genirq: Respect IRQCHIP_SKIP_SET_WAKE in irq_chip_set_wake_parent()
[platform/kernel/linux-rpi.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76  * READ this before attempting to hack on futexes!
77  *
78  * Basic futex operation and ordering guarantees
79  * =============================================
80  *
81  * The waiter reads the futex value in user space and calls
82  * futex_wait(). This function computes the hash bucket and acquires
83  * the hash bucket lock. After that it reads the futex user space value
84  * again and verifies that the data has not changed. If it has not changed
85  * it enqueues itself into the hash bucket, releases the hash bucket lock
86  * and schedules.
87  *
88  * The waker side modifies the user space value of the futex and calls
89  * futex_wake(). This function computes the hash bucket and acquires the
90  * hash bucket lock. Then it looks for waiters on that futex in the hash
91  * bucket and wakes them.
92  *
93  * In futex wake up scenarios where no tasks are blocked on a futex, taking
94  * the hb spinlock can be avoided and simply return. In order for this
95  * optimization to work, ordering guarantees must exist so that the waiter
96  * being added to the list is acknowledged when the list is concurrently being
97  * checked by the waker, avoiding scenarios like the following:
98  *
99  * CPU 0                               CPU 1
100  * val = *futex;
101  * sys_futex(WAIT, futex, val);
102  *   futex_wait(futex, val);
103  *   uval = *futex;
104  *                                     *futex = newval;
105  *                                     sys_futex(WAKE, futex);
106  *                                       futex_wake(futex);
107  *                                       if (queue_empty())
108  *                                         return;
109  *   if (uval == val)
110  *      lock(hash_bucket(futex));
111  *      queue();
112  *     unlock(hash_bucket(futex));
113  *     schedule();
114  *
115  * This would cause the waiter on CPU 0 to wait forever because it
116  * missed the transition of the user space value from val to newval
117  * and the waker did not find the waiter in the hash bucket queue.
118  *
119  * The correct serialization ensures that a waiter either observes
120  * the changed user space value before blocking or is woken by a
121  * concurrent waker:
122  *
123  * CPU 0                                 CPU 1
124  * val = *futex;
125  * sys_futex(WAIT, futex, val);
126  *   futex_wait(futex, val);
127  *
128  *   waiters++; (a)
129  *   smp_mb(); (A) <-- paired with -.
130  *                                  |
131  *   lock(hash_bucket(futex));      |
132  *                                  |
133  *   uval = *futex;                 |
134  *                                  |        *futex = newval;
135  *                                  |        sys_futex(WAKE, futex);
136  *                                  |          futex_wake(futex);
137  *                                  |
138  *                                  `--------> smp_mb(); (B)
139  *   if (uval == val)
140  *     queue();
141  *     unlock(hash_bucket(futex));
142  *     schedule();                         if (waiters)
143  *                                           lock(hash_bucket(futex));
144  *   else                                    wake_waiters(futex);
145  *     waiters--; (b)                        unlock(hash_bucket(futex));
146  *
147  * Where (A) orders the waiters increment and the futex value read through
148  * atomic operations (see hb_waiters_inc) and where (B) orders the write
149  * to futex and the waiters read -- this is done by the barriers for both
150  * shared and private futexes in get_futex_key_refs().
151  *
152  * This yields the following case (where X:=waiters, Y:=futex):
153  *
154  *      X = Y = 0
155  *
156  *      w[X]=1          w[Y]=1
157  *      MB              MB
158  *      r[Y]=y          r[X]=x
159  *
160  * Which guarantees that x==0 && y==0 is impossible; which translates back into
161  * the guarantee that we cannot both miss the futex variable change and the
162  * enqueue.
163  *
164  * Note that a new waiter is accounted for in (a) even when it is possible that
165  * the wait call can return error, in which case we backtrack from it in (b).
166  * Refer to the comment in queue_lock().
167  *
168  * Similarly, in order to account for waiters being requeued on another
169  * address we always increment the waiters for the destination bucket before
170  * acquiring the lock. It then decrements them again  after releasing it -
171  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172  * will do the additional required waiter count housekeeping. This is done for
173  * double_lock_hb() and double_unlock_hb(), respectively.
174  */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181  * Futex flags used to encode options to functions and preserve them across
182  * restarts.
183  */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED           0x01
186 #else
187 /*
188  * NOMMU does not have per process address space. Let the compiler optimize
189  * code away.
190  */
191 # define FLAGS_SHARED           0x00
192 #endif
193 #define FLAGS_CLOCKRT           0x02
194 #define FLAGS_HAS_TIMEOUT       0x04
195
196 /*
197  * Priority Inheritance state:
198  */
199 struct futex_pi_state {
200         /*
201          * list of 'owned' pi_state instances - these have to be
202          * cleaned up in do_exit() if the task exits prematurely:
203          */
204         struct list_head list;
205
206         /*
207          * The PI object:
208          */
209         struct rt_mutex pi_mutex;
210
211         struct task_struct *owner;
212         atomic_t refcount;
213
214         union futex_key key;
215 } __randomize_layout;
216
217 /**
218  * struct futex_q - The hashed futex queue entry, one per waiting task
219  * @list:               priority-sorted list of tasks waiting on this futex
220  * @task:               the task waiting on the futex
221  * @lock_ptr:           the hash bucket lock
222  * @key:                the key the futex is hashed on
223  * @pi_state:           optional priority inheritance state
224  * @rt_waiter:          rt_waiter storage for use with requeue_pi
225  * @requeue_pi_key:     the requeue_pi target futex key
226  * @bitset:             bitset for the optional bitmasked wakeup
227  *
228  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229  * we can wake only the relevant ones (hashed queues may be shared).
230  *
231  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233  * The order of wakeup is always to make the first condition true, then
234  * the second.
235  *
236  * PI futexes are typically woken before they are removed from the hash list via
237  * the rt_mutex code. See unqueue_me_pi().
238  */
239 struct futex_q {
240         struct plist_node list;
241
242         struct task_struct *task;
243         spinlock_t *lock_ptr;
244         union futex_key key;
245         struct futex_pi_state *pi_state;
246         struct rt_mutex_waiter *rt_waiter;
247         union futex_key *requeue_pi_key;
248         u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252         /* list gets initialized in queue_me()*/
253         .key = FUTEX_KEY_INIT,
254         .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258  * Hash buckets are shared by all the futex_keys that hash to the same
259  * location.  Each key may have multiple futex_q structures, one for each task
260  * waiting on a futex.
261  */
262 struct futex_hash_bucket {
263         atomic_t waiters;
264         spinlock_t lock;
265         struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269  * The base of the bucket array and its size are always used together
270  * (after initialization only in hash_futex()), so ensure that they
271  * reside in the same cacheline.
272  */
273 static struct {
274         struct futex_hash_bucket *queues;
275         unsigned long            hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues   (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282  * Fault injections for futexes.
283  */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287         struct fault_attr attr;
288
289         bool ignore_private;
290 } fail_futex = {
291         .attr = FAULT_ATTR_INITIALIZER,
292         .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297         return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303         if (fail_futex.ignore_private && !fshared)
304                 return false;
305
306         return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314         struct dentry *dir;
315
316         dir = fault_create_debugfs_attr("fail_futex", NULL,
317                                         &fail_futex.attr);
318         if (IS_ERR(dir))
319                 return PTR_ERR(dir);
320
321         if (!debugfs_create_bool("ignore-private", mode, dir,
322                                  &fail_futex.ignore_private)) {
323                 debugfs_remove_recursive(dir);
324                 return -ENOMEM;
325         }
326
327         return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337         return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343         mmgrab(key->private.mm);
344         /*
345          * Ensure futex_get_mm() implies a full barrier such that
346          * get_futex_key() implies a full barrier. This is relied upon
347          * as smp_mb(); (B), see the ordering comment above.
348          */
349         smp_mb__after_atomic();
350 }
351
352 /*
353  * Reflects a new waiter being added to the waitqueue.
354  */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358         atomic_inc(&hb->waiters);
359         /*
360          * Full barrier (A), see the ordering comment above.
361          */
362         smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367  * Reflects a waiter being removed from the waitqueue by wakeup
368  * paths.
369  */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380         return atomic_read(&hb->waiters);
381 #else
382         return 1;
383 #endif
384 }
385
386 /**
387  * hash_futex - Return the hash bucket in the global hash
388  * @key:        Pointer to the futex key for which the hash is calculated
389  *
390  * We hash on the keys returned from get_futex_key (see below) and return the
391  * corresponding hash bucket in the global hash.
392  */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395         u32 hash = jhash2((u32*)&key->both.word,
396                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397                           key->both.offset);
398         return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403  * match_futex - Check whether two futex keys are equal
404  * @key1:       Pointer to key1
405  * @key2:       Pointer to key2
406  *
407  * Return 1 if two futex_keys are equal, 0 otherwise.
408  */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411         return (key1 && key2
412                 && key1->both.word == key2->both.word
413                 && key1->both.ptr == key2->both.ptr
414                 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418  * Take a reference to the resource addressed by a key.
419  * Can be called while holding spinlocks.
420  *
421  */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424         if (!key->both.ptr)
425                 return;
426
427         /*
428          * On MMU less systems futexes are always "private" as there is no per
429          * process address space. We need the smp wmb nevertheless - yes,
430          * arch/blackfin has MMU less SMP ...
431          */
432         if (!IS_ENABLED(CONFIG_MMU)) {
433                 smp_mb(); /* explicit smp_mb(); (B) */
434                 return;
435         }
436
437         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438         case FUT_OFF_INODE:
439                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440                 break;
441         case FUT_OFF_MMSHARED:
442                 futex_get_mm(key); /* implies smp_mb(); (B) */
443                 break;
444         default:
445                 /*
446                  * Private futexes do not hold reference on an inode or
447                  * mm, therefore the only purpose of calling get_futex_key_refs
448                  * is because we need the barrier for the lockless waiter check.
449                  */
450                 smp_mb(); /* explicit smp_mb(); (B) */
451         }
452 }
453
454 /*
455  * Drop a reference to the resource addressed by a key.
456  * The hash bucket spinlock must not be held. This is
457  * a no-op for private futexes, see comment in the get
458  * counterpart.
459  */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462         if (!key->both.ptr) {
463                 /* If we're here then we tried to put a key we failed to get */
464                 WARN_ON_ONCE(1);
465                 return;
466         }
467
468         if (!IS_ENABLED(CONFIG_MMU))
469                 return;
470
471         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472         case FUT_OFF_INODE:
473                 iput(key->shared.inode);
474                 break;
475         case FUT_OFF_MMSHARED:
476                 mmdrop(key->private.mm);
477                 break;
478         }
479 }
480
481 /**
482  * get_futex_key() - Get parameters which are the keys for a futex
483  * @uaddr:      virtual address of the futex
484  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485  * @key:        address where result is stored.
486  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
487  *              VERIFY_WRITE)
488  *
489  * Return: a negative error code or 0
490  *
491  * The key words are stored in @key on success.
492  *
493  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
495  * We can usually work out the index without swapping in the page.
496  *
497  * lock_page() might sleep, the caller should not hold a spinlock.
498  */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502         unsigned long address = (unsigned long)uaddr;
503         struct mm_struct *mm = current->mm;
504         struct page *page, *tail;
505         struct address_space *mapping;
506         int err, ro = 0;
507
508         /*
509          * The futex address must be "naturally" aligned.
510          */
511         key->both.offset = address % PAGE_SIZE;
512         if (unlikely((address % sizeof(u32)) != 0))
513                 return -EINVAL;
514         address -= key->both.offset;
515
516         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517                 return -EFAULT;
518
519         if (unlikely(should_fail_futex(fshared)))
520                 return -EFAULT;
521
522         /*
523          * PROCESS_PRIVATE futexes are fast.
524          * As the mm cannot disappear under us and the 'key' only needs
525          * virtual address, we dont even have to find the underlying vma.
526          * Note : We do have to check 'uaddr' is a valid user address,
527          *        but access_ok() should be faster than find_vma()
528          */
529         if (!fshared) {
530                 key->private.mm = mm;
531                 key->private.address = address;
532                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
533                 return 0;
534         }
535
536 again:
537         /* Ignore any VERIFY_READ mapping (futex common case) */
538         if (unlikely(should_fail_futex(fshared)))
539                 return -EFAULT;
540
541         err = get_user_pages_fast(address, 1, 1, &page);
542         /*
543          * If write access is not required (eg. FUTEX_WAIT), try
544          * and get read-only access.
545          */
546         if (err == -EFAULT && rw == VERIFY_READ) {
547                 err = get_user_pages_fast(address, 1, 0, &page);
548                 ro = 1;
549         }
550         if (err < 0)
551                 return err;
552         else
553                 err = 0;
554
555         /*
556          * The treatment of mapping from this point on is critical. The page
557          * lock protects many things but in this context the page lock
558          * stabilizes mapping, prevents inode freeing in the shared
559          * file-backed region case and guards against movement to swap cache.
560          *
561          * Strictly speaking the page lock is not needed in all cases being
562          * considered here and page lock forces unnecessarily serialization
563          * From this point on, mapping will be re-verified if necessary and
564          * page lock will be acquired only if it is unavoidable
565          *
566          * Mapping checks require the head page for any compound page so the
567          * head page and mapping is looked up now. For anonymous pages, it
568          * does not matter if the page splits in the future as the key is
569          * based on the address. For filesystem-backed pages, the tail is
570          * required as the index of the page determines the key. For
571          * base pages, there is no tail page and tail == page.
