
1483         smp_store_release(&q->lock_ptr, NULL);
1484
1485         /*
1486          * Queue the task for later wakeup for after we've released
1487          * the hb->lock.
1488          */
1489         wake_q_add_safe(wake_q, p);
1490 }
1491
1492 /*
1493  * Caller must hold a reference on @pi_state.
1494  */
1495 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1496 {
1497         u32 curval, newval;
1498         struct task_struct *new_owner;
1499         bool postunlock = false;
1500         DEFINE_WAKE_Q(wake_q);
1501         int ret = 0;
1502
1503         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1504         if (WARN_ON_ONCE(!new_owner)) {
1505                 /*
1506                  * As per the comment in futex_unlock_pi() this should not happen.
1507                  *
1508                  * When this happens, give up our locks and try again, giving
1509                  * the futex_lock_pi() instance time to complete, either by
1510                  * waiting on the rtmutex or removing itself from the futex
1511                  * queue.
1512                  */
1513                 ret = -EAGAIN;
1514                 goto out_unlock;
1515         }
1516
1517         /*
1518          * We pass it to the next owner. The WAITERS bit is always kept
1519          * enabled while there is PI state around. We cleanup the owner
1520          * died bit, because we are the owner.
1521          */
1522         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1523
1524         if (unlikely(should_fail_futex(true))) {
1525                 ret = -EFAULT;
1526                 goto out_unlock;
1527         }
1528
1529         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1530         if (!ret && (curval != uval)) {
1531                 /*
1532                  * If a unconditional UNLOCK_PI operation (user space did not
1533                  * try the TID->0 transition) raced with a waiter setting the
1534                  * FUTEX_WAITERS flag between get_user() and locking the hash
1535                  * bucket lock, retry the operation.
1536                  */
1537                 if ((FUTEX_TID_MASK & curval) == uval)
1538                         ret = -EAGAIN;
1539                 else
1540                         ret = -EINVAL;
1541         }
1542
1543         if (!ret) {
1544                 /*
1545                  * This is a point of no return; once we modified the uval
1546                  * there is no going back and subsequent operations must
1547                  * not fail.
1548                  */
1549                 pi_state_update_owner(pi_state, new_owner);
1550                 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1551         }
1552
1553 out_unlock:
1554         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1555
1556         if (postunlock)
1557                 rt_mutex_postunlock(&wake_q);
1558
1559         return ret;
1560 }
1561
1562 /*
1563  * Express the locking dependencies for lockdep:
1564  */
1565 static inline void
1566 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1567 {
1568         if (hb1 <= hb2) {
1569                 spin_lock(&hb1->lock);
1570                 if (hb1 < hb2)
1571                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1572         } else { /* hb1 > hb2 */
1573                 spin_lock(&hb2->lock);
1574                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1575         }
1576 }
1577
1578 static inline void
1579 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1580 {
1581         spin_unlock(&hb1->lock);
1582         if (hb1 != hb2)
1583                 spin_unlock(&hb2->lock);
1584 }
1585
1586 /*
1587  * Wake up waiters matching bitset queued on this futex (uaddr).
1588  */
1589 static int
1590 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1591 {
1592         struct futex_hash_bucket *hb;
1593         struct futex_q *this, *next;
1594         union futex_key key = FUTEX_KEY_INIT;
1595         int ret;
1596         DEFINE_WAKE_Q(wake_q);
1597
1598         if (!bitset)
1599                 return -EINVAL;
1600
1601         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1602         if (unlikely(ret != 0))
1603                 return ret;
1604
1605         hb = hash_futex(&key);
1606
1607         /* Make sure we really have tasks to wakeup */
1608         if (!hb_waiters_pending(hb))
1609                 return ret;
1610
1611         spin_lock(&hb->lock);
1612
1613         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1614                 if (match_futex (&this->key, &key)) {
1615                         if (this->pi_state || this->rt_waiter) {
1616                                 ret = -EINVAL;
1617                                 break;
1618                         }
1619
1620                         /* Check if one of the bits is set in both bitsets */
1621                         if (!(this->bitset & bitset))
1622                                 continue;
1623
1624                         mark_wake_futex(&wake_q, this);
1625                         if (++ret >= nr_wake)
1626                                 break;
1627                 }
1628         }
1629
1630         spin_unlock(&hb->lock);
1631         wake_up_q(&wake_q);
1632         return ret;
1633 }
1634
1635 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1636 {
1637         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1638         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1639         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1640         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1641         int oldval, ret;
1642
1643         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1644                 if (oparg < 0 || oparg > 31) {
1645                         char comm[sizeof(current->comm)];
1646                         /*
1647                          * kill this print and return -EINVAL when userspace
1648                          * is sane again
1649                          */
1650                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1651                                         get_task_comm(comm, current), oparg);
1652                         oparg &= 31;
1653                 }
1654                 oparg = 1 << oparg;
1655         }
1656
1657         pagefault_disable();
1658         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1659         pagefault_enable();
1660         if (ret)
1661                 return ret;
1662
1663         switch (cmp) {
1664         case FUTEX_OP_CMP_EQ:
1665                 return oldval == cmparg;
1666         case FUTEX_OP_CMP_NE:
1667                 return oldval != cmparg;
1668         case FUTEX_OP_CMP_LT:
1669                 return oldval < cmparg;
1670         case FUTEX_OP_CMP_GE:
1671                 return oldval >= cmparg;
1672         case FUTEX_OP_CMP_LE:
1673                 return oldval <= cmparg;
1674         case FUTEX_OP_CMP_GT:
1675                 return oldval > cmparg;
1676         default:
1677                 return -ENOSYS;
1678         }
1679 }
1680
1681 /*
1682  * Wake up all waiters hashed on the physical page that is mapped
1683  * to this virtual address:
1684  */
1685 static int
1686 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1687               int nr_wake, int nr_wake2, int op)
1688 {
1689         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1690         struct futex_hash_bucket *hb1, *hb2;
1691         struct futex_q *this, *next;
1692         int ret, op_ret;
1693         DEFINE_WAKE_Q(wake_q);
1694
1695 retry:
1696         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1697         if (unlikely(ret != 0))
1698                 return ret;
1699         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1700         if (unlikely(ret != 0))
1701                 return ret;
1702
1703         hb1 = hash_futex(&key1);
1704         hb2 = hash_futex(&key2);
1705
1706 retry_private:
1707         double_lock_hb(hb1, hb2);
1708         op_ret = futex_atomic_op_inuser(op, uaddr2);
1709         if (unlikely(op_ret < 0)) {
1710                 double_unlock_hb(hb1, hb2);
1711
1712                 if (!IS_ENABLED(CONFIG_MMU) ||
1713                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1714                         /*
1715                          * we don't get EFAULT from MMU faults if we don't have
1716                          * an MMU, but we might get them from range checking
1717                          */
1718                         ret = op_ret;
1719                         return ret;
1720                 }
1721
1722                 if (op_ret == -EFAULT) {
1723                         ret = fault_in_user_writeable(uaddr2);
1724                         if (ret)
1725                                 return ret;
1726                 }
1727
1728                 if (!(flags & FLAGS_SHARED)) {
1729                         cond_resched();
1730                         goto retry_private;
1731                 }
1732
1733                 cond_resched();
1734                 goto retry;
1735         }
1736
1737         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1738                 if (match_futex (&this->key, &key1)) {
1739                         if (this->pi_state || this->rt_waiter) {
1740                                 ret = -EINVAL;
1741                                 goto out_unlock;
1742                         }
1743                         mark_wake_futex(&wake_q, this);
1744                         if (++ret >= nr_wake)
1745                                 break;
1746                 }
1747         }
1748
1749         if (op_ret > 0) {
1750                 op_ret = 0;
1751                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1752                         if (match_futex (&this->key, &key2)) {
1753                                 if (this->pi_state || this->rt_waiter) {
1754                                         ret = -EINVAL;
1755                                         goto out_unlock;
1756                                 }
1757                                 mark_wake_futex(&wake_q, this);
1758                                 if (++op_ret >= nr_wake2)
1759                                         break;
1760                         }
1761                 }
1762                 ret += op_ret;
1763         }
1764
1765 out_unlock:
1766         double_unlock_hb(hb1, hb2);
1767         wake_up_q(&wake_q);
1768         return ret;
1769 }
1770
1771 /**
1772  * requeue_futex() - Requeue a futex_q from one hb to another
1773  * @q:          the futex_q to requeue
1774  * @hb1:        the source hash_bucket
1775  * @hb2:        the target hash_bucket
1776  * @key2:       the new key for the requeued futex_q
1777  */
1778 static inline
1779 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1780                    struct futex_hash_bucket *hb2, union futex_key *key2)
1781 {
1782
1783         /*
1784          * If key1 and key2 hash to the same bucket, no need to
1785          * requeue.
1786          */
1787         if (likely(&hb1->chain != &hb2->chain)) {
1788                 plist_del(&q->list, &hb1->chain);
1789                 hb_waiters_dec(hb1);
1790                 hb_waiters_inc(hb2);
1791                 plist_add(&q->list, &hb2->chain);
1792                 q->lock_ptr = &hb2->lock;
1793         }
1794         q->key = *key2;
1795 }
1796
1797 /**
1798  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1799  * @q:          the futex_q
1800  * @key:        the key of the requeue target futex
1801  * @hb:         the hash_bucket of the requeue target futex
1802  *
1803  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1804  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1805  * to the requeue target futex so the waiter can detect the wakeup on the right
1806  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1807  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1808  * to protect access to the pi_state to fixup the owner later.  Must be called
1809  * with both q->lock_ptr and hb->lock held.
