82660b9b837a7ca79602162249d502d1b629e701
[platform/kernel/linux-rpi.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42
43 #include <asm/futex.h>
44
45 #include "locking/rtmutex_common.h"
46
47 /*
48  * READ this before attempting to hack on futexes!
49  *
50  * Basic futex operation and ordering guarantees
51  * =============================================
52  *
53  * The waiter reads the futex value in user space and calls
54  * futex_wait(). This function computes the hash bucket and acquires
55  * the hash bucket lock. After that it reads the futex user space value
56  * again and verifies that the data has not changed. If it has not changed
57  * it enqueues itself into the hash bucket, releases the hash bucket lock
58  * and schedules.
59  *
60  * The waker side modifies the user space value of the futex and calls
61  * futex_wake(). This function computes the hash bucket and acquires the
62  * hash bucket lock. Then it looks for waiters on that futex in the hash
63  * bucket and wakes them.
64  *
65  * In futex wake up scenarios where no tasks are blocked on a futex, taking
66  * the hb spinlock can be avoided and simply return. In order for this
67  * optimization to work, ordering guarantees must exist so that the waiter
68  * being added to the list is acknowledged when the list is concurrently being
69  * checked by the waker, avoiding scenarios like the following:
70  *
71  * CPU 0                               CPU 1
72  * val = *futex;
73  * sys_futex(WAIT, futex, val);
74  *   futex_wait(futex, val);
75  *   uval = *futex;
76  *                                     *futex = newval;
77  *                                     sys_futex(WAKE, futex);
78  *                                       futex_wake(futex);
79  *                                       if (queue_empty())
80  *                                         return;
81  *   if (uval == val)
82  *      lock(hash_bucket(futex));
83  *      queue();
84  *     unlock(hash_bucket(futex));
85  *     schedule();
86  *
87  * This would cause the waiter on CPU 0 to wait forever because it
88  * missed the transition of the user space value from val to newval
89  * and the waker did not find the waiter in the hash bucket queue.
90  *
91  * The correct serialization ensures that a waiter either observes
92  * the changed user space value before blocking or is woken by a
93  * concurrent waker:
94  *
95  * CPU 0                                 CPU 1
96  * val = *futex;
97  * sys_futex(WAIT, futex, val);
98  *   futex_wait(futex, val);
99  *
100  *   waiters++; (a)
101  *   smp_mb(); (A) <-- paired with -.
102  *                                  |
103  *   lock(hash_bucket(futex));      |
104  *                                  |
105  *   uval = *futex;                 |
106  *                                  |        *futex = newval;
107  *                                  |        sys_futex(WAKE, futex);
108  *                                  |          futex_wake(futex);
109  *                                  |
110  *                                  `--------> smp_mb(); (B)
111  *   if (uval == val)
112  *     queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();                         if (waiters)
115  *                                           lock(hash_bucket(futex));
116  *   else                                    wake_waiters(futex);
117  *     waiters--; (b)                        unlock(hash_bucket(futex));
118  *
119  * Where (A) orders the waiters increment and the futex value read through
120  * atomic operations (see hb_waiters_inc) and where (B) orders the write
121  * to futex and the waiters read (see hb_waiters_pending()).
122  *
123  * This yields the following case (where X:=waiters, Y:=futex):
124  *
125  *      X = Y = 0
126  *
127  *      w[X]=1          w[Y]=1
128  *      MB              MB
129  *      r[Y]=y          r[X]=x
130  *
131  * Which guarantees that x==0 && y==0 is impossible; which translates back into
132  * the guarantee that we cannot both miss the futex variable change and the
133  * enqueue.
134  *
135  * Note that a new waiter is accounted for in (a) even when it is possible that
136  * the wait call can return error, in which case we backtrack from it in (b).
137  * Refer to the comment in queue_lock().
138  *
139  * Similarly, in order to account for waiters being requeued on another
140  * address we always increment the waiters for the destination bucket before
141  * acquiring the lock. It then decrements them again  after releasing it -
142  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143  * will do the additional required waiter count housekeeping. This is done for
144  * double_lock_hb() and double_unlock_hb(), respectively.
145  */
146
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int  __read_mostly futex_cmpxchg_enabled;
151 #endif
152
153 /*
154  * Futex flags used to encode options to functions and preserve them across
155  * restarts.
156  */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED           0x01
159 #else
160 /*
161  * NOMMU does not have per process address space. Let the compiler optimize
162  * code away.
163  */
164 # define FLAGS_SHARED           0x00
165 #endif
166 #define FLAGS_CLOCKRT           0x02
167 #define FLAGS_HAS_TIMEOUT       0x04
168
169 /*
170  * Priority Inheritance state:
171  */
172 struct futex_pi_state {
173         /*
174          * list of 'owned' pi_state instances - these have to be
175          * cleaned up in do_exit() if the task exits prematurely:
176          */
177         struct list_head list;
178
179         /*
180          * The PI object:
181          */
182         struct rt_mutex_base pi_mutex;
183
184         struct task_struct *owner;
185         refcount_t refcount;
186
187         union futex_key key;
188 } __randomize_layout;
189
190 /**
191  * struct futex_q - The hashed futex queue entry, one per waiting task
192  * @list:               priority-sorted list of tasks waiting on this futex
193  * @task:               the task waiting on the futex
194  * @lock_ptr:           the hash bucket lock
195  * @key:                the key the futex is hashed on
196  * @pi_state:           optional priority inheritance state
197  * @rt_waiter:          rt_waiter storage for use with requeue_pi
198  * @requeue_pi_key:     the requeue_pi target futex key
199  * @bitset:             bitset for the optional bitmasked wakeup
200  *
201  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
202  * we can wake only the relevant ones (hashed queues may be shared).
203  *
204  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
205  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
206  * The order of wakeup is always to make the first condition true, then
207  * the second.
208  *
209  * PI futexes are typically woken before they are removed from the hash list via
210  * the rt_mutex code. See unqueue_me_pi().
211  */
212 struct futex_q {
213         struct plist_node list;
214
215         struct task_struct *task;
216         spinlock_t *lock_ptr;
217         union futex_key key;
218         struct futex_pi_state *pi_state;
219         struct rt_mutex_waiter *rt_waiter;
220         union futex_key *requeue_pi_key;
221         u32 bitset;
222 } __randomize_layout;
223
224 static const struct futex_q futex_q_init = {
225         /* list gets initialized in queue_me()*/
226         .key = FUTEX_KEY_INIT,
227         .bitset = FUTEX_BITSET_MATCH_ANY
228 };
229
230 /*
231  * Hash buckets are shared by all the futex_keys that hash to the same
232  * location.  Each key may have multiple futex_q structures, one for each task
233  * waiting on a futex.
234  */
235 struct futex_hash_bucket {
236         atomic_t waiters;
237         spinlock_t lock;
238         struct plist_head chain;
239 } ____cacheline_aligned_in_smp;
240
241 /*
242  * The base of the bucket array and its size are always used together
243  * (after initialization only in hash_futex()), so ensure that they
244  * reside in the same cacheline.
245  */
246 static struct {
247         struct futex_hash_bucket *queues;
248         unsigned long            hashsize;
249 } __futex_data __read_mostly __aligned(2*sizeof(long));
250 #define futex_queues   (__futex_data.queues)
251 #define futex_hashsize (__futex_data.hashsize)
252
253
254 /*
255  * Fault injections for futexes.
256  */
257 #ifdef CONFIG_FAIL_FUTEX
258
259 static struct {
260         struct fault_attr attr;
261
262         bool ignore_private;
263 } fail_futex = {
264         .attr = FAULT_ATTR_INITIALIZER,
265         .ignore_private = false,
266 };
267
268 static int __init setup_fail_futex(char *str)
269 {
270         return setup_fault_attr(&fail_futex.attr, str);
271 }
272 __setup("fail_futex=", setup_fail_futex);
273
274 static bool should_fail_futex(bool fshared)
275 {
276         if (fail_futex.ignore_private && !fshared)
277                 return false;
278
279         return should_fail(&fail_futex.attr, 1);
280 }
281
282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283
284 static int __init fail_futex_debugfs(void)
285 {
286         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287         struct dentry *dir;
288
289         dir = fault_create_debugfs_attr("fail_futex", NULL,
290                                         &fail_futex.attr);
291         if (IS_ERR(dir))
292                 return PTR_ERR(dir);
293
294         debugfs_create_bool("ignore-private", mode, dir,
295                             &fail_futex.ignore_private);
296         return 0;
297 }
298
299 late_initcall(fail_futex_debugfs);
300
301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302
303 #else
304 static inline bool should_fail_futex(bool fshared)
305 {
306         return false;
307 }
308 #endif /* CONFIG_FAIL_FUTEX */
309
310 #ifdef CONFIG_COMPAT
311 static void compat_exit_robust_list(struct task_struct *curr);
312 #endif
313
314 /*
315  * Reflects a new waiter being added to the waitqueue.
316  */
317 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
318 {
319 #ifdef CONFIG_SMP
320         atomic_inc(&hb->waiters);
321         /*
322          * Full barrier (A), see the ordering comment above.
323          */
324         smp_mb__after_atomic();
325 #endif
326 }
327
328 /*
329  * Reflects a waiter being removed from the waitqueue by wakeup
330  * paths.
331  */
332 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
333 {
334 #ifdef CONFIG_SMP
335         atomic_dec(&hb->waiters);
336 #endif
337 }
338
339 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
340 {
341 #ifdef CONFIG_SMP
342         /*
343          * Full barrier (B), see the ordering comment above.
344          */
345         smp_mb();
346         return atomic_read(&hb->waiters);
347 #else
348         return 1;
349 #endif
350 }
351
352 /**
353  * hash_futex - Return the hash bucket in the global hash
354  * @key:        Pointer to the futex key for which the hash is calculated
355  *
356  * We hash on the keys returned from get_futex_key (see below) and return the
357  * corresponding hash bucket in the global hash.
358  */
359 static struct futex_hash_bucket *hash_futex(union futex_key *key)
360 {
361         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
362                           key->both.offset);
363
364         return &futex_queues[hash & (futex_hashsize - 1)];
365 }
366
367
368 /**
369  * match_futex - Check whether two futex keys are equal
370  * @key1:       Pointer to key1
371  * @key2:       Pointer to key2
372  *
373  * Return 1 if two futex_keys are equal, 0 otherwise.
374  */
375 static inline int match_futex(union futex_key *key1, union futex_key *key2)
376 {
377         return (key1 && key2
378                 && key1->both.word == key2->both.word
379                 && key1->both.ptr == key2->both.ptr
380                 && key1->both.offset == key2->both.offset);
381 }
382
383 enum futex_access {
384         FUTEX_READ,
385         FUTEX_WRITE
386 };
387
388 /**
389  * futex_setup_timer - set up the sleeping hrtimer.
390  * @time:       ptr to the given timeout value
391  * @timeout:    the hrtimer_sleeper structure to be set up
392  * @flags:      futex flags
393  * @range_ns:   optional range in ns
394  *
395  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
396  *         value given
397  */
398 static inline struct hrtimer_sleeper *
399 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
400                   int flags, u64 range_ns)
401 {
402         if (!time)
403                 return NULL;
404
405         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
406                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
407                                       HRTIMER_MODE_ABS);
408         /*
409          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
410          * effectively the same as calling hrtimer_set_expires().
411          */
412         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
413
414         return timeout;
415 }
416
417 /*
418  * Generate a machine wide unique identifier for this inode.
419  *
420  * This relies on u64 not wrapping in the life-time of the machine; which with
421  * 1ns resolution means almost 585 years.
422  *
423  * This further relies on the fact that a well formed program will not unmap
424  * the file while it has a (shared) futex waiting on it. This mapping will have
425  * a file reference which pins the mount and inode.
426  *
427  * If for some reason an inode gets evicted and read back in again, it will get
428  * a new sequence number and will _NOT_ match, even though it is the exact same
429  * file.
430  *
431  * It is important that match_futex() will never have a false-positive, esp.
432  * for PI futexes that can mess up the state. The above argues that false-negatives
433  * are only possible for malformed programs.
434  */
435 static u64 get_inode_sequence_number(struct inode *inode)
436 {
437         static atomic64_t i_seq;
438         u64 old;
439
440         /* Does the inode already have a sequence number? */
441         old = atomic64_read(&inode->i_sequence);
442         if (likely(old))
443                 return old;
444
445         for (;;) {
446                 u64 new = atomic64_add_return(1, &i_seq);
447                 if (WARN_ON_ONCE(!new))
448                         continue;
449
450                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
451                 if (old)
452                         return old;
453                 return new;
454         }
455 }
456
457 /**
458  * get_futex_key() - Get parameters which are the keys for a futex
459  * @uaddr:      virtual address of the futex
460  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
461  * @key:        address where result is stored.
462  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
463  *              FUTEX_WRITE)
464  *
465  * Return: a negative error code or 0
466  *
467  * The key words are stored in @key on success.
468  *
469  * For shared mappings (when @fshared), the key is:
470  *
471  *   ( inode->i_sequence, page->index, offset_within_page )
472  *
473  * [ also see get_inode_sequence_number() ]
474  *
475  * For private mappings (or when !@fshared), the key is:
476  *
477  *   ( current->mm, address, 0 )
478  *
479  * This allows (cross process, where applicable) identification of the futex
480  * without keeping the page pinned for the duration of the FUTEX_WAIT.
481  *
482  * lock_page() might sleep, the caller should not hold a spinlock.
483  */
484 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
485                          enum futex_access rw)
486 {
487         unsigned long address = (unsigned long)uaddr;
488         struct mm_struct *mm = current->mm;
489         struct page *page, *tail;
490         struct address_space *mapping;
491         int err, ro = 0;
492
493         /*
494          * The futex address must be "naturally" aligned.
495          */
496         key->both.offset = address % PAGE_SIZE;
497         if (unlikely((address % sizeof(u32)) != 0))
498                 return -EINVAL;
499         address -= key->both.offset;
500
501         if (unlikely(!access_ok(uaddr, sizeof(u32))))
502                 return -EFAULT;
503
504         if (unlikely(should_fail_futex(fshared)))
505                 return -EFAULT;
506
507         /*
508          * PROCESS_PRIVATE futexes are fast.
509          * As the mm cannot disappear under us and the 'key' only needs
510          * virtual address, we dont even have to find the underlying vma.
511          * Note : We do have to check 'uaddr' is a valid user address,
512          *        but access_ok() should be faster than find_vma()
513          */
514         if (!fshared) {
515                 key->private.mm = mm;
516                 key->private.address = address;
517                 return 0;
518         }
519
520 again:
521         /* Ignore any VERIFY_READ mapping (futex common case) */
522         if (unlikely(should_fail_futex(true)))
523                 return -EFAULT;
524
525         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
526         /*
527          * If write access is not required (eg. FUTEX_WAIT), try
528          * and get read-only access.
529          */
530         if (err == -EFAULT && rw == FUTEX_READ) {
531                 err = get_user_pages_fast(address, 1, 0, &page);
532                 ro = 1;
533         }
534         if (err < 0)
535                 return err;
536         else
537                 err = 0;
538
539         /*
540          * The treatment of mapping from this point on is critical. The page
541          * lock protects many things but in this context the page lock
542          * stabilizes mapping, prevents inode freeing in the shared
543          * file-backed region case and guards against movement to swap cache.
