mm/compaction: do not call suitable_migration_target() on every page
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * Basic futex operation and ordering guarantees:
74  *
75  * The waiter reads the futex value in user space and calls
76  * futex_wait(). This function computes the hash bucket and acquires
77  * the hash bucket lock. After that it reads the futex user space value
78  * again and verifies that the data has not changed. If it has not changed
79  * it enqueues itself into the hash bucket, releases the hash bucket lock
80  * and schedules.
81  *
82  * The waker side modifies the user space value of the futex and calls
83  * futex_wake(). This function computes the hash bucket and acquires the
84  * hash bucket lock. Then it looks for waiters on that futex in the hash
85  * bucket and wakes them.
86  *
87  * In futex wake up scenarios where no tasks are blocked on a futex, taking
88  * the hb spinlock can be avoided and simply return. In order for this
89  * optimization to work, ordering guarantees must exist so that the waiter
90  * being added to the list is acknowledged when the list is concurrently being
91  * checked by the waker, avoiding scenarios like the following:
92  *
93  * CPU 0                               CPU 1
94  * val = *futex;
95  * sys_futex(WAIT, futex, val);
96  *   futex_wait(futex, val);
97  *   uval = *futex;
98  *                                     *futex = newval;
99  *                                     sys_futex(WAKE, futex);
100  *                                       futex_wake(futex);
101  *                                       if (queue_empty())
102  *                                         return;
103  *   if (uval == val)
104  *      lock(hash_bucket(futex));
105  *      queue();
106  *     unlock(hash_bucket(futex));
107  *     schedule();
108  *
109  * This would cause the waiter on CPU 0 to wait forever because it
110  * missed the transition of the user space value from val to newval
111  * and the waker did not find the waiter in the hash bucket queue.
112  *
113  * The correct serialization ensures that a waiter either observes
114  * the changed user space value before blocking or is woken by a
115  * concurrent waker:
116  *
117  * CPU 0                                 CPU 1
118  * val = *futex;
119  * sys_futex(WAIT, futex, val);
120  *   futex_wait(futex, val);
121  *
122  *   waiters++;
123  *   mb(); (A) <-- paired with -.
124  *                              |
125  *   lock(hash_bucket(futex));  |
126  *                              |
127  *   uval = *futex;             |
128  *                              |        *futex = newval;
129  *                              |        sys_futex(WAKE, futex);
130  *                              |          futex_wake(futex);
131  *                              |
132  *                              `------->  mb(); (B)
133  *   if (uval == val)
134  *     queue();
135  *     unlock(hash_bucket(futex));
136  *     schedule();                         if (waiters)
137  *                                           lock(hash_bucket(futex));
138  *                                           wake_waiters(futex);
139  *                                           unlock(hash_bucket(futex));
140  *
141  * Where (A) orders the waiters increment and the futex value read -- this
142  * is guaranteed by the head counter in the hb spinlock; and where (B)
143  * orders the write to futex and the waiters read -- this is done by the
144  * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
145  * depending on the futex type.
146  *
147  * This yields the following case (where X:=waiters, Y:=futex):
148  *
149  *      X = Y = 0
150  *
151  *      w[X]=1          w[Y]=1
152  *      MB              MB
153  *      r[Y]=y          r[X]=x
154  *
155  * Which guarantees that x==0 && y==0 is impossible; which translates back into
156  * the guarantee that we cannot both miss the futex variable change and the
157  * enqueue.
158  */
159
160 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
161 int __read_mostly futex_cmpxchg_enabled;
162 #endif
163
164 /*
165  * Futex flags used to encode options to functions and preserve them across
166  * restarts.
167  */
168 #define FLAGS_SHARED            0x01
169 #define FLAGS_CLOCKRT           0x02
170 #define FLAGS_HAS_TIMEOUT       0x04
171
172 /*
173  * Priority Inheritance state:
174  */
175 struct futex_pi_state {
176         /*
177          * list of 'owned' pi_state instances - these have to be
178          * cleaned up in do_exit() if the task exits prematurely:
179          */
180         struct list_head list;
181
182         /*
183          * The PI object:
184          */
185         struct rt_mutex pi_mutex;
186
187         struct task_struct *owner;
188         atomic_t refcount;
189
190         union futex_key key;
191 };
192
193 /**
194  * struct futex_q - The hashed futex queue entry, one per waiting task
195  * @list:               priority-sorted list of tasks waiting on this futex
196  * @task:               the task waiting on the futex
197  * @lock_ptr:           the hash bucket lock
198  * @key:                the key the futex is hashed on
199  * @pi_state:           optional priority inheritance state
200  * @rt_waiter:          rt_waiter storage for use with requeue_pi
201  * @requeue_pi_key:     the requeue_pi target futex key
202  * @bitset:             bitset for the optional bitmasked wakeup
203  *
204  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
205  * we can wake only the relevant ones (hashed queues may be shared).
206  *
207  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
208  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
209  * The order of wakeup is always to make the first condition true, then
210  * the second.