572          */
573         tail = page;
574         page = compound_head(page);
575         mapping = READ_ONCE(page->mapping);
576
577         /*
578          * If page->mapping is NULL, then it cannot be a PageAnon
579          * page; but it might be the ZERO_PAGE or in the gate area or
580          * in a special mapping (all cases which we are happy to fail);
581          * or it may have been a good file page when get_user_pages_fast
582          * found it, but truncated or holepunched or subjected to
583          * invalidate_complete_page2 before we got the page lock (also
584          * cases which we are happy to fail).  And we hold a reference,
585          * so refcount care in invalidate_complete_page's remove_mapping
586          * prevents drop_caches from setting mapping to NULL beneath us.
587          *
588          * The case we do have to guard against is when memory pressure made
589          * shmem_writepage move it from filecache to swapcache beneath us:
590          * an unlikely race, but we do need to retry for page->mapping.
591          */
592         if (unlikely(!mapping)) {
593                 int shmem_swizzled;
594
595                 /*
596                  * Page lock is required to identify which special case above
597                  * applies. If this is really a shmem page then the page lock
598                  * will prevent unexpected transitions.
599                  */
600                 lock_page(page);
601                 shmem_swizzled = PageSwapCache(page) || page->mapping;
602                 unlock_page(page);
603                 put_page(page);
604
605                 if (shmem_swizzled)
606                         goto again;
607
608                 return -EFAULT;
609         }
610
611         /*
612          * Private mappings are handled in a simple way.
613          *
614          * If the futex key is stored on an anonymous page, then the associated
615          * object is the mm which is implicitly pinned by the calling process.
616          *
617          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618          * it's a read-only handle, it's expected that futexes attach to
619          * the object not the particular process.
620          */
621         if (PageAnon(page)) {
622                 /*
623                  * A RO anonymous page will never change and thus doesn't make
624                  * sense for futex operations.
625                  */
626                 if (unlikely(should_fail_futex(fshared)) || ro) {
627                         err = -EFAULT;
628                         goto out;
629                 }
630
631                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632                 key->private.mm = mm;
633                 key->private.address = address;
634
635                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637         } else {
638                 struct inode *inode;
639
640                 /*
641                  * The associated futex object in this case is the inode and
642                  * the page->mapping must be traversed. Ordinarily this should
643                  * be stabilised under page lock but it's not strictly
644                  * necessary in this case as we just want to pin the inode, not
645                  * update the radix tree or anything like that.
646                  *
647                  * The RCU read lock is taken as the inode is finally freed
648                  * under RCU. If the mapping still matches expectations then the
649                  * mapping->host can be safely accessed as being a valid inode.
650                  */
651                 rcu_read_lock();
652
653                 if (READ_ONCE(page->mapping) != mapping) {
654                         rcu_read_unlock();
655                         put_page(page);
656
657                         goto again;
658                 }
659
660                 inode = READ_ONCE(mapping->host);
661                 if (!inode) {
662                         rcu_read_unlock();
663                         put_page(page);
664
665                         goto again;
666                 }
667
668                 /*
669                  * Take a reference unless it is about to be freed. Previously
670                  * this reference was taken by ihold under the page lock
671                  * pinning the inode in place so i_lock was unnecessary. The
672                  * only way for this check to fail is if the inode was
673                  * truncated in parallel which is almost certainly an
674                  * application bug. In such a case, just retry.
675                  *
676                  * We are not calling into get_futex_key_refs() in file-backed
677                  * cases, therefore a successful atomic_inc return below will
678                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
679                  */
680                 if (!atomic_inc_not_zero(&inode->i_count)) {
681                         rcu_read_unlock();
682                         put_page(page);
683
684                         goto again;
685                 }
686
687                 /* Should be impossible but lets be paranoid for now */
688                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689                         err = -EFAULT;
690                         rcu_read_unlock();
691                         iput(inode);
692
693                         goto out;
694                 }
695
696                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697                 key->shared.inode = inode;
698                 key->shared.pgoff = basepage_index(tail);
699                 rcu_read_unlock();
700         }
701
702 out:
703         put_page(page);
704         return err;
705 }
706
707 static inline void put_futex_key(union futex_key *key)
708 {
709         drop_futex_key_refs(key);
710 }
711
712 /**
713  * fault_in_user_writeable() - Fault in user address and verify RW access
714  * @uaddr:      pointer to faulting user space address
715  *
716  * Slow path to fixup the fault we just took in the atomic write
717  * access to @uaddr.
718  *
719  * We have no generic implementation of a non-destructive write to the
720  * user address. We know that we faulted in the atomic pagefault
721  * disabled section so we can as well avoid the #PF overhead by
722  * calling get_user_pages() right away.
723  */
724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726         struct mm_struct *mm = current->mm;
727         int ret;
728
729         down_read(&mm->mmap_sem);
730         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731                                FAULT_FLAG_WRITE, NULL);
732         up_read(&mm->mmap_sem);
733
734         return ret < 0 ? ret : 0;
735 }
736
737 /**
738  * futex_top_waiter() - Return the highest priority waiter on a futex
739  * @hb:         the hash bucket the futex_q's reside in
740  * @key:        the futex key (to distinguish it from other futex futex_q's)
741  *
742  * Must be called with the hb lock held.
743  */
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745                                         union futex_key *key)
746 {
747         struct futex_q *this;
748
749         plist_for_each_entry(this, &hb->chain, list) {
750                 if (match_futex(&this->key, key))
751                         return this;
752         }
753         return NULL;
754 }
755
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757                                       u32 uval, u32 newval)
758 {
759         int ret;
760
761         pagefault_disable();
762         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763         pagefault_enable();
764
765         return ret;
766 }
767
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770         int ret;
771
772         pagefault_disable();
773         ret = __get_user(*dest, from);
774         pagefault_enable();
775
776         return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781  * PI code:
782  */
783 static int refill_pi_state_cache(void)
784 {
785         struct futex_pi_state *pi_state;
786
787         if (likely(current->pi_state_cache))
788                 return 0;
789
790         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792         if (!pi_state)
793                 return -ENOMEM;
794
795         INIT_LIST_HEAD(&pi_state->list);
796         /* pi_mutex gets initialized later */
797         pi_state->owner = NULL;
798         atomic_set(&pi_state->refcount, 1);
799         pi_state->key = FUTEX_KEY_INIT;
800
801         current->pi_state_cache = pi_state;
802
803         return 0;
804 }
805
806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808         struct futex_pi_state *pi_state = current->pi_state_cache;
809
810         WARN_ON(!pi_state);
811         current->pi_state_cache = NULL;
812
813         return pi_state;
814 }
815
816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818         WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822  * Drops a reference to the pi_state object and frees or caches it
823  * when the last reference is gone.
824  */
825 static void put_pi_state(struct futex_pi_state *pi_state)
826 {
827         if (!pi_state)
828                 return;
829
830         if (!atomic_dec_and_test(&pi_state->refcount))
831                 return;
832
833         /*
834          * If pi_state->owner is NULL, the owner is most probably dying
835          * and has cleaned up the pi_state already
836          */
837         if (pi_state->owner) {
838                 struct task_struct *owner;
839
840                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841                 owner = pi_state->owner;
842                 if (owner) {
843                         raw_spin_lock(&owner->pi_lock);
844                         list_del_init(&pi_state->list);
845                         raw_spin_unlock(&owner->pi_lock);
846                 }
847                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
849         }
850
851         if (current->pi_state_cache) {
852                 kfree(pi_state);
853         } else {
854                 /*
855                  * pi_state->list is already empty.
856                  * clear pi_state->owner.
857                  * refcount is at 0 - put it back to 1.
858                  */
859                 pi_state->owner = NULL;
860                 atomic_set(&pi_state->refcount, 1);
861                 current->pi_state_cache = pi_state;
862         }
863 }
864
865 #ifdef CONFIG_FUTEX_PI
866
867 /*
868  * This task is holding PI mutexes at exit time => bad.
869  * Kernel cleans up PI-state, but userspace is likely hosed.
870  * (Robust-futex cleanup is separate and might save the day for userspace.)
871  */
872 void exit_pi_state_list(struct task_struct *curr)
873 {
874         struct list_head *next, *head = &curr->pi_state_list;
875         struct futex_pi_state *pi_state;
876         struct futex_hash_bucket *hb;
877         union futex_key key = FUTEX_KEY_INIT;
878
879         if (!futex_cmpxchg_enabled)
880                 return;
881         /*
882          * We are a ZOMBIE and nobody can enqueue itself on
883          * pi_state_list anymore, but we have to be careful
884          * versus waiters unqueueing themselves:
885          */
886         raw_spin_lock_irq(&curr->pi_lock);
887         while (!list_empty(head)) {
888                 next = head->next;
889                 pi_state = list_entry(next, struct futex_pi_state, list);
890                 key = pi_state->key;
891                 hb = hash_futex(&key);
892
893                 /*
894                  * We can race against put_pi_state() removing itself from the
895                  * list (a waiter going away). put_pi_state() will first
896                  * decrement the reference count and then modify the list, so
897                  * its possible to see the list entry but fail this reference
898                  * acquire.
899                  *
900                  * In that case; drop the locks to let put_pi_state() make
901                  * progress and retry the loop.
902                  */
903                 if (!atomic_inc_not_zero(&pi_state->refcount)) {
904                         raw_spin_unlock_irq(&curr->pi_lock);
905                         cpu_relax();
906                         raw_spin_lock_irq(&curr->pi_lock);
907                         continue;
908                 }
909                 raw_spin_unlock_irq(&curr->pi_lock);
910
911                 spin_lock(&hb->lock);
912                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
913                 raw_spin_lock(&curr->pi_lock);
914                 /*
915                  * We dropped the pi-lock, so re-check whether this
916                  * task still owns the PI-state:
917                  */
918                 if (head->next != next) {
919                         /* retain curr->pi_lock for the loop invariant */
920                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
921                         spin_unlock(&hb->lock);
922                         put_pi_state(pi_state);
923                         continue;
924                 }
925
926                 WARN_ON(pi_state->owner != curr);
927                 WARN_ON(list_empty(&pi_state->list));
928                 list_del_init(&pi_state->list);
929                 pi_state->owner = NULL;
930
931                 raw_spin_unlock(&curr->pi_lock);
932                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
933                 spin_unlock(&hb->lock);
934
935                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
936                 put_pi_state(pi_state);
937
938                 raw_spin_lock_irq(&curr->pi_lock);
939         }
940         raw_spin_unlock_irq(&curr->pi_lock);
941 }
942
943 #endif
944
945 /*
946  * We need to check the following states:
947  *
948  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
949  *
950  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
951  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
952  *
953  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
954  *
955  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
956  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
957  *
958  * [6]  Found  | Found    | task      | 0         | 1      | Valid
959  *
960  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
961  *
962  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
963  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
964  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
965  *
966  * [1]  Indicates that the kernel can acquire the futex atomically. We
967  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
968  *
969  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
970  *      thread is found then it indicates that the owner TID has died.
971  *
972  * [3]  Invalid. The waiter is queued on a non PI futex
973  *
974  * [4]  Valid state after exit_robust_list(), which sets the user space
975  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
976  *
977  * [5]  The user space value got manipulated between exit_robust_list()
978  *      and exit_pi_state_list()
979  *
980  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
981  *      the pi_state but cannot access the user space value.
982  *
983  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
984  *
985  * [8]  Owner and user space value match
986  *
987  * [9]  There is no transient state which sets the user space TID to 0
988  *      except exit_robust_list(), but this is indicated by the
989  *      FUTEX_OWNER_DIED bit. See [4]
990  *
991  * [10] There is no transient state which leaves owner and user space
992  *      TID out of sync.
993  *
994  *
995  * Serialization and lifetime rules:
996  *
997  * hb->lock:
998  *
999  *      hb -> futex_q, relation
1000  *      futex_q -> pi_state, relation
1001  *
1002  *      (cannot be raw because hb can contain arbitrary amount
1003  *       of futex_q's)
1004  *
1005  * pi_mutex->wait_lock:
1006  *
1007  *      {uval, pi_state}
1008  *
1009  *      (and pi_mutex 'obviously')
1010  *
1011  * p->pi_lock:
1012  *
1013  *      p->pi_state_list -> pi_state->list, relation
1014  *
1015  * pi_state->refcount:
1016  *
1017  *      pi_state lifetime
1018  *
1019  *
1020  * Lock order:
1021  *
1022  *   hb->lock
1023  *     pi_mutex->wait_lock
1024  *       p->pi_lock
1025  *
1026  */
1027
1028 /*
1029  * Validate that the existing waiter has a pi_state and sanity check
1030  * the pi_state against the user space value. If correct, attach to
1031  * it.
1032  */
1033 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1034                               struct futex_pi_state *pi_state,
1035                               struct futex_pi_state **ps)
1036 {
1037         pid_t pid = uval & FUTEX_TID_MASK;
1038         u32 uval2;
1039         int ret;
1040
1041         /*
1042          * Userspace might have messed up non-PI and PI futexes [3]
1043          */
1044         if (unlikely(!pi_state))
1045                 return -EINVAL;
1046
1047         /*
1048          * We get here with hb->lock held, and having found a
1049          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1050          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1051          * which in turn means that futex_lock_pi() still has a reference on
1052          * our pi_state.
1053          *
1054          * The waiter holding a reference on @pi_state also protects against
1055          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1056          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1057          * free pi_state before we can take a reference ourselves.
1058          */
1059         WARN_ON(!atomic_read(&pi_state->refcount));
1060
1061         /*
1062          * Now that we have a pi_state, we can acquire wait_lock
1063          * and do the state validation.