544          *
545          * Strictly speaking the page lock is not needed in all cases being
546          * considered here and page lock forces unnecessarily serialization
547          * From this point on, mapping will be re-verified if necessary and
548          * page lock will be acquired only if it is unavoidable
549          *
550          * Mapping checks require the head page for any compound page so the
551          * head page and mapping is looked up now. For anonymous pages, it
552          * does not matter if the page splits in the future as the key is
553          * based on the address. For filesystem-backed pages, the tail is
554          * required as the index of the page determines the key. For
555          * base pages, there is no tail page and tail == page.
556          */
557         tail = page;
558         page = compound_head(page);
559         mapping = READ_ONCE(page->mapping);
560
561         /*
562          * If page->mapping is NULL, then it cannot be a PageAnon
563          * page; but it might be the ZERO_PAGE or in the gate area or
564          * in a special mapping (all cases which we are happy to fail);
565          * or it may have been a good file page when get_user_pages_fast
566          * found it, but truncated or holepunched or subjected to
567          * invalidate_complete_page2 before we got the page lock (also
568          * cases which we are happy to fail).  And we hold a reference,
569          * so refcount care in invalidate_complete_page's remove_mapping
570          * prevents drop_caches from setting mapping to NULL beneath us.
571          *
572          * The case we do have to guard against is when memory pressure made
573          * shmem_writepage move it from filecache to swapcache beneath us:
574          * an unlikely race, but we do need to retry for page->mapping.
575          */
576         if (unlikely(!mapping)) {
577                 int shmem_swizzled;
578
579                 /*
580                  * Page lock is required to identify which special case above
581                  * applies. If this is really a shmem page then the page lock
582                  * will prevent unexpected transitions.
583                  */
584                 lock_page(page);
585                 shmem_swizzled = PageSwapCache(page) || page->mapping;
586                 unlock_page(page);
587                 put_page(page);
588
589                 if (shmem_swizzled)
590                         goto again;
591
592                 return -EFAULT;
593         }
594
595         /*
596          * Private mappings are handled in a simple way.
597          *
598          * If the futex key is stored on an anonymous page, then the associated
599          * object is the mm which is implicitly pinned by the calling process.
600          *
601          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
602          * it's a read-only handle, it's expected that futexes attach to
603          * the object not the particular process.
604          */
605         if (PageAnon(page)) {
606                 /*
607                  * A RO anonymous page will never change and thus doesn't make
608                  * sense for futex operations.
609                  */
610                 if (unlikely(should_fail_futex(true)) || ro) {
611                         err = -EFAULT;
612                         goto out;
613                 }
614
615                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
616                 key->private.mm = mm;
617                 key->private.address = address;
618
619         } else {
620                 struct inode *inode;
621
622                 /*
623                  * The associated futex object in this case is the inode and
624                  * the page->mapping must be traversed. Ordinarily this should
625                  * be stabilised under page lock but it's not strictly
626                  * necessary in this case as we just want to pin the inode, not
627                  * update the radix tree or anything like that.
628                  *
629                  * The RCU read lock is taken as the inode is finally freed
630                  * under RCU. If the mapping still matches expectations then the
631                  * mapping->host can be safely accessed as being a valid inode.
632                  */
633                 rcu_read_lock();
634
635                 if (READ_ONCE(page->mapping) != mapping) {
636                         rcu_read_unlock();
637                         put_page(page);
638
639                         goto again;
640                 }
641
642                 inode = READ_ONCE(mapping->host);
643                 if (!inode) {
644                         rcu_read_unlock();
645                         put_page(page);
646
647                         goto again;
648                 }
649
650                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
651                 key->shared.i_seq = get_inode_sequence_number(inode);
652                 key->shared.pgoff = page_to_pgoff(tail);
653                 rcu_read_unlock();
654         }
655
656 out:
657         put_page(page);
658         return err;
659 }
660
661 /**
662  * fault_in_user_writeable() - Fault in user address and verify RW access
663  * @uaddr:      pointer to faulting user space address
664  *
665  * Slow path to fixup the fault we just took in the atomic write
666  * access to @uaddr.
667  *
668  * We have no generic implementation of a non-destructive write to the
669  * user address. We know that we faulted in the atomic pagefault
670  * disabled section so we can as well avoid the #PF overhead by
671  * calling get_user_pages() right away.
672  */
673 static int fault_in_user_writeable(u32 __user *uaddr)
674 {
675         struct mm_struct *mm = current->mm;
676         int ret;
677
678         mmap_read_lock(mm);
679         ret = fixup_user_fault(mm, (unsigned long)uaddr,
680                                FAULT_FLAG_WRITE, NULL);
681         mmap_read_unlock(mm);
682
683         return ret < 0 ? ret : 0;
684 }
685
686 /**
687  * futex_top_waiter() - Return the highest priority waiter on a futex
688  * @hb:         the hash bucket the futex_q's reside in
689  * @key:        the futex key (to distinguish it from other futex futex_q's)
690  *
691  * Must be called with the hb lock held.
692  */
693 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
694                                         union futex_key *key)
695 {
696         struct futex_q *this;
697
698         plist_for_each_entry(this, &hb->chain, list) {
699                 if (match_futex(&this->key, key))
700                         return this;
701         }
702         return NULL;
703 }
704
705 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
706                                       u32 uval, u32 newval)
707 {
708         int ret;
709
710         pagefault_disable();
711         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
712         pagefault_enable();
713
714         return ret;
715 }
716
717 static int get_futex_value_locked(u32 *dest, u32 __user *from)
718 {
719         int ret;
720
721         pagefault_disable();
722         ret = __get_user(*dest, from);
723         pagefault_enable();
724
725         return ret ? -EFAULT : 0;
726 }
727
728
729 /*
730  * PI code:
731  */
732 static int refill_pi_state_cache(void)
733 {
734         struct futex_pi_state *pi_state;
735
736         if (likely(current->pi_state_cache))
737                 return 0;
738
739         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
740
741         if (!pi_state)
742                 return -ENOMEM;
743
744         INIT_LIST_HEAD(&pi_state->list);
745         /* pi_mutex gets initialized later */
746         pi_state->owner = NULL;
747         refcount_set(&pi_state->refcount, 1);
748         pi_state->key = FUTEX_KEY_INIT;
749
750         current->pi_state_cache = pi_state;
751
752         return 0;
753 }
754
755 static struct futex_pi_state *alloc_pi_state(void)
756 {
757         struct futex_pi_state *pi_state = current->pi_state_cache;
758
759         WARN_ON(!pi_state);
760         current->pi_state_cache = NULL;
761
762         return pi_state;
763 }
764
765 static void pi_state_update_owner(struct futex_pi_state *pi_state,
766                                   struct task_struct *new_owner)
767 {
768         struct task_struct *old_owner = pi_state->owner;
769
770         lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
771
772         if (old_owner) {
773                 raw_spin_lock(&old_owner->pi_lock);
774                 WARN_ON(list_empty(&pi_state->list));
775                 list_del_init(&pi_state->list);
776                 raw_spin_unlock(&old_owner->pi_lock);
777         }
778
779         if (new_owner) {
780                 raw_spin_lock(&new_owner->pi_lock);
781                 WARN_ON(!list_empty(&pi_state->list));
782                 list_add(&pi_state->list, &new_owner->pi_state_list);
783                 pi_state->owner = new_owner;
784                 raw_spin_unlock(&new_owner->pi_lock);
785         }
786 }
787
788 static void get_pi_state(struct futex_pi_state *pi_state)
789 {
790         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
791 }
792
793 /*
794  * Drops a reference to the pi_state object and frees or caches it
795  * when the last reference is gone.
796  */
797 static void put_pi_state(struct futex_pi_state *pi_state)
798 {
799         if (!pi_state)
800                 return;
801
802         if (!refcount_dec_and_test(&pi_state->refcount))
803                 return;
804
805         /*
806          * If pi_state->owner is NULL, the owner is most probably dying
807          * and has cleaned up the pi_state already
808          */
809         if (pi_state->owner) {
810                 unsigned long flags;
811
812                 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
813                 pi_state_update_owner(pi_state, NULL);
814                 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
815                 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
816         }
817
818         if (current->pi_state_cache) {
819                 kfree(pi_state);
820         } else {
821                 /*
822                  * pi_state->list is already empty.
823                  * clear pi_state->owner.
824                  * refcount is at 0 - put it back to 1.
825                  */
826                 pi_state->owner = NULL;
827                 refcount_set(&pi_state->refcount, 1);
828                 current->pi_state_cache = pi_state;
829         }
830 }
831
832 #ifdef CONFIG_FUTEX_PI
833
834 /*
835  * This task is holding PI mutexes at exit time => bad.
836  * Kernel cleans up PI-state, but userspace is likely hosed.
837  * (Robust-futex cleanup is separate and might save the day for userspace.)
838  */
839 static void exit_pi_state_list(struct task_struct *curr)
840 {
841         struct list_head *next, *head = &curr->pi_state_list;
842         struct futex_pi_state *pi_state;
843         struct futex_hash_bucket *hb;
844         union futex_key key = FUTEX_KEY_INIT;
845
846         if (!futex_cmpxchg_enabled)
847                 return;
848         /*
849          * We are a ZOMBIE and nobody can enqueue itself on
850          * pi_state_list anymore, but we have to be careful
851          * versus waiters unqueueing themselves:
852          */
853         raw_spin_lock_irq(&curr->pi_lock);
854         while (!list_empty(head)) {
855                 next = head->next;
856                 pi_state = list_entry(next, struct futex_pi_state, list);
857                 key = pi_state->key;
858                 hb = hash_futex(&key);
859
860                 /*
861                  * We can race against put_pi_state() removing itself from the
862                  * list (a waiter going away). put_pi_state() will first
863                  * decrement the reference count and then modify the list, so
864                  * its possible to see the list entry but fail this reference
865                  * acquire.
866                  *
867                  * In that case; drop the locks to let put_pi_state() make
868                  * progress and retry the loop.
869                  */
870                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
871                         raw_spin_unlock_irq(&curr->pi_lock);
872                         cpu_relax();
873                         raw_spin_lock_irq(&curr->pi_lock);
874                         continue;
875                 }
876                 raw_spin_unlock_irq(&curr->pi_lock);
877
878                 spin_lock(&hb->lock);
879                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
880                 raw_spin_lock(&curr->pi_lock);
881                 /*
882                  * We dropped the pi-lock, so re-check whether this
883                  * task still owns the PI-state:
884                  */
885                 if (head->next != next) {
886                         /* retain curr->pi_lock for the loop invariant */
887                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
888                         spin_unlock(&hb->lock);
889                         put_pi_state(pi_state);
890                         continue;
891                 }
892
893                 WARN_ON(pi_state->owner != curr);
894                 WARN_ON(list_empty(&pi_state->list));
895                 list_del_init(&pi_state->list);
896                 pi_state->owner = NULL;
897
898                 raw_spin_unlock(&curr->pi_lock);
899                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
900                 spin_unlock(&hb->lock);
901
902                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
903                 put_pi_state(pi_state);
904
905                 raw_spin_lock_irq(&curr->pi_lock);
906         }
907         raw_spin_unlock_irq(&curr->pi_lock);
908 }
909 #else
910 static inline void exit_pi_state_list(struct task_struct *curr) { }
911 #endif
912
913 /*
914  * We need to check the following states:
915  *
916  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
917  *
918  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
919  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
920  *
921  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
922  *
923  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
924  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
925  *
926  * [6]  Found  | Found    | task      | 0         | 1      | Valid
927  *
928  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
929  *
930  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
931  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
932  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
933  *
934  * [1]  Indicates that the kernel can acquire the futex atomically. We
935  *      came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
936  *
937  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
938  *      thread is found then it indicates that the owner TID has died.
939  *
940  * [3]  Invalid. The waiter is queued on a non PI futex
941  *
942  * [4]  Valid state after exit_robust_list(), which sets the user space
943  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
944  *
945  * [5]  The user space value got manipulated between exit_robust_list()
946  *      and exit_pi_state_list()
947  *
948  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
949  *      the pi_state but cannot access the user space value.
950  *
951  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
952  *
953  * [8]  Owner and user space value match
954  *
955  * [9]  There is no transient state which sets the user space TID to 0
956  *      except exit_robust_list(), but this is indicated by the
957  *      FUTEX_OWNER_DIED bit. See [4]
958  *
959  * [10] There is no transient state which leaves owner and user space
960  *      TID out of sync. Except one error case where the kernel is denied
961  *      write access to the user address, see fixup_pi_state_owner().
962  *
963  *
964  * Serialization and lifetime rules:
965  *
966  * hb->lock:
967  *
968  *      hb -> futex_q, relation
969  *      futex_q -> pi_state, relation
970  *
971  *      (cannot be raw because hb can contain arbitrary amount
972  *       of futex_q's)
973  *
974  * pi_mutex->wait_lock:
975  *
976  *      {uval, pi_state}
977  *
978  *      (and pi_mutex 'obviously')
979  *
980  * p->pi_lock:
981  *
982  *      p->pi_state_list -> pi_state->list, relation
983  *      pi_mutex->owner -> pi_state->owner, relation
984  *
985  * pi_state->refcount:
986  *
987  *      pi_state lifetime
988  *
989  *
990  * Lock order:
991  *
992  *   hb->lock
993  *     pi_mutex->wait_lock
994  *       p->pi_lock
995  *
996  */
997
998 /*
999  * Validate that the existing waiter has a pi_state and sanity check
1000  * the pi_state against the user space value. If correct, attach to
1001  * it.
1002  */
1003 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1004                               struct futex_pi_state *pi_state,
1005                               struct futex_pi_state **ps)
1006 {
1007         pid_t pid = uval & FUTEX_TID_MASK;
1008         u32 uval2;
1009         int ret;
1010
1011         /*
1012          * Userspace might have messed up non-PI and PI futexes [3]
1013          */
1014         if (unlikely(!pi_state))
1015                 return -EINVAL;
1016
1017         /*
1018          * We get here with hb->lock held, and having found a
1019          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1020          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1021          * which in turn means that futex_lock_pi() still has a reference on
1022          * our pi_state.
1023          *
1024          * The waiter holding a reference on @pi_state also protects against
1025          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1026          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1027          * free pi_state before we can take a reference ourselves.
1028          */
1029         WARN_ON(!refcount_read(&pi_state->refcount));
1030
1031         /*
1032          * Now that we have a pi_state, we can acquire wait_lock
1033          * and do the state validation.
1034          */
1035         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1036
1037         /*
1038          * Since {uval, pi_state} is serialized by wait_lock, and our current
1039          * uval was read without holding it, it can have changed. Verify it
1040          * still is what we expect it to be, otherwise retry the entire
1041          * operation.
1042          */
1043         if (get_futex_value_locked(&uval2, uaddr))
1044                 goto out_efault;
1045
1046         if (uval != uval2)
1047                 goto out_eagain;
1048
1049         /*
1050          * Handle the owner died case:
1051          */
1052         if (uval & FUTEX_OWNER_DIED) {
1053                 /*
1054                  * exit_pi_state_list sets owner to NULL and wakes the
1055                  * topmost waiter. The task which acquires the
1056                  * pi_state->rt_mutex will fixup owner.