1810  */
1811 static inline
1812 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1813                            struct futex_hash_bucket *hb)
1814 {
1815         q->key = *key;
1816
1817         __unqueue_futex(q);
1818
1819         WARN_ON(!q->rt_waiter);
1820         q->rt_waiter = NULL;
1821
1822         q->lock_ptr = &hb->lock;
1823
1824         wake_up_state(q->task, TASK_NORMAL);
1825 }
1826
1827 /**
1828  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1829  * @pifutex:            the user address of the to futex
1830  * @hb1:                the from futex hash bucket, must be locked by the caller
1831  * @hb2:                the to futex hash bucket, must be locked by the caller
1832  * @key1:               the from futex key
1833  * @key2:               the to futex key
1834  * @ps:                 address to store the pi_state pointer
1835  * @exiting:            Pointer to store the task pointer of the owner task
1836  *                      which is in the middle of exiting
1837  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1838  *
1839  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1840  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1841  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1842  * hb1 and hb2 must be held by the caller.
1843  *
1844  * @exiting is only set when the return value is -EBUSY. If so, this holds
1845  * a refcount on the exiting task on return and the caller needs to drop it
1846  * after waiting for the exit to complete.
1847  *
1848  * Return:
1849  *  -  0 - failed to acquire the lock atomically;
1850  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1851  *  - <0 - error
1852  */
1853 static int
1854 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1855                            struct futex_hash_bucket *hb2, union futex_key *key1,
1856                            union futex_key *key2, struct futex_pi_state **ps,
1857                            struct task_struct **exiting, int set_waiters)
1858 {
1859         struct futex_q *top_waiter = NULL;
1860         u32 curval;
1861         int ret, vpid;
1862
1863         if (get_futex_value_locked(&curval, pifutex))
1864                 return -EFAULT;
1865
1866         if (unlikely(should_fail_futex(true)))
1867                 return -EFAULT;
1868
1869         /*
1870          * Find the top_waiter and determine if there are additional waiters.
1871          * If the caller intends to requeue more than 1 waiter to pifutex,
1872          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1873          * as we have means to handle the possible fault.  If not, don't set
1874          * the bit unecessarily as it will force the subsequent unlock to enter
1875          * the kernel.
1876          */
1877         top_waiter = futex_top_waiter(hb1, key1);
1878
1879         /* There are no waiters, nothing for us to do. */
1880         if (!top_waiter)
1881                 return 0;
1882
1883         /* Ensure we requeue to the expected futex. */
1884         if (!match_futex(top_waiter->requeue_pi_key, key2))
1885                 return -EINVAL;
1886
1887         /*
1888          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1889          * the contended case or if set_waiters is 1.  The pi_state is returned
1890          * in ps in contended cases.
1891          */
1892         vpid = task_pid_vnr(top_waiter->task);
1893         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1894                                    exiting, set_waiters);
1895         if (ret == 1) {
1896                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1897                 return vpid;
1898         }
1899         return ret;
1900 }
1901
1902 /**
1903  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1904  * @uaddr1:     source futex user address
1905  * @flags:      futex flags (FLAGS_SHARED, etc.)
1906  * @uaddr2:     target futex user address
1907  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1908  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1909  * @cmpval:     @uaddr1 expected value (or %NULL)
1910  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1911  *              pi futex (pi to pi requeue is not supported)
1912  *
1913  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1914  * uaddr2 atomically on behalf of the top waiter.
1915  *
1916  * Return:
1917  *  - >=0 - on success, the number of tasks requeued or woken;
1918  *  -  <0 - on error
1919  */
1920 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1921                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1922                          u32 *cmpval, int requeue_pi)
1923 {
1924         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1925         int task_count = 0, ret;
1926         struct futex_pi_state *pi_state = NULL;
1927         struct futex_hash_bucket *hb1, *hb2;
1928         struct futex_q *this, *next;
1929         DEFINE_WAKE_Q(wake_q);
1930
1931         if (nr_wake < 0 || nr_requeue < 0)
1932                 return -EINVAL;
1933
1934         /*
1935          * When PI not supported: return -ENOSYS if requeue_pi is true,
1936          * consequently the compiler knows requeue_pi is always false past
1937          * this point which will optimize away all the conditional code
1938          * further down.
1939          */
1940         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1941                 return -ENOSYS;
1942
1943         if (requeue_pi) {
1944                 /*
1945                  * Requeue PI only works on two distinct uaddrs. This
1946                  * check is only valid for private futexes. See below.
1947                  */
1948                 if (uaddr1 == uaddr2)
1949                         return -EINVAL;
1950
1951                 /*
1952                  * requeue_pi requires a pi_state, try to allocate it now
1953                  * without any locks in case it fails.
1954                  */
1955                 if (refill_pi_state_cache())
1956                         return -ENOMEM;
1957                 /*
1958                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1959                  * + nr_requeue, since it acquires the rt_mutex prior to
1960                  * returning to userspace, so as to not leave the rt_mutex with
1961                  * waiters and no owner.  However, second and third wake-ups
1962                  * cannot be predicted as they involve race conditions with the
1963                  * first wake and a fault while looking up the pi_state.  Both
1964                  * pthread_cond_signal() and pthread_cond_broadcast() should
1965                  * use nr_wake=1.
1966                  */
1967                 if (nr_wake != 1)
1968                         return -EINVAL;
1969         }
1970
1971 retry:
1972         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1973         if (unlikely(ret != 0))
1974                 return ret;
1975         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1976                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1977         if (unlikely(ret != 0))
1978                 return ret;
1979
1980         /*
1981          * The check above which compares uaddrs is not sufficient for
1982          * shared futexes. We need to compare the keys:
1983          */
1984         if (requeue_pi && match_futex(&key1, &key2))
1985                 return -EINVAL;
1986
1987         hb1 = hash_futex(&key1);
1988         hb2 = hash_futex(&key2);
1989
1990 retry_private:
1991         hb_waiters_inc(hb2);
1992         double_lock_hb(hb1, hb2);
1993
1994         if (likely(cmpval != NULL)) {
1995                 u32 curval;
1996
1997                 ret = get_futex_value_locked(&curval, uaddr1);
1998
1999                 if (unlikely(ret)) {
2000                         double_unlock_hb(hb1, hb2);
2001                         hb_waiters_dec(hb2);
2002
2003                         ret = get_user(curval, uaddr1);
2004                         if (ret)
2005                                 return ret;
2006
2007                         if (!(flags & FLAGS_SHARED))
2008                                 goto retry_private;
2009
2010                         goto retry;
2011                 }
2012                 if (curval != *cmpval) {
2013                         ret = -EAGAIN;
2014                         goto out_unlock;
2015                 }
2016         }
2017
2018         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2019                 struct task_struct *exiting = NULL;
2020
2021                 /*
2022                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2023                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2024                  * bit.  We force this here where we are able to easily handle
2025                  * faults rather in the requeue loop below.
2026                  */
2027                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2028                                                  &key2, &pi_state,
2029                                                  &exiting, nr_requeue);
2030
2031                 /*
2032                  * At this point the top_waiter has either taken uaddr2 or is
2033                  * waiting on it.  If the former, then the pi_state will not
2034                  * exist yet, look it up one more time to ensure we have a
2035                  * reference to it. If the lock was taken, ret contains the
2036                  * vpid of the top waiter task.
2037                  * If the lock was not taken, we have pi_state and an initial
2038                  * refcount on it. In case of an error we have nothing.
2039                  */
2040                 if (ret > 0) {
2041                         WARN_ON(pi_state);
2042                         task_count++;
2043                         /*
2044                          * If we acquired the lock, then the user space value
2045                          * of uaddr2 should be vpid. It cannot be changed by
2046                          * the top waiter as it is blocked on hb2 lock if it
2047                          * tries to do so. If something fiddled with it behind
2048                          * our back the pi state lookup might unearth it. So
2049                          * we rather use the known value than rereading and
2050                          * handing potential crap to lookup_pi_state.
2051                          *
2052                          * If that call succeeds then we have pi_state and an
2053                          * initial refcount on it.
2054                          */
2055                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2056                                               &pi_state, &exiting);
2057                 }
2058
2059                 switch (ret) {
2060                 case 0:
2061                         /* We hold a reference on the pi state. */
2062                         break;
2063
2064                         /* If the above failed, then pi_state is NULL */
2065                 case -EFAULT:
2066                         double_unlock_hb(hb1, hb2);
2067                         hb_waiters_dec(hb2);
2068                         ret = fault_in_user_writeable(uaddr2);
2069                         if (!ret)
2070                                 goto retry;
2071                         return ret;
2072                 case -EBUSY:
2073                 case -EAGAIN:
2074                         /*
2075                          * Two reasons for this:
2076                          * - EBUSY: Owner is exiting and we just wait for the
2077                          *   exit to complete.
2078                          * - EAGAIN: The user space value changed.
2079                          */
2080                         double_unlock_hb(hb1, hb2);
2081                         hb_waiters_dec(hb2);
2082                         /*
2083                          * Handle the case where the owner is in the middle of
2084                          * exiting. Wait for the exit to complete otherwise
2085                          * this task might loop forever, aka. live lock.
2086                          */
2087                         wait_for_owner_exiting(ret, exiting);
2088                         cond_resched();
2089                         goto retry;
2090                 default:
2091                         goto out_unlock;
2092                 }
2093         }
2094
2095         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2096                 if (task_count - nr_wake >= nr_requeue)
2097                         break;
2098
2099                 if (!match_futex(&this->key, &key1))
2100                         continue;
2101
2102                 /*
2103                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2104                  * be paired with each other and no other futex ops.
2105                  *
2106                  * We should never be requeueing a futex_q with a pi_state,
2107                  * which is awaiting a futex_unlock_pi().
2108                  */
2109                 if ((requeue_pi && !this->rt_waiter) ||
2110                     (!requeue_pi && this->rt_waiter) ||
2111                     this->pi_state) {
2112                         ret = -EINVAL;
2113                         break;
2114                 }
2115
2116                 /*
2117                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2118                  * lock, we already woke the top_waiter.  If not, it will be
2119                  * woken by futex_unlock_pi().