211  *
212  * PI futexes are typically woken before they are removed from the hash list via
213  * the rt_mutex code. See unqueue_me_pi().
214  */
215 struct futex_q {
216         struct plist_node list;
217
218         struct task_struct *task;
219         spinlock_t *lock_ptr;
220         union futex_key key;
221         struct futex_pi_state *pi_state;
222         struct rt_mutex_waiter *rt_waiter;
223         union futex_key *requeue_pi_key;
224         u32 bitset;
225 };
226
227 static const struct futex_q futex_q_init = {
228         /* list gets initialized in queue_me()*/
229         .key = FUTEX_KEY_INIT,
230         .bitset = FUTEX_BITSET_MATCH_ANY
231 };
232
233 /*
234  * Hash buckets are shared by all the futex_keys that hash to the same
235  * location.  Each key may have multiple futex_q structures, one for each task
236  * waiting on a futex.
237  */
238 struct futex_hash_bucket {
239         atomic_t waiters;
240         spinlock_t lock;
241         struct plist_head chain;
242 } ____cacheline_aligned_in_smp;
243
244 static unsigned long __read_mostly futex_hashsize;
245
246 static struct futex_hash_bucket *futex_queues;
247
248 static inline void futex_get_mm(union futex_key *key)
249 {
250         atomic_inc(&key->private.mm->mm_count);
251         /*
252          * Ensure futex_get_mm() implies a full barrier such that
253          * get_futex_key() implies a full barrier. This is relied upon
254          * as full barrier (B), see the ordering comment above.
255          */
256         smp_mb__after_atomic_inc();
257 }
258
259 /*
260  * Reflects a new waiter being added to the waitqueue.
261  */
262 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
263 {
264 #ifdef CONFIG_SMP
265         atomic_inc(&hb->waiters);
266         /*
267          * Full barrier (A), see the ordering comment above.
268          */
269         smp_mb__after_atomic_inc();
270 #endif
271 }
272
273 /*
274  * Reflects a waiter being removed from the waitqueue by wakeup
275  * paths.
276  */
277 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
278 {
279 #ifdef CONFIG_SMP
280         atomic_dec(&hb->waiters);
281 #endif
282 }
283
284 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
285 {
286 #ifdef CONFIG_SMP
287         return atomic_read(&hb->waiters);
288 #else
289         return 1;
290 #endif
291 }
292
293 /*
294  * We hash on the keys returned from get_futex_key (see below).
295  */
296 static struct futex_hash_bucket *hash_futex(union futex_key *key)
297 {
298         u32 hash = jhash2((u32*)&key->both.word,
299                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
300                           key->both.offset);
301         return &futex_queues[hash & (futex_hashsize - 1)];
302 }
303
304 /*
305  * Return 1 if two futex_keys are equal, 0 otherwise.
306  */
307 static inline int match_futex(union futex_key *key1, union futex_key *key2)
308 {
309         return (key1 && key2
310                 && key1->both.word == key2->both.word
311                 && key1->both.ptr == key2->both.ptr
312                 && key1->both.offset == key2->both.offset);
313 }
314
315 /*
316  * Take a reference to the resource addressed by a key.
317  * Can be called while holding spinlocks.
318  *
319  */
320 static void get_futex_key_refs(union futex_key *key)
321 {
322         if (!key->both.ptr)
323                 return;
324
325         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
326         case FUT_OFF_INODE:
327                 ihold(key->shared.inode); /* implies MB (B) */
328                 break;
329         case FUT_OFF_MMSHARED:
330                 futex_get_mm(key); /* implies MB (B) */
331                 break;
332         }
333 }
334
335 /*
336  * Drop a reference to the resource addressed by a key.
337  * The hash bucket spinlock must not be held.
338  */
339 static void drop_futex_key_refs(union futex_key *key)
340 {
341         if (!key->both.ptr) {
342                 /* If we're here then we tried to put a key we failed to get */
343                 WARN_ON_ONCE(1);
344                 return;
345         }
346
347         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
348         case FUT_OFF_INODE:
349                 iput(key->shared.inode);
350                 break;
351         case FUT_OFF_MMSHARED:
352                 mmdrop(key->private.mm);
353                 break;
354         }
355 }
356
357 /**
358  * get_futex_key() - Get parameters which are the keys for a futex
359  * @uaddr:      virtual address of the futex
360  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
361  * @key:        address where result is stored.
362  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
363  *              VERIFY_WRITE)
364  *
365  * Return: a negative error code or 0
366  *
367  * The key words are stored in *key on success.
368  *
369  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
370  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
371  * We can usually work out the index without swapping in the page.
372  *
373  * lock_page() might sleep, the caller should not hold a spinlock.
374  */
375 static int
376 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
377 {
378         unsigned long address = (unsigned long)uaddr;
379         struct mm_struct *mm = current->mm;
380         struct page *page, *page_head;
381         int err, ro = 0;
382
383         /*
384          * The futex address must be "naturally" aligned.