1057                  */
1058                 if (!pi_state->owner) {
1059                         /*
1060                          * No pi state owner, but the user space TID
1061                          * is not 0. Inconsistent state. [5]
1062                          */
1063                         if (pid)
1064                                 goto out_einval;
1065                         /*
1066                          * Take a ref on the state and return success. [4]
1067                          */
1068                         goto out_attach;
1069                 }
1070
1071                 /*
1072                  * If TID is 0, then either the dying owner has not
1073                  * yet executed exit_pi_state_list() or some waiter
1074                  * acquired the rtmutex in the pi state, but did not
1075                  * yet fixup the TID in user space.
1076                  *
1077                  * Take a ref on the state and return success. [6]
1078                  */
1079                 if (!pid)
1080                         goto out_attach;
1081         } else {
1082                 /*
1083                  * If the owner died bit is not set, then the pi_state
1084                  * must have an owner. [7]
1085                  */
1086                 if (!pi_state->owner)
1087                         goto out_einval;
1088         }
1089
1090         /*
1091          * Bail out if user space manipulated the futex value. If pi
1092          * state exists then the owner TID must be the same as the
1093          * user space TID. [9/10]
1094          */
1095         if (pid != task_pid_vnr(pi_state->owner))
1096                 goto out_einval;
1097
1098 out_attach:
1099         get_pi_state(pi_state);
1100         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1101         *ps = pi_state;
1102         return 0;
1103
1104 out_einval:
1105         ret = -EINVAL;
1106         goto out_error;
1107
1108 out_eagain:
1109         ret = -EAGAIN;
1110         goto out_error;
1111
1112 out_efault:
1113         ret = -EFAULT;
1114         goto out_error;
1115
1116 out_error:
1117         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1118         return ret;
1119 }
1120
1121 /**
1122  * wait_for_owner_exiting - Block until the owner has exited
1123  * @ret: owner's current futex lock status
1124  * @exiting:    Pointer to the exiting task
1125  *
1126  * Caller must hold a refcount on @exiting.
1127  */
1128 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1129 {
1130         if (ret != -EBUSY) {
1131                 WARN_ON_ONCE(exiting);
1132                 return;
1133         }
1134
1135         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1136                 return;
1137
1138         mutex_lock(&exiting->futex_exit_mutex);
1139         /*
1140          * No point in doing state checking here. If the waiter got here
1141          * while the task was in exec()->exec_futex_release() then it can
1142          * have any FUTEX_STATE_* value when the waiter has acquired the
1143          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1144          * already. Highly unlikely and not a problem. Just one more round
1145          * through the futex maze.
1146          */
1147         mutex_unlock(&exiting->futex_exit_mutex);
1148
1149         put_task_struct(exiting);
1150 }
1151
1152 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1153                             struct task_struct *tsk)
1154 {
1155         u32 uval2;
1156
1157         /*
1158          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1159          * caller that the alleged owner is busy.
1160          */
1161         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1162                 return -EBUSY;
1163
1164         /*
1165          * Reread the user space value to handle the following situation:
1166          *
1167          * CPU0                         CPU1
1168          *
1169          * sys_exit()                   sys_futex()
1170          *  do_exit()                    futex_lock_pi()
1171          *                                futex_lock_pi_atomic()
1172          *   exit_signals(tsk)              No waiters:
1173          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1174          *  mm_release(tsk)                 Set waiter bit
1175          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1176          *      Set owner died              attach_to_pi_owner() {
1177          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1178          *   }                               if (!tsk->flags & PF_EXITING) {
1179          *  ...                                attach();
1180          *  tsk->futex_state =               } else {
1181          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1182          *                                        FUTEX_STATE_DEAD)
1183          *                                       return -EAGAIN;
1184          *                                     return -ESRCH; <--- FAIL
1185          *                                   }
1186          *
1187          * Returning ESRCH unconditionally is wrong here because the
1188          * user space value has been changed by the exiting task.
1189          *
1190          * The same logic applies to the case where the exiting task is
1191          * already gone.
1192          */
1193         if (get_futex_value_locked(&uval2, uaddr))
1194                 return -EFAULT;
1195
1196         /* If the user space value has changed, try again. */
1197         if (uval2 != uval)
1198                 return -EAGAIN;
1199
1200         /*
1201          * The exiting task did not have a robust list, the robust list was
1202          * corrupted or the user space value in *uaddr is simply bogus.
1203          * Give up and tell user space.
1204          */
1205         return -ESRCH;
1206 }
1207
1208 /*
1209  * Lookup the task for the TID provided from user space and attach to
1210  * it after doing proper sanity checks.
1211  */
1212 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1213                               struct futex_pi_state **ps,
1214                               struct task_struct **exiting)
1215 {
1216         pid_t pid = uval & FUTEX_TID_MASK;
1217         struct futex_pi_state *pi_state;
1218         struct task_struct *p;
1219
1220         /*
1221          * We are the first waiter - try to look up the real owner and attach
1222          * the new pi_state to it, but bail out when TID = 0 [1]
1223          *
1224          * The !pid check is paranoid. None of the call sites should end up
1225          * with pid == 0, but better safe than sorry. Let the caller retry
1226          */
1227         if (!pid)
1228                 return -EAGAIN;
1229         p = find_get_task_by_vpid(pid);
1230         if (!p)
1231                 return handle_exit_race(uaddr, uval, NULL);
1232
1233         if (unlikely(p->flags & PF_KTHREAD)) {
1234                 put_task_struct(p);
1235                 return -EPERM;
1236         }
1237
1238         /*
1239          * We need to look at the task state to figure out, whether the
1240          * task is exiting. To protect against the change of the task state
1241          * in futex_exit_release(), we do this protected by p->pi_lock:
1242          */
1243         raw_spin_lock_irq(&p->pi_lock);
1244         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1245                 /*
1246                  * The task is on the way out. When the futex state is
1247                  * FUTEX_STATE_DEAD, we know that the task has finished
1248                  * the cleanup:
1249                  */
1250                 int ret = handle_exit_race(uaddr, uval, p);
1251
1252                 raw_spin_unlock_irq(&p->pi_lock);
1253                 /*
1254                  * If the owner task is between FUTEX_STATE_EXITING and
1255                  * FUTEX_STATE_DEAD then store the task pointer and keep
1256                  * the reference on the task struct. The calling code will
1257                  * drop all locks, wait for the task to reach
1258                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1259                  * required to prevent a live lock when the current task
1260                  * preempted the exiting task between the two states.
1261                  */
1262                 if (ret == -EBUSY)
1263                         *exiting = p;
1264                 else
1265                         put_task_struct(p);
1266                 return ret;
1267         }
1268
1269         /*
1270          * No existing pi state. First waiter. [2]
1271          *
1272          * This creates pi_state, we have hb->lock held, this means nothing can
1273          * observe this state, wait_lock is irrelevant.
1274          */
1275         pi_state = alloc_pi_state();
1276
1277         /*
1278          * Initialize the pi_mutex in locked state and make @p
1279          * the owner of it:
1280          */
1281         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1282
1283         /* Store the key for possible exit cleanups: */
1284         pi_state->key = *key;
1285
1286         WARN_ON(!list_empty(&pi_state->list));
1287         list_add(&pi_state->list, &p->pi_state_list);
1288         /*
1289          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1290          * because there is no concurrency as the object is not published yet.
1291          */
1292         pi_state->owner = p;
1293         raw_spin_unlock_irq(&p->pi_lock);
1294
1295         put_task_struct(p);
1296
1297         *ps = pi_state;
1298
1299         return 0;
1300 }
1301
1302 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1303 {
1304         int err;
1305         u32 curval;
1306
1307         if (unlikely(should_fail_futex(true)))
1308                 return -EFAULT;
1309
1310         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1311         if (unlikely(err))
1312                 return err;
1313
1314         /* If user space value changed, let the caller retry */
1315         return curval != uval ? -EAGAIN : 0;
1316 }
1317
1318 /**
1319  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1320  * @uaddr:              the pi futex user address
1321  * @hb:                 the pi futex hash bucket
1322  * @key:                the futex key associated with uaddr and hb
1323  * @ps:                 the pi_state pointer where we store the result of the
1324  *                      lookup
1325  * @task:               the task to perform the atomic lock work for.  This will
1326  *                      be "current" except in the case of requeue pi.
1327  * @exiting:            Pointer to store the task pointer of the owner task
1328  *                      which is in the middle of exiting
1329  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1330  *
1331  * Return:
1332  *  -  0 - ready to wait;
1333  *  -  1 - acquired the lock;
1334  *  - <0 - error
1335  *
1336  * The hb->lock must be held by the caller.
1337  *
1338  * @exiting is only set when the return value is -EBUSY. If so, this holds
1339  * a refcount on the exiting task on return and the caller needs to drop it
1340  * after waiting for the exit to complete.
1341  */
1342 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1343                                 union futex_key *key,
1344                                 struct futex_pi_state **ps,
1345                                 struct task_struct *task,
1346                                 struct task_struct **exiting,
1347                                 int set_waiters)
1348 {
1349         u32 uval, newval, vpid = task_pid_vnr(task);
1350         struct futex_q *top_waiter;
1351         int ret;
1352
1353         /*
1354          * Read the user space value first so we can validate a few
1355          * things before proceeding further.
1356          */
1357         if (get_futex_value_locked(&uval, uaddr))
1358                 return -EFAULT;
1359
1360         if (unlikely(should_fail_futex(true)))
1361                 return -EFAULT;
1362
1363         /*
1364          * Detect deadlocks.
1365          */
1366         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1367                 return -EDEADLK;
1368
1369         if ((unlikely(should_fail_futex(true))))
1370                 return -EDEADLK;
1371
1372         /*
1373          * Lookup existing state first. If it exists, try to attach to
1374          * its pi_state.
1375          */
1376         top_waiter = futex_top_waiter(hb, key);
1377         if (top_waiter)
1378                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1379
1380         /*
1381          * No waiter and user TID is 0. We are here because the
1382          * waiters or the owner died bit is set or called from
1383          * requeue_cmp_pi or for whatever reason something took the
1384          * syscall.
1385          */
1386         if (!(uval & FUTEX_TID_MASK)) {
1387                 /*
1388                  * We take over the futex. No other waiters and the user space
1389                  * TID is 0. We preserve the owner died bit.
1390                  */
1391                 newval = uval & FUTEX_OWNER_DIED;
1392                 newval |= vpid;
1393
1394                 /* The futex requeue_pi code can enforce the waiters bit */
1395                 if (set_waiters)
1396                         newval |= FUTEX_WAITERS;
1397
1398                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1399                 /* If the take over worked, return 1 */
1400                 return ret < 0 ? ret : 1;
1401         }
1402
1403         /*
1404          * First waiter. Set the waiters bit before attaching ourself to
1405          * the owner. If owner tries to unlock, it will be forced into
1406          * the kernel and blocked on hb->lock.
1407          */
1408         newval = uval | FUTEX_WAITERS;
1409         ret = lock_pi_update_atomic(uaddr, uval, newval);
1410         if (ret)
1411                 return ret;
1412         /*
1413          * If the update of the user space value succeeded, we try to
1414          * attach to the owner. If that fails, no harm done, we only
1415          * set the FUTEX_WAITERS bit in the user space variable.
1416          */
1417         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1418 }
1419
1420 /**
1421  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1422  * @q:  The futex_q to unqueue
1423  *
1424  * The q->lock_ptr must not be NULL and must be held by the caller.
1425  */
1426 static void __unqueue_futex(struct futex_q *q)
1427 {
1428         struct futex_hash_bucket *hb;
1429
1430         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1431                 return;
1432         lockdep_assert_held(q->lock_ptr);
1433
1434         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1435         plist_del(&q->list, &hb->chain);
1436         hb_waiters_dec(hb);
1437 }
1438
1439 /*
1440  * The hash bucket lock must be held when this is called.
1441  * Afterwards, the futex_q must not be accessed. Callers
1442  * must ensure to later call wake_up_q() for the actual
1443  * wakeups to occur.
1444  */
1445 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1446 {
1447         struct task_struct *p = q->task;
1448
1449         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1450                 return;
1451
1452         get_task_struct(p);
1453         __unqueue_futex(q);
1454         /*
1455          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1456          * is written, without taking any locks. This is possible in the event
1457          * of a spurious wakeup, for example. A memory barrier is required here
1458          * to prevent the following store to lock_ptr from getting ahead of the
1459          * plist_del in __unqueue_futex().
1460          */
1461         smp_store_release(&q->lock_ptr, NULL);
1462
1463         /*
1464          * Queue the task for later wakeup for after we've released
1465          * the hb->lock.
1466          */
1467         wake_q_add_safe(wake_q, p);
1468 }
1469
1470 /*
1471  * Caller must hold a reference on @pi_state.
1472  */
1473 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1474 {
1475         struct rt_mutex_waiter *top_waiter;
1476         struct task_struct *new_owner;
1477         bool postunlock = false;
1478         DEFINE_RT_WAKE_Q(wqh);
1479         u32 curval, newval;
1480         int ret = 0;
1481
1482         top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
1483         if (WARN_ON_ONCE(!top_waiter)) {
1484                 /*
1485                  * As per the comment in futex_unlock_pi() this should not happen.
1486                  *
1487                  * When this happens, give up our locks and try again, giving
1488                  * the futex_lock_pi() instance time to complete, either by
1489                  * waiting on the rtmutex or removing itself from the futex
1490                  * queue.
1491                  */
1492                 ret = -EAGAIN;
1493                 goto out_unlock;
1494         }
1495
1496         new_owner = top_waiter->task;
1497
1498         /*
1499          * We pass it to the next owner. The WAITERS bit is always kept
1500          * enabled while there is PI state around. We cleanup the owner
1501          * died bit, because we are the owner.
1502          */
1503         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1504
1505         if (unlikely(should_fail_futex(true))) {
1506                 ret = -EFAULT;
1507                 goto out_unlock;
1508         }
1509
1510         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1511         if (!ret && (curval != uval)) {
1512                 /*
1513                  * If a unconditional UNLOCK_PI operation (user space did not
1514                  * try the TID->0 transition) raced with a waiter setting the
1515                  * FUTEX_WAITERS flag between get_user() and locking the hash
1516                  * bucket lock, retry the operation.
1517                  */
1518                 if ((FUTEX_TID_MASK & curval) == uval)
1519                         ret = -EAGAIN;
1520                 else
1521                         ret = -EINVAL;
1522         }
1523
1524         if (!ret) {
1525                 /*
1526                  * This is a point of no return; once we modified the uval
1527                  * there is no going back and subsequent operations must
1528                  * not fail.
1529                  */
1530                 pi_state_update_owner(pi_state, new_owner);
1531                 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wqh);
1532         }
1533
1534 out_unlock:
1535         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1536
1537         if (postunlock)
1538                 rt_mutex_postunlock(&wqh);
1539
1540         return ret;
1541 }
1542
1543 /*
1544  * Express the locking dependencies for lockdep:
1545  */
1546 static inline void
1547 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1548 {
1549         if (hb1 <= hb2) {
1550                 spin_lock(&hb1->lock);
1551                 if (hb1 < hb2)
1552                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1553         } else { /* hb1 > hb2 */
1554                 spin_lock(&hb2->lock);
1555                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1556         }
1557 }
1558
1559 static inline void
1560 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1561 {
1562         spin_unlock(&hb1->lock);
1563         if (hb1 != hb2)
1564                 spin_unlock(&hb2->lock);
1565 }
1566
1567 /*
1568  * Wake up waiters matching bitset queued on this futex (uaddr).