1064          */
1065         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1066
1067         /*
1068          * Since {uval, pi_state} is serialized by wait_lock, and our current
1069          * uval was read without holding it, it can have changed. Verify it
1070          * still is what we expect it to be, otherwise retry the entire
1071          * operation.
1072          */
1073         if (get_futex_value_locked(&uval2, uaddr))
1074                 goto out_efault;
1075
1076         if (uval != uval2)
1077                 goto out_eagain;
1078
1079         /*
1080          * Handle the owner died case:
1081          */
1082         if (uval & FUTEX_OWNER_DIED) {
1083                 /*
1084                  * exit_pi_state_list sets owner to NULL and wakes the
1085                  * topmost waiter. The task which acquires the
1086                  * pi_state->rt_mutex will fixup owner.
1087                  */
1088                 if (!pi_state->owner) {
1089                         /*
1090                          * No pi state owner, but the user space TID
1091                          * is not 0. Inconsistent state. [5]
1092                          */
1093                         if (pid)
1094                                 goto out_einval;
1095                         /*
1096                          * Take a ref on the state and return success. [4]
1097                          */
1098                         goto out_attach;
1099                 }
1100
1101                 /*
1102                  * If TID is 0, then either the dying owner has not
1103                  * yet executed exit_pi_state_list() or some waiter
1104                  * acquired the rtmutex in the pi state, but did not
1105                  * yet fixup the TID in user space.
1106                  *
1107                  * Take a ref on the state and return success. [6]
1108                  */
1109                 if (!pid)
1110                         goto out_attach;
1111         } else {
1112                 /*
1113                  * If the owner died bit is not set, then the pi_state
1114                  * must have an owner. [7]
1115                  */
1116                 if (!pi_state->owner)
1117                         goto out_einval;
1118         }
1119
1120         /*
1121          * Bail out if user space manipulated the futex value. If pi
1122          * state exists then the owner TID must be the same as the
1123          * user space TID. [9/10]
1124          */
1125         if (pid != task_pid_vnr(pi_state->owner))
1126                 goto out_einval;
1127
1128 out_attach:
1129         get_pi_state(pi_state);
1130         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1131         *ps = pi_state;
1132         return 0;
1133
1134 out_einval:
1135         ret = -EINVAL;
1136         goto out_error;
1137
1138 out_eagain:
1139         ret = -EAGAIN;
1140         goto out_error;
1141
1142 out_efault:
1143         ret = -EFAULT;
1144         goto out_error;
1145
1146 out_error:
1147         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1148         return ret;
1149 }
1150
1151 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1152                             struct task_struct *tsk)
1153 {
1154         u32 uval2;
1155
1156         /*
1157          * If PF_EXITPIDONE is not yet set, then try again.
1158          */
1159         if (tsk && !(tsk->flags & PF_EXITPIDONE))
1160                 return -EAGAIN;
1161
1162         /*
1163          * Reread the user space value to handle the following situation:
1164          *
1165          * CPU0                         CPU1
1166          *
1167          * sys_exit()                   sys_futex()
1168          *  do_exit()                    futex_lock_pi()
1169          *                                futex_lock_pi_atomic()
1170          *   exit_signals(tsk)              No waiters:
1171          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1172          *  mm_release(tsk)                 Set waiter bit
1173          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1174          *      Set owner died              attach_to_pi_owner() {
1175          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1176          *   }                               if (!tsk->flags & PF_EXITING) {
1177          *  ...                                attach();
1178          *  tsk->flags |= PF_EXITPIDONE;     } else {
1179          *                                     if (!(tsk->flags & PF_EXITPIDONE))
1180          *                                       return -EAGAIN;
1181          *                                     return -ESRCH; <--- FAIL
1182          *                                   }
1183          *
1184          * Returning ESRCH unconditionally is wrong here because the
1185          * user space value has been changed by the exiting task.
1186          *
1187          * The same logic applies to the case where the exiting task is
1188          * already gone.
1189          */
1190         if (get_futex_value_locked(&uval2, uaddr))
1191                 return -EFAULT;
1192
1193         /* If the user space value has changed, try again. */
1194         if (uval2 != uval)
1195                 return -EAGAIN;
1196
1197         /*
1198          * The exiting task did not have a robust list, the robust list was
1199          * corrupted or the user space value in *uaddr is simply bogus.
1200          * Give up and tell user space.
1201          */
1202         return -ESRCH;
1203 }
1204
1205 /*
1206  * Lookup the task for the TID provided from user space and attach to
1207  * it after doing proper sanity checks.
1208  */
1209 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1210                               struct futex_pi_state **ps)
1211 {
1212         pid_t pid = uval & FUTEX_TID_MASK;
1213         struct futex_pi_state *pi_state;
1214         struct task_struct *p;
1215
1216         /*
1217          * We are the first waiter - try to look up the real owner and attach
1218          * the new pi_state to it, but bail out when TID = 0 [1]
1219          *
1220          * The !pid check is paranoid. None of the call sites should end up
1221          * with pid == 0, but better safe than sorry. Let the caller retry
1222          */
1223         if (!pid)
1224                 return -EAGAIN;
1225         p = find_get_task_by_vpid(pid);
1226         if (!p)
1227                 return handle_exit_race(uaddr, uval, NULL);
1228
1229         if (unlikely(p->flags & PF_KTHREAD)) {
1230                 put_task_struct(p);
1231                 return -EPERM;
1232         }
1233
1234         /*
1235          * We need to look at the task state flags to figure out,
1236          * whether the task is exiting. To protect against the do_exit
1237          * change of the task flags, we do this protected by
1238          * p->pi_lock:
1239          */
1240         raw_spin_lock_irq(&p->pi_lock);
1241         if (unlikely(p->flags & PF_EXITING)) {
1242                 /*
1243                  * The task is on the way out. When PF_EXITPIDONE is
1244                  * set, we know that the task has finished the
1245                  * cleanup:
1246                  */
1247                 int ret = handle_exit_race(uaddr, uval, p);
1248
1249                 raw_spin_unlock_irq(&p->pi_lock);
1250                 put_task_struct(p);
1251                 return ret;
1252         }
1253
1254         /*
1255          * No existing pi state. First waiter. [2]
1256          *
1257          * This creates pi_state, we have hb->lock held, this means nothing can
1258          * observe this state, wait_lock is irrelevant.
1259          */
1260         pi_state = alloc_pi_state();
1261
1262         /*
1263          * Initialize the pi_mutex in locked state and make @p
1264          * the owner of it:
1265          */
1266         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1267
1268         /* Store the key for possible exit cleanups: */
1269         pi_state->key = *key;
1270
1271         WARN_ON(!list_empty(&pi_state->list));
1272         list_add(&pi_state->list, &p->pi_state_list);
1273         /*
1274          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1275          * because there is no concurrency as the object is not published yet.
1276          */
1277         pi_state->owner = p;
1278         raw_spin_unlock_irq(&p->pi_lock);
1279
1280         put_task_struct(p);
1281
1282         *ps = pi_state;
1283
1284         return 0;
1285 }
1286
1287 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1288                            struct futex_hash_bucket *hb,
1289                            union futex_key *key, struct futex_pi_state **ps)
1290 {
1291         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1292
1293         /*
1294          * If there is a waiter on that futex, validate it and
1295          * attach to the pi_state when the validation succeeds.
1296          */
1297         if (top_waiter)
1298                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1299
1300         /*
1301          * We are the first waiter - try to look up the owner based on
1302          * @uval and attach to it.
1303          */
1304         return attach_to_pi_owner(uaddr, uval, key, ps);
1305 }
1306
1307 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1308 {
1309         u32 uninitialized_var(curval);
1310
1311         if (unlikely(should_fail_futex(true)))
1312                 return -EFAULT;
1313
1314         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1315                 return -EFAULT;
1316
1317         /* If user space value changed, let the caller retry */
1318         return curval != uval ? -EAGAIN : 0;
1319 }
1320
1321 /**
1322  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1323  * @uaddr:              the pi futex user address
1324  * @hb:                 the pi futex hash bucket
1325  * @key:                the futex key associated with uaddr and hb
1326  * @ps:                 the pi_state pointer where we store the result of the
1327  *                      lookup
1328  * @task:               the task to perform the atomic lock work for.  This will
1329  *                      be "current" except in the case of requeue pi.
1330  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1331  *
1332  * Return:
1333  *  -  0 - ready to wait;
1334  *  -  1 - acquired the lock;
1335  *  - <0 - error
1336  *
1337  * The hb->lock and futex_key refs shall be held by the caller.
1338  */
1339 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1340                                 union futex_key *key,
1341                                 struct futex_pi_state **ps,
1342                                 struct task_struct *task, int set_waiters)
1343 {
1344         u32 uval, newval, vpid = task_pid_vnr(task);
1345         struct futex_q *top_waiter;
1346         int ret;
1347
1348         /*
1349          * Read the user space value first so we can validate a few
1350          * things before proceeding further.
1351          */
1352         if (get_futex_value_locked(&uval, uaddr))
1353                 return -EFAULT;
1354
1355         if (unlikely(should_fail_futex(true)))
1356                 return -EFAULT;
1357
1358         /*
1359          * Detect deadlocks.
1360          */
1361         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1362                 return -EDEADLK;
1363
1364         if ((unlikely(should_fail_futex(true))))
1365                 return -EDEADLK;
1366
1367         /*
1368          * Lookup existing state first. If it exists, try to attach to
1369          * its pi_state.
1370          */
1371         top_waiter = futex_top_waiter(hb, key);
1372         if (top_waiter)
1373                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1374
1375         /*
1376          * No waiter and user TID is 0. We are here because the
1377          * waiters or the owner died bit is set or called from
1378          * requeue_cmp_pi or for whatever reason something took the
1379          * syscall.
1380          */
1381         if (!(uval & FUTEX_TID_MASK)) {
1382                 /*
1383                  * We take over the futex. No other waiters and the user space
1384                  * TID is 0. We preserve the owner died bit.
1385                  */
1386                 newval = uval & FUTEX_OWNER_DIED;
1387                 newval |= vpid;
1388
1389                 /* The futex requeue_pi code can enforce the waiters bit */
1390                 if (set_waiters)
1391                         newval |= FUTEX_WAITERS;
1392
1393                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1394                 /* If the take over worked, return 1 */
1395                 return ret < 0 ? ret : 1;
1396         }
1397
1398         /*
1399          * First waiter. Set the waiters bit before attaching ourself to
1400          * the owner. If owner tries to unlock, it will be forced into
1401          * the kernel and blocked on hb->lock.
1402          */
1403         newval = uval | FUTEX_WAITERS;
1404         ret = lock_pi_update_atomic(uaddr, uval, newval);
1405         if (ret)
1406                 return ret;
1407         /*
1408          * If the update of the user space value succeeded, we try to
1409          * attach to the owner. If that fails, no harm done, we only
1410          * set the FUTEX_WAITERS bit in the user space variable.
1411          */
1412         return attach_to_pi_owner(uaddr, newval, key, ps);
1413 }
1414
1415 /**
1416  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1417  * @q:  The futex_q to unqueue
1418  *
1419  * The q->lock_ptr must not be NULL and must be held by the caller.
1420  */
1421 static void __unqueue_futex(struct futex_q *q)
1422 {
1423         struct futex_hash_bucket *hb;
1424
1425         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1426             || WARN_ON(plist_node_empty(&q->list)))
1427                 return;
1428
1429         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1430         plist_del(&q->list, &hb->chain);
1431         hb_waiters_dec(hb);
1432 }
1433
1434 /*
1435  * The hash bucket lock must be held when this is called.
1436  * Afterwards, the futex_q must not be accessed. Callers
1437  * must ensure to later call wake_up_q() for the actual
1438  * wakeups to occur.
1439  */
1440 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1441 {
1442         struct task_struct *p = q->task;
1443
1444         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1445                 return;
1446
1447         get_task_struct(p);
1448         __unqueue_futex(q);
1449         /*
1450          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1451          * is written, without taking any locks. This is possible in the event
1452          * of a spurious wakeup, for example. A memory barrier is required here
1453          * to prevent the following store to lock_ptr from getting ahead of the
1454          * plist_del in __unqueue_futex().
1455          */
1456         smp_store_release(&q->lock_ptr, NULL);
1457
1458         /*
1459          * Queue the task for later wakeup for after we've released
1460          * the hb->lock. wake_q_add() grabs reference to p.
1461          */
1462         wake_q_add(wake_q, p);
1463         put_task_struct(p);
1464 }
1465
1466 /*
1467  * Caller must hold a reference on @pi_state.
1468  */
1469 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1470 {
1471         u32 uninitialized_var(curval), newval;
1472         struct task_struct *new_owner;
1473         bool postunlock = false;
1474         DEFINE_WAKE_Q(wake_q);
1475         int ret = 0;
1476
1477         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1478         if (WARN_ON_ONCE(!new_owner)) {
1479                 /*
1480                  * As per the comment in futex_unlock_pi() this should not happen.
1481                  *
1482                  * When this happens, give up our locks and try again, giving
1483                  * the futex_lock_pi() instance time to complete, either by
1484                  * waiting on the rtmutex or removing itself from the futex
1485                  * queue.
1486                  */
1487                 ret = -EAGAIN;
1488                 goto out_unlock;
1489         }
1490
1491         /*
1492          * We pass it to the next owner. The WAITERS bit is always kept
1493          * enabled while there is PI state around. We cleanup the owner
1494          * died bit, because we are the owner.