385          */
386         key->both.offset = address % PAGE_SIZE;
387         if (unlikely((address % sizeof(u32)) != 0))
388                 return -EINVAL;
389         address -= key->both.offset;
390
391         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
392                 return -EFAULT;
393
394         /*
395          * PROCESS_PRIVATE futexes are fast.
396          * As the mm cannot disappear under us and the 'key' only needs
397          * virtual address, we dont even have to find the underlying vma.
398          * Note : We do have to check 'uaddr' is a valid user address,
399          *        but access_ok() should be faster than find_vma()
400          */
401         if (!fshared) {
402                 key->private.mm = mm;
403                 key->private.address = address;
404                 get_futex_key_refs(key);  /* implies MB (B) */
405                 return 0;
406         }
407
408 again:
409         err = get_user_pages_fast(address, 1, 1, &page);
410         /*
411          * If write access is not required (eg. FUTEX_WAIT), try
412          * and get read-only access.
413          */
414         if (err == -EFAULT && rw == VERIFY_READ) {
415                 err = get_user_pages_fast(address, 1, 0, &page);
416                 ro = 1;
417         }
418         if (err < 0)
419                 return err;
420         else
421                 err = 0;
422
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424         page_head = page;
425         if (unlikely(PageTail(page))) {
426                 put_page(page);
427                 /* serialize against __split_huge_page_splitting() */
428                 local_irq_disable();
429                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
430                         page_head = compound_head(page);
431                         /*
432                          * page_head is valid pointer but we must pin
433                          * it before taking the PG_lock and/or
434                          * PG_compound_lock. The moment we re-enable
435                          * irqs __split_huge_page_splitting() can
436                          * return and the head page can be freed from
437                          * under us. We can't take the PG_lock and/or
438                          * PG_compound_lock on a page that could be
439                          * freed from under us.
440                          */
441                         if (page != page_head) {
442                                 get_page(page_head);
443                                 put_page(page);
444                         }
445                         local_irq_enable();
446                 } else {
447                         local_irq_enable();
448                         goto again;
449                 }
450         }
451 #else
452         page_head = compound_head(page);
453         if (page != page_head) {
454                 get_page(page_head);
455                 put_page(page);
456         }
457 #endif
458
459         lock_page(page_head);
460
461         /*
462          * If page_head->mapping is NULL, then it cannot be a PageAnon
463          * page; but it might be the ZERO_PAGE or in the gate area or
464          * in a special mapping (all cases which we are happy to fail);
465          * or it may have been a good file page when get_user_pages_fast
466          * found it, but truncated or holepunched or subjected to
467          * invalidate_complete_page2 before we got the page lock (also
468          * cases which we are happy to fail).  And we hold a reference,
469          * so refcount care in invalidate_complete_page's remove_mapping
470          * prevents drop_caches from setting mapping to NULL beneath us.
471          *
472          * The case we do have to guard against is when memory pressure made
473          * shmem_writepage move it from filecache to swapcache beneath us:
474          * an unlikely race, but we do need to retry for page_head->mapping.
475          */
476         if (!page_head->mapping) {
477                 int shmem_swizzled = PageSwapCache(page_head);
478                 unlock_page(page_head);
479                 put_page(page_head);
480                 if (shmem_swizzled)
481                         goto again;
482                 return -EFAULT;
483         }
484
485         /*
486          * Private mappings are handled in a simple way.
487          *
488          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
489          * it's a read-only handle, it's expected that futexes attach to
490          * the object not the particular process.
491          */
492         if (PageAnon(page_head)) {
493                 /*
494                  * A RO anonymous page will never change and thus doesn't make
495                  * sense for futex operations.
496                  */
497                 if (ro) {
498                         err = -EFAULT;
499                         goto out;
500                 }
501
502                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
503                 key->private.mm = mm;
504                 key->private.address = address;
505         } else {
506                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
507                 key->shared.inode = page_head->mapping->host;
508                 key->shared.pgoff = basepage_index(page);
509         }
510
511         get_futex_key_refs(key); /* implies MB (B) */
512
513 out:
514         unlock_page(page_head);
515         put_page(page_head);
516         return err;
517 }
518
519 static inline void put_futex_key(union futex_key *key)
520 {
521         drop_futex_key_refs(key);
522 }
523
524 /**
525  * fault_in_user_writeable() - Fault in user address and verify RW access
526  * @uaddr:      pointer to faulting user space address
527  *
528  * Slow path to fixup the fault we just took in the atomic write
529  * access to @uaddr.
530  *
531  * We have no generic implementation of a non-destructive write to the
532  * user address. We know that we faulted in the atomic pagefault
533  * disabled section so we can as well avoid the #PF overhead by
534  * calling get_user_pages() right away.
535  */
536 static int fault_in_user_writeable(u32 __user *uaddr)
537 {
538         struct mm_struct *mm = current->mm;
539         int ret;
540
541         down_read(&mm->mmap_sem);
542         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
543                                FAULT_FLAG_WRITE);
544         up_read(&mm->mmap_sem);
545
546         return ret < 0 ? ret : 0;
547 }
548
549 /**
550  * futex_top_waiter() - Return the highest priority waiter on a futex
551  * @hb:         the hash bucket the futex_q's reside in
552  * @key:        the futex key (to distinguish it from other futex futex_q's)
553  *
554  * Must be called with the hb lock held.