1569  */
1570 static int
1571 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1572 {
1573         struct futex_hash_bucket *hb;
1574         struct futex_q *this, *next;
1575         union futex_key key = FUTEX_KEY_INIT;
1576         int ret;
1577         DEFINE_WAKE_Q(wake_q);
1578
1579         if (!bitset)
1580                 return -EINVAL;
1581
1582         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1583         if (unlikely(ret != 0))
1584                 return ret;
1585
1586         hb = hash_futex(&key);
1587
1588         /* Make sure we really have tasks to wakeup */
1589         if (!hb_waiters_pending(hb))
1590                 return ret;
1591
1592         spin_lock(&hb->lock);
1593
1594         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1595                 if (match_futex (&this->key, &key)) {
1596                         if (this->pi_state || this->rt_waiter) {
1597                                 ret = -EINVAL;
1598                                 break;
1599                         }
1600
1601                         /* Check if one of the bits is set in both bitsets */
1602                         if (!(this->bitset & bitset))
1603                                 continue;
1604
1605                         mark_wake_futex(&wake_q, this);
1606                         if (++ret >= nr_wake)
1607                                 break;
1608                 }
1609         }
1610
1611         spin_unlock(&hb->lock);
1612         wake_up_q(&wake_q);
1613         return ret;
1614 }
1615
1616 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1617 {
1618         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1619         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1620         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1621         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1622         int oldval, ret;
1623
1624         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1625                 if (oparg < 0 || oparg > 31) {
1626                         char comm[sizeof(current->comm)];
1627                         /*
1628                          * kill this print and return -EINVAL when userspace
1629                          * is sane again
1630                          */
1631                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1632                                         get_task_comm(comm, current), oparg);
1633                         oparg &= 31;
1634                 }
1635                 oparg = 1 << oparg;
1636         }
1637
1638         pagefault_disable();
1639         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1640         pagefault_enable();
1641         if (ret)
1642                 return ret;
1643
1644         switch (cmp) {
1645         case FUTEX_OP_CMP_EQ:
1646                 return oldval == cmparg;
1647         case FUTEX_OP_CMP_NE:
1648                 return oldval != cmparg;
1649         case FUTEX_OP_CMP_LT:
1650                 return oldval < cmparg;
1651         case FUTEX_OP_CMP_GE:
1652                 return oldval >= cmparg;
1653         case FUTEX_OP_CMP_LE:
1654                 return oldval <= cmparg;
1655         case FUTEX_OP_CMP_GT:
1656                 return oldval > cmparg;
1657         default:
1658                 return -ENOSYS;
1659         }
1660 }
1661
1662 /*
1663  * Wake up all waiters hashed on the physical page that is mapped
1664  * to this virtual address:
1665  */
1666 static int
1667 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1668               int nr_wake, int nr_wake2, int op)
1669 {
1670         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1671         struct futex_hash_bucket *hb1, *hb2;
1672         struct futex_q *this, *next;
1673         int ret, op_ret;
1674         DEFINE_WAKE_Q(wake_q);
1675
1676 retry:
1677         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1678         if (unlikely(ret != 0))
1679                 return ret;
1680         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1681         if (unlikely(ret != 0))
1682                 return ret;
1683
1684         hb1 = hash_futex(&key1);
1685         hb2 = hash_futex(&key2);
1686
1687 retry_private:
1688         double_lock_hb(hb1, hb2);
1689         op_ret = futex_atomic_op_inuser(op, uaddr2);
1690         if (unlikely(op_ret < 0)) {
1691                 double_unlock_hb(hb1, hb2);
1692
1693                 if (!IS_ENABLED(CONFIG_MMU) ||
1694                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1695                         /*
1696                          * we don't get EFAULT from MMU faults if we don't have
1697                          * an MMU, but we might get them from range checking
1698                          */
1699                         ret = op_ret;
1700                         return ret;
1701                 }
1702
1703                 if (op_ret == -EFAULT) {
1704                         ret = fault_in_user_writeable(uaddr2);
1705                         if (ret)
1706                                 return ret;
1707                 }
1708
1709                 cond_resched();
1710                 if (!(flags & FLAGS_SHARED))
1711                         goto retry_private;
1712                 goto retry;
1713         }
1714
1715         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1716                 if (match_futex (&this->key, &key1)) {
1717                         if (this->pi_state || this->rt_waiter) {
1718                                 ret = -EINVAL;
1719                                 goto out_unlock;
1720                         }
1721                         mark_wake_futex(&wake_q, this);
1722                         if (++ret >= nr_wake)
1723                                 break;
1724                 }
1725         }
1726
1727         if (op_ret > 0) {
1728                 op_ret = 0;
1729                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1730                         if (match_futex (&this->key, &key2)) {
1731                                 if (this->pi_state || this->rt_waiter) {
1732                                         ret = -EINVAL;
1733                                         goto out_unlock;
1734                                 }
1735                                 mark_wake_futex(&wake_q, this);
1736                                 if (++op_ret >= nr_wake2)
1737                                         break;
1738                         }
1739                 }
1740                 ret += op_ret;
1741         }
1742
1743 out_unlock:
1744         double_unlock_hb(hb1, hb2);
1745         wake_up_q(&wake_q);
1746         return ret;
1747 }
1748
1749 /**
1750  * requeue_futex() - Requeue a futex_q from one hb to another
1751  * @q:          the futex_q to requeue
1752  * @hb1:        the source hash_bucket
1753  * @hb2:        the target hash_bucket
1754  * @key2:       the new key for the requeued futex_q
1755  */
1756 static inline
1757 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1758                    struct futex_hash_bucket *hb2, union futex_key *key2)
1759 {
1760
1761         /*
1762          * If key1 and key2 hash to the same bucket, no need to
1763          * requeue.
1764          */
1765         if (likely(&hb1->chain != &hb2->chain)) {
1766                 plist_del(&q->list, &hb1->chain);
1767                 hb_waiters_dec(hb1);
1768                 hb_waiters_inc(hb2);
1769                 plist_add(&q->list, &hb2->chain);
1770                 q->lock_ptr = &hb2->lock;
1771         }
1772         q->key = *key2;
1773 }
1774
1775 /**
1776  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1777  * @q:          the futex_q
1778  * @key:        the key of the requeue target futex
1779  * @hb:         the hash_bucket of the requeue target futex
1780  *
1781  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1782  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1783  * to the requeue target futex so the waiter can detect the wakeup on the right
1784  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1785  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1786  * to protect access to the pi_state to fixup the owner later.  Must be called
1787  * with both q->lock_ptr and hb->lock held.
1788  */
1789 static inline
1790 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1791                            struct futex_hash_bucket *hb)
1792 {
1793         q->key = *key;
1794
1795         __unqueue_futex(q);
1796
1797         WARN_ON(!q->rt_waiter);
1798         q->rt_waiter = NULL;
1799
1800         q->lock_ptr = &hb->lock;
1801
1802         wake_up_state(q->task, TASK_NORMAL);
1803 }
1804
1805 /**
1806  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1807  * @pifutex:            the user address of the to futex
1808  * @hb1:                the from futex hash bucket, must be locked by the caller
1809  * @hb2:                the to futex hash bucket, must be locked by the caller
1810  * @key1:               the from futex key
1811  * @key2:               the to futex key
1812  * @ps:                 address to store the pi_state pointer
1813  * @exiting:            Pointer to store the task pointer of the owner task
1814  *                      which is in the middle of exiting
1815  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1816  *
1817  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1818  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1819  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1820  * hb1 and hb2 must be held by the caller.
1821  *
1822  * @exiting is only set when the return value is -EBUSY. If so, this holds
1823  * a refcount on the exiting task on return and the caller needs to drop it
1824  * after waiting for the exit to complete.
1825  *
1826  * Return:
1827  *  -  0 - failed to acquire the lock atomically;
1828  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1829  *  - <0 - error
1830  */
1831 static int
1832 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1833                            struct futex_hash_bucket *hb2, union futex_key *key1,
1834                            union futex_key *key2, struct futex_pi_state **ps,
1835                            struct task_struct **exiting, int set_waiters)
1836 {
1837         struct futex_q *top_waiter = NULL;
1838         u32 curval;
1839         int ret, vpid;
1840
1841         if (get_futex_value_locked(&curval, pifutex))
1842                 return -EFAULT;
1843
1844         if (unlikely(should_fail_futex(true)))
1845                 return -EFAULT;
1846
1847         /*
1848          * Find the top_waiter and determine if there are additional waiters.
1849          * If the caller intends to requeue more than 1 waiter to pifutex,
1850          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1851          * as we have means to handle the possible fault.  If not, don't set
1852          * the bit unnecessarily as it will force the subsequent unlock to enter
1853          * the kernel.
1854          */
1855         top_waiter = futex_top_waiter(hb1, key1);
1856
1857         /* There are no waiters, nothing for us to do. */
1858         if (!top_waiter)
1859                 return 0;
1860
1861         /*
1862          * Ensure that this is a waiter sitting in futex_wait_requeue_pi()
1863          * and waiting on the 'waitqueue' futex which is always !PI.
1864          */
1865         if (!top_waiter->rt_waiter || top_waiter->pi_state)
1866                 ret = -EINVAL;
1867
1868         /* Ensure we requeue to the expected futex. */
1869         if (!match_futex(top_waiter->requeue_pi_key, key2))
1870                 return -EINVAL;
1871
1872         /*
1873          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1874          * the contended case or if set_waiters is 1.  The pi_state is returned
1875          * in ps in contended cases.
1876          */
1877         vpid = task_pid_vnr(top_waiter->task);
1878         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1879                                    exiting, set_waiters);
1880         if (ret == 1) {
1881                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1882                 return vpid;
1883         }
1884         return ret;
1885 }
1886
1887 /**
1888  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1889  * @uaddr1:     source futex user address
1890  * @flags:      futex flags (FLAGS_SHARED, etc.)
1891  * @uaddr2:     target futex user address
1892  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1893  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1894  * @cmpval:     @uaddr1 expected value (or %NULL)
1895  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1896  *              pi futex (pi to pi requeue is not supported)
1897  *
1898  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1899  * uaddr2 atomically on behalf of the top waiter.
1900  *
1901  * Return:
1902  *  - >=0 - on success, the number of tasks requeued or woken;
1903  *  -  <0 - on error
1904  */
1905 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1906                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1907                          u32 *cmpval, int requeue_pi)
1908 {
1909         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1910         int task_count = 0, ret;
1911         struct futex_pi_state *pi_state = NULL;
1912         struct futex_hash_bucket *hb1, *hb2;
1913         struct futex_q *this, *next;
1914         DEFINE_WAKE_Q(wake_q);
1915
1916         if (nr_wake < 0 || nr_requeue < 0)
1917                 return -EINVAL;
1918
1919         /*
1920          * When PI not supported: return -ENOSYS if requeue_pi is true,
1921          * consequently the compiler knows requeue_pi is always false past
1922          * this point which will optimize away all the conditional code
1923          * further down.
1924          */
1925         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1926                 return -ENOSYS;
1927
1928         if (requeue_pi) {
1929                 /*
1930                  * Requeue PI only works on two distinct uaddrs. This
1931                  * check is only valid for private futexes. See below.
1932                  */
1933                 if (uaddr1 == uaddr2)
1934                         return -EINVAL;
1935
1936                 /*
1937                  * futex_requeue() allows the caller to define the number
1938                  * of waiters to wake up via the @nr_wake argument. With
1939                  * REQUEUE_PI, waking up more than one waiter is creating
1940                  * more problems than it solves. Waking up a waiter makes
1941                  * only sense if the PI futex @uaddr2 is uncontended as
1942                  * this allows the requeue code to acquire the futex
1943                  * @uaddr2 before waking the waiter. The waiter can then
1944                  * return to user space without further action. A secondary
1945                  * wakeup would just make the futex_wait_requeue_pi()
1946                  * handling more complex, because that code would have to
1947                  * look up pi_state and do more or less all the handling
1948                  * which the requeue code has to do for the to be requeued
1949                  * waiters. So restrict the number of waiters to wake to
1950                  * one, and only wake it up when the PI futex is
1951                  * uncontended. Otherwise requeue it and let the unlock of
1952                  * the PI futex handle the wakeup.
1953                  *
1954                  * All REQUEUE_PI users, e.g. pthread_cond_signal() and
1955                  * pthread_cond_broadcast() must use nr_wake=1.
1956                  */
1957                 if (nr_wake != 1)
1958                         return -EINVAL;
1959
1960                 /*
1961                  * requeue_pi requires a pi_state, try to allocate it now
1962                  * without any locks in case it fails.
1963                  */
1964                 if (refill_pi_state_cache())
1965                         return -ENOMEM;
1966         }
1967
1968 retry:
1969         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1970         if (unlikely(ret != 0))
1971                 return ret;
1972         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1973                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1974         if (unlikely(ret != 0))
1975                 return ret;
1976
1977         /*
1978          * The check above which compares uaddrs is not sufficient for
1979          * shared futexes. We need to compare the keys:
1980          */
1981         if (requeue_pi && match_futex(&key1, &key2))
1982                 return -EINVAL;
1983
1984         hb1 = hash_futex(&key1);
1985         hb2 = hash_futex(&key2);
1986
1987 retry_private:
1988         hb_waiters_inc(hb2);
1989         double_lock_hb(hb1, hb2);
1990
1991         if (likely(cmpval != NULL)) {
1992                 u32 curval;
1993
1994                 ret = get_futex_value_locked(&curval, uaddr1);
1995
1996                 if (unlikely(ret)) {
1997                         double_unlock_hb(hb1, hb2);
1998                         hb_waiters_dec(hb2);
1999
2000                         ret = get_user(curval, uaddr1);
2001                         if (ret)
2002                                 return ret;
2003
2004                         if (!(flags & FLAGS_SHARED))
2005                                 goto retry_private;
2006
2007                         goto retry;
2008                 }
2009                 if (curval != *cmpval) {
2010                         ret = -EAGAIN;
2011                         goto out_unlock;
2012                 }
2013         }
2014
2015         if (requeue_pi) {
2016                 struct task_struct *exiting = NULL;
2017
2018                 /*
2019                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2020                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2021                  * bit.  We force this here where we are able to easily handle
2022                  * faults rather in the requeue loop below.
2023                  */
2024                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2025                                                  &key2, &pi_state,
2026                                                  &exiting, nr_requeue);
2027
2028                 /*
2029                  * At this point the top_waiter has either taken uaddr2 or is
2030                  * waiting on it.  If the former, then the pi_state will not
2031                  * exist yet, look it up one more time to ensure we have a
2032                  * reference to it. If the lock was taken, @ret contains the
2033                  * VPID of the top waiter task.
2034                  * If the lock was not taken, we have pi_state and an initial
2035                  * refcount on it. In case of an error we have nothing.
2036                  */
2037                 if (ret > 0) {
2038                         WARN_ON(pi_state);
2039                         task_count++;
2040                         /*
2041                          * If futex_proxy_trylock_atomic() acquired the
2042                          * user space futex, then the user space value
2043                          * @uaddr2 has been set to the @hb1's top waiter
2044                          * task VPID. This task is guaranteed to be alive
2045                          * and cannot be exiting because it is either
2046                          * sleeping or blocked on @hb2 lock.
2047                          *
2048                          * The @uaddr2 futex cannot have waiters either as
2049                          * otherwise futex_proxy_trylock_atomic() would not
2050                          * have succeeded.
2051                          *
2052                          * In order to requeue waiters to @hb2, pi state is
2053                          * required. Hand in the VPID value (@ret) and
2054                          * allocate PI state with an initial refcount on
2055                          * it.