1495          */
1496         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1497
1498         if (unlikely(should_fail_futex(true)))
1499                 ret = -EFAULT;
1500
1501         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1502                 ret = -EFAULT;
1503
1504         } else if (curval != uval) {
1505                 /*
1506                  * If a unconditional UNLOCK_PI operation (user space did not
1507                  * try the TID->0 transition) raced with a waiter setting the
1508                  * FUTEX_WAITERS flag between get_user() and locking the hash
1509                  * bucket lock, retry the operation.
1510                  */
1511                 if ((FUTEX_TID_MASK & curval) == uval)
1512                         ret = -EAGAIN;
1513                 else
1514                         ret = -EINVAL;
1515         }
1516
1517         if (ret)
1518                 goto out_unlock;
1519
1520         /*
1521          * This is a point of no return; once we modify the uval there is no
1522          * going back and subsequent operations must not fail.
1523          */
1524
1525         raw_spin_lock(&pi_state->owner->pi_lock);
1526         WARN_ON(list_empty(&pi_state->list));
1527         list_del_init(&pi_state->list);
1528         raw_spin_unlock(&pi_state->owner->pi_lock);
1529
1530         raw_spin_lock(&new_owner->pi_lock);
1531         WARN_ON(!list_empty(&pi_state->list));
1532         list_add(&pi_state->list, &new_owner->pi_state_list);
1533         pi_state->owner = new_owner;
1534         raw_spin_unlock(&new_owner->pi_lock);
1535
1536         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1537
1538 out_unlock:
1539         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1540
1541         if (postunlock)
1542                 rt_mutex_postunlock(&wake_q);
1543
1544         return ret;
1545 }
1546
1547 /*
1548  * Express the locking dependencies for lockdep:
1549  */
1550 static inline void
1551 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1552 {
1553         if (hb1 <= hb2) {
1554                 spin_lock(&hb1->lock);
1555                 if (hb1 < hb2)
1556                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1557         } else { /* hb1 > hb2 */
1558                 spin_lock(&hb2->lock);
1559                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1560         }
1561 }
1562
1563 static inline void
1564 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1565 {
1566         spin_unlock(&hb1->lock);
1567         if (hb1 != hb2)
1568                 spin_unlock(&hb2->lock);
1569 }
1570
1571 /*
1572  * Wake up waiters matching bitset queued on this futex (uaddr).
1573  */
1574 static int
1575 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1576 {
1577         struct futex_hash_bucket *hb;
1578         struct futex_q *this, *next;
1579         union futex_key key = FUTEX_KEY_INIT;
1580         int ret;
1581         DEFINE_WAKE_Q(wake_q);
1582
1583         if (!bitset)
1584                 return -EINVAL;
1585
1586         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1587         if (unlikely(ret != 0))
1588                 goto out;
1589
1590         hb = hash_futex(&key);
1591
1592         /* Make sure we really have tasks to wakeup */
1593         if (!hb_waiters_pending(hb))
1594                 goto out_put_key;
1595
1596         spin_lock(&hb->lock);
1597
1598         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1599                 if (match_futex (&this->key, &key)) {
1600                         if (this->pi_state || this->rt_waiter) {
1601                                 ret = -EINVAL;
1602                                 break;
1603                         }
1604
1605                         /* Check if one of the bits is set in both bitsets */
1606                         if (!(this->bitset & bitset))
1607                                 continue;
1608
1609                         mark_wake_futex(&wake_q, this);
1610                         if (++ret >= nr_wake)
1611                                 break;
1612                 }
1613         }
1614
1615         spin_unlock(&hb->lock);
1616         wake_up_q(&wake_q);
1617 out_put_key:
1618         put_futex_key(&key);
1619 out:
1620         return ret;
1621 }
1622
1623 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1624 {
1625         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1626         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1627         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1628         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1629         int oldval, ret;
1630
1631         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1632                 if (oparg < 0 || oparg > 31) {
1633                         char comm[sizeof(current->comm)];
1634                         /*
1635                          * kill this print and return -EINVAL when userspace
1636                          * is sane again
1637                          */
1638                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1639                                         get_task_comm(comm, current), oparg);
1640                         oparg &= 31;
1641                 }
1642                 oparg = 1 << oparg;
1643         }
1644
1645         if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1646                 return -EFAULT;
1647
1648         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1649         if (ret)
1650                 return ret;
1651
1652         switch (cmp) {
1653         case FUTEX_OP_CMP_EQ:
1654                 return oldval == cmparg;
1655         case FUTEX_OP_CMP_NE:
1656                 return oldval != cmparg;
1657         case FUTEX_OP_CMP_LT:
1658                 return oldval < cmparg;
1659         case FUTEX_OP_CMP_GE:
1660                 return oldval >= cmparg;
1661         case FUTEX_OP_CMP_LE:
1662                 return oldval <= cmparg;
1663         case FUTEX_OP_CMP_GT:
1664                 return oldval > cmparg;
1665         default:
1666                 return -ENOSYS;
1667         }
1668 }
1669
1670 /*
1671  * Wake up all waiters hashed on the physical page that is mapped
1672  * to this virtual address:
1673  */
1674 static int
1675 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1676               int nr_wake, int nr_wake2, int op)
1677 {
1678         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1679         struct futex_hash_bucket *hb1, *hb2;
1680         struct futex_q *this, *next;
1681         int ret, op_ret;
1682         DEFINE_WAKE_Q(wake_q);
1683
1684 retry:
1685         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1686         if (unlikely(ret != 0))
1687                 goto out;
1688         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1689         if (unlikely(ret != 0))
1690                 goto out_put_key1;
1691
1692         hb1 = hash_futex(&key1);
1693         hb2 = hash_futex(&key2);
1694
1695 retry_private:
1696         double_lock_hb(hb1, hb2);
1697         op_ret = futex_atomic_op_inuser(op, uaddr2);
1698         if (unlikely(op_ret < 0)) {
1699
1700                 double_unlock_hb(hb1, hb2);
1701
1702 #ifndef CONFIG_MMU
1703                 /*
1704                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1705                  * but we might get them from range checking
1706                  */
1707                 ret = op_ret;
1708                 goto out_put_keys;
1709 #endif
1710
1711                 if (unlikely(op_ret != -EFAULT)) {
1712                         ret = op_ret;
1713                         goto out_put_keys;
1714                 }
1715
1716                 ret = fault_in_user_writeable(uaddr2);
1717                 if (ret)
1718                         goto out_put_keys;
1719
1720                 if (!(flags & FLAGS_SHARED))
1721                         goto retry_private;
1722
1723                 put_futex_key(&key2);
1724                 put_futex_key(&key1);
1725                 goto retry;
1726         }
1727
1728         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1729                 if (match_futex (&this->key, &key1)) {
1730                         if (this->pi_state || this->rt_waiter) {
1731                                 ret = -EINVAL;
1732                                 goto out_unlock;
1733                         }
1734                         mark_wake_futex(&wake_q, this);
1735                         if (++ret >= nr_wake)
1736                                 break;
1737                 }
1738         }
1739
1740         if (op_ret > 0) {
1741                 op_ret = 0;
1742                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1743                         if (match_futex (&this->key, &key2)) {
1744                                 if (this->pi_state || this->rt_waiter) {
1745                                         ret = -EINVAL;
1746                                         goto out_unlock;
1747                                 }
1748                                 mark_wake_futex(&wake_q, this);
1749                                 if (++op_ret >= nr_wake2)
1750                                         break;
1751                         }
1752                 }
1753                 ret += op_ret;
1754         }
1755
1756 out_unlock:
1757         double_unlock_hb(hb1, hb2);
1758         wake_up_q(&wake_q);
1759 out_put_keys:
1760         put_futex_key(&key2);
1761 out_put_key1:
1762         put_futex_key(&key1);
1763 out:
1764         return ret;
1765 }
1766
1767 /**
1768  * requeue_futex() - Requeue a futex_q from one hb to another
1769  * @q:          the futex_q to requeue
1770  * @hb1:        the source hash_bucket
1771  * @hb2:        the target hash_bucket
1772  * @key2:       the new key for the requeued futex_q
1773  */
1774 static inline
1775 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1776                    struct futex_hash_bucket *hb2, union futex_key *key2)
1777 {
1778
1779         /*
1780          * If key1 and key2 hash to the same bucket, no need to
1781          * requeue.
1782          */
1783         if (likely(&hb1->chain != &hb2->chain)) {
1784                 plist_del(&q->list, &hb1->chain);
1785                 hb_waiters_dec(hb1);
1786                 hb_waiters_inc(hb2);
1787                 plist_add(&q->list, &hb2->chain);
1788                 q->lock_ptr = &hb2->lock;
1789         }
1790         get_futex_key_refs(key2);
1791         q->key = *key2;
1792 }
1793
1794 /**
1795  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1796  * @q:          the futex_q
1797  * @key:        the key of the requeue target futex
1798  * @hb:         the hash_bucket of the requeue target futex
1799  *
1800  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1801  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1802  * to the requeue target futex so the waiter can detect the wakeup on the right
1803  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1804  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1805  * to protect access to the pi_state to fixup the owner later.  Must be called
1806  * with both q->lock_ptr and hb->lock held.
1807  */
1808 static inline
1809 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1810                            struct futex_hash_bucket *hb)
1811 {
1812         get_futex_key_refs(key);
1813         q->key = *key;
1814
1815         __unqueue_futex(q);
1816
1817         WARN_ON(!q->rt_waiter);
1818         q->rt_waiter = NULL;
1819
1820         q->lock_ptr = &hb->lock;
1821
1822         wake_up_state(q->task, TASK_NORMAL);
1823 }
1824
1825 /**
1826  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1827  * @pifutex:            the user address of the to futex
1828  * @hb1:                the from futex hash bucket, must be locked by the caller
1829  * @hb2:                the to futex hash bucket, must be locked by the caller
1830  * @key1:               the from futex key
1831  * @key2:               the to futex key
1832  * @ps:                 address to store the pi_state pointer
1833  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1834  *
1835  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1836  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1837  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1838  * hb1 and hb2 must be held by the caller.
1839  *
1840  * Return:
1841  *  -  0 - failed to acquire the lock atomically;
1842  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1843  *  - <0 - error
1844  */
1845 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1846                                  struct futex_hash_bucket *hb1,
1847                                  struct futex_hash_bucket *hb2,
1848                                  union futex_key *key1, union futex_key *key2,
1849                                  struct futex_pi_state **ps, int set_waiters)
1850 {
1851         struct futex_q *top_waiter = NULL;
1852         u32 curval;
1853         int ret, vpid;
1854
1855         if (get_futex_value_locked(&curval, pifutex))
1856                 return -EFAULT;
1857
1858         if (unlikely(should_fail_futex(true)))
1859                 return -EFAULT;
1860
1861         /*
1862          * Find the top_waiter and determine if there are additional waiters.
1863          * If the caller intends to requeue more than 1 waiter to pifutex,
1864          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1865          * as we have means to handle the possible fault.  If not, don't set
1866          * the bit unecessarily as it will force the subsequent unlock to enter
1867          * the kernel.
1868          */
1869         top_waiter = futex_top_waiter(hb1, key1);
1870
1871         /* There are no waiters, nothing for us to do. */
1872         if (!top_waiter)
1873                 return 0;
1874
1875         /* Ensure we requeue to the expected futex. */
1876         if (!match_futex(top_waiter->requeue_pi_key, key2))
1877                 return -EINVAL;
1878
1879         /*
1880          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1881          * the contended case or if set_waiters is 1.  The pi_state is returned
1882          * in ps in contended cases.
1883          */
1884         vpid = task_pid_vnr(top_waiter->task);
1885         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1886                                    set_waiters);
1887         if (ret == 1) {
1888                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1889                 return vpid;
1890         }
1891         return ret;
1892 }
1893
1894 /**
1895  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1896  * @uaddr1:     source futex user address
1897  * @flags:      futex flags (FLAGS_SHARED, etc.)
1898  * @uaddr2:     target futex user address
1899  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1900  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1901  * @cmpval:     @uaddr1 expected value (or %NULL)
1902  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1903  *              pi futex (pi to pi requeue is not supported)
1904  *
1905  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1906  * uaddr2 atomically on behalf of the top waiter.
1907  *
1908  * Return:
1909  *  - >=0 - on success, the number of tasks requeued or woken;
1910  *  -  <0 - on error
1911  */
1912 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1913                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1914                          u32 *cmpval, int requeue_pi)
1915 {
1916         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1917         int drop_count = 0, task_count = 0, ret;
1918         struct futex_pi_state *pi_state = NULL;
1919         struct futex_hash_bucket *hb1, *hb2;
1920         struct futex_q *this, *next;
1921         DEFINE_WAKE_Q(wake_q);
1922
1923         if (nr_wake < 0 || nr_requeue < 0)
1924                 return -EINVAL;
1925
1926         /*
1927          * When PI not supported: return -ENOSYS if requeue_pi is true,
1928          * consequently the compiler knows requeue_pi is always false past
1929          * this point which will optimize away all the conditional code
1930          * further down.
1931          */
1932         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1933                 return -ENOSYS;
1934
1935         if (requeue_pi) {
1936                 /*
1937                  * Requeue PI only works on two distinct uaddrs. This
1938                  * check is only valid for private futexes. See below.
1939                  */
1940                 if (uaddr1 == uaddr2)
1941                         return -EINVAL;
1942
1943                 /*
1944                  * requeue_pi requires a pi_state, try to allocate it now
1945                  * without any locks in case it fails.