555  */
556 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
557                                         union futex_key *key)
558 {
559         struct futex_q *this;
560
561         plist_for_each_entry(this, &hb->chain, list) {
562                 if (match_futex(&this->key, key))
563                         return this;
564         }
565         return NULL;
566 }
567
568 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
569                                       u32 uval, u32 newval)
570 {
571         int ret;
572
573         pagefault_disable();
574         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
575         pagefault_enable();
576
577         return ret;
578 }
579
580 static int get_futex_value_locked(u32 *dest, u32 __user *from)
581 {
582         int ret;
583
584         pagefault_disable();
585         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
586         pagefault_enable();
587
588         return ret ? -EFAULT : 0;
589 }
590
591
592 /*
593  * PI code:
594  */
595 static int refill_pi_state_cache(void)
596 {
597         struct futex_pi_state *pi_state;
598
599         if (likely(current->pi_state_cache))
600                 return 0;
601
602         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
603
604         if (!pi_state)
605                 return -ENOMEM;
606
607         INIT_LIST_HEAD(&pi_state->list);
608         /* pi_mutex gets initialized later */
609         pi_state->owner = NULL;
610         atomic_set(&pi_state->refcount, 1);
611         pi_state->key = FUTEX_KEY_INIT;
612
613         current->pi_state_cache = pi_state;
614
615         return 0;
616 }
617
618 static struct futex_pi_state * alloc_pi_state(void)
619 {
620         struct futex_pi_state *pi_state = current->pi_state_cache;
621
622         WARN_ON(!pi_state);
623         current->pi_state_cache = NULL;
624
625         return pi_state;
626 }
627
628 static void free_pi_state(struct futex_pi_state *pi_state)
629 {
630         if (!atomic_dec_and_test(&pi_state->refcount))
631                 return;
632
633         /*
634          * If pi_state->owner is NULL, the owner is most probably dying
635          * and has cleaned up the pi_state already
636          */
637         if (pi_state->owner) {
638                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
639                 list_del_init(&pi_state->list);
640                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
641
642                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
643         }
644
645         if (current->pi_state_cache)
646                 kfree(pi_state);
647         else {
648                 /*
649                  * pi_state->list is already empty.
650                  * clear pi_state->owner.
651                  * refcount is at 0 - put it back to 1.
652                  */
653                 pi_state->owner = NULL;
654                 atomic_set(&pi_state->refcount, 1);
655                 current->pi_state_cache = pi_state;
656         }
657 }
658
659 /*
660  * Look up the task based on what TID userspace gave us.
661  * We dont trust it.
662  */
663 static struct task_struct * futex_find_get_task(pid_t pid)
664 {
665         struct task_struct *p;
666
667         rcu_read_lock();
668         p = find_task_by_vpid(pid);
669         if (p)
670                 get_task_struct(p);
671
672         rcu_read_unlock();
673
674         return p;
675 }
676
677 /*
678  * This task is holding PI mutexes at exit time => bad.
679  * Kernel cleans up PI-state, but userspace is likely hosed.
680  * (Robust-futex cleanup is separate and might save the day for userspace.)
681  */
682 void exit_pi_state_list(struct task_struct *curr)
683 {
684         struct list_head *next, *head = &curr->pi_state_list;
685         struct futex_pi_state *pi_state;
686         struct futex_hash_bucket *hb;
687         union futex_key key = FUTEX_KEY_INIT;
688
689         if (!futex_cmpxchg_enabled)
690                 return;
691         /*
692          * We are a ZOMBIE and nobody can enqueue itself on
693          * pi_state_list anymore, but we have to be careful
694          * versus waiters unqueueing themselves:
695          */
696         raw_spin_lock_irq(&curr->pi_lock);
697         while (!list_empty(head)) {
698
699                 next = head->next;
700                 pi_state = list_entry(next, struct futex_pi_state, list);
701                 key = pi_state->key;
702                 hb = hash_futex(&key);
703                 raw_spin_unlock_irq(&curr->pi_lock);
704
705                 spin_lock(&hb->lock);
706
707                 raw_spin_lock_irq(&curr->pi_lock);
708                 /*
709                  * We dropped the pi-lock, so re-check whether this
710                  * task still owns the PI-state:
711                  */
712                 if (head->next != next) {
713                         spin_unlock(&hb->lock);
714                         continue;
715                 }
716
717                 WARN_ON(pi_state->owner != curr);
718                 WARN_ON(list_empty(&pi_state->list));
719                 list_del_init(&pi_state->list);
720                 pi_state->owner = NULL;
721                 raw_spin_unlock_irq(&curr->pi_lock);
722
723                 rt_mutex_unlock(&pi_state->pi_mutex);
724
725                 spin_unlock(&hb->lock);
726
727                 raw_spin_lock_irq(&curr->pi_lock);
728         }
729         raw_spin_unlock_irq(&curr->pi_lock);
730 }
731
732 /*
733  * We need to check the following states:
734  *
735  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
736  *
737  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
738  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
739  *
740  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
741  *
742  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
743  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
744  *
745  * [6]  Found  | Found    | task      | 0         | 1      | Valid
746  *
747  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
748  *
749  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
750  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
751  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
752  *
753  * [1]  Indicates that the kernel can acquire the futex atomically. We
754  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
755  *
756  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
757  *      thread is found then it indicates that the owner TID has died.