2120                  */
2121                 if (++task_count <= nr_wake && !requeue_pi) {
2122                         mark_wake_futex(&wake_q, this);
2123                         continue;
2124                 }
2125
2126                 /* Ensure we requeue to the expected futex for requeue_pi. */
2127                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2128                         ret = -EINVAL;
2129                         break;
2130                 }
2131
2132                 /*
2133                  * Requeue nr_requeue waiters and possibly one more in the case
2134                  * of requeue_pi if we couldn't acquire the lock atomically.
2135                  */
2136                 if (requeue_pi) {
2137                         /*
2138                          * Prepare the waiter to take the rt_mutex. Take a
2139                          * refcount on the pi_state and store the pointer in
2140                          * the futex_q object of the waiter.
2141                          */
2142                         get_pi_state(pi_state);
2143                         this->pi_state = pi_state;
2144                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2145                                                         this->rt_waiter,
2146                                                         this->task);
2147                         if (ret == 1) {
2148                                 /*
2149                                  * We got the lock. We do neither drop the
2150                                  * refcount on pi_state nor clear
2151                                  * this->pi_state because the waiter needs the
2152                                  * pi_state for cleaning up the user space
2153                                  * value. It will drop the refcount after
2154                                  * doing so.
2155                                  */
2156                                 requeue_pi_wake_futex(this, &key2, hb2);
2157                                 continue;
2158                         } else if (ret) {
2159                                 /*
2160                                  * rt_mutex_start_proxy_lock() detected a
2161                                  * potential deadlock when we tried to queue
2162                                  * that waiter. Drop the pi_state reference
2163                                  * which we took above and remove the pointer
2164                                  * to the state from the waiters futex_q
2165                                  * object.
2166                                  */
2167                                 this->pi_state = NULL;
2168                                 put_pi_state(pi_state);
2169                                 /*
2170                                  * We stop queueing more waiters and let user
2171                                  * space deal with the mess.
2172                                  */
2173                                 break;
2174                         }
2175                 }
2176                 requeue_futex(this, hb1, hb2, &key2);
2177         }
2178
2179         /*
2180          * We took an extra initial reference to the pi_state either
2181          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2182          * need to drop it here again.
2183          */
2184         put_pi_state(pi_state);
2185
2186 out_unlock:
2187         double_unlock_hb(hb1, hb2);
2188         wake_up_q(&wake_q);
2189         hb_waiters_dec(hb2);
2190         return ret ? ret : task_count;
2191 }
2192
2193 /* The key must be already stored in q->key. */
2194 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2195         __acquires(&hb->lock)
2196 {
2197         struct futex_hash_bucket *hb;
2198
2199         hb = hash_futex(&q->key);
2200
2201         /*
2202          * Increment the counter before taking the lock so that
2203          * a potential waker won't miss a to-be-slept task that is
2204          * waiting for the spinlock. This is safe as all queue_lock()
2205          * users end up calling queue_me(). Similarly, for housekeeping,
2206          * decrement the counter at queue_unlock() when some error has
2207          * occurred and we don't end up adding the task to the list.
2208          */
2209         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2210
2211         q->lock_ptr = &hb->lock;
2212
2213         spin_lock(&hb->lock);
2214         return hb;
2215 }
2216
2217 static inline void
2218 queue_unlock(struct futex_hash_bucket *hb)
2219         __releases(&hb->lock)
2220 {
2221         spin_unlock(&hb->lock);
2222         hb_waiters_dec(hb);
2223 }
2224
2225 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2226 {
2227         int prio;
2228
2229         /*
2230          * The priority used to register this element is
2231          * - either the real thread-priority for the real-time threads
2232          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2233          * - or MAX_RT_PRIO for non-RT threads.
2234          * Thus, all RT-threads are woken first in priority order, and
2235          * the others are woken last, in FIFO order.
2236          */
2237         prio = min(current->normal_prio, MAX_RT_PRIO);
2238
2239         plist_node_init(&q->list, prio);
2240         plist_add(&q->list, &hb->chain);
2241         q->task = current;
2242 }
2243
2244 /**
2245  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2246  * @q:  The futex_q to enqueue
2247  * @hb: The destination hash bucket
2248  *
2249  * The hb->lock must be held by the caller, and is released here. A call to
2250  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2251  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2252  * or nothing if the unqueue is done as part of the wake process and the unqueue
2253  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2254  * an example).
2255  */
2256 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2257         __releases(&hb->lock)
2258 {
2259         __queue_me(q, hb);
2260         spin_unlock(&hb->lock);
2261 }
2262
2263 /**
2264  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2265  * @q:  The futex_q to unqueue
2266  *
2267  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2268  * be paired with exactly one earlier call to queue_me().
2269  *
2270  * Return:
2271  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2272  *  - 0 - if the futex_q was already removed by the waking thread
2273  */
2274 static int unqueue_me(struct futex_q *q)
2275 {
2276         spinlock_t *lock_ptr;
2277         int ret = 0;
2278
2279         /* In the common case we don't take the spinlock, which is nice. */
2280 retry:
2281         /*
2282          * q->lock_ptr can change between this read and the following spin_lock.
2283          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2284          * optimizing lock_ptr out of the logic below.
2285          */
2286         lock_ptr = READ_ONCE(q->lock_ptr);
2287         if (lock_ptr != NULL) {
2288                 spin_lock(lock_ptr);
2289                 /*
2290                  * q->lock_ptr can change between reading it and
2291                  * spin_lock(), causing us to take the wrong lock.  This
2292                  * corrects the race condition.
2293                  *
2294                  * Reasoning goes like this: if we have the wrong lock,
2295                  * q->lock_ptr must have changed (maybe several times)
2296                  * between reading it and the spin_lock().  It can
2297                  * change again after the spin_lock() but only if it was
2298                  * already changed before the spin_lock().  It cannot,
2299                  * however, change back to the original value.  Therefore
2300                  * we can detect whether we acquired the correct lock.
2301                  */
2302                 if (unlikely(lock_ptr != q->lock_ptr)) {
2303                         spin_unlock(lock_ptr);
2304                         goto retry;
2305                 }
2306                 __unqueue_futex(q);
2307
2308                 BUG_ON(q->pi_state);
2309
2310                 spin_unlock(lock_ptr);
2311                 ret = 1;
2312         }
2313
2314         return ret;
2315 }
2316
2317 /*
2318  * PI futexes can not be requeued and must remove themself from the
2319  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2320  * and dropped here.
2321  */
2322 static void unqueue_me_pi(struct futex_q *q)
2323         __releases(q->lock_ptr)
2324 {
2325         __unqueue_futex(q);
2326
2327         BUG_ON(!q->pi_state);
2328         put_pi_state(q->pi_state);
2329         q->pi_state = NULL;
2330
2331         spin_unlock(q->lock_ptr);
2332 }
2333
2334 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2335                                   struct task_struct *argowner)
2336 {
2337         struct futex_pi_state *pi_state = q->pi_state;
2338         struct task_struct *oldowner, *newowner;
2339         u32 uval, curval, newval, newtid;
2340         int err = 0;
2341
2342         oldowner = pi_state->owner;
2343
2344         /*
2345          * We are here because either:
2346          *
2347          *  - we stole the lock and pi_state->owner needs updating to reflect
2348          *    that (@argowner == current),
2349          *
2350          * or:
2351          *
2352          *  - someone stole our lock and we need to fix things to point to the
2353          *    new owner (@argowner == NULL).
2354          *
2355          * Either way, we have to replace the TID in the user space variable.
2356          * This must be atomic as we have to preserve the owner died bit here.
2357          *
2358          * Note: We write the user space value _before_ changing the pi_state
2359          * because we can fault here. Imagine swapped out pages or a fork
2360          * that marked all the anonymous memory readonly for cow.
2361          *
2362          * Modifying pi_state _before_ the user space value would leave the
2363          * pi_state in an inconsistent state when we fault here, because we
2364          * need to drop the locks to handle the fault. This might be observed
2365          * in the PID check in lookup_pi_state.
2366          */
2367 retry:
2368         if (!argowner) {
2369                 if (oldowner != current) {
2370                         /*
2371                          * We raced against a concurrent self; things are
2372                          * already fixed up. Nothing to do.
2373                          */
2374                         return 0;
2375                 }
2376
2377                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2378                         /* We got the lock. pi_state is correct. Tell caller. */
2379                         return 1;
2380                 }
2381
2382                 /*
2383                  * The trylock just failed, so either there is an owner or
2384                  * there is a higher priority waiter than this one.
2385                  */
2386                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2387                 /*
2388                  * If the higher priority waiter has not yet taken over the
2389                  * rtmutex then newowner is NULL. We can't return here with
2390                  * that state because it's inconsistent vs. the user space
2391                  * state. So drop the locks and try again. It's a valid
2392                  * situation and not any different from the other retry
2393                  * conditions.
2394                  */
2395                 if (unlikely(!newowner)) {
2396                         err = -EAGAIN;
2397                         goto handle_err;
2398                 }
2399         } else {
2400                 WARN_ON_ONCE(argowner != current);
2401                 if (oldowner == current) {
2402                         /*
2403                          * We raced against a concurrent self; things are
2404                          * already fixed up. Nothing to do.
2405                          */
2406                         return 1;
2407                 }
2408                 newowner = argowner;
2409         }
2410
2411         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2412         /* Owner died? */
2413         if (!pi_state->owner)
2414                 newtid |= FUTEX_OWNER_DIED;
2415
2416         err = get_futex_value_locked(&uval, uaddr);
2417         if (err)
2418                 goto handle_err;
2419
2420         for (;;) {
2421                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2422
2423                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2424                 if (err)
2425                         goto handle_err;
2426
2427                 if (curval == uval)
2428                         break;
2429                 uval = curval;
2430         }
2431
2432         /*
2433          * We fixed up user space. Now we need to fix the pi_state
2434          * itself.