2056                          */
2057                         ret = attach_to_pi_owner(uaddr2, ret, &key2, &pi_state,
2058                                                  &exiting);
2059                         WARN_ON(ret);
2060                 }
2061
2062                 switch (ret) {
2063                 case 0:
2064                         /* We hold a reference on the pi state. */
2065                         break;
2066
2067                         /* If the above failed, then pi_state is NULL */
2068                 case -EFAULT:
2069                         double_unlock_hb(hb1, hb2);
2070                         hb_waiters_dec(hb2);
2071                         ret = fault_in_user_writeable(uaddr2);
2072                         if (!ret)
2073                                 goto retry;
2074                         return ret;
2075                 case -EBUSY:
2076                 case -EAGAIN:
2077                         /*
2078                          * Two reasons for this:
2079                          * - EBUSY: Owner is exiting and we just wait for the
2080                          *   exit to complete.
2081                          * - EAGAIN: The user space value changed.
2082                          */
2083                         double_unlock_hb(hb1, hb2);
2084                         hb_waiters_dec(hb2);
2085                         /*
2086                          * Handle the case where the owner is in the middle of
2087                          * exiting. Wait for the exit to complete otherwise
2088                          * this task might loop forever, aka. live lock.
2089                          */
2090                         wait_for_owner_exiting(ret, exiting);
2091                         cond_resched();
2092                         goto retry;
2093                 default:
2094                         goto out_unlock;
2095                 }
2096         }
2097
2098         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2099                 if (task_count - nr_wake >= nr_requeue)
2100                         break;
2101
2102                 if (!match_futex(&this->key, &key1))
2103                         continue;
2104
2105                 /*
2106                  * FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2107                  * be paired with each other and no other futex ops.
2108                  *
2109                  * We should never be requeueing a futex_q with a pi_state,
2110                  * which is awaiting a futex_unlock_pi().
2111                  */
2112                 if ((requeue_pi && !this->rt_waiter) ||
2113                     (!requeue_pi && this->rt_waiter) ||
2114                     this->pi_state) {
2115                         ret = -EINVAL;
2116                         break;
2117                 }
2118
2119                 /* Plain futexes just wake or requeue and are done */
2120                 if (!requeue_pi) {
2121                         if (++task_count <= nr_wake)
2122                                 mark_wake_futex(&wake_q, this);
2123                         else
2124                                 requeue_futex(this, hb1, hb2, &key2);
2125                         continue;
2126                 }
2127
2128                 /* Ensure we requeue to the expected futex for requeue_pi. */
2129                 if (!match_futex(this->requeue_pi_key, &key2)) {
2130                         ret = -EINVAL;
2131                         break;
2132                 }
2133
2134                 /*
2135                  * Requeue nr_requeue waiters and possibly one more in the case
2136                  * of requeue_pi if we couldn't acquire the lock atomically.
2137                  *
2138                  * Prepare the waiter to take the rt_mutex. Take a refcount
2139                  * on the pi_state and store the pointer in the futex_q
2140                  * object of the waiter.
2141                  */
2142                 get_pi_state(pi_state);
2143                 this->pi_state = pi_state;
2144                 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2145                                                 this->rt_waiter, this->task);
2146                 if (ret == 1) {
2147                         /*
2148                          * We got the lock. We do neither drop the refcount
2149                          * on pi_state nor clear this->pi_state because the
2150                          * waiter needs the pi_state for cleaning up the
2151                          * user space value. It will drop the refcount
2152                          * after doing so.
2153                          */
2154                         requeue_pi_wake_futex(this, &key2, hb2);
2155                         task_count++;
2156                         continue;
2157                 } else if (ret) {
2158                         /*
2159                          * rt_mutex_start_proxy_lock() detected a potential
2160                          * deadlock when we tried to queue that waiter.
2161                          * Drop the pi_state reference which we took above
2162                          * and remove the pointer to the state from the
2163                          * waiters futex_q object.
2164                          */
2165                         this->pi_state = NULL;
2166                         put_pi_state(pi_state);
2167                         /*
2168                          * We stop queueing more waiters and let user space
2169                          * deal with the mess.
2170                          */
2171                         break;
2172                 }
2173                 /* Waiter is queued, move it to hb2 */
2174                 requeue_futex(this, hb1, hb2, &key2);
2175                 task_count++;
2176         }
2177
2178         /*
2179          * We took an extra initial reference to the pi_state either in
2180          * futex_proxy_trylock_atomic() or in attach_to_pi_owner(). We need
2181          * to drop it here again.
2182          */
2183         put_pi_state(pi_state);
2184
2185 out_unlock:
2186         double_unlock_hb(hb1, hb2);
2187         wake_up_q(&wake_q);
2188         hb_waiters_dec(hb2);
2189         return ret ? ret : task_count;
2190 }
2191
2192 /* The key must be already stored in q->key. */
2193 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2194         __acquires(&hb->lock)
2195 {
2196         struct futex_hash_bucket *hb;
2197
2198         hb = hash_futex(&q->key);
2199
2200         /*
2201          * Increment the counter before taking the lock so that
2202          * a potential waker won't miss a to-be-slept task that is
2203          * waiting for the spinlock. This is safe as all queue_lock()
2204          * users end up calling queue_me(). Similarly, for housekeeping,
2205          * decrement the counter at queue_unlock() when some error has
2206          * occurred and we don't end up adding the task to the list.
2207          */
2208         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2209
2210         q->lock_ptr = &hb->lock;
2211
2212         spin_lock(&hb->lock);
2213         return hb;
2214 }
2215
2216 static inline void
2217 queue_unlock(struct futex_hash_bucket *hb)
2218         __releases(&hb->lock)
2219 {
2220         spin_unlock(&hb->lock);
2221         hb_waiters_dec(hb);
2222 }
2223
2224 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2225 {
2226         int prio;
2227
2228         /*
2229          * The priority used to register this element is
2230          * - either the real thread-priority for the real-time threads
2231          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2232          * - or MAX_RT_PRIO for non-RT threads.
2233          * Thus, all RT-threads are woken first in priority order, and
2234          * the others are woken last, in FIFO order.
2235          */
2236         prio = min(current->normal_prio, MAX_RT_PRIO);
2237
2238         plist_node_init(&q->list, prio);
2239         plist_add(&q->list, &hb->chain);
2240         q->task = current;
2241 }
2242
2243 /**
2244  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2245  * @q:  The futex_q to enqueue
2246  * @hb: The destination hash bucket
2247  *
2248  * The hb->lock must be held by the caller, and is released here. A call to
2249  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2250  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2251  * or nothing if the unqueue is done as part of the wake process and the unqueue
2252  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2253  * an example).
2254  */
2255 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2256         __releases(&hb->lock)
2257 {
2258         __queue_me(q, hb);
2259         spin_unlock(&hb->lock);
2260 }
2261
2262 /**
2263  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2264  * @q:  The futex_q to unqueue
2265  *
2266  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2267  * be paired with exactly one earlier call to queue_me().
2268  *
2269  * Return:
2270  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2271  *  - 0 - if the futex_q was already removed by the waking thread
2272  */
2273 static int unqueue_me(struct futex_q *q)
2274 {
2275         spinlock_t *lock_ptr;
2276         int ret = 0;
2277
2278         /* In the common case we don't take the spinlock, which is nice. */
2279 retry:
2280         /*
2281          * q->lock_ptr can change between this read and the following spin_lock.
2282          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2283          * optimizing lock_ptr out of the logic below.
2284          */
2285         lock_ptr = READ_ONCE(q->lock_ptr);
2286         if (lock_ptr != NULL) {
2287                 spin_lock(lock_ptr);
2288                 /*
2289                  * q->lock_ptr can change between reading it and
2290                  * spin_lock(), causing us to take the wrong lock.  This
2291                  * corrects the race condition.
2292                  *
2293                  * Reasoning goes like this: if we have the wrong lock,
2294                  * q->lock_ptr must have changed (maybe several times)
2295                  * between reading it and the spin_lock().  It can
2296                  * change again after the spin_lock() but only if it was
2297                  * already changed before the spin_lock().  It cannot,
2298                  * however, change back to the original value.  Therefore
2299                  * we can detect whether we acquired the correct lock.
2300                  */
2301                 if (unlikely(lock_ptr != q->lock_ptr)) {
2302                         spin_unlock(lock_ptr);
2303                         goto retry;
2304                 }
2305                 __unqueue_futex(q);
2306
2307                 BUG_ON(q->pi_state);
2308
2309                 spin_unlock(lock_ptr);
2310                 ret = 1;
2311         }
2312
2313         return ret;
2314 }
2315
2316 /*
2317  * PI futexes can not be requeued and must remove themselves from the
2318  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
2319  */
2320 static void unqueue_me_pi(struct futex_q *q)
2321 {
2322         __unqueue_futex(q);
2323
2324         BUG_ON(!q->pi_state);
2325         put_pi_state(q->pi_state);
2326         q->pi_state = NULL;
2327 }
2328
2329 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2330                                   struct task_struct *argowner)
2331 {
2332         struct futex_pi_state *pi_state = q->pi_state;
2333         struct task_struct *oldowner, *newowner;
2334         u32 uval, curval, newval, newtid;
2335         int err = 0;
2336
2337         oldowner = pi_state->owner;
2338
2339         /*
2340          * We are here because either:
2341          *
2342          *  - we stole the lock and pi_state->owner needs updating to reflect
2343          *    that (@argowner == current),
2344          *
2345          * or:
2346          *
2347          *  - someone stole our lock and we need to fix things to point to the
2348          *    new owner (@argowner == NULL).
2349          *
2350          * Either way, we have to replace the TID in the user space variable.
2351          * This must be atomic as we have to preserve the owner died bit here.
2352          *
2353          * Note: We write the user space value _before_ changing the pi_state
2354          * because we can fault here. Imagine swapped out pages or a fork
2355          * that marked all the anonymous memory readonly for cow.
2356          *
2357          * Modifying pi_state _before_ the user space value would leave the
2358          * pi_state in an inconsistent state when we fault here, because we
2359          * need to drop the locks to handle the fault. This might be observed
2360          * in the PID checks when attaching to PI state .
2361          */
2362 retry:
2363         if (!argowner) {
2364                 if (oldowner != current) {
2365                         /*
2366                          * We raced against a concurrent self; things are
2367                          * already fixed up. Nothing to do.
2368                          */
2369                         return 0;
2370                 }
2371
2372                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2373                         /* We got the lock. pi_state is correct. Tell caller. */
2374                         return 1;
2375                 }
2376
2377                 /*
2378                  * The trylock just failed, so either there is an owner or
2379                  * there is a higher priority waiter than this one.
2380                  */
2381                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2382                 /*
2383                  * If the higher priority waiter has not yet taken over the
2384                  * rtmutex then newowner is NULL. We can't return here with
2385                  * that state because it's inconsistent vs. the user space
2386                  * state. So drop the locks and try again. It's a valid
2387                  * situation and not any different from the other retry
2388                  * conditions.
2389                  */
2390                 if (unlikely(!newowner)) {
2391                         err = -EAGAIN;
2392                         goto handle_err;
2393                 }
2394         } else {
2395                 WARN_ON_ONCE(argowner != current);
2396                 if (oldowner == current) {
2397                         /*
2398                          * We raced against a concurrent self; things are
2399                          * already fixed up. Nothing to do.
2400                          */
2401                         return 1;
2402                 }
2403                 newowner = argowner;
2404         }
2405
2406         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2407         /* Owner died? */
2408         if (!pi_state->owner)
2409                 newtid |= FUTEX_OWNER_DIED;
2410
2411         err = get_futex_value_locked(&uval, uaddr);
2412         if (err)
2413                 goto handle_err;
2414
2415         for (;;) {
2416                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2417
2418                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2419                 if (err)
2420                         goto handle_err;
2421
2422                 if (curval == uval)
2423                         break;
2424                 uval = curval;
2425         }
2426
2427         /*
2428          * We fixed up user space. Now we need to fix the pi_state
2429          * itself.
2430          */
2431         pi_state_update_owner(pi_state, newowner);
2432
2433         return argowner == current;
2434
2435         /*
2436          * In order to reschedule or handle a page fault, we need to drop the
2437          * locks here. In the case of a fault, this gives the other task
2438          * (either the highest priority waiter itself or the task which stole
2439          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2440          * are back from handling the fault we need to check the pi_state after
2441          * reacquiring the locks and before trying to do another fixup. When
2442          * the fixup has been done already we simply return.
2443          *
2444          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2445          * drop hb->lock since the caller owns the hb -> futex_q relation.
2446          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2447          */
2448 handle_err:
2449         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2450         spin_unlock(q->lock_ptr);
2451
2452         switch (err) {
2453         case -EFAULT:
2454                 err = fault_in_user_writeable(uaddr);
2455                 break;
2456
2457         case -EAGAIN:
2458                 cond_resched();
2459                 err = 0;
2460                 break;
2461
2462         default:
2463                 WARN_ON_ONCE(1);
2464                 break;
2465         }
2466
2467         spin_lock(q->lock_ptr);
2468         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2469
2470         /*
2471          * Check if someone else fixed it for us:
2472          */
2473         if (pi_state->owner != oldowner)
2474                 return argowner == current;
2475
2476         /* Retry if err was -EAGAIN or the fault in succeeded */
2477         if (!err)
2478                 goto retry;
2479
2480         /*
2481          * fault_in_user_writeable() failed so user state is immutable. At
2482          * best we can make the kernel state consistent but user state will
2483          * be most likely hosed and any subsequent unlock operation will be
2484          * rejected due to PI futex rule [10].
2485          *
2486          * Ensure that the rtmutex owner is also the pi_state owner despite
2487          * the user space value claiming something different. There is no
2488          * point in unlocking the rtmutex if current is the owner as it
2489          * would need to wait until the next waiter has taken the rtmutex
2490          * to guarantee consistent state. Keep it simple. Userspace asked
2491          * for this wreckaged state.
2492          *
2493          * The rtmutex has an owner - either current or some other
2494          * task. See the EAGAIN loop above.
2495          */
2496         pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2497
2498         return err;
2499 }
2500
2501 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2502                                 struct task_struct *argowner)
2503 {
2504         struct futex_pi_state *pi_state = q->pi_state;
2505         int ret;
2506
2507         lockdep_assert_held(q->lock_ptr);
2508
2509         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2510         ret = __fixup_pi_state_owner(uaddr, q, argowner);
2511         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2512         return ret;
2513 }
2514
2515 static long futex_wait_restart(struct restart_block *restart);
2516
2517 /**
2518  * fixup_owner() - Post lock pi_state and corner case management
2519  * @uaddr:      user address of the futex
2520  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2521  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2522  *
2523  * After attempting to lock an rt_mutex, this function is called to cleanup
2524  * the pi_state owner as well as handle race conditions that may allow us to
2525  * acquire the lock. Must be called with the hb lock held.
2526  *
2527  * Return:
2528  *  -  1 - success, lock taken;
2529  *  -  0 - success, lock not taken;
2530  *  - <0 - on error (-EFAULT)
2531  */
2532 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2533 {
2534         if (locked) {
2535                 /*
2536                  * Got the lock. We might not be the anticipated owner if we
2537                  * did a lock-steal - fix up the PI-state in that case:
2538                  *
2539                  * Speculative pi_state->owner read (we don't hold wait_lock);
2540                  * since we own the lock pi_state->owner == current is the
2541                  * stable state, anything else needs more attention.