758  *
759  * [3]  Invalid. The waiter is queued on a non PI futex
760  *
761  * [4]  Valid state after exit_robust_list(), which sets the user space
762  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
763  *
764  * [5]  The user space value got manipulated between exit_robust_list()
765  *      and exit_pi_state_list()
766  *
767  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
768  *      the pi_state but cannot access the user space value.
769  *
770  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
771  *
772  * [8]  Owner and user space value match
773  *
774  * [9]  There is no transient state which sets the user space TID to 0
775  *      except exit_robust_list(), but this is indicated by the
776  *      FUTEX_OWNER_DIED bit. See [4]
777  *
778  * [10] There is no transient state which leaves owner and user space
779  *      TID out of sync.
780  */
781 static int
782 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
783                 union futex_key *key, struct futex_pi_state **ps)
784 {
785         struct futex_pi_state *pi_state = NULL;
786         struct futex_q *this, *next;
787         struct task_struct *p;
788         pid_t pid = uval & FUTEX_TID_MASK;
789
790         plist_for_each_entry_safe(this, next, &hb->chain, list) {
791                 if (match_futex(&this->key, key)) {
792                         /*
793                          * Sanity check the waiter before increasing
794                          * the refcount and attaching to it.
795                          */
796                         pi_state = this->pi_state;
797                         /*
798                          * Userspace might have messed up non-PI and
799                          * PI futexes [3]
800                          */
801                         if (unlikely(!pi_state))
802                                 return -EINVAL;
803
804                         WARN_ON(!atomic_read(&pi_state->refcount));
805
806                         /*
807                          * Handle the owner died case:
808                          */
809                         if (uval & FUTEX_OWNER_DIED) {
810                                 /*
811                                  * exit_pi_state_list sets owner to NULL and
812                                  * wakes the topmost waiter. The task which
813                                  * acquires the pi_state->rt_mutex will fixup
814                                  * owner.
815                                  */
816                                 if (!pi_state->owner) {
817                                         /*
818                                          * No pi state owner, but the user
819                                          * space TID is not 0. Inconsistent
820                                          * state. [5]
821                                          */
822                                         if (pid)
823                                                 return -EINVAL;
824                                         /*
825                                          * Take a ref on the state and
826                                          * return. [4]
827                                          */
828                                         goto out_state;
829                                 }
830
831                                 /*
832                                  * If TID is 0, then either the dying owner
833                                  * has not yet executed exit_pi_state_list()
834                                  * or some waiter acquired the rtmutex in the
835                                  * pi state, but did not yet fixup the TID in
836                                  * user space.
837                                  *
838                                  * Take a ref on the state and return. [6]
839                                  */
840                                 if (!pid)
841                                         goto out_state;
842                         } else {
843                                 /*
844                                  * If the owner died bit is not set,
845                                  * then the pi_state must have an
846                                  * owner. [7]
847                                  */
848                                 if (!pi_state->owner)
849                                         return -EINVAL;
850                         }
851
852                         /*
853                          * Bail out if user space manipulated the
854                          * futex value. If pi state exists then the
855                          * owner TID must be the same as the user
856                          * space TID. [9/10]
857                          */
858                         if (pid != task_pid_vnr(pi_state->owner))
859                                 return -EINVAL;
860
861                 out_state:
862                         atomic_inc(&pi_state->refcount);
863                         *ps = pi_state;
864                         return 0;
865                 }
866         }
867
868         /*
869          * We are the first waiter - try to look up the real owner and attach
870          * the new pi_state to it, but bail out when TID = 0 [1]
871          */
872         if (!pid)
873                 return -ESRCH;
874         p = futex_find_get_task(pid);
875         if (!p)
876                 return -ESRCH;
877
878         if (!p->mm) {
879                 put_task_struct(p);
880                 return -EPERM;
881         }
882
883         /*
884          * We need to look at the task state flags to figure out,
885          * whether the task is exiting. To protect against the do_exit
886          * change of the task flags, we do this protected by
887          * p->pi_lock:
888          */
889         raw_spin_lock_irq(&p->pi_lock);
890         if (unlikely(p->flags & PF_EXITING)) {
891                 /*
892                  * The task is on the way out. When PF_EXITPIDONE is
893                  * set, we know that the task has finished the
894                  * cleanup:
895                  */
896                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
897
898                 raw_spin_unlock_irq(&p->pi_lock);
899                 put_task_struct(p);
900                 return ret;
901         }
902
903         /*
904          * No existing pi state. First waiter. [2]
905          */
906         pi_state = alloc_pi_state();
907
908         /*
909          * Initialize the pi_mutex in locked state and make 'p'
910          * the owner of it:
911          */
912         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
913
914         /* Store the key for possible exit cleanups: */
915         pi_state->key = *key;
916
917         WARN_ON(!list_empty(&pi_state->list));
918         list_add(&pi_state->list, &p->pi_state_list);
919         pi_state->owner = p;
920         raw_spin_unlock_irq(&p->pi_lock);
921
922         put_task_struct(p);
923
924         *ps = pi_state;
925
926         return 0;
927 }
928
929 /**
930  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
931  * @uaddr:              the pi futex user address
932  * @hb:                 the pi futex hash bucket
933  * @key:                the futex key associated with uaddr and hb
934  * @ps:                 the pi_state pointer where we store the result of the
935  *                      lookup
936  * @task:               the task to perform the atomic lock work for.  This will
937  *                      be "current" except in the case of requeue pi.