1946                  */
1947                 if (refill_pi_state_cache())
1948                         return -ENOMEM;
1949                 /*
1950                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1951                  * + nr_requeue, since it acquires the rt_mutex prior to
1952                  * returning to userspace, so as to not leave the rt_mutex with
1953                  * waiters and no owner.  However, second and third wake-ups
1954                  * cannot be predicted as they involve race conditions with the
1955                  * first wake and a fault while looking up the pi_state.  Both
1956                  * pthread_cond_signal() and pthread_cond_broadcast() should
1957                  * use nr_wake=1.
1958                  */
1959                 if (nr_wake != 1)
1960                         return -EINVAL;
1961         }
1962
1963 retry:
1964         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1965         if (unlikely(ret != 0))
1966                 goto out;
1967         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1968                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1969         if (unlikely(ret != 0))
1970                 goto out_put_key1;
1971
1972         /*
1973          * The check above which compares uaddrs is not sufficient for
1974          * shared futexes. We need to compare the keys:
1975          */
1976         if (requeue_pi && match_futex(&key1, &key2)) {
1977                 ret = -EINVAL;
1978                 goto out_put_keys;
1979         }
1980
1981         hb1 = hash_futex(&key1);
1982         hb2 = hash_futex(&key2);
1983
1984 retry_private:
1985         hb_waiters_inc(hb2);
1986         double_lock_hb(hb1, hb2);
1987
1988         if (likely(cmpval != NULL)) {
1989                 u32 curval;
1990
1991                 ret = get_futex_value_locked(&curval, uaddr1);
1992
1993                 if (unlikely(ret)) {
1994                         double_unlock_hb(hb1, hb2);
1995                         hb_waiters_dec(hb2);
1996
1997                         ret = get_user(curval, uaddr1);
1998                         if (ret)
1999                                 goto out_put_keys;
2000
2001                         if (!(flags & FLAGS_SHARED))
2002                                 goto retry_private;
2003
2004                         put_futex_key(&key2);
2005                         put_futex_key(&key1);
2006                         goto retry;
2007                 }
2008                 if (curval != *cmpval) {
2009                         ret = -EAGAIN;
2010                         goto out_unlock;
2011                 }
2012         }
2013
2014         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2015                 /*
2016                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2017                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2018                  * bit.  We force this here where we are able to easily handle
2019                  * faults rather in the requeue loop below.
2020                  */
2021                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2022                                                  &key2, &pi_state, nr_requeue);
2023
2024                 /*
2025                  * At this point the top_waiter has either taken uaddr2 or is
2026                  * waiting on it.  If the former, then the pi_state will not
2027                  * exist yet, look it up one more time to ensure we have a
2028                  * reference to it. If the lock was taken, ret contains the
2029                  * vpid of the top waiter task.
2030                  * If the lock was not taken, we have pi_state and an initial
2031                  * refcount on it. In case of an error we have nothing.
2032                  */
2033                 if (ret > 0) {
2034                         WARN_ON(pi_state);
2035                         drop_count++;
2036                         task_count++;
2037                         /*
2038                          * If we acquired the lock, then the user space value
2039                          * of uaddr2 should be vpid. It cannot be changed by
2040                          * the top waiter as it is blocked on hb2 lock if it
2041                          * tries to do so. If something fiddled with it behind
2042                          * our back the pi state lookup might unearth it. So
2043                          * we rather use the known value than rereading and
2044                          * handing potential crap to lookup_pi_state.
2045                          *
2046                          * If that call succeeds then we have pi_state and an
2047                          * initial refcount on it.
2048                          */
2049                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2050                 }
2051
2052                 switch (ret) {
2053                 case 0:
2054                         /* We hold a reference on the pi state. */
2055                         break;
2056
2057                         /* If the above failed, then pi_state is NULL */
2058                 case -EFAULT:
2059                         double_unlock_hb(hb1, hb2);
2060                         hb_waiters_dec(hb2);
2061                         put_futex_key(&key2);
2062                         put_futex_key(&key1);
2063                         ret = fault_in_user_writeable(uaddr2);
2064                         if (!ret)
2065                                 goto retry;
2066                         goto out;
2067                 case -EAGAIN:
2068                         /*
2069                          * Two reasons for this:
2070                          * - Owner is exiting and we just wait for the
2071                          *   exit to complete.
2072                          * - The user space value changed.
2073                          */
2074                         double_unlock_hb(hb1, hb2);
2075                         hb_waiters_dec(hb2);
2076                         put_futex_key(&key2);
2077                         put_futex_key(&key1);
2078                         cond_resched();
2079                         goto retry;
2080                 default:
2081                         goto out_unlock;
2082                 }
2083         }
2084
2085         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2086                 if (task_count - nr_wake >= nr_requeue)
2087                         break;
2088
2089                 if (!match_futex(&this->key, &key1))
2090                         continue;
2091
2092                 /*
2093                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2094                  * be paired with each other and no other futex ops.
2095                  *
2096                  * We should never be requeueing a futex_q with a pi_state,
2097                  * which is awaiting a futex_unlock_pi().
2098                  */
2099                 if ((requeue_pi && !this->rt_waiter) ||
2100                     (!requeue_pi && this->rt_waiter) ||
2101                     this->pi_state) {
2102                         ret = -EINVAL;
2103                         break;
2104                 }
2105
2106                 /*
2107                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2108                  * lock, we already woke the top_waiter.  If not, it will be
2109                  * woken by futex_unlock_pi().
2110                  */
2111                 if (++task_count <= nr_wake && !requeue_pi) {
2112                         mark_wake_futex(&wake_q, this);
2113                         continue;
2114                 }
2115
2116                 /* Ensure we requeue to the expected futex for requeue_pi. */
2117                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2118                         ret = -EINVAL;
2119                         break;
2120                 }
2121
2122                 /*
2123                  * Requeue nr_requeue waiters and possibly one more in the case
2124                  * of requeue_pi if we couldn't acquire the lock atomically.
2125                  */
2126                 if (requeue_pi) {
2127                         /*
2128                          * Prepare the waiter to take the rt_mutex. Take a
2129                          * refcount on the pi_state and store the pointer in
2130                          * the futex_q object of the waiter.
2131                          */
2132                         get_pi_state(pi_state);
2133                         this->pi_state = pi_state;
2134                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2135                                                         this->rt_waiter,
2136                                                         this->task);
2137                         if (ret == 1) {
2138                                 /*
2139                                  * We got the lock. We do neither drop the
2140                                  * refcount on pi_state nor clear
2141                                  * this->pi_state because the waiter needs the
2142                                  * pi_state for cleaning up the user space
2143                                  * value. It will drop the refcount after
2144                                  * doing so.
2145                                  */
2146                                 requeue_pi_wake_futex(this, &key2, hb2);
2147                                 drop_count++;
2148                                 continue;
2149                         } else if (ret) {
2150                                 /*
2151                                  * rt_mutex_start_proxy_lock() detected a
2152                                  * potential deadlock when we tried to queue
2153                                  * that waiter. Drop the pi_state reference
2154                                  * which we took above and remove the pointer
2155                                  * to the state from the waiters futex_q
2156                                  * object.
2157                                  */
2158                                 this->pi_state = NULL;
2159                                 put_pi_state(pi_state);
2160                                 /*
2161                                  * We stop queueing more waiters and let user
2162                                  * space deal with the mess.
2163                                  */
2164                                 break;
2165                         }
2166                 }
2167                 requeue_futex(this, hb1, hb2, &key2);
2168                 drop_count++;
2169         }
2170
2171         /*
2172          * We took an extra initial reference to the pi_state either
2173          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2174          * need to drop it here again.
2175          */
2176         put_pi_state(pi_state);
2177
2178 out_unlock:
2179         double_unlock_hb(hb1, hb2);
2180         wake_up_q(&wake_q);
2181         hb_waiters_dec(hb2);
2182
2183         /*
2184          * drop_futex_key_refs() must be called outside the spinlocks. During
2185          * the requeue we moved futex_q's from the hash bucket at key1 to the
2186          * one at key2 and updated their key pointer.  We no longer need to
2187          * hold the references to key1.
2188          */
2189         while (--drop_count >= 0)
2190                 drop_futex_key_refs(&key1);
2191
2192 out_put_keys:
2193         put_futex_key(&key2);
2194 out_put_key1:
2195         put_futex_key(&key1);
2196 out:
2197         return ret ? ret : task_count;
2198 }
2199
2200 /* The key must be already stored in q->key. */
2201 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2202         __acquires(&hb->lock)
2203 {
2204         struct futex_hash_bucket *hb;
2205
2206         hb = hash_futex(&q->key);
2207
2208         /*
2209          * Increment the counter before taking the lock so that
2210          * a potential waker won't miss a to-be-slept task that is
2211          * waiting for the spinlock. This is safe as all queue_lock()
2212          * users end up calling queue_me(). Similarly, for housekeeping,
2213          * decrement the counter at queue_unlock() when some error has
2214          * occurred and we don't end up adding the task to the list.
2215          */
2216         hb_waiters_inc(hb);
2217
2218         q->lock_ptr = &hb->lock;
2219
2220         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2221         return hb;
2222 }
2223
2224 static inline void
2225 queue_unlock(struct futex_hash_bucket *hb)
2226         __releases(&hb->lock)
2227 {
2228         spin_unlock(&hb->lock);
2229         hb_waiters_dec(hb);
2230 }
2231
2232 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2233 {
2234         int prio;
2235
2236         /*
2237          * The priority used to register this element is
2238          * - either the real thread-priority for the real-time threads
2239          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2240          * - or MAX_RT_PRIO for non-RT threads.
2241          * Thus, all RT-threads are woken first in priority order, and
2242          * the others are woken last, in FIFO order.
2243          */
2244         prio = min(current->normal_prio, MAX_RT_PRIO);
2245
2246         plist_node_init(&q->list, prio);
2247         plist_add(&q->list, &hb->chain);
2248         q->task = current;
2249 }
2250
2251 /**
2252  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2253  * @q:  The futex_q to enqueue
2254  * @hb: The destination hash bucket
2255  *
2256  * The hb->lock must be held by the caller, and is released here. A call to
2257  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2258  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2259  * or nothing if the unqueue is done as part of the wake process and the unqueue
2260  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2261  * an example).
2262  */
2263 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2264         __releases(&hb->lock)
2265 {
2266         __queue_me(q, hb);
2267         spin_unlock(&hb->lock);
2268 }
2269
2270 /**
2271  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2272  * @q:  The futex_q to unqueue
2273  *
2274  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2275  * be paired with exactly one earlier call to queue_me().
2276  *
2277  * Return:
2278  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2279  *  - 0 - if the futex_q was already removed by the waking thread
2280  */
2281 static int unqueue_me(struct futex_q *q)
2282 {
2283         spinlock_t *lock_ptr;
2284         int ret = 0;
2285
2286         /* In the common case we don't take the spinlock, which is nice. */
2287 retry:
2288         /*
2289          * q->lock_ptr can change between this read and the following spin_lock.
2290          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2291          * optimizing lock_ptr out of the logic below.
2292          */
2293         lock_ptr = READ_ONCE(q->lock_ptr);
2294         if (lock_ptr != NULL) {
2295                 spin_lock(lock_ptr);
2296                 /*
2297                  * q->lock_ptr can change between reading it and
2298                  * spin_lock(), causing us to take the wrong lock.  This
2299                  * corrects the race condition.
2300                  *
2301                  * Reasoning goes like this: if we have the wrong lock,
2302                  * q->lock_ptr must have changed (maybe several times)
2303                  * between reading it and the spin_lock().  It can
2304                  * change again after the spin_lock() but only if it was
2305                  * already changed before the spin_lock().  It cannot,
2306                  * however, change back to the original value.  Therefore
2307                  * we can detect whether we acquired the correct lock.
2308                  */
2309                 if (unlikely(lock_ptr != q->lock_ptr)) {
2310                         spin_unlock(lock_ptr);
2311                         goto retry;
2312                 }
2313                 __unqueue_futex(q);
2314
2315                 BUG_ON(q->pi_state);
2316
2317                 spin_unlock(lock_ptr);
2318                 ret = 1;
2319         }
2320
2321         drop_futex_key_refs(&q->key);
2322         return ret;
2323 }
2324
2325 /*
2326  * PI futexes can not be requeued and must remove themself from the
2327  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2328  * and dropped here.
2329  */
2330 static void unqueue_me_pi(struct futex_q *q)
2331         __releases(q->lock_ptr)
2332 {
2333         __unqueue_futex(q);
2334
2335         BUG_ON(!q->pi_state);
2336         put_pi_state(q->pi_state);
2337         q->pi_state = NULL;
2338
2339         spin_unlock(q->lock_ptr);
2340 }
2341
2342 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2343                                 struct task_struct *argowner)
2344 {
2345         struct futex_pi_state *pi_state = q->pi_state;
2346         u32 uval, uninitialized_var(curval), newval;
2347         struct task_struct *oldowner, *newowner;
2348         u32 newtid;
2349         int ret;
2350
2351         lockdep_assert_held(q->lock_ptr);
2352
2353         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2354
2355         oldowner = pi_state->owner;
2356
2357         /*
2358          * We are here because either:
2359          *
2360          *  - we stole the lock and pi_state->owner needs updating to reflect
2361          *    that (@argowner == current),
2362          *
2363          * or:
2364          *
2365          *  - someone stole our lock and we need to fix things to point to the
2366          *    new owner (@argowner == NULL).
2367          *
2368          * Either way, we have to replace the TID in the user space variable.
2369          * This must be atomic as we have to preserve the owner died bit here.
2370          *
2371          * Note: We write the user space value _before_ changing the pi_state
2372          * because we can fault here. Imagine swapped out pages or a fork
2373          * that marked all the anonymous memory readonly for cow.