2435          */
2436         pi_state_update_owner(pi_state, newowner);
2437
2438         return argowner == current;
2439
2440         /*
2441          * In order to reschedule or handle a page fault, we need to drop the
2442          * locks here. In the case of a fault, this gives the other task
2443          * (either the highest priority waiter itself or the task which stole
2444          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2445          * are back from handling the fault we need to check the pi_state after
2446          * reacquiring the locks and before trying to do another fixup. When
2447          * the fixup has been done already we simply return.
2448          *
2449          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2450          * drop hb->lock since the caller owns the hb -> futex_q relation.
2451          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2452          */
2453 handle_err:
2454         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2455         spin_unlock(q->lock_ptr);
2456
2457         switch (err) {
2458         case -EFAULT:
2459                 err = fault_in_user_writeable(uaddr);
2460                 break;
2461
2462         case -EAGAIN:
2463                 cond_resched();
2464                 err = 0;
2465                 break;
2466
2467         default:
2468                 WARN_ON_ONCE(1);
2469                 break;
2470         }
2471
2472         spin_lock(q->lock_ptr);
2473         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2474
2475         /*
2476          * Check if someone else fixed it for us:
2477          */
2478         if (pi_state->owner != oldowner)
2479                 return argowner == current;
2480
2481         /* Retry if err was -EAGAIN or the fault in succeeded */
2482         if (!err)
2483                 goto retry;
2484
2485         /*
2486          * fault_in_user_writeable() failed so user state is immutable. At
2487          * best we can make the kernel state consistent but user state will
2488          * be most likely hosed and any subsequent unlock operation will be
2489          * rejected due to PI futex rule [10].
2490          *
2491          * Ensure that the rtmutex owner is also the pi_state owner despite
2492          * the user space value claiming something different. There is no
2493          * point in unlocking the rtmutex if current is the owner as it
2494          * would need to wait until the next waiter has taken the rtmutex
2495          * to guarantee consistent state. Keep it simple. Userspace asked
2496          * for this wreckaged state.
2497          *
2498          * The rtmutex has an owner - either current or some other
2499          * task. See the EAGAIN loop above.
2500          */
2501         pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2502
2503         return err;
2504 }
2505
2506 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2507                                 struct task_struct *argowner)
2508 {
2509         struct futex_pi_state *pi_state = q->pi_state;
2510         int ret;
2511
2512         lockdep_assert_held(q->lock_ptr);
2513
2514         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2515         ret = __fixup_pi_state_owner(uaddr, q, argowner);
2516         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2517         return ret;
2518 }
2519
2520 static long futex_wait_restart(struct restart_block *restart);
2521
2522 /**
2523  * fixup_owner() - Post lock pi_state and corner case management
2524  * @uaddr:      user address of the futex
2525  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2526  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2527  *
2528  * After attempting to lock an rt_mutex, this function is called to cleanup
2529  * the pi_state owner as well as handle race conditions that may allow us to
2530  * acquire the lock. Must be called with the hb lock held.
2531  *
2532  * Return:
2533  *  -  1 - success, lock taken;
2534  *  -  0 - success, lock not taken;
2535  *  - <0 - on error (-EFAULT)
2536  */
2537 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2538 {
2539         if (locked) {
2540                 /*
2541                  * Got the lock. We might not be the anticipated owner if we
2542                  * did a lock-steal - fix up the PI-state in that case:
2543                  *
2544                  * Speculative pi_state->owner read (we don't hold wait_lock);
2545                  * since we own the lock pi_state->owner == current is the
2546                  * stable state, anything else needs more attention.
2547                  */
2548                 if (q->pi_state->owner != current)
2549                         return fixup_pi_state_owner(uaddr, q, current);
2550                 return 1;
2551         }
2552
2553         /*
2554          * If we didn't get the lock; check if anybody stole it from us. In
2555          * that case, we need to fix up the uval to point to them instead of
2556          * us, otherwise bad things happen. [10]
2557          *
2558          * Another speculative read; pi_state->owner == current is unstable
2559          * but needs our attention.
2560          */
2561         if (q->pi_state->owner == current)
2562                 return fixup_pi_state_owner(uaddr, q, NULL);
2563
2564         /*
2565          * Paranoia check. If we did not take the lock, then we should not be
2566          * the owner of the rt_mutex. Warn and establish consistent state.
2567          */
2568         if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2569                 return fixup_pi_state_owner(uaddr, q, current);
2570
2571         return 0;
2572 }
2573
2574 /**
2575  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2576  * @hb:         the futex hash bucket, must be locked by the caller
2577  * @q:          the futex_q to queue up on
2578  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2579  */
2580 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2581                                 struct hrtimer_sleeper *timeout)
2582 {
2583         /*
2584          * The task state is guaranteed to be set before another task can
2585          * wake it. set_current_state() is implemented using smp_store_mb() and
2586          * queue_me() calls spin_unlock() upon completion, both serializing
2587          * access to the hash list and forcing another memory barrier.
2588          */
2589         set_current_state(TASK_INTERRUPTIBLE);
2590         queue_me(q, hb);
2591
2592         /* Arm the timer */
2593         if (timeout)
2594                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2595
2596         /*
2597          * If we have been removed from the hash list, then another task
2598          * has tried to wake us, and we can skip the call to schedule().
2599          */
2600         if (likely(!plist_node_empty(&q->list))) {
2601                 /*
2602                  * If the timer has already expired, current will already be
2603                  * flagged for rescheduling. Only call schedule if there
2604                  * is no timeout, or if it has yet to expire.
2605                  */
2606                 if (!timeout || timeout->task)
2607                         freezable_schedule();
2608         }
2609         __set_current_state(TASK_RUNNING);
2610 }
2611
2612 /**
2613  * futex_wait_setup() - Prepare to wait on a futex
2614  * @uaddr:      the futex userspace address
2615  * @val:        the expected value
2616  * @flags:      futex flags (FLAGS_SHARED, etc.)
2617  * @q:          the associated futex_q
2618  * @hb:         storage for hash_bucket pointer to be returned to caller
2619  *
2620  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2621  * compare it with the expected value.  Handle atomic faults internally.
2622  * Return with the hb lock held and a q.key reference on success, and unlocked
2623  * with no q.key reference on failure.
2624  *
2625  * Return:
2626  *  -  0 - uaddr contains val and hb has been locked;
2627  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2628  */
2629 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2630                            struct futex_q *q, struct futex_hash_bucket **hb)
2631 {
2632         u32 uval;
2633         int ret;
2634
2635         /*
2636          * Access the page AFTER the hash-bucket is locked.
2637          * Order is important:
2638          *
2639          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2640          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2641          *
2642          * The basic logical guarantee of a futex is that it blocks ONLY
2643          * if cond(var) is known to be true at the time of blocking, for
2644          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2645          * would open a race condition where we could block indefinitely with
2646          * cond(var) false, which would violate the guarantee.
2647          *
2648          * On the other hand, we insert q and release the hash-bucket only
2649          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2650          * absorb a wakeup if *uaddr does not match the desired values
2651          * while the syscall executes.
2652          */
2653 retry:
2654         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2655         if (unlikely(ret != 0))
2656                 return ret;
2657
2658 retry_private:
2659         *hb = queue_lock(q);
2660
2661         ret = get_futex_value_locked(&uval, uaddr);
2662
2663         if (ret) {
2664                 queue_unlock(*hb);
2665
2666                 ret = get_user(uval, uaddr);
2667                 if (ret)
2668                         return ret;
2669
2670                 if (!(flags & FLAGS_SHARED))
2671                         goto retry_private;
2672
2673                 goto retry;
2674         }
2675
2676         if (uval != val) {
2677                 queue_unlock(*hb);
2678                 ret = -EWOULDBLOCK;
2679         }
2680
2681         return ret;
2682 }
2683
2684 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2685                       ktime_t *abs_time, u32 bitset)
2686 {
2687         struct hrtimer_sleeper timeout, *to;
2688         struct restart_block *restart;
2689         struct futex_hash_bucket *hb;
2690         struct futex_q q = futex_q_init;
2691         int ret;
2692
2693         if (!bitset)
2694                 return -EINVAL;
2695         q.bitset = bitset;
2696
2697         to = futex_setup_timer(abs_time, &timeout, flags,
2698                                current->timer_slack_ns);
2699 retry:
2700         /*
2701          * Prepare to wait on uaddr. On success, holds hb lock and increments
2702          * q.key refs.
2703          */
2704         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2705         if (ret)
2706                 goto out;
2707
2708         /* queue_me and wait for wakeup, timeout, or a signal. */
2709         futex_wait_queue_me(hb, &q, to);
2710
2711         /* If we were woken (and unqueued), we succeeded, whatever. */
2712         ret = 0;
2713         /* unqueue_me() drops q.key ref */
2714         if (!unqueue_me(&q))
2715                 goto out;
2716         ret = -ETIMEDOUT;
2717         if (to && !to->task)
2718                 goto out;
2719
2720         /*
2721          * We expect signal_pending(current), but we might be the
2722          * victim of a spurious wakeup as well.
2723          */
2724         if (!signal_pending(current))
2725                 goto retry;
2726
2727         ret = -ERESTARTSYS;
2728         if (!abs_time)
2729                 goto out;
2730
2731         restart = &current->restart_block;
2732         restart->futex.uaddr = uaddr;
2733         restart->futex.val = val;
2734         restart->futex.time = *abs_time;
2735         restart->futex.bitset = bitset;
2736         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2737
2738         ret = set_restart_fn(restart, futex_wait_restart);
2739
2740 out:
2741         if (to) {
2742                 hrtimer_cancel(&to->timer);
2743                 destroy_hrtimer_on_stack(&to->timer);
2744         }
2745         return ret;
2746 }
2747
2748
2749 static long futex_wait_restart(struct restart_block *restart)
2750 {
2751         u32 __user *uaddr = restart->futex.uaddr;
2752         ktime_t t, *tp = NULL;
2753
2754         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2755                 t = restart->futex.time;
2756                 tp = &t;
2757         }
2758         restart->fn = do_no_restart_syscall;
2759
2760         return (long)futex_wait(uaddr, restart->futex.flags,
2761                                 restart->futex.val, tp, restart->futex.bitset);
2762 }
2763
2764
2765 /*
2766  * Userspace tried a 0 -> TID atomic transition of the futex value
2767  * and failed. The kernel side here does the whole locking operation:
2768  * if there are waiters then it will block as a consequence of relying
2769  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2770  * a 0 value of the futex too.).