2542                  */
2543                 if (q->pi_state->owner != current)
2544                         return fixup_pi_state_owner(uaddr, q, current);
2545                 return 1;
2546         }
2547
2548         /*
2549          * If we didn't get the lock; check if anybody stole it from us. In
2550          * that case, we need to fix up the uval to point to them instead of
2551          * us, otherwise bad things happen. [10]
2552          *
2553          * Another speculative read; pi_state->owner == current is unstable
2554          * but needs our attention.
2555          */
2556         if (q->pi_state->owner == current)
2557                 return fixup_pi_state_owner(uaddr, q, NULL);
2558
2559         /*
2560          * Paranoia check. If we did not take the lock, then we should not be
2561          * the owner of the rt_mutex. Warn and establish consistent state.
2562          */
2563         if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2564                 return fixup_pi_state_owner(uaddr, q, current);
2565
2566         return 0;
2567 }
2568
2569 /**
2570  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2571  * @hb:         the futex hash bucket, must be locked by the caller
2572  * @q:          the futex_q to queue up on
2573  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2574  */
2575 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2576                                 struct hrtimer_sleeper *timeout)
2577 {
2578         /*
2579          * The task state is guaranteed to be set before another task can
2580          * wake it. set_current_state() is implemented using smp_store_mb() and
2581          * queue_me() calls spin_unlock() upon completion, both serializing
2582          * access to the hash list and forcing another memory barrier.
2583          */
2584         set_current_state(TASK_INTERRUPTIBLE);
2585         queue_me(q, hb);
2586
2587         /* Arm the timer */
2588         if (timeout)
2589                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2590
2591         /*
2592          * If we have been removed from the hash list, then another task
2593          * has tried to wake us, and we can skip the call to schedule().
2594          */
2595         if (likely(!plist_node_empty(&q->list))) {
2596                 /*
2597                  * If the timer has already expired, current will already be
2598                  * flagged for rescheduling. Only call schedule if there
2599                  * is no timeout, or if it has yet to expire.
2600                  */
2601                 if (!timeout || timeout->task)
2602                         freezable_schedule();
2603         }
2604         __set_current_state(TASK_RUNNING);
2605 }
2606
2607 /**
2608  * futex_wait_setup() - Prepare to wait on a futex
2609  * @uaddr:      the futex userspace address
2610  * @val:        the expected value
2611  * @flags:      futex flags (FLAGS_SHARED, etc.)
2612  * @q:          the associated futex_q
2613  * @hb:         storage for hash_bucket pointer to be returned to caller
2614  *
2615  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2616  * compare it with the expected value.  Handle atomic faults internally.
2617  * Return with the hb lock held on success, and unlocked on failure.
2618  *
2619  * Return:
2620  *  -  0 - uaddr contains val and hb has been locked;
2621  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2622  */
2623 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2624                            struct futex_q *q, struct futex_hash_bucket **hb)
2625 {
2626         u32 uval;
2627         int ret;
2628
2629         /*
2630          * Access the page AFTER the hash-bucket is locked.
2631          * Order is important:
2632          *
2633          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2634          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2635          *
2636          * The basic logical guarantee of a futex is that it blocks ONLY
2637          * if cond(var) is known to be true at the time of blocking, for
2638          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2639          * would open a race condition where we could block indefinitely with
2640          * cond(var) false, which would violate the guarantee.
2641          *
2642          * On the other hand, we insert q and release the hash-bucket only
2643          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2644          * absorb a wakeup if *uaddr does not match the desired values
2645          * while the syscall executes.
2646          */
2647 retry:
2648         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2649         if (unlikely(ret != 0))
2650                 return ret;
2651
2652 retry_private:
2653         *hb = queue_lock(q);
2654
2655         ret = get_futex_value_locked(&uval, uaddr);
2656
2657         if (ret) {
2658                 queue_unlock(*hb);
2659
2660                 ret = get_user(uval, uaddr);
2661                 if (ret)
2662                         return ret;
2663
2664                 if (!(flags & FLAGS_SHARED))
2665                         goto retry_private;
2666
2667                 goto retry;
2668         }
2669
2670         if (uval != val) {
2671                 queue_unlock(*hb);
2672                 ret = -EWOULDBLOCK;
2673         }
2674
2675         return ret;
2676 }
2677
2678 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2679                       ktime_t *abs_time, u32 bitset)
2680 {
2681         struct hrtimer_sleeper timeout, *to;
2682         struct restart_block *restart;
2683         struct futex_hash_bucket *hb;
2684         struct futex_q q = futex_q_init;
2685         int ret;
2686
2687         if (!bitset)
2688                 return -EINVAL;
2689         q.bitset = bitset;
2690
2691         to = futex_setup_timer(abs_time, &timeout, flags,
2692                                current->timer_slack_ns);
2693 retry:
2694         /*
2695          * Prepare to wait on uaddr. On success, it holds hb->lock and q
2696          * is initialized.
2697          */
2698         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2699         if (ret)
2700                 goto out;
2701
2702         /* queue_me and wait for wakeup, timeout, or a signal. */
2703         futex_wait_queue_me(hb, &q, to);
2704
2705         /* If we were woken (and unqueued), we succeeded, whatever. */
2706         ret = 0;
2707         if (!unqueue_me(&q))
2708                 goto out;
2709         ret = -ETIMEDOUT;
2710         if (to && !to->task)
2711                 goto out;
2712
2713         /*
2714          * We expect signal_pending(current), but we might be the
2715          * victim of a spurious wakeup as well.
2716          */
2717         if (!signal_pending(current))
2718                 goto retry;
2719
2720         ret = -ERESTARTSYS;
2721         if (!abs_time)
2722                 goto out;
2723
2724         restart = &current->restart_block;
2725         restart->futex.uaddr = uaddr;
2726         restart->futex.val = val;
2727         restart->futex.time = *abs_time;
2728         restart->futex.bitset = bitset;
2729         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2730
2731         ret = set_restart_fn(restart, futex_wait_restart);
2732
2733 out:
2734         if (to) {
2735                 hrtimer_cancel(&to->timer);
2736                 destroy_hrtimer_on_stack(&to->timer);
2737         }
2738         return ret;
2739 }
2740
2741
2742 static long futex_wait_restart(struct restart_block *restart)
2743 {
2744         u32 __user *uaddr = restart->futex.uaddr;
2745         ktime_t t, *tp = NULL;
2746
2747         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2748                 t = restart->futex.time;
2749                 tp = &t;
2750         }
2751         restart->fn = do_no_restart_syscall;
2752
2753         return (long)futex_wait(uaddr, restart->futex.flags,
2754                                 restart->futex.val, tp, restart->futex.bitset);
2755 }
2756
2757
2758 /*
2759  * Userspace tried a 0 -> TID atomic transition of the futex value
2760  * and failed. The kernel side here does the whole locking operation:
2761  * if there are waiters then it will block as a consequence of relying
2762  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2763  * a 0 value of the futex too.).
2764  *
2765  * Also serves as futex trylock_pi()'ing, and due semantics.
2766  */
2767 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2768                          ktime_t *time, int trylock)
2769 {
2770         struct hrtimer_sleeper timeout, *to;
2771         struct task_struct *exiting = NULL;
2772         struct rt_mutex_waiter rt_waiter;
2773         struct futex_hash_bucket *hb;
2774         struct futex_q q = futex_q_init;
2775         int res, ret;
2776
2777         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2778                 return -ENOSYS;
2779
2780         if (refill_pi_state_cache())
2781                 return -ENOMEM;
2782
2783         to = futex_setup_timer(time, &timeout, flags, 0);
2784
2785 retry:
2786         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2787         if (unlikely(ret != 0))
2788                 goto out;
2789
2790 retry_private:
2791         hb = queue_lock(&q);
2792
2793         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2794                                    &exiting, 0);
2795         if (unlikely(ret)) {
2796                 /*
2797                  * Atomic work succeeded and we got the lock,
2798                  * or failed. Either way, we do _not_ block.
2799                  */
2800                 switch (ret) {
2801                 case 1:
2802                         /* We got the lock. */
2803                         ret = 0;
2804                         goto out_unlock_put_key;
2805                 case -EFAULT:
2806                         goto uaddr_faulted;
2807                 case -EBUSY:
2808                 case -EAGAIN:
2809                         /*
2810                          * Two reasons for this:
2811                          * - EBUSY: Task is exiting and we just wait for the
2812                          *   exit to complete.
2813                          * - EAGAIN: The user space value changed.
2814                          */
2815                         queue_unlock(hb);
2816                         /*
2817                          * Handle the case where the owner is in the middle of
2818                          * exiting. Wait for the exit to complete otherwise
2819                          * this task might loop forever, aka. live lock.
2820                          */
2821                         wait_for_owner_exiting(ret, exiting);
2822                         cond_resched();
2823                         goto retry;
2824                 default:
2825                         goto out_unlock_put_key;
2826                 }
2827         }
2828
2829         WARN_ON(!q.pi_state);
2830
2831         /*
2832          * Only actually queue now that the atomic ops are done:
2833          */
2834         __queue_me(&q, hb);
2835
2836         if (trylock) {
2837                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2838                 /* Fixup the trylock return value: */
2839                 ret = ret ? 0 : -EWOULDBLOCK;
2840                 goto no_block;
2841         }
2842
2843         rt_mutex_init_waiter(&rt_waiter);
2844
2845         /*
2846          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2847          * hold it while doing rt_mutex_start_proxy(), because then it will
2848          * include hb->lock in the blocking chain, even through we'll not in
2849          * fact hold it while blocking. This will lead it to report -EDEADLK
2850          * and BUG when futex_unlock_pi() interleaves with this.
2851          *
2852          * Therefore acquire wait_lock while holding hb->lock, but drop the
2853          * latter before calling __rt_mutex_start_proxy_lock(). This
2854          * interleaves with futex_unlock_pi() -- which does a similar lock
2855          * handoff -- such that the latter can observe the futex_q::pi_state
2856          * before __rt_mutex_start_proxy_lock() is done.
2857          */
2858         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2859         spin_unlock(q.lock_ptr);
2860         /*
2861          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2862          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2863          * it sees the futex_q::pi_state.
2864          */
2865         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2866         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2867
2868         if (ret) {
2869                 if (ret == 1)
2870                         ret = 0;
2871                 goto cleanup;
2872         }
2873
2874         if (unlikely(to))
2875                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2876
2877         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2878
2879 cleanup:
2880         spin_lock(q.lock_ptr);
2881         /*
2882          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2883          * first acquire the hb->lock before removing the lock from the
2884          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2885          * lists consistent.
2886          *
2887          * In particular; it is important that futex_unlock_pi() can not
2888          * observe this inconsistency.
2889          */
2890         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2891                 ret = 0;
2892
2893 no_block:
2894         /*
2895          * Fixup the pi_state owner and possibly acquire the lock if we
2896          * haven't already.
2897          */
2898         res = fixup_owner(uaddr, &q, !ret);
2899         /*
2900          * If fixup_owner() returned an error, propagate that.  If it acquired
2901          * the lock, clear our -ETIMEDOUT or -EINTR.
2902          */
2903         if (res)
2904                 ret = (res < 0) ? res : 0;
2905
2906         unqueue_me_pi(&q);
2907         spin_unlock(q.lock_ptr);
2908         goto out;
2909
2910 out_unlock_put_key:
2911         queue_unlock(hb);
2912
2913 out:
2914         if (to) {
2915                 hrtimer_cancel(&to->timer);
2916                 destroy_hrtimer_on_stack(&to->timer);
2917         }
2918         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2919
2920 uaddr_faulted:
2921         queue_unlock(hb);
2922
2923         ret = fault_in_user_writeable(uaddr);
2924         if (ret)
2925                 goto out;
2926
2927         if (!(flags & FLAGS_SHARED))
2928                 goto retry_private;
2929
2930         goto retry;
2931 }
2932
2933 /*
2934  * Userspace attempted a TID -> 0 atomic transition, and failed.
2935  * This is the in-kernel slowpath: we look up the PI state (if any),
2936  * and do the rt-mutex unlock.
2937  */
2938 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2939 {
2940         u32 curval, uval, vpid = task_pid_vnr(current);
2941         union futex_key key = FUTEX_KEY_INIT;
2942         struct futex_hash_bucket *hb;
2943         struct futex_q *top_waiter;
2944         int ret;
2945
2946         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2947                 return -ENOSYS;
2948
2949 retry:
2950         if (get_user(uval, uaddr))
2951                 return -EFAULT;
2952         /*
2953          * We release only a lock we actually own:
2954          */
2955         if ((uval & FUTEX_TID_MASK) != vpid)
2956                 return -EPERM;
2957
2958         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2959         if (ret)
2960                 return ret;
2961
2962         hb = hash_futex(&key);
2963         spin_lock(&hb->lock);
2964
2965         /*
2966          * Check waiters first. We do not trust user space values at
2967          * all and we at least want to know if user space fiddled
2968          * with the futex value instead of blindly unlocking.
2969          */
2970         top_waiter = futex_top_waiter(hb, &key);
2971         if (top_waiter) {
2972                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2973
2974                 ret = -EINVAL;
2975                 if (!pi_state)
2976                         goto out_unlock;
2977
2978                 /*
2979                  * If current does not own the pi_state then the futex is
2980                  * inconsistent and user space fiddled with the futex value.
2981                  */
2982                 if (pi_state->owner != current)
2983                         goto out_unlock;
2984
2985                 get_pi_state(pi_state);
2986                 /*
2987                  * By taking wait_lock while still holding hb->lock, we ensure
2988                  * there is no point where we hold neither; and therefore
2989                  * wake_futex_pi() must observe a state consistent with what we
2990                  * observed.
2991                  *
2992                  * In particular; this forces __rt_mutex_start_proxy() to
2993                  * complete such that we're guaranteed to observe the
2994                  * rt_waiter. Also see the WARN in wake_futex_pi().
2995                  */
2996                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2997                 spin_unlock(&hb->lock);
2998
2999                 /* drops pi_state->pi_mutex.wait_lock */
3000                 ret = wake_futex_pi(uaddr, uval, pi_state);
3001
3002                 put_pi_state(pi_state);
3003
3004                 /*
3005                  * Success, we're done! No tricky corner cases.
3006                  */
3007                 if (!ret)
3008                         return ret;
3009                 /*
3010                  * The atomic access to the futex value generated a
3011                  * pagefault, so retry the user-access and the wakeup:
3012                  */
3013                 if (ret == -EFAULT)
3014                         goto pi_faulted;
3015                 /*
3016                  * A unconditional UNLOCK_PI op raced against a waiter
3017                  * setting the FUTEX_WAITERS bit. Try again.
3018                  */
3019                 if (ret == -EAGAIN)
3020                         goto pi_retry;
3021                 /*
3022                  * wake_futex_pi has detected invalid state. Tell user
3023                  * space.
3024                  */
3025                 return ret;
3026         }
3027
3028         /*
3029          * We have no kernel internal state, i.e. no waiters in the
3030          * kernel. Waiters which are about to queue themselves are stuck
3031          * on hb->lock. So we can safely ignore them. We do neither
3032          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3033          * owner.
3034          */
3035         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3036                 spin_unlock(&hb->lock);
3037                 switch (ret) {
3038                 case -EFAULT:
3039                         goto pi_faulted;
3040
3041                 case -EAGAIN:
3042                         goto pi_retry;
3043
3044                 default:
3045                         WARN_ON_ONCE(1);
3046                         return ret;
3047                 }
3048         }
3049
3050         /*
3051          * If uval has changed, let user space handle it.