2374          *
2375          * Modifying pi_state _before_ the user space value would leave the
2376          * pi_state in an inconsistent state when we fault here, because we
2377          * need to drop the locks to handle the fault. This might be observed
2378          * in the PID check in lookup_pi_state.
2379          */
2380 retry:
2381         if (!argowner) {
2382                 if (oldowner != current) {
2383                         /*
2384                          * We raced against a concurrent self; things are
2385                          * already fixed up. Nothing to do.
2386                          */
2387                         ret = 0;
2388                         goto out_unlock;
2389                 }
2390
2391                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2392                         /* We got the lock after all, nothing to fix. */
2393                         ret = 0;
2394                         goto out_unlock;
2395                 }
2396
2397                 /*
2398                  * Since we just failed the trylock; there must be an owner.
2399                  */
2400                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2401                 BUG_ON(!newowner);
2402         } else {
2403                 WARN_ON_ONCE(argowner != current);
2404                 if (oldowner == current) {
2405                         /*
2406                          * We raced against a concurrent self; things are
2407                          * already fixed up. Nothing to do.
2408                          */
2409                         ret = 0;
2410                         goto out_unlock;
2411                 }
2412                 newowner = argowner;
2413         }
2414
2415         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2416         /* Owner died? */
2417         if (!pi_state->owner)
2418                 newtid |= FUTEX_OWNER_DIED;
2419
2420         if (get_futex_value_locked(&uval, uaddr))
2421                 goto handle_fault;
2422
2423         for (;;) {
2424                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2425
2426                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2427                         goto handle_fault;
2428                 if (curval == uval)
2429                         break;
2430                 uval = curval;
2431         }
2432
2433         /*
2434          * We fixed up user space. Now we need to fix the pi_state
2435          * itself.
2436          */
2437         if (pi_state->owner != NULL) {
2438                 raw_spin_lock(&pi_state->owner->pi_lock);
2439                 WARN_ON(list_empty(&pi_state->list));
2440                 list_del_init(&pi_state->list);
2441                 raw_spin_unlock(&pi_state->owner->pi_lock);
2442         }
2443
2444         pi_state->owner = newowner;
2445
2446         raw_spin_lock(&newowner->pi_lock);
2447         WARN_ON(!list_empty(&pi_state->list));
2448         list_add(&pi_state->list, &newowner->pi_state_list);
2449         raw_spin_unlock(&newowner->pi_lock);
2450         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2451
2452         return 0;
2453
2454         /*
2455          * To handle the page fault we need to drop the locks here. That gives
2456          * the other task (either the highest priority waiter itself or the
2457          * task which stole the rtmutex) the chance to try the fixup of the
2458          * pi_state. So once we are back from handling the fault we need to
2459          * check the pi_state after reacquiring the locks and before trying to
2460          * do another fixup. When the fixup has been done already we simply
2461          * return.
2462          *
2463          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2464          * drop hb->lock since the caller owns the hb -> futex_q relation.
2465          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2466          */
2467 handle_fault:
2468         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2469         spin_unlock(q->lock_ptr);
2470
2471         ret = fault_in_user_writeable(uaddr);
2472
2473         spin_lock(q->lock_ptr);
2474         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2475
2476         /*
2477          * Check if someone else fixed it for us:
2478          */
2479         if (pi_state->owner != oldowner) {
2480                 ret = 0;
2481                 goto out_unlock;
2482         }
2483
2484         if (ret)
2485                 goto out_unlock;
2486
2487         goto retry;
2488
2489 out_unlock:
2490         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2491         return ret;
2492 }
2493
2494 static long futex_wait_restart(struct restart_block *restart);
2495
2496 /**
2497  * fixup_owner() - Post lock pi_state and corner case management
2498  * @uaddr:      user address of the futex
2499  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2500  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2501  *
2502  * After attempting to lock an rt_mutex, this function is called to cleanup
2503  * the pi_state owner as well as handle race conditions that may allow us to
2504  * acquire the lock. Must be called with the hb lock held.
2505  *
2506  * Return:
2507  *  -  1 - success, lock taken;
2508  *  -  0 - success, lock not taken;
2509  *  - <0 - on error (-EFAULT)
2510  */
2511 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2512 {
2513         int ret = 0;
2514
2515         if (locked) {
2516                 /*
2517                  * Got the lock. We might not be the anticipated owner if we
2518                  * did a lock-steal - fix up the PI-state in that case:
2519                  *
2520                  * Speculative pi_state->owner read (we don't hold wait_lock);
2521                  * since we own the lock pi_state->owner == current is the
2522                  * stable state, anything else needs more attention.
2523                  */
2524                 if (q->pi_state->owner != current)
2525                         ret = fixup_pi_state_owner(uaddr, q, current);
2526                 goto out;
2527         }
2528
2529         /*
2530          * If we didn't get the lock; check if anybody stole it from us. In
2531          * that case, we need to fix up the uval to point to them instead of
2532          * us, otherwise bad things happen. [10]
2533          *
2534          * Another speculative read; pi_state->owner == current is unstable
2535          * but needs our attention.
2536          */
2537         if (q->pi_state->owner == current) {
2538                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2539                 goto out;
2540         }
2541
2542         /*
2543          * Paranoia check. If we did not take the lock, then we should not be
2544          * the owner of the rt_mutex.
2545          */
2546         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2547                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2548                                 "pi-state %p\n", ret,
2549                                 q->pi_state->pi_mutex.owner,
2550                                 q->pi_state->owner);
2551         }
2552
2553 out:
2554         return ret ? ret : locked;
2555 }
2556
2557 /**
2558  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2559  * @hb:         the futex hash bucket, must be locked by the caller
2560  * @q:          the futex_q to queue up on
2561  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2562  */
2563 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2564                                 struct hrtimer_sleeper *timeout)
2565 {
2566         /*
2567          * The task state is guaranteed to be set before another task can
2568          * wake it. set_current_state() is implemented using smp_store_mb() and
2569          * queue_me() calls spin_unlock() upon completion, both serializing
2570          * access to the hash list and forcing another memory barrier.
2571          */
2572         set_current_state(TASK_INTERRUPTIBLE);
2573         queue_me(q, hb);
2574
2575         /* Arm the timer */
2576         if (timeout)
2577                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2578
2579         /*
2580          * If we have been removed from the hash list, then another task
2581          * has tried to wake us, and we can skip the call to schedule().
2582          */
2583         if (likely(!plist_node_empty(&q->list))) {
2584                 /*
2585                  * If the timer has already expired, current will already be
2586                  * flagged for rescheduling. Only call schedule if there
2587                  * is no timeout, or if it has yet to expire.
2588                  */
2589                 if (!timeout || timeout->task)
2590                         freezable_schedule();
2591         }
2592         __set_current_state(TASK_RUNNING);
2593 }
2594
2595 /**
2596  * futex_wait_setup() - Prepare to wait on a futex
2597  * @uaddr:      the futex userspace address
2598  * @val:        the expected value
2599  * @flags:      futex flags (FLAGS_SHARED, etc.)
2600  * @q:          the associated futex_q
2601  * @hb:         storage for hash_bucket pointer to be returned to caller
2602  *
2603  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2604  * compare it with the expected value.  Handle atomic faults internally.
2605  * Return with the hb lock held and a q.key reference on success, and unlocked
2606  * with no q.key reference on failure.
2607  *
2608  * Return:
2609  *  -  0 - uaddr contains val and hb has been locked;
2610  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2611  */
2612 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2613                            struct futex_q *q, struct futex_hash_bucket **hb)
2614 {
2615         u32 uval;
2616         int ret;
2617
2618         /*
2619          * Access the page AFTER the hash-bucket is locked.
2620          * Order is important:
2621          *
2622          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2623          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2624          *
2625          * The basic logical guarantee of a futex is that it blocks ONLY
2626          * if cond(var) is known to be true at the time of blocking, for
2627          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2628          * would open a race condition where we could block indefinitely with
2629          * cond(var) false, which would violate the guarantee.
2630          *
2631          * On the other hand, we insert q and release the hash-bucket only
2632          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2633          * absorb a wakeup if *uaddr does not match the desired values
2634          * while the syscall executes.
2635          */
2636 retry:
2637         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2638         if (unlikely(ret != 0))
2639                 return ret;
2640
2641 retry_private:
2642         *hb = queue_lock(q);
2643
2644         ret = get_futex_value_locked(&uval, uaddr);
2645
2646         if (ret) {
2647                 queue_unlock(*hb);
2648
2649                 ret = get_user(uval, uaddr);
2650                 if (ret)
2651                         goto out;
2652
2653                 if (!(flags & FLAGS_SHARED))
2654                         goto retry_private;
2655
2656                 put_futex_key(&q->key);
2657                 goto retry;
2658         }
2659
2660         if (uval != val) {
2661                 queue_unlock(*hb);
2662                 ret = -EWOULDBLOCK;
2663         }
2664
2665 out:
2666         if (ret)
2667                 put_futex_key(&q->key);
2668         return ret;
2669 }
2670
2671 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2672                       ktime_t *abs_time, u32 bitset)
2673 {
2674         struct hrtimer_sleeper timeout, *to = NULL;
2675         struct restart_block *restart;
2676         struct futex_hash_bucket *hb;
2677         struct futex_q q = futex_q_init;
2678         int ret;
2679
2680         if (!bitset)
2681                 return -EINVAL;
2682         q.bitset = bitset;
2683
2684         if (abs_time) {
2685                 to = &timeout;
2686
2687                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2688                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2689                                       HRTIMER_MODE_ABS);
2690                 hrtimer_init_sleeper(to, current);
2691                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2692                                              current->timer_slack_ns);
2693         }
2694
2695 retry:
2696         /*
2697          * Prepare to wait on uaddr. On success, holds hb lock and increments
2698          * q.key refs.
2699          */
2700         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2701         if (ret)
2702                 goto out;
2703
2704         /* queue_me and wait for wakeup, timeout, or a signal. */
2705         futex_wait_queue_me(hb, &q, to);
2706
2707         /* If we were woken (and unqueued), we succeeded, whatever. */
2708         ret = 0;
2709         /* unqueue_me() drops q.key ref */
2710         if (!unqueue_me(&q))
2711                 goto out;
2712         ret = -ETIMEDOUT;
2713         if (to && !to->task)
2714                 goto out;
2715
2716         /*
2717          * We expect signal_pending(current), but we might be the
2718          * victim of a spurious wakeup as well.
2719          */
2720         if (!signal_pending(current))
2721                 goto retry;
2722
2723         ret = -ERESTARTSYS;
2724         if (!abs_time)
2725                 goto out;
2726
2727         restart = &current->restart_block;
2728         restart->fn = futex_wait_restart;
2729         restart->futex.uaddr = uaddr;
2730         restart->futex.val = val;
2731         restart->futex.time = *abs_time;
2732         restart->futex.bitset = bitset;
2733         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2734
2735         ret = -ERESTART_RESTARTBLOCK;
2736
2737 out:
2738         if (to) {
2739                 hrtimer_cancel(&to->timer);
2740                 destroy_hrtimer_on_stack(&to->timer);
2741         }
2742         return ret;
2743 }
2744
2745
2746 static long futex_wait_restart(struct restart_block *restart)
2747 {
2748         u32 __user *uaddr = restart->futex.uaddr;
2749         ktime_t t, *tp = NULL;
2750
2751         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2752                 t = restart->futex.time;
2753                 tp = &t;
2754         }
2755         restart->fn = do_no_restart_syscall;
2756
2757         return (long)futex_wait(uaddr, restart->futex.flags,
2758                                 restart->futex.val, tp, restart->futex.bitset);
2759 }
2760
2761
2762 /*
2763  * Userspace tried a 0 -> TID atomic transition of the futex value
2764  * and failed. The kernel side here does the whole locking operation:
2765  * if there are waiters then it will block as a consequence of relying
2766  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2767  * a 0 value of the futex too.).
2768  *
2769  * Also serves as futex trylock_pi()'ing, and due semantics.
2770  */
2771 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2772                          ktime_t *time, int trylock)
2773 {
2774         struct hrtimer_sleeper timeout, *to = NULL;
2775         struct futex_pi_state *pi_state = NULL;
2776         struct rt_mutex_waiter rt_waiter;
2777         struct futex_hash_bucket *hb;
2778         struct futex_q q = futex_q_init;
2779         int res, ret;
2780
2781         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2782                 return -ENOSYS;
2783
2784         if (refill_pi_state_cache())
2785                 return -ENOMEM;
2786
2787         if (time) {
2788                 to = &timeout;
2789                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2790                                       HRTIMER_MODE_ABS);
2791                 hrtimer_init_sleeper(to, current);
2792                 hrtimer_set_expires(&to->timer, *time);
2793         }
2794
2795 retry:
2796         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2797         if (unlikely(ret != 0))
2798                 goto out;
2799
2800 retry_private:
2801         hb = queue_lock(&q);
2802
2803         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2804         if (unlikely(ret)) {
2805                 /*
2806                  * Atomic work succeeded and we got the lock,
2807                  * or failed. Either way, we do _not_ block.
2808                  */
2809                 switch (ret) {
2810                 case 1:
2811                         /* We got the lock. */
2812                         ret = 0;
2813                         goto out_unlock_put_key;
2814                 case -EFAULT:
2815                         goto uaddr_faulted;
2816                 case -EAGAIN:
2817                         /*
2818                          * Two reasons for this:
2819                          * - Task is exiting and we just wait for the
2820                          *   exit to complete.
2821                          * - The user space value changed.