2771  *
2772  * Also serves as futex trylock_pi()'ing, and due semantics.
2773  */
2774 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2775                          ktime_t *time, int trylock)
2776 {
2777         struct hrtimer_sleeper timeout, *to;
2778         struct task_struct *exiting = NULL;
2779         struct rt_mutex_waiter rt_waiter;
2780         struct futex_hash_bucket *hb;
2781         struct futex_q q = futex_q_init;
2782         int res, ret;
2783
2784         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2785                 return -ENOSYS;
2786
2787         if (refill_pi_state_cache())
2788                 return -ENOMEM;
2789
2790         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2791
2792 retry:
2793         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2794         if (unlikely(ret != 0))
2795                 goto out;
2796
2797 retry_private:
2798         hb = queue_lock(&q);
2799
2800         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2801                                    &exiting, 0);
2802         if (unlikely(ret)) {
2803                 /*
2804                  * Atomic work succeeded and we got the lock,
2805                  * or failed. Either way, we do _not_ block.
2806                  */
2807                 switch (ret) {
2808                 case 1:
2809                         /* We got the lock. */
2810                         ret = 0;
2811                         goto out_unlock_put_key;
2812                 case -EFAULT:
2813                         goto uaddr_faulted;
2814                 case -EBUSY:
2815                 case -EAGAIN:
2816                         /*
2817                          * Two reasons for this:
2818                          * - EBUSY: Task is exiting and we just wait for the
2819                          *   exit to complete.
2820                          * - EAGAIN: The user space value changed.
2821                          */
2822                         queue_unlock(hb);
2823                         /*
2824                          * Handle the case where the owner is in the middle of
2825                          * exiting. Wait for the exit to complete otherwise
2826                          * this task might loop forever, aka. live lock.
2827                          */
2828                         wait_for_owner_exiting(ret, exiting);
2829                         cond_resched();
2830                         goto retry;
2831                 default:
2832                         goto out_unlock_put_key;
2833                 }
2834         }
2835
2836         WARN_ON(!q.pi_state);
2837
2838         /*
2839          * Only actually queue now that the atomic ops are done:
2840          */
2841         __queue_me(&q, hb);
2842
2843         if (trylock) {
2844                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2845                 /* Fixup the trylock return value: */
2846                 ret = ret ? 0 : -EWOULDBLOCK;
2847                 goto no_block;
2848         }
2849
2850         rt_mutex_init_waiter(&rt_waiter);
2851
2852         /*
2853          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2854          * hold it while doing rt_mutex_start_proxy(), because then it will
2855          * include hb->lock in the blocking chain, even through we'll not in
2856          * fact hold it while blocking. This will lead it to report -EDEADLK
2857          * and BUG when futex_unlock_pi() interleaves with this.
2858          *
2859          * Therefore acquire wait_lock while holding hb->lock, but drop the
2860          * latter before calling __rt_mutex_start_proxy_lock(). This
2861          * interleaves with futex_unlock_pi() -- which does a similar lock
2862          * handoff -- such that the latter can observe the futex_q::pi_state
2863          * before __rt_mutex_start_proxy_lock() is done.
2864          */
2865         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2866         spin_unlock(q.lock_ptr);
2867         /*
2868          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2869          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2870          * it sees the futex_q::pi_state.
2871          */
2872         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2873         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2874
2875         if (ret) {
2876                 if (ret == 1)
2877                         ret = 0;
2878                 goto cleanup;
2879         }
2880
2881         if (unlikely(to))
2882                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2883
2884         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2885
2886 cleanup:
2887         spin_lock(q.lock_ptr);
2888         /*
2889          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2890          * first acquire the hb->lock before removing the lock from the
2891          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2892          * lists consistent.
2893          *
2894          * In particular; it is important that futex_unlock_pi() can not
2895          * observe this inconsistency.
2896          */
2897         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2898                 ret = 0;
2899
2900 no_block:
2901         /*
2902          * Fixup the pi_state owner and possibly acquire the lock if we
2903          * haven't already.
2904          */
2905         res = fixup_owner(uaddr, &q, !ret);
2906         /*
2907          * If fixup_owner() returned an error, proprogate that.  If it acquired
2908          * the lock, clear our -ETIMEDOUT or -EINTR.
2909          */
2910         if (res)
2911                 ret = (res < 0) ? res : 0;
2912
2913         /* Unqueue and drop the lock */
2914         unqueue_me_pi(&q);
2915         goto out;
2916
2917 out_unlock_put_key:
2918         queue_unlock(hb);
2919
2920 out:
2921         if (to) {
2922                 hrtimer_cancel(&to->timer);
2923                 destroy_hrtimer_on_stack(&to->timer);
2924         }
2925         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2926
2927 uaddr_faulted:
2928         queue_unlock(hb);
2929
2930         ret = fault_in_user_writeable(uaddr);
2931         if (ret)
2932                 goto out;
2933
2934         if (!(flags & FLAGS_SHARED))
2935                 goto retry_private;
2936
2937         goto retry;
2938 }
2939
2940 /*
2941  * Userspace attempted a TID -> 0 atomic transition, and failed.
2942  * This is the in-kernel slowpath: we look up the PI state (if any),
2943  * and do the rt-mutex unlock.
2944  */
2945 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2946 {
2947         u32 curval, uval, vpid = task_pid_vnr(current);
2948         union futex_key key = FUTEX_KEY_INIT;
2949         struct futex_hash_bucket *hb;
2950         struct futex_q *top_waiter;
2951         int ret;
2952
2953         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2954                 return -ENOSYS;
2955
2956 retry:
2957         if (get_user(uval, uaddr))
2958                 return -EFAULT;
2959         /*
2960          * We release only a lock we actually own:
2961          */
2962         if ((uval & FUTEX_TID_MASK) != vpid)
2963                 return -EPERM;
2964
2965         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2966         if (ret)
2967                 return ret;
2968
2969         hb = hash_futex(&key);
2970         spin_lock(&hb->lock);
2971
2972         /*
2973          * Check waiters first. We do not trust user space values at
2974          * all and we at least want to know if user space fiddled
2975          * with the futex value instead of blindly unlocking.
2976          */
2977         top_waiter = futex_top_waiter(hb, &key);
2978         if (top_waiter) {
2979                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2980
2981                 ret = -EINVAL;
2982                 if (!pi_state)
2983                         goto out_unlock;
2984
2985                 /*
2986                  * If current does not own the pi_state then the futex is
2987                  * inconsistent and user space fiddled with the futex value.
2988                  */
2989                 if (pi_state->owner != current)
2990                         goto out_unlock;
2991
2992                 get_pi_state(pi_state);
2993                 /*
2994                  * By taking wait_lock while still holding hb->lock, we ensure
2995                  * there is no point where we hold neither; and therefore
2996                  * wake_futex_pi() must observe a state consistent with what we
2997                  * observed.
2998                  *
2999                  * In particular; this forces __rt_mutex_start_proxy() to
3000                  * complete such that we're guaranteed to observe the
3001                  * rt_waiter. Also see the WARN in wake_futex_pi().
3002                  */
3003                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3004                 spin_unlock(&hb->lock);
3005
3006                 /* drops pi_state->pi_mutex.wait_lock */
3007                 ret = wake_futex_pi(uaddr, uval, pi_state);
3008
3009                 put_pi_state(pi_state);
3010
3011                 /*
3012                  * Success, we're done! No tricky corner cases.
3013                  */
3014                 if (!ret)
3015                         goto out_putkey;
3016                 /*
3017                  * The atomic access to the futex value generated a
3018                  * pagefault, so retry the user-access and the wakeup:
3019                  */
3020                 if (ret == -EFAULT)
3021                         goto pi_faulted;
3022                 /*
3023                  * A unconditional UNLOCK_PI op raced against a waiter
3024                  * setting the FUTEX_WAITERS bit. Try again.
3025                  */
3026                 if (ret == -EAGAIN)
3027                         goto pi_retry;
3028                 /*
3029                  * wake_futex_pi has detected invalid state. Tell user
3030                  * space.
3031                  */
3032                 goto out_putkey;
3033         }
3034
3035         /*
3036          * We have no kernel internal state, i.e. no waiters in the
3037          * kernel. Waiters which are about to queue themselves are stuck
3038          * on hb->lock. So we can safely ignore them. We do neither
3039          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3040          * owner.
3041          */
3042         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3043                 spin_unlock(&hb->lock);
3044                 switch (ret) {
3045                 case -EFAULT:
3046                         goto pi_faulted;
3047
3048                 case -EAGAIN:
3049                         goto pi_retry;
3050
3051                 default:
3052                         WARN_ON_ONCE(1);
3053                         goto out_putkey;
3054                 }
3055         }
3056
3057         /*
3058          * If uval has changed, let user space handle it.
3059          */
3060         ret = (curval == uval) ? 0 : -EAGAIN;
3061
3062 out_unlock:
3063         spin_unlock(&hb->lock);
3064 out_putkey:
3065         return ret;
3066
3067 pi_retry:
3068         cond_resched();
3069         goto retry;
3070
3071 pi_faulted:
3072
3073         ret = fault_in_user_writeable(uaddr);
3074         if (!ret)
3075                 goto retry;
3076
3077         return ret;
3078 }
3079
3080 /**
3081  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3082  * @hb:         the hash_bucket futex_q was original enqueued on
3083  * @q:          the futex_q woken while waiting to be requeued
3084  * @key2:       the futex_key of the requeue target futex
3085  * @timeout:    the timeout associated with the wait (NULL if none)
3086  *
3087  * Detect if the task was woken on the initial futex as opposed to the requeue
3088  * target futex.  If so, determine if it was a timeout or a signal that caused
3089  * the wakeup and return the appropriate error code to the caller.  Must be
3090  * called with the hb lock held.