938  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
939  *
940  * Return:
941  *  0 - ready to wait;
942  *  1 - acquired the lock;
943  * <0 - error
944  *
945  * The hb->lock and futex_key refs shall be held by the caller.
946  */
947 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
948                                 union futex_key *key,
949                                 struct futex_pi_state **ps,
950                                 struct task_struct *task, int set_waiters)
951 {
952         int lock_taken, ret, force_take = 0;
953         u32 uval, newval, curval, vpid = task_pid_vnr(task);
954
955 retry:
956         ret = lock_taken = 0;
957
958         /*
959          * To avoid races, we attempt to take the lock here again
960          * (by doing a 0 -> TID atomic cmpxchg), while holding all
961          * the locks. It will most likely not succeed.
962          */
963         newval = vpid;
964         if (set_waiters)
965                 newval |= FUTEX_WAITERS;
966
967         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
968                 return -EFAULT;
969
970         /*
971          * Detect deadlocks.
972          */
973         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
974                 return -EDEADLK;
975
976         /*
977          * Surprise - we got the lock, but we do not trust user space at all.
978          */
979         if (unlikely(!curval)) {
980                 /*
981                  * We verify whether there is kernel state for this
982                  * futex. If not, we can safely assume, that the 0 ->
983                  * TID transition is correct. If state exists, we do
984                  * not bother to fixup the user space state as it was
985                  * corrupted already.
986                  */
987                 return futex_top_waiter(hb, key) ? -EINVAL : 1;
988         }
989
990         uval = curval;
991
992         /*
993          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
994          * to wake at the next unlock.
995          */
996         newval = curval | FUTEX_WAITERS;
997
998         /*
999          * Should we force take the futex? See below.
1000          */
1001         if (unlikely(force_take)) {
1002                 /*
1003                  * Keep the OWNER_DIED and the WAITERS bit and set the
1004                  * new TID value.
1005                  */
1006                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
1007                 force_take = 0;
1008                 lock_taken = 1;
1009         }
1010
1011         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1012                 return -EFAULT;
1013         if (unlikely(curval != uval))
1014                 goto retry;
1015
1016         /*
1017          * We took the lock due to forced take over.
1018          */
1019         if (unlikely(lock_taken))
1020                 return 1;
1021
1022         /*
1023          * We dont have the lock. Look up the PI state (or create it if
1024          * we are the first waiter):
1025          */
1026         ret = lookup_pi_state(uval, hb, key, ps);
1027
1028         if (unlikely(ret)) {
1029                 switch (ret) {
1030                 case -ESRCH:
1031                         /*
1032                          * We failed to find an owner for this
1033                          * futex. So we have no pi_state to block
1034                          * on. This can happen in two cases:
1035                          *
1036                          * 1) The owner died
1037                          * 2) A stale FUTEX_WAITERS bit
1038                          *
1039                          * Re-read the futex value.
1040                          */
1041                         if (get_futex_value_locked(&curval, uaddr))
1042                                 return -EFAULT;
1043
1044                         /*
1045                          * If the owner died or we have a stale
1046                          * WAITERS bit the owner TID in the user space
1047                          * futex is 0.
1048                          */
1049                         if (!(curval & FUTEX_TID_MASK)) {
1050                                 force_take = 1;
1051                                 goto retry;
1052                         }
1053                 default:
1054                         break;
1055                 }
1056         }
1057
1058         return ret;
1059 }
1060
1061 /**
1062  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1063  * @q:  The futex_q to unqueue
1064  *
1065  * The q->lock_ptr must not be NULL and must be held by the caller.
1066  */
1067 static void __unqueue_futex(struct futex_q *q)
1068 {
1069         struct futex_hash_bucket *hb;
1070
1071         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1072             || WARN_ON(plist_node_empty(&q->list)))
1073                 return;
1074
1075         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1076         plist_del(&q->list, &hb->chain);
1077         hb_waiters_dec(hb);
1078 }
1079
1080 /*
1081  * The hash bucket lock must be held when this is called.