3052          */
3053         ret = (curval == uval) ? 0 : -EAGAIN;
3054
3055 out_unlock:
3056         spin_unlock(&hb->lock);
3057         return ret;
3058
3059 pi_retry:
3060         cond_resched();
3061         goto retry;
3062
3063 pi_faulted:
3064
3065         ret = fault_in_user_writeable(uaddr);
3066         if (!ret)
3067                 goto retry;
3068
3069         return ret;
3070 }
3071
3072 /**
3073  * handle_early_requeue_pi_wakeup() - Handle early wakeup on the initial futex
3074  * @hb:         the hash_bucket futex_q was original enqueued on
3075  * @q:          the futex_q woken while waiting to be requeued
3076  * @timeout:    the timeout associated with the wait (NULL if none)
3077  *
3078  * Determine the cause for the early wakeup.
3079  *
3080  * Return:
3081  *  -EWOULDBLOCK or -ETIMEDOUT or -ERESTARTNOINTR
3082  */
3083 static inline
3084 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3085                                    struct futex_q *q,
3086                                    struct hrtimer_sleeper *timeout)
3087 {
3088         int ret;
3089
3090         /*
3091          * With the hb lock held, we avoid races while we process the wakeup.
3092          * We only need to hold hb (and not hb2) to ensure atomicity as the
3093          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3094          * It can't be requeued from uaddr2 to something else since we don't
3095          * support a PI aware source futex for requeue.
3096          */
3097         WARN_ON_ONCE(&hb->lock != q->lock_ptr);
3098
3099         /*
3100          * We were woken prior to requeue by a timeout or a signal.
3101          * Unqueue the futex_q and determine which it was.
3102          */
3103         plist_del(&q->list, &hb->chain);
3104         hb_waiters_dec(hb);
3105
3106         /* Handle spurious wakeups gracefully */
3107         ret = -EWOULDBLOCK;
3108         if (timeout && !timeout->task)
3109                 ret = -ETIMEDOUT;
3110         else if (signal_pending(current))
3111                 ret = -ERESTARTNOINTR;
3112         return ret;
3113 }
3114
3115 /**
3116  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3117  * @uaddr:      the futex we initially wait on (non-pi)
3118  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3119  *              the same type, no requeueing from private to shared, etc.
3120  * @val:        the expected value of uaddr
3121  * @abs_time:   absolute timeout
3122  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3123  * @uaddr2:     the pi futex we will take prior to returning to user-space
3124  *
3125  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3126  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3127  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3128  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3129  * without one, the pi logic would not know which task to boost/deboost, if
3130  * there was a need to.
3131  *
3132  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3133  * via the following--
3134  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3135  * 2) wakeup on uaddr2 after a requeue
3136  * 3) signal
3137  * 4) timeout
3138  *
3139  * If 3, cleanup and return -ERESTARTNOINTR.
3140  *
3141  * If 2, we may then block on trying to take the rt_mutex and return via:
3142  * 5) successful lock
3143  * 6) signal
3144  * 7) timeout
3145  * 8) other lock acquisition failure
3146  *
3147  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3148  *
3149  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3150  *
3151  * Return:
3152  *  -  0 - On success;
3153  *  - <0 - On error
3154  */
3155 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3156                                  u32 val, ktime_t *abs_time, u32 bitset,
3157                                  u32 __user *uaddr2)
3158 {
3159         struct hrtimer_sleeper timeout, *to;
3160         struct rt_mutex_waiter rt_waiter;
3161         struct futex_hash_bucket *hb;
3162         union futex_key key2 = FUTEX_KEY_INIT;
3163         struct futex_q q = futex_q_init;
3164         int res, ret;
3165
3166         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3167                 return -ENOSYS;
3168
3169         if (uaddr == uaddr2)
3170                 return -EINVAL;
3171
3172         if (!bitset)
3173                 return -EINVAL;
3174
3175         to = futex_setup_timer(abs_time, &timeout, flags,
3176                                current->timer_slack_ns);
3177
3178         /*
3179          * The waiter is allocated on our stack, manipulated by the requeue
3180          * code while we sleep on uaddr.
3181          */
3182         rt_mutex_init_waiter(&rt_waiter);
3183
3184         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3185         if (unlikely(ret != 0))
3186                 goto out;
3187
3188         q.bitset = bitset;
3189         q.rt_waiter = &rt_waiter;
3190         q.requeue_pi_key = &key2;
3191
3192         /*
3193          * Prepare to wait on uaddr. On success, it holds hb->lock and q
3194          * is initialized.
3195          */
3196         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3197         if (ret)
3198                 goto out;
3199
3200         /*
3201          * The check above which compares uaddrs is not sufficient for
3202          * shared futexes. We need to compare the keys:
3203          */
3204         if (match_futex(&q.key, &key2)) {
3205                 queue_unlock(hb);
3206                 ret = -EINVAL;
3207                 goto out;
3208         }
3209
3210         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3211         futex_wait_queue_me(hb, &q, to);
3212
3213         spin_lock(&hb->lock);
3214         /* Is @q still queued on uaddr1? */
3215         if (!match_futex(&q->key, key2))
3216                 ret = handle_early_requeue_pi_wakeup(hb, &q, to);
3217         spin_unlock(&hb->lock);
3218         if (ret)
3219                 goto out;
3220
3221         /*
3222          * In order for us to be here, we know our q.key == key2, and since
3223          * we took the hb->lock above, we also know that futex_requeue() has
3224          * completed and we no longer have to concern ourselves with a wakeup
3225          * race with the atomic proxy lock acquisition by the requeue code.
3226          */
3227
3228         /*
3229          * Check if the requeue code acquired the second futex for us and do
3230          * any pertinent fixup.
3231          */
3232         if (!q.rt_waiter) {
3233                 if (q.pi_state && (q.pi_state->owner != current)) {
3234                         spin_lock(q.lock_ptr);
3235                         ret = fixup_owner(uaddr2, &q, true);
3236                         /*
3237                          * Drop the reference to the pi state which
3238                          * the requeue_pi() code acquired for us.
3239                          */
3240                         put_pi_state(q.pi_state);
3241                         spin_unlock(q.lock_ptr);
3242                         /*
3243                          * Adjust the return value. It's either -EFAULT or
3244                          * success (1) but the caller expects 0 for success.
3245                          */
3246                         ret = ret < 0 ? ret : 0;
3247                 }
3248         } else {
3249                 struct rt_mutex_base *pi_mutex;
3250
3251                 /*
3252                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3253                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3254                  * the pi_state.
3255                  */
3256                 WARN_ON(!q.pi_state);
3257                 pi_mutex = &q.pi_state->pi_mutex;
3258                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3259
3260                 spin_lock(q.lock_ptr);
3261                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3262                         ret = 0;
3263
3264                 debug_rt_mutex_free_waiter(&rt_waiter);
3265                 /*
3266                  * Fixup the pi_state owner and possibly acquire the lock if we
3267                  * haven't already.
3268                  */
3269                 res = fixup_owner(uaddr2, &q, !ret);
3270                 /*
3271                  * If fixup_owner() returned an error, propagate that.  If it
3272                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3273                  */
3274                 if (res)
3275                         ret = (res < 0) ? res : 0;
3276
3277                 unqueue_me_pi(&q);
3278                 spin_unlock(q.lock_ptr);
3279         }
3280
3281         if (ret == -EINTR) {
3282                 /*
3283                  * We've already been requeued, but cannot restart by calling
3284                  * futex_lock_pi() directly. We could restart this syscall, but
3285                  * it would detect that the user space "val" changed and return
3286                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3287                  * -EWOULDBLOCK directly.
3288                  */
3289                 ret = -EWOULDBLOCK;
3290         }
3291
3292 out:
3293         if (to) {
3294                 hrtimer_cancel(&to->timer);
3295                 destroy_hrtimer_on_stack(&to->timer);
3296         }
3297         return ret;
3298 }
3299
3300 /*
3301  * Support for robust futexes: the kernel cleans up held futexes at
3302  * thread exit time.
3303  *
3304  * Implementation: user-space maintains a per-thread list of locks it
3305  * is holding. Upon do_exit(), the kernel carefully walks this list,
3306  * and marks all locks that are owned by this thread with the
3307  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3308  * always manipulated with the lock held, so the list is private and
3309  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3310  * field, to allow the kernel to clean up if the thread dies after
3311  * acquiring the lock, but just before it could have added itself to
3312  * the list. There can only be one such pending lock.
3313  */
3314
3315 /**
3316  * sys_set_robust_list() - Set the robust-futex list head of a task
3317  * @head:       pointer to the list-head
3318  * @len:        length of the list-head, as userspace expects
3319  */
3320 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3321                 size_t, len)
3322 {
3323         if (!futex_cmpxchg_enabled)
3324                 return -ENOSYS;
3325         /*
3326          * The kernel knows only one size for now:
3327          */
3328         if (unlikely(len != sizeof(*head)))
3329                 return -EINVAL;
3330
3331         current->robust_list = head;
3332
3333         return 0;
3334 }
3335
3336 /**
3337  * sys_get_robust_list() - Get the robust-futex list head of a task
3338  * @pid:        pid of the process [zero for current task]
3339  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3340  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3341  */
3342 SYSCALL_DEFINE3(get_robust_list, int, pid,
3343                 struct robust_list_head __user * __user *, head_ptr,
3344                 size_t __user *, len_ptr)
3345 {
3346         struct robust_list_head __user *head;
3347         unsigned long ret;
3348         struct task_struct *p;
3349
3350         if (!futex_cmpxchg_enabled)
3351                 return -ENOSYS;
3352
3353         rcu_read_lock();
3354
3355         ret = -ESRCH;
3356         if (!pid)
3357                 p = current;
3358         else {
3359                 p = find_task_by_vpid(pid);
3360                 if (!p)
3361                         goto err_unlock;
3362         }
3363
3364         ret = -EPERM;
3365         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3366                 goto err_unlock;
3367
3368         head = p->robust_list;
3369         rcu_read_unlock();
3370
3371         if (put_user(sizeof(*head), len_ptr))
3372                 return -EFAULT;
3373         return put_user(head, head_ptr);
3374
3375 err_unlock:
3376         rcu_read_unlock();
3377
3378         return ret;
3379 }
3380
3381 /* Constants for the pending_op argument of handle_futex_death */
3382 #define HANDLE_DEATH_PENDING    true
3383 #define HANDLE_DEATH_LIST       false
3384
3385 /*
3386  * Process a futex-list entry, check whether it's owned by the
3387  * dying task, and do notification if so:
3388  */
3389 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3390                               bool pi, bool pending_op)
3391 {
3392         u32 uval, nval, mval;
3393         int err;
3394
3395         /* Futex address must be 32bit aligned */
3396         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3397                 return -1;
3398
3399 retry:
3400         if (get_user(uval, uaddr))
3401                 return -1;
3402
3403         /*
3404          * Special case for regular (non PI) futexes. The unlock path in
3405          * user space has two race scenarios:
3406          *
3407          * 1. The unlock path releases the user space futex value and
3408          *    before it can execute the futex() syscall to wake up
3409          *    waiters it is killed.
3410          *
3411          * 2. A woken up waiter is killed before it can acquire the
3412          *    futex in user space.
3413          *
3414          * In both cases the TID validation below prevents a wakeup of
3415          * potential waiters which can cause these waiters to block
3416          * forever.
3417          *
3418          * In both cases the following conditions are met:
3419          *
3420          *      1) task->robust_list->list_op_pending != NULL
3421          *         @pending_op == true
3422          *      2) User space futex value == 0
3423          *      3) Regular futex: @pi == false
3424          *
3425          * If these conditions are met, it is safe to attempt waking up a
3426          * potential waiter without touching the user space futex value and
3427          * trying to set the OWNER_DIED bit. The user space futex value is
3428          * uncontended and the rest of the user space mutex state is
3429          * consistent, so a woken waiter will just take over the
3430          * uncontended futex. Setting the OWNER_DIED bit would create
3431          * inconsistent state and malfunction of the user space owner died
3432          * handling.
3433          */
3434         if (pending_op && !pi && !uval) {
3435                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3436                 return 0;
3437         }
3438
3439         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3440                 return 0;
3441
3442         /*
3443          * Ok, this dying thread is truly holding a futex
3444          * of interest. Set the OWNER_DIED bit atomically
3445          * via cmpxchg, and if the value had FUTEX_WAITERS
3446          * set, wake up a waiter (if any). (We have to do a
3447          * futex_wake() even if OWNER_DIED is already set -
3448          * to handle the rare but possible case of recursive
3449          * thread-death.) The rest of the cleanup is done in
3450          * userspace.
3451          */
3452         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3453
3454         /*
3455          * We are not holding a lock here, but we want to have
3456          * the pagefault_disable/enable() protection because
3457          * we want to handle the fault gracefully. If the
3458          * access fails we try to fault in the futex with R/W
3459          * verification via get_user_pages. get_user() above
3460          * does not guarantee R/W access. If that fails we
3461          * give up and leave the futex locked.
3462          */
3463         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3464                 switch (err) {
3465                 case -EFAULT:
3466                         if (fault_in_user_writeable(uaddr))
3467                                 return -1;
3468                         goto retry;
3469
3470                 case -EAGAIN:
3471                         cond_resched();
3472                         goto retry;
3473
3474                 default:
3475                         WARN_ON_ONCE(1);
3476                         return err;
3477                 }
3478         }
3479
3480         if (nval != uval)
3481                 goto retry;
3482
3483         /*
3484          * Wake robust non-PI futexes here. The wakeup of
3485          * PI futexes happens in exit_pi_state():
3486          */
3487         if (!pi && (uval & FUTEX_WAITERS))
3488                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3489
3490         return 0;
3491 }
3492
3493 /*
3494  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3495  */
3496 static inline int fetch_robust_entry(struct robust_list __user **entry,
3497                                      struct robust_list __user * __user *head,
3498                                      unsigned int *pi)
3499 {
3500         unsigned long uentry;
3501
3502         if (get_user(uentry, (unsigned long __user *)head))
3503                 return -EFAULT;
3504
3505         *entry = (void __user *)(uentry & ~1UL);
3506         *pi = uentry & 1;
3507
3508         return 0;
3509 }
3510
3511 /*
3512  * Walk curr->robust_list (very carefully, it's a userspace list!)
3513  * and mark any locks found there dead, and notify any waiters.
3514  *
3515  * We silently return on any sign of list-walking problem.