3091  *
3092  * Return:
3093  *  -  0 = no early wakeup detected;
3094  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3095  */
3096 static inline
3097 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3098                                    struct futex_q *q, union futex_key *key2,
3099                                    struct hrtimer_sleeper *timeout)
3100 {
3101         int ret = 0;
3102
3103         /*
3104          * With the hb lock held, we avoid races while we process the wakeup.
3105          * We only need to hold hb (and not hb2) to ensure atomicity as the
3106          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3107          * It can't be requeued from uaddr2 to something else since we don't
3108          * support a PI aware source futex for requeue.
3109          */
3110         if (!match_futex(&q->key, key2)) {
3111                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3112                 /*
3113                  * We were woken prior to requeue by a timeout or a signal.
3114                  * Unqueue the futex_q and determine which it was.
3115                  */
3116                 plist_del(&q->list, &hb->chain);
3117                 hb_waiters_dec(hb);
3118
3119                 /* Handle spurious wakeups gracefully */
3120                 ret = -EWOULDBLOCK;
3121                 if (timeout && !timeout->task)
3122                         ret = -ETIMEDOUT;
3123                 else if (signal_pending(current))
3124                         ret = -ERESTARTNOINTR;
3125         }
3126         return ret;
3127 }
3128
3129 /**
3130  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3131  * @uaddr:      the futex we initially wait on (non-pi)
3132  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3133  *              the same type, no requeueing from private to shared, etc.
3134  * @val:        the expected value of uaddr
3135  * @abs_time:   absolute timeout
3136  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3137  * @uaddr2:     the pi futex we will take prior to returning to user-space
3138  *
3139  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3140  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3141  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3142  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3143  * without one, the pi logic would not know which task to boost/deboost, if
3144  * there was a need to.
3145  *
3146  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3147  * via the following--
3148  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3149  * 2) wakeup on uaddr2 after a requeue
3150  * 3) signal
3151  * 4) timeout
3152  *
3153  * If 3, cleanup and return -ERESTARTNOINTR.
3154  *
3155  * If 2, we may then block on trying to take the rt_mutex and return via:
3156  * 5) successful lock
3157  * 6) signal
3158  * 7) timeout
3159  * 8) other lock acquisition failure
3160  *
3161  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3162  *
3163  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3164  *
3165  * Return:
3166  *  -  0 - On success;
3167  *  - <0 - On error
3168  */
3169 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3170                                  u32 val, ktime_t *abs_time, u32 bitset,
3171                                  u32 __user *uaddr2)
3172 {
3173         struct hrtimer_sleeper timeout, *to;
3174         struct rt_mutex_waiter rt_waiter;
3175         struct futex_hash_bucket *hb;
3176         union futex_key key2 = FUTEX_KEY_INIT;
3177         struct futex_q q = futex_q_init;
3178         int res, ret;
3179
3180         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3181                 return -ENOSYS;
3182
3183         if (uaddr == uaddr2)
3184                 return -EINVAL;
3185
3186         if (!bitset)
3187                 return -EINVAL;
3188
3189         to = futex_setup_timer(abs_time, &timeout, flags,
3190                                current->timer_slack_ns);
3191
3192         /*
3193          * The waiter is allocated on our stack, manipulated by the requeue
3194          * code while we sleep on uaddr.
3195          */
3196         rt_mutex_init_waiter(&rt_waiter);
3197
3198         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3199         if (unlikely(ret != 0))
3200                 goto out;
3201
3202         q.bitset = bitset;
3203         q.rt_waiter = &rt_waiter;
3204         q.requeue_pi_key = &key2;
3205
3206         /*
3207          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3208          * count.
3209          */
3210         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3211         if (ret)
3212                 goto out;
3213
3214         /*
3215          * The check above which compares uaddrs is not sufficient for
3216          * shared futexes. We need to compare the keys:
3217          */
3218         if (match_futex(&q.key, &key2)) {
3219                 queue_unlock(hb);
3220                 ret = -EINVAL;
3221                 goto out;
3222         }
3223
3224         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3225         futex_wait_queue_me(hb, &q, to);
3226
3227         spin_lock(&hb->lock);
3228         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3229         spin_unlock(&hb->lock);
3230         if (ret)
3231                 goto out;
3232
3233         /*
3234          * In order for us to be here, we know our q.key == key2, and since
3235          * we took the hb->lock above, we also know that futex_requeue() has
3236          * completed and we no longer have to concern ourselves with a wakeup
3237          * race with the atomic proxy lock acquisition by the requeue code. The
3238          * futex_requeue dropped our key1 reference and incremented our key2
3239          * reference count.
3240          */
3241
3242         /* Check if the requeue code acquired the second futex for us. */
3243         if (!q.rt_waiter) {
3244                 /*
3245                  * Got the lock. We might not be the anticipated owner if we
3246                  * did a lock-steal - fix up the PI-state in that case.
3247                  */
3248                 if (q.pi_state && (q.pi_state->owner != current)) {
3249                         spin_lock(q.lock_ptr);
3250                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3251                         /*
3252                          * Drop the reference to the pi state which
3253                          * the requeue_pi() code acquired for us.
3254                          */
3255                         put_pi_state(q.pi_state);
3256                         spin_unlock(q.lock_ptr);
3257                         /*
3258                          * Adjust the return value. It's either -EFAULT or
3259                          * success (1) but the caller expects 0 for success.
3260                          */
3261                         ret = ret < 0 ? ret : 0;
3262                 }
3263         } else {
3264                 struct rt_mutex *pi_mutex;
3265
3266                 /*
3267                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3268                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3269                  * the pi_state.
3270                  */
3271                 WARN_ON(!q.pi_state);
3272                 pi_mutex = &q.pi_state->pi_mutex;
3273                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3274
3275                 spin_lock(q.lock_ptr);
3276                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3277                         ret = 0;
3278
3279                 debug_rt_mutex_free_waiter(&rt_waiter);
3280                 /*
3281                  * Fixup the pi_state owner and possibly acquire the lock if we
3282                  * haven't already.
3283                  */
3284                 res = fixup_owner(uaddr2, &q, !ret);
3285                 /*
3286                  * If fixup_owner() returned an error, proprogate that.  If it
3287                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3288                  */
3289                 if (res)
3290                         ret = (res < 0) ? res : 0;
3291
3292                 /* Unqueue and drop the lock. */
3293                 unqueue_me_pi(&q);
3294         }
3295
3296         if (ret == -EINTR) {
3297                 /*
3298                  * We've already been requeued, but cannot restart by calling
3299                  * futex_lock_pi() directly. We could restart this syscall, but
3300                  * it would detect that the user space "val" changed and return
3301                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3302                  * -EWOULDBLOCK directly.
3303                  */
3304                 ret = -EWOULDBLOCK;
3305         }
3306
3307 out:
3308         if (to) {
3309                 hrtimer_cancel(&to->timer);
3310                 destroy_hrtimer_on_stack(&to->timer);
3311         }
3312         return ret;
3313 }
3314
3315 /*
3316  * Support for robust futexes: the kernel cleans up held futexes at
3317  * thread exit time.
3318  *
3319  * Implementation: user-space maintains a per-thread list of locks it
3320  * is holding. Upon do_exit(), the kernel carefully walks this list,
3321  * and marks all locks that are owned by this thread with the
3322  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3323  * always manipulated with the lock held, so the list is private and
3324  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3325  * field, to allow the kernel to clean up if the thread dies after
3326  * acquiring the lock, but just before it could have added itself to
3327  * the list. There can only be one such pending lock.
3328  */
3329
3330 /**
3331  * sys_set_robust_list() - Set the robust-futex list head of a task
3332  * @head:       pointer to the list-head
3333  * @len:        length of the list-head, as userspace expects
3334  */
3335 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3336                 size_t, len)
3337 {
3338         if (!futex_cmpxchg_enabled)
3339                 return -ENOSYS;
3340         /*
3341          * The kernel knows only one size for now:
3342          */
3343         if (unlikely(len != sizeof(*head)))
3344                 return -EINVAL;
3345
3346         current->robust_list = head;
3347
3348         return 0;
3349 }
3350
3351 /**
3352  * sys_get_robust_list() - Get the robust-futex list head of a task
3353  * @pid:        pid of the process [zero for current task]
3354  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3355  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3356  */
3357 SYSCALL_DEFINE3(get_robust_list, int, pid,
3358                 struct robust_list_head __user * __user *, head_ptr,
3359                 size_t __user *, len_ptr)
3360 {
3361         struct robust_list_head __user *head;
3362         unsigned long ret;
3363         struct task_struct *p;
3364
3365         if (!futex_cmpxchg_enabled)
3366                 return -ENOSYS;
3367
3368         rcu_read_lock();
3369
3370         ret = -ESRCH;
3371         if (!pid)
3372                 p = current;
3373         else {
3374                 p = find_task_by_vpid(pid);
3375                 if (!p)
3376                         goto err_unlock;
3377         }
3378
3379         ret = -EPERM;
3380         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3381                 goto err_unlock;
3382
3383         head = p->robust_list;
3384         rcu_read_unlock();
3385
3386         if (put_user(sizeof(*head), len_ptr))
3387                 return -EFAULT;
3388         return put_user(head, head_ptr);
3389
3390 err_unlock:
3391         rcu_read_unlock();
3392
3393         return ret;
3394 }
3395
3396 /* Constants for the pending_op argument of handle_futex_death */
3397 #define HANDLE_DEATH_PENDING    true
3398 #define HANDLE_DEATH_LIST       false
3399
3400 /*
3401  * Process a futex-list entry, check whether it's owned by the
3402  * dying task, and do notification if so:
3403  */
3404 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3405                               bool pi, bool pending_op)
3406 {
3407         u32 uval, nval, mval;
3408         int err;
3409
3410         /* Futex address must be 32bit aligned */
3411         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3412                 return -1;
3413
3414 retry:
3415         if (get_user(uval, uaddr))
3416                 return -1;
3417
3418         /*
3419          * Special case for regular (non PI) futexes. The unlock path in
3420          * user space has two race scenarios:
3421          *
3422          * 1. The unlock path releases the user space futex value and
3423          *    before it can execute the futex() syscall to wake up
3424          *    waiters it is killed.