1082  * Afterwards, the futex_q must not be accessed.
1083  */
1084 static void wake_futex(struct futex_q *q)
1085 {
1086         struct task_struct *p = q->task;
1087
1088         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1089                 return;
1090
1091         /*
1092          * We set q->lock_ptr = NULL _before_ we wake up the task. If
1093          * a non-futex wake up happens on another CPU then the task
1094          * might exit and p would dereference a non-existing task
1095          * struct. Prevent this by holding a reference on p across the
1096          * wake up.
1097          */
1098         get_task_struct(p);
1099
1100         __unqueue_futex(q);
1101         /*
1102          * The waiting task can free the futex_q as soon as
1103          * q->lock_ptr = NULL is written, without taking any locks. A
1104          * memory barrier is required here to prevent the following
1105          * store to lock_ptr from getting ahead of the plist_del.
1106          */
1107         smp_wmb();
1108         q->lock_ptr = NULL;
1109
1110         wake_up_state(p, TASK_NORMAL);
1111         put_task_struct(p);
1112 }
1113
1114 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1115 {
1116         struct task_struct *new_owner;
1117         struct futex_pi_state *pi_state = this->pi_state;
1118         u32 uninitialized_var(curval), newval;
1119         int ret = 0;
1120
1121         if (!pi_state)
1122                 return -EINVAL;
1123
1124         /*
1125          * If current does not own the pi_state then the futex is
1126          * inconsistent and user space fiddled with the futex value.
1127          */
1128         if (pi_state->owner != current)
1129                 return -EINVAL;
1130
1131         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1132         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1133
1134         /*
1135          * It is possible that the next waiter (the one that brought
1136          * this owner to the kernel) timed out and is no longer
1137          * waiting on the lock.
1138          */
1139         if (!new_owner)
1140                 new_owner = this->task;
1141
1142         /*
1143          * We pass it to the next owner. The WAITERS bit is always
1144          * kept enabled while there is PI state around. We cleanup the
1145          * owner died bit, because we are the owner.
1146          */
1147         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1148
1149         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1150                 ret = -EFAULT;
1151         else if (curval != uval)
1152                 ret = -EINVAL;
1153         if (ret) {
1154                 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1155                 return ret;
1156         }
1157
1158         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1159         WARN_ON(list_empty(&pi_state->list));
1160         list_del_init(&pi_state->list);
1161         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1162
1163         raw_spin_lock_irq(&new_owner->pi_lock);
1164         WARN_ON(!list_empty(&pi_state->list));
1165         list_add(&pi_state->list, &new_owner->pi_state_list);
1166         pi_state->owner = new_owner;
1167         raw_spin_unlock_irq(&new_owner->pi_lock);
1168
1169         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1170         rt_mutex_unlock(&pi_state->pi_mutex);
1171
1172         return 0;
1173 }
1174
1175 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1176 {
1177         u32 uninitialized_var(oldval);
1178
1179         /*
1180          * There is no waiter, so we unlock the futex. The owner died
1181          * bit has not to be preserved here. We are the owner:
1182          */
1183         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1184                 return -EFAULT;
1185         if (oldval != uval)
1186                 return -EAGAIN;
1187
1188         return 0;
1189 }
1190
1191 /*
1192  * Express the locking dependencies for lockdep:
1193  */
1194 static inline void
1195 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1196 {
1197         if (hb1 <= hb2) {
1198                 spin_lock(&hb1->lock);
1199                 if (hb1 < hb2)
1200                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1201         } else { /* hb1 > hb2 */
1202                 spin_lock(&hb2->lock);
1203                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1204         }
1205 }
1206
1207 static inline void
1208 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1209 {
1210         spin_unlock(&hb1->lock);
1211         if (hb1 != hb2)
1212                 spin_unlock(&hb2->lock);
1213 }
1214
1215 /*
1216  * Wake up waiters matching bitset queued on this futex (uaddr).