3516  */
3517 static void exit_robust_list(struct task_struct *curr)
3518 {
3519         struct robust_list_head __user *head = curr->robust_list;
3520         struct robust_list __user *entry, *next_entry, *pending;
3521         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3522         unsigned int next_pi;
3523         unsigned long futex_offset;
3524         int rc;
3525
3526         if (!futex_cmpxchg_enabled)
3527                 return;
3528
3529         /*
3530          * Fetch the list head (which was registered earlier, via
3531          * sys_set_robust_list()):
3532          */
3533         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3534                 return;
3535         /*
3536          * Fetch the relative futex offset:
3537          */
3538         if (get_user(futex_offset, &head->futex_offset))
3539                 return;
3540         /*
3541          * Fetch any possibly pending lock-add first, and handle it
3542          * if it exists:
3543          */
3544         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3545                 return;
3546
3547         next_entry = NULL;      /* avoid warning with gcc */
3548         while (entry != &head->list) {
3549                 /*
3550                  * Fetch the next entry in the list before calling
3551                  * handle_futex_death:
3552                  */
3553                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3554                 /*
3555                  * A pending lock might already be on the list, so
3556                  * don't process it twice:
3557                  */
3558                 if (entry != pending) {
3559                         if (handle_futex_death((void __user *)entry + futex_offset,
3560                                                 curr, pi, HANDLE_DEATH_LIST))
3561                                 return;
3562                 }
3563                 if (rc)
3564                         return;
3565                 entry = next_entry;
3566                 pi = next_pi;
3567                 /*
3568                  * Avoid excessively long or circular lists:
3569                  */
3570                 if (!--limit)
3571                         break;
3572
3573                 cond_resched();
3574         }
3575
3576         if (pending) {
3577                 handle_futex_death((void __user *)pending + futex_offset,
3578                                    curr, pip, HANDLE_DEATH_PENDING);
3579         }
3580 }
3581
3582 static void futex_cleanup(struct task_struct *tsk)
3583 {
3584         if (unlikely(tsk->robust_list)) {
3585                 exit_robust_list(tsk);
3586                 tsk->robust_list = NULL;
3587         }
3588
3589 #ifdef CONFIG_COMPAT
3590         if (unlikely(tsk->compat_robust_list)) {
3591                 compat_exit_robust_list(tsk);
3592                 tsk->compat_robust_list = NULL;
3593         }
3594 #endif
3595
3596         if (unlikely(!list_empty(&tsk->pi_state_list)))
3597                 exit_pi_state_list(tsk);
3598 }
3599
3600 /**
3601  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3602  * @tsk:        task to set the state on
3603  *
3604  * Set the futex exit state of the task lockless. The futex waiter code
3605  * observes that state when a task is exiting and loops until the task has
3606  * actually finished the futex cleanup. The worst case for this is that the
3607  * waiter runs through the wait loop until the state becomes visible.
3608  *
3609  * This is called from the recursive fault handling path in do_exit().
3610  *
3611  * This is best effort. Either the futex exit code has run already or
3612  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3613  * take it over. If not, the problem is pushed back to user space. If the
3614  * futex exit code did not run yet, then an already queued waiter might
3615  * block forever, but there is nothing which can be done about that.
3616  */
3617 void futex_exit_recursive(struct task_struct *tsk)
3618 {
3619         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3620         if (tsk->futex_state == FUTEX_STATE_EXITING)
3621                 mutex_unlock(&tsk->futex_exit_mutex);
3622         tsk->futex_state = FUTEX_STATE_DEAD;
3623 }
3624
3625 static void futex_cleanup_begin(struct task_struct *tsk)
3626 {
3627         /*
3628          * Prevent various race issues against a concurrent incoming waiter
3629          * including live locks by forcing the waiter to block on
3630          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3631          * attach_to_pi_owner().
3632          */
3633         mutex_lock(&tsk->futex_exit_mutex);
3634
3635         /*
3636          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3637          *
3638          * This ensures that all subsequent checks of tsk->futex_state in
3639          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3640          * tsk->pi_lock held.
3641          *
3642          * It guarantees also that a pi_state which was queued right before
3643          * the state change under tsk->pi_lock by a concurrent waiter must
3644          * be observed in exit_pi_state_list().
3645          */
3646         raw_spin_lock_irq(&tsk->pi_lock);
3647         tsk->futex_state = FUTEX_STATE_EXITING;
3648         raw_spin_unlock_irq(&tsk->pi_lock);
3649 }
3650
3651 static void futex_cleanup_end(struct task_struct *tsk, int state)
3652 {
3653         /*
3654          * Lockless store. The only side effect is that an observer might
3655          * take another loop until it becomes visible.
3656          */
3657         tsk->futex_state = state;
3658         /*
3659          * Drop the exit protection. This unblocks waiters which observed
3660          * FUTEX_STATE_EXITING to reevaluate the state.
3661          */
3662         mutex_unlock(&tsk->futex_exit_mutex);
3663 }
3664
3665 void futex_exec_release(struct task_struct *tsk)
3666 {
3667         /*
3668          * The state handling is done for consistency, but in the case of
3669          * exec() there is no way to prevent further damage as the PID stays
3670          * the same. But for the unlikely and arguably buggy case that a
3671          * futex is held on exec(), this provides at least as much state
3672          * consistency protection which is possible.
3673          */
3674         futex_cleanup_begin(tsk);
3675         futex_cleanup(tsk);
3676         /*
3677          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3678          * exec a new binary.
3679          */
3680         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3681 }
3682
3683 void futex_exit_release(struct task_struct *tsk)
3684 {
3685         futex_cleanup_begin(tsk);
3686         futex_cleanup(tsk);
3687         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3688 }
3689
3690 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3691                 u32 __user *uaddr2, u32 val2, u32 val3)
3692 {
3693         int cmd = op & FUTEX_CMD_MASK;
3694         unsigned int flags = 0;
3695
3696         if (!(op & FUTEX_PRIVATE_FLAG))
3697                 flags |= FLAGS_SHARED;
3698
3699         if (op & FUTEX_CLOCK_REALTIME) {
3700                 flags |= FLAGS_CLOCKRT;
3701                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI &&
3702                     cmd != FUTEX_LOCK_PI2)
3703                         return -ENOSYS;
3704         }
3705
3706         switch (cmd) {
3707         case FUTEX_LOCK_PI:
3708         case FUTEX_LOCK_PI2:
3709         case FUTEX_UNLOCK_PI:
3710         case FUTEX_TRYLOCK_PI:
3711         case FUTEX_WAIT_REQUEUE_PI:
3712         case FUTEX_CMP_REQUEUE_PI:
3713                 if (!futex_cmpxchg_enabled)
3714                         return -ENOSYS;
3715         }
3716
3717         switch (cmd) {
3718         case FUTEX_WAIT:
3719                 val3 = FUTEX_BITSET_MATCH_ANY;
3720                 fallthrough;
3721         case FUTEX_WAIT_BITSET:
3722                 return futex_wait(uaddr, flags, val, timeout, val3);
3723         case FUTEX_WAKE:
3724                 val3 = FUTEX_BITSET_MATCH_ANY;
3725                 fallthrough;
3726         case FUTEX_WAKE_BITSET:
3727                 return futex_wake(uaddr, flags, val, val3);
3728         case FUTEX_REQUEUE:
3729                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3730         case FUTEX_CMP_REQUEUE:
3731                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3732         case FUTEX_WAKE_OP:
3733                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3734         case FUTEX_LOCK_PI:
3735                 flags |= FLAGS_CLOCKRT;
3736                 fallthrough;
3737         case FUTEX_LOCK_PI2:
3738                 return futex_lock_pi(uaddr, flags, timeout, 0);
3739         case FUTEX_UNLOCK_PI:
3740                 return futex_unlock_pi(uaddr, flags);
3741         case FUTEX_TRYLOCK_PI:
3742                 return futex_lock_pi(uaddr, flags, NULL, 1);
3743         case FUTEX_WAIT_REQUEUE_PI:
3744                 val3 = FUTEX_BITSET_MATCH_ANY;
3745                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3746                                              uaddr2);
3747         case FUTEX_CMP_REQUEUE_PI:
3748                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3749         }
3750         return -ENOSYS;
3751 }
3752
3753 static __always_inline bool futex_cmd_has_timeout(u32 cmd)
3754 {
3755         switch (cmd) {
3756         case FUTEX_WAIT:
3757         case FUTEX_LOCK_PI:
3758         case FUTEX_LOCK_PI2:
3759         case FUTEX_WAIT_BITSET:
3760         case FUTEX_WAIT_REQUEUE_PI:
3761                 return true;
3762         }
3763         return false;
3764 }
3765
3766 static __always_inline int
3767 futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
3768 {
3769         if (!timespec64_valid(ts))
3770                 return -EINVAL;
3771
3772         *t = timespec64_to_ktime(*ts);
3773         if (cmd == FUTEX_WAIT)
3774                 *t = ktime_add_safe(ktime_get(), *t);
3775         else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3776                 *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
3777         return 0;
3778 }
3779
3780 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3781                 const struct __kernel_timespec __user *, utime,
3782                 u32 __user *, uaddr2, u32, val3)
3783 {
3784         int ret, cmd = op & FUTEX_CMD_MASK;
3785         ktime_t t, *tp = NULL;
3786         struct timespec64 ts;
3787
3788         if (utime && futex_cmd_has_timeout(cmd)) {
3789                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3790                         return -EFAULT;
3791                 if (get_timespec64(&ts, utime))
3792                         return -EFAULT;
3793                 ret = futex_init_timeout(cmd, op, &ts, &t);
3794                 if (ret)
3795                         return ret;
3796                 tp = &t;
3797         }
3798
3799         return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
3800 }
3801
3802 #ifdef CONFIG_COMPAT
3803 /*
3804  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3805  */
3806 static inline int
3807 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3808                    compat_uptr_t __user *head, unsigned int *pi)
3809 {
3810         if (get_user(*uentry, head))
3811                 return -EFAULT;
3812
3813         *entry = compat_ptr((*uentry) & ~1);
3814         *pi = (unsigned int)(*uentry) & 1;
3815
3816         return 0;
3817 }
3818
3819 static void __user *futex_uaddr(struct robust_list __user *entry,
3820                                 compat_long_t futex_offset)
3821 {
3822         compat_uptr_t base = ptr_to_compat(entry);
3823         void __user *uaddr = compat_ptr(base + futex_offset);
3824
3825         return uaddr;
3826 }
3827
3828 /*
3829  * Walk curr->robust_list (very carefully, it's a userspace list!)
3830  * and mark any locks found there dead, and notify any waiters.
3831  *
3832  * We silently return on any sign of list-walking problem.
3833  */
3834 static void compat_exit_robust_list(struct task_struct *curr)
3835 {
3836         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3837         struct robust_list __user *entry, *next_entry, *pending;
3838         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3839         unsigned int next_pi;
3840         compat_uptr_t uentry, next_uentry, upending;
3841         compat_long_t futex_offset;
3842         int rc;
3843
3844         if (!futex_cmpxchg_enabled)
3845                 return;
3846
3847         /*
3848          * Fetch the list head (which was registered earlier, via
3849          * sys_set_robust_list()):
3850          */
3851         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3852                 return;
3853         /*
3854          * Fetch the relative futex offset:
3855          */
3856         if (get_user(futex_offset, &head->futex_offset))
3857                 return;
3858         /*
3859          * Fetch any possibly pending lock-add first, and handle it
3860          * if it exists:
3861          */
3862         if (compat_fetch_robust_entry(&upending, &pending,
3863                                &head->list_op_pending, &pip))
3864                 return;
3865
3866         next_entry = NULL;      /* avoid warning with gcc */
3867         while (entry != (struct robust_list __user *) &head->list) {
3868                 /*
3869                  * Fetch the next entry in the list before calling
3870                  * handle_futex_death:
3871                  */
3872                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3873                         (compat_uptr_t __user *)&entry->next, &next_pi);
3874                 /*
3875                  * A pending lock might already be on the list, so
3876                  * dont process it twice:
3877                  */
3878                 if (entry != pending) {
3879                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3880
3881                         if (handle_futex_death(uaddr, curr, pi,
3882                                                HANDLE_DEATH_LIST))
3883                                 return;
3884                 }
3885                 if (rc)
3886                         return;
3887                 uentry = next_uentry;
3888                 entry = next_entry;
3889                 pi = next_pi;
3890                 /*
3891                  * Avoid excessively long or circular lists:
3892                  */
3893                 if (!--limit)
3894                         break;
3895
3896                 cond_resched();
3897         }
3898         if (pending) {
3899                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3900
3901                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3902         }
3903 }
3904
3905 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3906                 struct compat_robust_list_head __user *, head,
3907                 compat_size_t, len)
3908 {
3909         if (!futex_cmpxchg_enabled)
3910                 return -ENOSYS;
3911
3912         if (unlikely(len != sizeof(*head)))
3913                 return -EINVAL;
3914
3915         current->compat_robust_list = head;
3916
3917         return 0;
3918 }
3919
3920 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3921                         compat_uptr_t __user *, head_ptr,
3922                         compat_size_t __user *, len_ptr)
3923 {
3924         struct compat_robust_list_head __user *head;
3925         unsigned long ret;
3926         struct task_struct *p;
3927
3928         if (!futex_cmpxchg_enabled)
3929                 return -ENOSYS;
3930
3931         rcu_read_lock();
3932
3933         ret = -ESRCH;
3934         if (!pid)
3935                 p = current;
3936         else {
3937                 p = find_task_by_vpid(pid);
3938                 if (!p)
3939                         goto err_unlock;
3940         }
3941
3942         ret = -EPERM;
3943         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3944                 goto err_unlock;
3945
3946         head = p->compat_robust_list;
3947         rcu_read_unlock();
3948
3949         if (put_user(sizeof(*head), len_ptr))
3950                 return -EFAULT;
3951         return put_user(ptr_to_compat(head), head_ptr);
3952
3953 err_unlock:
3954         rcu_read_unlock();
3955
3956         return ret;
3957 }
3958 #endif /* CONFIG_COMPAT */
3959
3960 #ifdef CONFIG_COMPAT_32BIT_TIME
3961 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3962                 const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3963                 u32, val3)
3964 {
3965         int ret, cmd = op & FUTEX_CMD_MASK;
3966         ktime_t t, *tp = NULL;
3967         struct timespec64 ts;
3968
3969         if (utime && futex_cmd_has_timeout(cmd)) {
3970                 if (get_old_timespec32(&ts, utime))
3971                         return -EFAULT;
3972                 ret = futex_init_timeout(cmd, op, &ts, &t);
3973                 if (ret)
3974                         return ret;
3975                 tp = &t;
3976         }
3977
3978         return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
3979 }
3980 #endif /* CONFIG_COMPAT_32BIT_TIME */
3981
3982 static void __init futex_detect_cmpxchg(void)
3983 {
3984 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3985         u32 curval;
3986
3987         /*
3988          * This will fail and we want it. Some arch implementations do
3989          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3990          * functionality. We want to know that before we call in any
3991          * of the complex code paths. Also we want to prevent
3992          * registration of robust lists in that case. NULL is
3993          * guaranteed to fault and we get -EFAULT on functional
3994          * implementation, the non-functional ones will return
3995          * -ENOSYS.
3996          */
3997         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3998                 futex_cmpxchg_enabled = 1;
3999 #endif
4000 }
4001
4002 static int __init futex_init(void)
4003 {
4004         unsigned int futex_shift;
4005         unsigned long i;
4006
4007 #if CONFIG_BASE_SMALL
4008         futex_hashsize = 16;
4009 #else
4010         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4011 #endif
4012
4013         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4014                                                futex_hashsize, 0,
4015                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4016                                                &futex_shift, NULL,
4017                                                futex_hashsize, futex_hashsize);
4018         futex_hashsize = 1UL << futex_shift;
4019
4020         futex_detect_cmpxchg();
4021
4022         for (i = 0; i < futex_hashsize; i++) {
4023                 atomic_set(&futex_queues[i].waiters, 0);
4024                 plist_head_init(&futex_queues[i].chain);
4025                 spin_lock_init(&futex_queues[i].lock);
4026         }
4027
4028         return 0;
4029 }
4030 core_initcall(futex_init);