3425          *
3426          * 2. A woken up waiter is killed before it can acquire the
3427          *    futex in user space.
3428          *
3429          * In both cases the TID validation below prevents a wakeup of
3430          * potential waiters which can cause these waiters to block
3431          * forever.
3432          *
3433          * In both cases the following conditions are met:
3434          *
3435          *      1) task->robust_list->list_op_pending != NULL
3436          *         @pending_op == true
3437          *      2) User space futex value == 0
3438          *      3) Regular futex: @pi == false
3439          *
3440          * If these conditions are met, it is safe to attempt waking up a
3441          * potential waiter without touching the user space futex value and
3442          * trying to set the OWNER_DIED bit. The user space futex value is
3443          * uncontended and the rest of the user space mutex state is
3444          * consistent, so a woken waiter will just take over the
3445          * uncontended futex. Setting the OWNER_DIED bit would create
3446          * inconsistent state and malfunction of the user space owner died
3447          * handling.
3448          */
3449         if (pending_op && !pi && !uval) {
3450                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3451                 return 0;
3452         }
3453
3454         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3455                 return 0;
3456
3457         /*
3458          * Ok, this dying thread is truly holding a futex
3459          * of interest. Set the OWNER_DIED bit atomically
3460          * via cmpxchg, and if the value had FUTEX_WAITERS
3461          * set, wake up a waiter (if any). (We have to do a
3462          * futex_wake() even if OWNER_DIED is already set -
3463          * to handle the rare but possible case of recursive
3464          * thread-death.) The rest of the cleanup is done in
3465          * userspace.
3466          */
3467         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3468
3469         /*
3470          * We are not holding a lock here, but we want to have
3471          * the pagefault_disable/enable() protection because
3472          * we want to handle the fault gracefully. If the
3473          * access fails we try to fault in the futex with R/W
3474          * verification via get_user_pages. get_user() above
3475          * does not guarantee R/W access. If that fails we
3476          * give up and leave the futex locked.
3477          */
3478         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3479                 switch (err) {
3480                 case -EFAULT:
3481                         if (fault_in_user_writeable(uaddr))
3482                                 return -1;
3483                         goto retry;
3484
3485                 case -EAGAIN:
3486                         cond_resched();
3487                         goto retry;
3488
3489                 default:
3490                         WARN_ON_ONCE(1);
3491                         return err;
3492                 }
3493         }
3494
3495         if (nval != uval)
3496                 goto retry;
3497
3498         /*
3499          * Wake robust non-PI futexes here. The wakeup of
3500          * PI futexes happens in exit_pi_state():
3501          */
3502         if (!pi && (uval & FUTEX_WAITERS))
3503                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3504
3505         return 0;
3506 }
3507
3508 /*
3509  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3510  */
3511 static inline int fetch_robust_entry(struct robust_list __user **entry,
3512                                      struct robust_list __user * __user *head,
3513                                      unsigned int *pi)
3514 {
3515         unsigned long uentry;
3516
3517         if (get_user(uentry, (unsigned long __user *)head))
3518                 return -EFAULT;
3519
3520         *entry = (void __user *)(uentry & ~1UL);
3521         *pi = uentry & 1;
3522
3523         return 0;
3524 }
3525
3526 /*
3527  * Walk curr->robust_list (very carefully, it's a userspace list!)
3528  * and mark any locks found there dead, and notify any waiters.
3529  *
3530  * We silently return on any sign of list-walking problem.
3531  */
3532 static void exit_robust_list(struct task_struct *curr)
3533 {
3534         struct robust_list_head __user *head = curr->robust_list;
3535         struct robust_list __user *entry, *next_entry, *pending;
3536         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3537         unsigned int next_pi;
3538         unsigned long futex_offset;
3539         int rc;
3540
3541         if (!futex_cmpxchg_enabled)
3542                 return;
3543
3544         /*
3545          * Fetch the list head (which was registered earlier, via
3546          * sys_set_robust_list()):
3547          */
3548         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3549                 return;
3550         /*
3551          * Fetch the relative futex offset:
3552          */
3553         if (get_user(futex_offset, &head->futex_offset))
3554                 return;
3555         /*
3556          * Fetch any possibly pending lock-add first, and handle it
3557          * if it exists:
3558          */
3559         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3560                 return;
3561
3562         next_entry = NULL;      /* avoid warning with gcc */
3563         while (entry != &head->list) {
3564                 /*
3565                  * Fetch the next entry in the list before calling
3566                  * handle_futex_death:
3567                  */
3568                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3569                 /*
3570                  * A pending lock might already be on the list, so
3571                  * don't process it twice:
3572                  */
3573                 if (entry != pending) {
3574                         if (handle_futex_death((void __user *)entry + futex_offset,
3575                                                 curr, pi, HANDLE_DEATH_LIST))
3576                                 return;
3577                 }
3578                 if (rc)
3579                         return;
3580                 entry = next_entry;
3581                 pi = next_pi;
3582                 /*
3583                  * Avoid excessively long or circular lists:
3584                  */
3585                 if (!--limit)
3586                         break;
3587
3588                 cond_resched();
3589         }
3590
3591         if (pending) {
3592                 handle_futex_death((void __user *)pending + futex_offset,
3593                                    curr, pip, HANDLE_DEATH_PENDING);
3594         }
3595 }
3596
3597 static void futex_cleanup(struct task_struct *tsk)
3598 {
3599         if (unlikely(tsk->robust_list)) {
3600                 exit_robust_list(tsk);
3601                 tsk->robust_list = NULL;
3602         }
3603
3604 #ifdef CONFIG_COMPAT
3605         if (unlikely(tsk->compat_robust_list)) {
3606                 compat_exit_robust_list(tsk);
3607                 tsk->compat_robust_list = NULL;
3608         }
3609 #endif
3610
3611         if (unlikely(!list_empty(&tsk->pi_state_list)))
3612                 exit_pi_state_list(tsk);
3613 }
3614
3615 /**
3616  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3617  * @tsk:        task to set the state on
3618  *
3619  * Set the futex exit state of the task lockless. The futex waiter code
3620  * observes that state when a task is exiting and loops until the task has
3621  * actually finished the futex cleanup. The worst case for this is that the
3622  * waiter runs through the wait loop until the state becomes visible.
3623  *
3624  * This is called from the recursive fault handling path in do_exit().
3625  *
3626  * This is best effort. Either the futex exit code has run already or
3627  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3628  * take it over. If not, the problem is pushed back to user space. If the
3629  * futex exit code did not run yet, then an already queued waiter might
3630  * block forever, but there is nothing which can be done about that.
3631  */
3632 void futex_exit_recursive(struct task_struct *tsk)
3633 {
3634         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3635         if (tsk->futex_state == FUTEX_STATE_EXITING)
3636                 mutex_unlock(&tsk->futex_exit_mutex);
3637         tsk->futex_state = FUTEX_STATE_DEAD;
3638 }
3639
3640 static void futex_cleanup_begin(struct task_struct *tsk)
3641 {
3642         /*
3643          * Prevent various race issues against a concurrent incoming waiter
3644          * including live locks by forcing the waiter to block on
3645          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3646          * attach_to_pi_owner().
3647          */
3648         mutex_lock(&tsk->futex_exit_mutex);
3649
3650         /*
3651          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3652          *
3653          * This ensures that all subsequent checks of tsk->futex_state in
3654          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3655          * tsk->pi_lock held.
3656          *
3657          * It guarantees also that a pi_state which was queued right before
3658          * the state change under tsk->pi_lock by a concurrent waiter must
3659          * be observed in exit_pi_state_list().
3660          */
3661         raw_spin_lock_irq(&tsk->pi_lock);
3662         tsk->futex_state = FUTEX_STATE_EXITING;
3663         raw_spin_unlock_irq(&tsk->pi_lock);
3664 }
3665
3666 static void futex_cleanup_end(struct task_struct *tsk, int state)
3667 {
3668         /*
3669          * Lockless store. The only side effect is that an observer might
3670          * take another loop until it becomes visible.
3671          */
3672         tsk->futex_state = state;
3673         /*
3674          * Drop the exit protection. This unblocks waiters which observed
3675          * FUTEX_STATE_EXITING to reevaluate the state.
3676          */
3677         mutex_unlock(&tsk->futex_exit_mutex);
3678 }
3679
3680 void futex_exec_release(struct task_struct *tsk)
3681 {
3682         /*
3683          * The state handling is done for consistency, but in the case of
3684          * exec() there is no way to prevent futher damage as the PID stays
3685          * the same. But for the unlikely and arguably buggy case that a
3686          * futex is held on exec(), this provides at least as much state
3687          * consistency protection which is possible.
3688          */
3689         futex_cleanup_begin(tsk);
3690         futex_cleanup(tsk);
3691         /*
3692          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3693          * exec a new binary.