2822                          */
2823                         queue_unlock(hb);
2824                         put_futex_key(&q.key);
2825                         cond_resched();
2826                         goto retry;
2827                 default:
2828                         goto out_unlock_put_key;
2829                 }
2830         }
2831
2832         WARN_ON(!q.pi_state);
2833
2834         /*
2835          * Only actually queue now that the atomic ops are done:
2836          */
2837         __queue_me(&q, hb);
2838
2839         if (trylock) {
2840                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2841                 /* Fixup the trylock return value: */
2842                 ret = ret ? 0 : -EWOULDBLOCK;
2843                 goto no_block;
2844         }
2845
2846         rt_mutex_init_waiter(&rt_waiter);
2847
2848         /*
2849          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2850          * hold it while doing rt_mutex_start_proxy(), because then it will
2851          * include hb->lock in the blocking chain, even through we'll not in
2852          * fact hold it while blocking. This will lead it to report -EDEADLK
2853          * and BUG when futex_unlock_pi() interleaves with this.
2854          *
2855          * Therefore acquire wait_lock while holding hb->lock, but drop the
2856          * latter before calling __rt_mutex_start_proxy_lock(). This
2857          * interleaves with futex_unlock_pi() -- which does a similar lock
2858          * handoff -- such that the latter can observe the futex_q::pi_state
2859          * before __rt_mutex_start_proxy_lock() is done.
2860          */
2861         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2862         spin_unlock(q.lock_ptr);
2863         /*
2864          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2865          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2866          * it sees the futex_q::pi_state.
2867          */
2868         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2869         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2870
2871         if (ret) {
2872                 if (ret == 1)
2873                         ret = 0;
2874                 goto cleanup;
2875         }
2876
2877         if (unlikely(to))
2878                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2879
2880         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2881
2882 cleanup:
2883         spin_lock(q.lock_ptr);
2884         /*
2885          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2886          * first acquire the hb->lock before removing the lock from the
2887          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2888          * lists consistent.
2889          *
2890          * In particular; it is important that futex_unlock_pi() can not
2891          * observe this inconsistency.
2892          */
2893         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2894                 ret = 0;
2895
2896 no_block:
2897         /*
2898          * Fixup the pi_state owner and possibly acquire the lock if we
2899          * haven't already.
2900          */
2901         res = fixup_owner(uaddr, &q, !ret);
2902         /*
2903          * If fixup_owner() returned an error, proprogate that.  If it acquired
2904          * the lock, clear our -ETIMEDOUT or -EINTR.
2905          */
2906         if (res)
2907                 ret = (res < 0) ? res : 0;
2908
2909         /*
2910          * If fixup_owner() faulted and was unable to handle the fault, unlock
2911          * it and return the fault to userspace.
2912          */
2913         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2914                 pi_state = q.pi_state;
2915                 get_pi_state(pi_state);
2916         }
2917
2918         /* Unqueue and drop the lock */
2919         unqueue_me_pi(&q);
2920
2921         if (pi_state) {
2922                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2923                 put_pi_state(pi_state);
2924         }
2925
2926         goto out_put_key;
2927
2928 out_unlock_put_key:
2929         queue_unlock(hb);
2930
2931 out_put_key:
2932         put_futex_key(&q.key);
2933 out:
2934         if (to) {
2935                 hrtimer_cancel(&to->timer);
2936                 destroy_hrtimer_on_stack(&to->timer);
2937         }
2938         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2939
2940 uaddr_faulted:
2941         queue_unlock(hb);
2942
2943         ret = fault_in_user_writeable(uaddr);
2944         if (ret)
2945                 goto out_put_key;
2946
2947         if (!(flags & FLAGS_SHARED))
2948                 goto retry_private;
2949
2950         put_futex_key(&q.key);
2951         goto retry;
2952 }
2953
2954 /*
2955  * Userspace attempted a TID -> 0 atomic transition, and failed.
2956  * This is the in-kernel slowpath: we look up the PI state (if any),
2957  * and do the rt-mutex unlock.
2958  */
2959 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2960 {
2961         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2962         union futex_key key = FUTEX_KEY_INIT;
2963         struct futex_hash_bucket *hb;
2964         struct futex_q *top_waiter;
2965         int ret;
2966
2967         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2968                 return -ENOSYS;
2969
2970 retry:
2971         if (get_user(uval, uaddr))
2972                 return -EFAULT;
2973         /*
2974          * We release only a lock we actually own:
2975          */
2976         if ((uval & FUTEX_TID_MASK) != vpid)
2977                 return -EPERM;
2978
2979         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2980         if (ret)
2981                 return ret;
2982
2983         hb = hash_futex(&key);
2984         spin_lock(&hb->lock);
2985
2986         /*
2987          * Check waiters first. We do not trust user space values at
2988          * all and we at least want to know if user space fiddled
2989          * with the futex value instead of blindly unlocking.
2990          */
2991         top_waiter = futex_top_waiter(hb, &key);
2992         if (top_waiter) {
2993                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2994
2995                 ret = -EINVAL;
2996                 if (!pi_state)
2997                         goto out_unlock;
2998
2999                 /*
3000                  * If current does not own the pi_state then the futex is
3001                  * inconsistent and user space fiddled with the futex value.
3002                  */
3003                 if (pi_state->owner != current)
3004                         goto out_unlock;
3005
3006                 get_pi_state(pi_state);
3007                 /*
3008                  * By taking wait_lock while still holding hb->lock, we ensure
3009                  * there is no point where we hold neither; and therefore
3010                  * wake_futex_pi() must observe a state consistent with what we
3011                  * observed.
3012                  *
3013                  * In particular; this forces __rt_mutex_start_proxy() to
3014                  * complete such that we're guaranteed to observe the
3015                  * rt_waiter. Also see the WARN in wake_futex_pi().
3016                  */
3017                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3018                 spin_unlock(&hb->lock);
3019
3020                 /* drops pi_state->pi_mutex.wait_lock */
3021                 ret = wake_futex_pi(uaddr, uval, pi_state);
3022
3023                 put_pi_state(pi_state);
3024
3025                 /*
3026                  * Success, we're done! No tricky corner cases.
3027                  */
3028                 if (!ret)
3029                         goto out_putkey;
3030                 /*
3031                  * The atomic access to the futex value generated a
3032                  * pagefault, so retry the user-access and the wakeup:
3033                  */
3034                 if (ret == -EFAULT)
3035                         goto pi_faulted;
3036                 /*
3037                  * A unconditional UNLOCK_PI op raced against a waiter
3038                  * setting the FUTEX_WAITERS bit. Try again.
3039                  */
3040                 if (ret == -EAGAIN) {
3041                         put_futex_key(&key);
3042                         goto retry;
3043                 }
3044                 /*
3045                  * wake_futex_pi has detected invalid state. Tell user
3046                  * space.
3047                  */
3048                 goto out_putkey;
3049         }
3050
3051         /*
3052          * We have no kernel internal state, i.e. no waiters in the
3053          * kernel. Waiters which are about to queue themselves are stuck
3054          * on hb->lock. So we can safely ignore them. We do neither
3055          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3056          * owner.
3057          */
3058         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3059                 spin_unlock(&hb->lock);
3060                 goto pi_faulted;
3061         }
3062
3063         /*
3064          * If uval has changed, let user space handle it.
3065          */
3066         ret = (curval == uval) ? 0 : -EAGAIN;
3067
3068 out_unlock:
3069         spin_unlock(&hb->lock);
3070 out_putkey:
3071         put_futex_key(&key);
3072         return ret;
3073
3074 pi_faulted:
3075         put_futex_key(&key);
3076
3077         ret = fault_in_user_writeable(uaddr);
3078         if (!ret)
3079                 goto retry;
3080
3081         return ret;
3082 }
3083
3084 /**
3085  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3086  * @hb:         the hash_bucket futex_q was original enqueued on
3087  * @q:          the futex_q woken while waiting to be requeued
3088  * @key2:       the futex_key of the requeue target futex
3089  * @timeout:    the timeout associated with the wait (NULL if none)
3090  *
3091  * Detect if the task was woken on the initial futex as opposed to the requeue
3092  * target futex.  If so, determine if it was a timeout or a signal that caused
3093  * the wakeup and return the appropriate error code to the caller.  Must be
3094  * called with the hb lock held.
3095  *
3096  * Return:
3097  *  -  0 = no early wakeup detected;
3098  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3099  */
3100 static inline
3101 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3102                                    struct futex_q *q, union futex_key *key2,
3103                                    struct hrtimer_sleeper *timeout)
3104 {
3105         int ret = 0;
3106
3107         /*
3108          * With the hb lock held, we avoid races while we process the wakeup.
3109          * We only need to hold hb (and not hb2) to ensure atomicity as the
3110          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3111          * It can't be requeued from uaddr2 to something else since we don't
3112          * support a PI aware source futex for requeue.
3113          */
3114         if (!match_futex(&q->key, key2)) {
3115                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3116                 /*
3117                  * We were woken prior to requeue by a timeout or a signal.
3118                  * Unqueue the futex_q and determine which it was.
3119                  */
3120                 plist_del(&q->list, &hb->chain);
3121                 hb_waiters_dec(hb);
3122
3123                 /* Handle spurious wakeups gracefully */
3124                 ret = -EWOULDBLOCK;
3125                 if (timeout && !timeout->task)
3126                         ret = -ETIMEDOUT;
3127                 else if (signal_pending(current))
3128                         ret = -ERESTARTNOINTR;
3129         }
3130         return ret;
3131 }
3132
3133 /**
3134  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3135  * @uaddr:      the futex we initially wait on (non-pi)
3136  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3137  *              the same type, no requeueing from private to shared, etc.
3138  * @val:        the expected value of uaddr
3139  * @abs_time:   absolute timeout
3140  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3141  * @uaddr2:     the pi futex we will take prior to returning to user-space
3142  *
3143  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3144  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3145  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3146  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3147  * without one, the pi logic would not know which task to boost/deboost, if
3148  * there was a need to.
3149  *
3150  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3151  * via the following--
3152  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3153  * 2) wakeup on uaddr2 after a requeue
3154  * 3) signal
3155  * 4) timeout
3156  *
3157  * If 3, cleanup and return -ERESTARTNOINTR.
3158  *
3159  * If 2, we may then block on trying to take the rt_mutex and return via:
3160  * 5) successful lock
3161  * 6) signal
3162  * 7) timeout
3163  * 8) other lock acquisition failure
3164  *
3165  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3166  *
3167  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3168  *
3169  * Return:
3170  *  -  0 - On success;
3171  *  - <0 - On error
3172  */
3173 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3174                                  u32 val, ktime_t *abs_time, u32 bitset,
3175                                  u32 __user *uaddr2)
3176 {
3177         struct hrtimer_sleeper timeout, *to = NULL;
3178         struct futex_pi_state *pi_state = NULL;
3179         struct rt_mutex_waiter rt_waiter;
3180         struct futex_hash_bucket *hb;
3181         union futex_key key2 = FUTEX_KEY_INIT;
3182         struct futex_q q = futex_q_init;
3183         int res, ret;
3184
3185         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3186                 return -ENOSYS;
3187
3188         if (uaddr == uaddr2)
3189                 return -EINVAL;
3190
3191         if (!bitset)
3192                 return -EINVAL;
3193
3194         if (abs_time) {
3195                 to = &timeout;
3196                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3197                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
3198                                       HRTIMER_MODE_ABS);
3199                 hrtimer_init_sleeper(to, current);
3200                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3201                                              current->timer_slack_ns);
3202         }
3203
3204         /*
3205          * The waiter is allocated on our stack, manipulated by the requeue
3206          * code while we sleep on uaddr.
3207          */
3208         rt_mutex_init_waiter(&rt_waiter);
3209
3210         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3211         if (unlikely(ret != 0))
3212                 goto out;
3213
3214         q.bitset = bitset;
3215         q.rt_waiter = &rt_waiter;
3216         q.requeue_pi_key = &key2;
3217
3218         /*
3219          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3220          * count.
3221          */
3222         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3223         if (ret)
3224                 goto out_key2;
3225
3226         /*
3227          * The check above which compares uaddrs is not sufficient for
3228          * shared futexes. We need to compare the keys:
3229          */
3230         if (match_futex(&q.key, &key2)) {
3231                 queue_unlock(hb);
3232                 ret = -EINVAL;
3233                 goto out_put_keys;
3234         }
3235
3236         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3237         futex_wait_queue_me(hb, &q, to);
3238
3239         spin_lock(&hb->lock);
3240         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3241         spin_unlock(&hb->lock);
3242         if (ret)
3243                 goto out_put_keys;
3244
3245         /*
3246          * In order for us to be here, we know our q.key == key2, and since
3247          * we took the hb->lock above, we also know that futex_requeue() has
3248          * completed and we no longer have to concern ourselves with a wakeup
3249          * race with the atomic proxy lock acquisition by the requeue code. The
3250          * futex_requeue dropped our key1 reference and incremented our key2
3251          * reference count.
3252          */
3253
3254         /* Check if the requeue code acquired the second futex for us. */
3255         if (!q.rt_waiter) {
3256                 /*
3257                  * Got the lock. We might not be the anticipated owner if we
3258                  * did a lock-steal - fix up the PI-state in that case.
3259                  */
3260                 if (q.pi_state && (q.pi_state->owner != current)) {
3261                         spin_lock(q.lock_ptr);
3262                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3263                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3264                                 pi_state = q.pi_state;
3265                                 get_pi_state(pi_state);
3266                         }
3267                         /*
3268                          * Drop the reference to the pi state which
3269                          * the requeue_pi() code acquired for us.