3694          */
3695         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3696 }
3697
3698 void futex_exit_release(struct task_struct *tsk)
3699 {
3700         futex_cleanup_begin(tsk);
3701         futex_cleanup(tsk);
3702         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3703 }
3704
3705 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3706                 u32 __user *uaddr2, u32 val2, u32 val3)
3707 {
3708         int cmd = op & FUTEX_CMD_MASK;
3709         unsigned int flags = 0;
3710
3711         if (!(op & FUTEX_PRIVATE_FLAG))
3712                 flags |= FLAGS_SHARED;
3713
3714         if (op & FUTEX_CLOCK_REALTIME) {
3715                 flags |= FLAGS_CLOCKRT;
3716                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3717                         return -ENOSYS;
3718         }
3719
3720         switch (cmd) {
3721         case FUTEX_LOCK_PI:
3722         case FUTEX_UNLOCK_PI:
3723         case FUTEX_TRYLOCK_PI:
3724         case FUTEX_WAIT_REQUEUE_PI:
3725         case FUTEX_CMP_REQUEUE_PI:
3726                 if (!futex_cmpxchg_enabled)
3727                         return -ENOSYS;
3728         }
3729
3730         switch (cmd) {
3731         case FUTEX_WAIT:
3732                 val3 = FUTEX_BITSET_MATCH_ANY;
3733                 fallthrough;
3734         case FUTEX_WAIT_BITSET:
3735                 return futex_wait(uaddr, flags, val, timeout, val3);
3736         case FUTEX_WAKE:
3737                 val3 = FUTEX_BITSET_MATCH_ANY;
3738                 fallthrough;
3739         case FUTEX_WAKE_BITSET:
3740                 return futex_wake(uaddr, flags, val, val3);
3741         case FUTEX_REQUEUE:
3742                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3743         case FUTEX_CMP_REQUEUE:
3744                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3745         case FUTEX_WAKE_OP:
3746                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3747         case FUTEX_LOCK_PI:
3748                 return futex_lock_pi(uaddr, flags, timeout, 0);
3749         case FUTEX_UNLOCK_PI:
3750                 return futex_unlock_pi(uaddr, flags);
3751         case FUTEX_TRYLOCK_PI:
3752                 return futex_lock_pi(uaddr, flags, NULL, 1);
3753         case FUTEX_WAIT_REQUEUE_PI:
3754                 val3 = FUTEX_BITSET_MATCH_ANY;
3755                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3756                                              uaddr2);
3757         case FUTEX_CMP_REQUEUE_PI:
3758                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3759         }
3760         return -ENOSYS;
3761 }
3762
3763
3764 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3765                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3766                 u32, val3)
3767 {
3768         struct timespec64 ts;
3769         ktime_t t, *tp = NULL;
3770         u32 val2 = 0;
3771         int cmd = op & FUTEX_CMD_MASK;
3772
3773         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3774                       cmd == FUTEX_WAIT_BITSET ||
3775                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3776                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3777                         return -EFAULT;
3778                 if (get_timespec64(&ts, utime))
3779                         return -EFAULT;
3780                 if (!timespec64_valid(&ts))
3781                         return -EINVAL;
3782
3783                 t = timespec64_to_ktime(ts);
3784                 if (cmd == FUTEX_WAIT)
3785                         t = ktime_add_safe(ktime_get(), t);
3786                 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3787                         t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3788                 tp = &t;
3789         }
3790         /*
3791          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3792          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3793          */
3794         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3795             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3796                 val2 = (u32) (unsigned long) utime;
3797
3798         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3799 }
3800
3801 #ifdef CONFIG_COMPAT
3802 /*
3803  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3804  */
3805 static inline int
3806 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3807                    compat_uptr_t __user *head, unsigned int *pi)
3808 {
3809         if (get_user(*uentry, head))
3810                 return -EFAULT;
3811
3812         *entry = compat_ptr((*uentry) & ~1);
3813         *pi = (unsigned int)(*uentry) & 1;
3814
3815         return 0;
3816 }
3817
3818 static void __user *futex_uaddr(struct robust_list __user *entry,
3819                                 compat_long_t futex_offset)
3820 {
3821         compat_uptr_t base = ptr_to_compat(entry);
3822         void __user *uaddr = compat_ptr(base + futex_offset);
3823
3824         return uaddr;
3825 }
3826
3827 /*
3828  * Walk curr->robust_list (very carefully, it's a userspace list!)
3829  * and mark any locks found there dead, and notify any waiters.
3830  *
3831  * We silently return on any sign of list-walking problem.
3832  */
3833 static void compat_exit_robust_list(struct task_struct *curr)
3834 {
3835         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3836         struct robust_list __user *entry, *next_entry, *pending;
3837         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3838         unsigned int next_pi;
3839         compat_uptr_t uentry, next_uentry, upending;
3840         compat_long_t futex_offset;
3841         int rc;
3842
3843         if (!futex_cmpxchg_enabled)
3844                 return;
3845
3846         /*
3847          * Fetch the list head (which was registered earlier, via
3848          * sys_set_robust_list()):
3849          */
3850         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3851                 return;
3852         /*
3853          * Fetch the relative futex offset:
3854          */
3855         if (get_user(futex_offset, &head->futex_offset))
3856                 return;
3857         /*
3858          * Fetch any possibly pending lock-add first, and handle it
3859          * if it exists:
3860          */
3861         if (compat_fetch_robust_entry(&upending, &pending,
3862                                &head->list_op_pending, &pip))
3863                 return;
3864
3865         next_entry = NULL;      /* avoid warning with gcc */
3866         while (entry != (struct robust_list __user *) &head->list) {
3867                 /*
3868                  * Fetch the next entry in the list before calling
3869                  * handle_futex_death:
3870                  */
3871                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3872                         (compat_uptr_t __user *)&entry->next, &next_pi);
3873                 /*
3874                  * A pending lock might already be on the list, so
3875                  * dont process it twice:
3876                  */
3877                 if (entry != pending) {
3878                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3879
3880                         if (handle_futex_death(uaddr, curr, pi,
3881                                                HANDLE_DEATH_LIST))
3882                                 return;
3883                 }
3884                 if (rc)
3885                         return;
3886                 uentry = next_uentry;
3887                 entry = next_entry;
3888                 pi = next_pi;
3889                 /*
3890                  * Avoid excessively long or circular lists:
3891                  */
3892                 if (!--limit)
3893                         break;
3894
3895                 cond_resched();
3896         }
3897         if (pending) {
3898                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3899
3900                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3901         }
3902 }
3903
3904 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3905                 struct compat_robust_list_head __user *, head,
3906                 compat_size_t, len)
3907 {
3908         if (!futex_cmpxchg_enabled)
3909                 return -ENOSYS;
3910
3911         if (unlikely(len != sizeof(*head)))
3912                 return -EINVAL;
3913
3914         current->compat_robust_list = head;
3915
3916         return 0;
3917 }
3918
3919 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3920                         compat_uptr_t __user *, head_ptr,
3921                         compat_size_t __user *, len_ptr)
3922 {
3923         struct compat_robust_list_head __user *head;
3924         unsigned long ret;
3925         struct task_struct *p;
3926
3927         if (!futex_cmpxchg_enabled)
3928                 return -ENOSYS;
3929
3930         rcu_read_lock();
3931
3932         ret = -ESRCH;
3933         if (!pid)
3934                 p = current;
3935         else {
3936                 p = find_task_by_vpid(pid);
3937                 if (!p)
3938                         goto err_unlock;
3939         }
3940
3941         ret = -EPERM;
3942         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3943                 goto err_unlock;
3944
3945         head = p->compat_robust_list;
3946         rcu_read_unlock();
3947
3948         if (put_user(sizeof(*head), len_ptr))
3949                 return -EFAULT;
3950         return put_user(ptr_to_compat(head), head_ptr);
3951
3952 err_unlock:
3953         rcu_read_unlock();
3954
3955         return ret;
3956 }
3957 #endif /* CONFIG_COMPAT */
3958
3959 #ifdef CONFIG_COMPAT_32BIT_TIME
3960 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3961                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3962                 u32, val3)
3963 {
3964         struct timespec64 ts;
3965         ktime_t t, *tp = NULL;
3966         int val2 = 0;
3967         int cmd = op & FUTEX_CMD_MASK;
3968
3969         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3970                       cmd == FUTEX_WAIT_BITSET ||
3971                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3972                 if (get_old_timespec32(&ts, utime))
3973                         return -EFAULT;
3974                 if (!timespec64_valid(&ts))
3975                         return -EINVAL;
3976
3977                 t = timespec64_to_ktime(ts);
3978                 if (cmd == FUTEX_WAIT)
3979                         t = ktime_add_safe(ktime_get(), t);
3980                 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3981                         t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3982                 tp = &t;
3983         }
3984         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3985             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3986                 val2 = (int) (unsigned long) utime;
3987
3988         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3989 }
3990 #endif /* CONFIG_COMPAT_32BIT_TIME */
3991
3992 static void __init futex_detect_cmpxchg(void)
3993 {
3994 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3995         u32 curval;
3996
3997         /*
3998          * This will fail and we want it. Some arch implementations do
3999          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4000          * functionality. We want to know that before we call in any
4001          * of the complex code paths. Also we want to prevent
4002          * registration of robust lists in that case. NULL is
4003          * guaranteed to fault and we get -EFAULT on functional
4004          * implementation, the non-functional ones will return
4005          * -ENOSYS.
4006          */
4007         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4008                 futex_cmpxchg_enabled = 1;
4009 #endif
4010 }
4011
4012 static int __init futex_init(void)
4013 {
4014         unsigned int futex_shift;
4015         unsigned long i;
4016
4017 #if CONFIG_BASE_SMALL
4018         futex_hashsize = 16;
4019 #else
4020         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4021 #endif
4022
4023         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4024                                                futex_hashsize, 0,
4025                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4026                                                &futex_shift, NULL,
4027                                                futex_hashsize, futex_hashsize);
4028         futex_hashsize = 1UL << futex_shift;
4029
4030         futex_detect_cmpxchg();
4031
4032         for (i = 0; i < futex_hashsize; i++) {
4033                 atomic_set(&futex_queues[i].waiters, 0);
4034                 plist_head_init(&futex_queues[i].chain);
4035                 spin_lock_init(&futex_queues[i].lock);
4036         }
4037
4038         return 0;
4039 }
4040 core_initcall(futex_init);