3270                          */
3271                         put_pi_state(q.pi_state);
3272                         spin_unlock(q.lock_ptr);
3273                 }
3274         } else {
3275                 struct rt_mutex *pi_mutex;
3276
3277                 /*
3278                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3279                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3280                  * the pi_state.
3281                  */
3282                 WARN_ON(!q.pi_state);
3283                 pi_mutex = &q.pi_state->pi_mutex;
3284                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3285
3286                 spin_lock(q.lock_ptr);
3287                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3288                         ret = 0;
3289
3290                 debug_rt_mutex_free_waiter(&rt_waiter);
3291                 /*
3292                  * Fixup the pi_state owner and possibly acquire the lock if we
3293                  * haven't already.
3294                  */
3295                 res = fixup_owner(uaddr2, &q, !ret);
3296                 /*
3297                  * If fixup_owner() returned an error, proprogate that.  If it
3298                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3299                  */
3300                 if (res)
3301                         ret = (res < 0) ? res : 0;
3302
3303                 /*
3304                  * If fixup_pi_state_owner() faulted and was unable to handle
3305                  * the fault, unlock the rt_mutex and return the fault to
3306                  * userspace.
3307                  */
3308                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3309                         pi_state = q.pi_state;
3310                         get_pi_state(pi_state);
3311                 }
3312
3313                 /* Unqueue and drop the lock. */
3314                 unqueue_me_pi(&q);
3315         }
3316
3317         if (pi_state) {
3318                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3319                 put_pi_state(pi_state);
3320         }
3321
3322         if (ret == -EINTR) {
3323                 /*
3324                  * We've already been requeued, but cannot restart by calling
3325                  * futex_lock_pi() directly. We could restart this syscall, but
3326                  * it would detect that the user space "val" changed and return
3327                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3328                  * -EWOULDBLOCK directly.
3329                  */
3330                 ret = -EWOULDBLOCK;
3331         }
3332
3333 out_put_keys:
3334         put_futex_key(&q.key);
3335 out_key2:
3336         put_futex_key(&key2);
3337
3338 out:
3339         if (to) {
3340                 hrtimer_cancel(&to->timer);
3341                 destroy_hrtimer_on_stack(&to->timer);
3342         }
3343         return ret;
3344 }
3345
3346 /*
3347  * Support for robust futexes: the kernel cleans up held futexes at
3348  * thread exit time.
3349  *
3350  * Implementation: user-space maintains a per-thread list of locks it
3351  * is holding. Upon do_exit(), the kernel carefully walks this list,
3352  * and marks all locks that are owned by this thread with the
3353  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3354  * always manipulated with the lock held, so the list is private and
3355  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3356  * field, to allow the kernel to clean up if the thread dies after
3357  * acquiring the lock, but just before it could have added itself to
3358  * the list. There can only be one such pending lock.
3359  */
3360
3361 /**
3362  * sys_set_robust_list() - Set the robust-futex list head of a task
3363  * @head:       pointer to the list-head
3364  * @len:        length of the list-head, as userspace expects
3365  */
3366 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3367                 size_t, len)
3368 {
3369         if (!futex_cmpxchg_enabled)
3370                 return -ENOSYS;
3371         /*
3372          * The kernel knows only one size for now:
3373          */
3374         if (unlikely(len != sizeof(*head)))
3375                 return -EINVAL;
3376
3377         current->robust_list = head;
3378
3379         return 0;
3380 }
3381
3382 /**
3383  * sys_get_robust_list() - Get the robust-futex list head of a task
3384  * @pid:        pid of the process [zero for current task]
3385  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3386  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3387  */
3388 SYSCALL_DEFINE3(get_robust_list, int, pid,
3389                 struct robust_list_head __user * __user *, head_ptr,
3390                 size_t __user *, len_ptr)
3391 {
3392         struct robust_list_head __user *head;
3393         unsigned long ret;
3394         struct task_struct *p;
3395
3396         if (!futex_cmpxchg_enabled)
3397                 return -ENOSYS;
3398
3399         rcu_read_lock();
3400
3401         ret = -ESRCH;
3402         if (!pid)
3403                 p = current;
3404         else {
3405                 p = find_task_by_vpid(pid);
3406                 if (!p)
3407                         goto err_unlock;
3408         }
3409
3410         ret = -EPERM;
3411         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3412                 goto err_unlock;
3413
3414         head = p->robust_list;
3415         rcu_read_unlock();
3416
3417         if (put_user(sizeof(*head), len_ptr))
3418                 return -EFAULT;
3419         return put_user(head, head_ptr);
3420
3421 err_unlock:
3422         rcu_read_unlock();
3423
3424         return ret;
3425 }
3426
3427 /*
3428  * Process a futex-list entry, check whether it's owned by the
3429  * dying task, and do notification if so:
3430  */
3431 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3432 {
3433         u32 uval, uninitialized_var(nval), mval;
3434
3435         /* Futex address must be 32bit aligned */
3436         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3437                 return -1;
3438
3439 retry:
3440         if (get_user(uval, uaddr))
3441                 return -1;
3442
3443         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3444                 /*
3445                  * Ok, this dying thread is truly holding a futex
3446                  * of interest. Set the OWNER_DIED bit atomically
3447                  * via cmpxchg, and if the value had FUTEX_WAITERS
3448                  * set, wake up a waiter (if any). (We have to do a
3449                  * futex_wake() even if OWNER_DIED is already set -
3450                  * to handle the rare but possible case of recursive
3451                  * thread-death.) The rest of the cleanup is done in
3452                  * userspace.
3453                  */
3454                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3455                 /*
3456                  * We are not holding a lock here, but we want to have
3457                  * the pagefault_disable/enable() protection because
3458                  * we want to handle the fault gracefully. If the
3459                  * access fails we try to fault in the futex with R/W
3460                  * verification via get_user_pages. get_user() above
3461                  * does not guarantee R/W access. If that fails we
3462                  * give up and leave the futex locked.
3463                  */
3464                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3465                         if (fault_in_user_writeable(uaddr))
3466                                 return -1;
3467                         goto retry;
3468                 }
3469                 if (nval != uval)
3470                         goto retry;
3471
3472                 /*
3473                  * Wake robust non-PI futexes here. The wakeup of
3474                  * PI futexes happens in exit_pi_state():
3475                  */
3476                 if (!pi && (uval & FUTEX_WAITERS))
3477                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3478         }
3479         return 0;
3480 }
3481
3482 /*
3483  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3484  */
3485 static inline int fetch_robust_entry(struct robust_list __user **entry,
3486                                      struct robust_list __user * __user *head,
3487                                      unsigned int *pi)
3488 {
3489         unsigned long uentry;
3490
3491         if (get_user(uentry, (unsigned long __user *)head))
3492                 return -EFAULT;
3493
3494         *entry = (void __user *)(uentry & ~1UL);
3495         *pi = uentry & 1;
3496
3497         return 0;
3498 }
3499
3500 /*
3501  * Walk curr->robust_list (very carefully, it's a userspace list!)
3502  * and mark any locks found there dead, and notify any waiters.
3503  *
3504  * We silently return on any sign of list-walking problem.
3505  */
3506 void exit_robust_list(struct task_struct *curr)
3507 {
3508         struct robust_list_head __user *head = curr->robust_list;
3509         struct robust_list __user *entry, *next_entry, *pending;
3510         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3511         unsigned int uninitialized_var(next_pi);
3512         unsigned long futex_offset;
3513         int rc;
3514
3515         if (!futex_cmpxchg_enabled)
3516                 return;
3517
3518         /*
3519          * Fetch the list head (which was registered earlier, via
3520          * sys_set_robust_list()):
3521          */
3522         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3523                 return;
3524         /*
3525          * Fetch the relative futex offset:
3526          */
3527         if (get_user(futex_offset, &head->futex_offset))
3528                 return;
3529         /*
3530          * Fetch any possibly pending lock-add first, and handle it
3531          * if it exists:
3532          */
3533         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3534                 return;
3535
3536         next_entry = NULL;      /* avoid warning with gcc */
3537         while (entry != &head->list) {
3538                 /*
3539                  * Fetch the next entry in the list before calling
3540                  * handle_futex_death:
3541                  */
3542                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3543                 /*
3544                  * A pending lock might already be on the list, so
3545                  * don't process it twice:
3546                  */
3547                 if (entry != pending)
3548                         if (handle_futex_death((void __user *)entry + futex_offset,
3549                                                 curr, pi))
3550                                 return;
3551                 if (rc)
3552                         return;
3553                 entry = next_entry;
3554                 pi = next_pi;
3555                 /*
3556                  * Avoid excessively long or circular lists:
3557                  */
3558                 if (!--limit)
3559                         break;
3560
3561                 cond_resched();
3562         }
3563
3564         if (pending)
3565                 handle_futex_death((void __user *)pending + futex_offset,
3566                                    curr, pip);
3567 }
3568
3569 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3570                 u32 __user *uaddr2, u32 val2, u32 val3)
3571 {
3572         int cmd = op & FUTEX_CMD_MASK;
3573         unsigned int flags = 0;
3574
3575         if (!(op & FUTEX_PRIVATE_FLAG))
3576                 flags |= FLAGS_SHARED;
3577
3578         if (op & FUTEX_CLOCK_REALTIME) {
3579                 flags |= FLAGS_CLOCKRT;
3580                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3581                     cmd != FUTEX_WAIT_REQUEUE_PI)
3582                         return -ENOSYS;
3583         }
3584
3585         switch (cmd) {
3586         case FUTEX_LOCK_PI:
3587         case FUTEX_UNLOCK_PI:
3588         case FUTEX_TRYLOCK_PI:
3589         case FUTEX_WAIT_REQUEUE_PI:
3590         case FUTEX_CMP_REQUEUE_PI:
3591                 if (!futex_cmpxchg_enabled)
3592                         return -ENOSYS;
3593         }
3594
3595         switch (cmd) {
3596         case FUTEX_WAIT:
3597                 val3 = FUTEX_BITSET_MATCH_ANY;
3598                 /* fall through */
3599         case FUTEX_WAIT_BITSET:
3600                 return futex_wait(uaddr, flags, val, timeout, val3);
3601         case FUTEX_WAKE:
3602                 val3 = FUTEX_BITSET_MATCH_ANY;
3603                 /* fall through */
3604         case FUTEX_WAKE_BITSET:
3605                 return futex_wake(uaddr, flags, val, val3);
3606         case FUTEX_REQUEUE:
3607                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3608         case FUTEX_CMP_REQUEUE:
3609                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3610         case FUTEX_WAKE_OP:
3611                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3612         case FUTEX_LOCK_PI:
3613                 return futex_lock_pi(uaddr, flags, timeout, 0);
3614         case FUTEX_UNLOCK_PI:
3615                 return futex_unlock_pi(uaddr, flags);
3616         case FUTEX_TRYLOCK_PI:
3617                 return futex_lock_pi(uaddr, flags, NULL, 1);
3618         case FUTEX_WAIT_REQUEUE_PI:
3619                 val3 = FUTEX_BITSET_MATCH_ANY;
3620                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3621                                              uaddr2);
3622         case FUTEX_CMP_REQUEUE_PI:
3623                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3624         }
3625         return -ENOSYS;
3626 }
3627
3628
3629 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3630                 struct timespec __user *, utime, u32 __user *, uaddr2,
3631                 u32, val3)
3632 {
3633         struct timespec ts;
3634         ktime_t t, *tp = NULL;
3635         u32 val2 = 0;
3636         int cmd = op & FUTEX_CMD_MASK;
3637
3638         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3639                       cmd == FUTEX_WAIT_BITSET ||
3640                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3641                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3642                         return -EFAULT;
3643                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3644                         return -EFAULT;
3645                 if (!timespec_valid(&ts))
3646                         return -EINVAL;
3647
3648                 t = timespec_to_ktime(ts);
3649                 if (cmd == FUTEX_WAIT)
3650                         t = ktime_add_safe(ktime_get(), t);
3651                 tp = &t;
3652         }
3653         /*
3654          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3655          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3656          */
3657         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3658             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3659                 val2 = (u32) (unsigned long) utime;
3660
3661         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3662 }
3663
3664 static void __init futex_detect_cmpxchg(void)
3665 {
3666 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3667         u32 curval;
3668
3669         /*
3670          * This will fail and we want it. Some arch implementations do
3671          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3672          * functionality. We want to know that before we call in any
3673          * of the complex code paths. Also we want to prevent
3674          * registration of robust lists in that case. NULL is
3675          * guaranteed to fault and we get -EFAULT on functional
3676          * implementation, the non-functional ones will return
3677          * -ENOSYS.
3678          */
3679         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3680                 futex_cmpxchg_enabled = 1;
3681 #endif
3682 }
3683
3684 static int __init futex_init(void)
3685 {
3686         unsigned int futex_shift;
3687         unsigned long i;
3688
3689 #if CONFIG_BASE_SMALL
3690         futex_hashsize = 16;
3691 #else
3692         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3693 #endif
3694
3695         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3696                                                futex_hashsize, 0,
3697                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3698                                                &futex_shift, NULL,
3699                                                futex_hashsize, futex_hashsize);
3700         futex_hashsize = 1UL << futex_shift;
3701
3702         futex_detect_cmpxchg();
3703
3704         for (i = 0; i < futex_hashsize; i++) {
3705                 atomic_set(&futex_queues[i].waiters, 0);
3706                 plist_head_init(&futex_queues[i].chain);
3707                 spin_lock_init(&futex_queues[i].lock);
3708         }
3709
3710         return 0;
3711 }
3712 core_initcall(futex_init);