1217  */
1218 static int
1219 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1220 {
1221         struct futex_hash_bucket *hb;
1222         struct futex_q *this, *next;
1223         union futex_key key = FUTEX_KEY_INIT;
1224         int ret;
1225
1226         if (!bitset)
1227                 return -EINVAL;
1228
1229         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1230         if (unlikely(ret != 0))
1231                 goto out;
1232
1233         hb = hash_futex(&key);
1234
1235         /* Make sure we really have tasks to wakeup */
1236         if (!hb_waiters_pending(hb))
1237                 goto out_put_key;
1238
1239         spin_lock(&hb->lock);
1240
1241         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1242                 if (match_futex (&this->key, &key)) {
1243                         if (this->pi_state || this->rt_waiter) {
1244                                 ret = -EINVAL;
1245                                 break;
1246                         }
1247
1248                         /* Check if one of the bits is set in both bitsets */
1249                         if (!(this->bitset & bitset))
1250                                 continue;
1251
1252                         wake_futex(this);
1253                         if (++ret >= nr_wake)
1254                                 break;
1255                 }
1256         }
1257
1258         spin_unlock(&hb->lock);
1259 out_put_key:
1260         put_futex_key(&key);
1261 out:
1262         return ret;
1263 }
1264
1265 /*
1266  * Wake up all waiters hashed on the physical page that is mapped
1267  * to this virtual address:
1268  */
1269 static int
1270 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1271               int nr_wake, int nr_wake2, int op)
1272 {
1273         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1274         struct futex_hash_bucket *hb1, *hb2;
1275         struct futex_q *this, *next;
1276         int ret, op_ret;
1277
1278 retry:
1279         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1280         if (unlikely(ret != 0))
1281                 goto out;
1282         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1283         if (unlikely(ret != 0))
1284                 goto out_put_key1;
1285
1286         hb1 = hash_futex(&key1);
1287         hb2 = hash_futex(&key2);
1288
1289 retry_private:
1290         double_lock_hb(hb1, hb2);
1291         op_ret = futex_atomic_op_inuser(op, uaddr2);
1292         if (unlikely(op_ret < 0)) {
1293
1294                 double_unlock_hb(hb1, hb2);
1295
1296 #ifndef CONFIG_MMU
1297                 /*
1298                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1299                  * but we might get them from range checking
1300                  */
1301                 ret = op_ret;
1302                 goto out_put_keys;
1303 #endif
1304
1305                 if (unlikely(op_ret != -EFAULT)) {
1306                         ret = op_ret;
1307                         goto out_put_keys;
1308                 }
1309
1310                 ret = fault_in_user_writeable(uaddr2);
1311                 if (ret)
1312                         goto out_put_keys;
1313
1314                 if (!(flags & FLAGS_SHARED))
1315                         goto retry_private;
1316
1317                 put_futex_key(&key2);
1318                 put_futex_key(&key1);
1319                 goto retry;
1320         }
1321
1322         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1323                 if (match_futex (&this->key, &key1)) {
1324                         if (this->pi_state || this->rt_waiter) {
1325                                 ret = -EINVAL;
1326                                 goto out_unlock;
1327                         }
1328                         wake_futex(this);
1329                         if (++ret >= nr_wake)
1330                                 break;
1331                 }
1332         }
1333
1334         if (op_ret > 0) {
1335                 op_ret = 0;
1336                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1337                         if (match_futex (&this->key, &key2)) {
1338                                 if (this->pi_state || this->rt_waiter) {
1339                                         ret = -EINVAL;
1340                                         goto out_unlock;
1341                                 }
1342                                 wake_futex(this);
1343                                 if (++op_ret >= nr_wake2)
1344                                         break;
1345                         }
1346                 }
1347                 ret += op_ret;
1348         }
1349
1350 out_unlock:
1351         double_unlock_hb(hb1, hb2);
1352 out_put_keys:
1353         put_futex_key(&key2);
1354 out_put_key1:
1355         put_futex_key(&key1);
1356 out:
1357         return ret;
1358 }
1359
1360 /**
1361  * requeue_futex() - Requeue a futex_q from one hb to another
1362  * @q:          the futex_q to requeue
1363  * @hb1:        the source hash_bucket
1364  * @hb2:        the target hash_bucket
1365  * @key2:       the new key for the requeued futex_q
1366  */
1367 static inline
1368 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1369                    struct futex_hash_bucket *hb2, union futex_key *key2)
1370 {
1371
1372         /*
1373          * If key1 and key2 hash to the same bucket, no need to
1374          * requeue.
1375          */
1376         if (likely(&hb1->chain != &hb2->chain)) {
1377                 plist_del(&q->list, &hb1->chain);
1378                 hb_waiters_dec(hb1);
1379                 plist_add(&q->list, &hb2->chain);
1380                 hb_waiters_inc(hb2);
1381                 q->lock_ptr = &hb2->lock;
1382         }
1383         get_futex_key_refs(key2);
1384         q->key = *key2;
1385 }
1386
1387 /**
1388  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1389  * @q:          the futex_q
1390  * @key:        the key of the requeue target futex
1391  * @hb:         the hash_bucket of the requeue target futex
1392  *
1393  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1394  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1395  * to the requeue target futex so the waiter can detect the wakeup on the right
1396  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1397  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1398  * to protect access to the pi_state to fixup the owner later.  Must be called
1399  * with both q->lock_ptr and hb->lock held.
1400  */
1401 static inline
1402 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1403                            struct futex_hash_bucket *hb)
1404 {
1405         get_futex_key_refs(key);
1406         q->key = *key;
1407
1408         __unqueue_futex(q);
1409
1410         WARN_ON(!q->rt_waiter);
1411         q->rt_waiter = NULL;
1412
1413         q->lock_ptr = &hb->lock;
1414
1415         wake_up_state(q->task, TASK_NORMAL);
1416 }
1417
1418 /**
1419  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1420  * @pifutex:            the user address of the to futex
1421  * @hb1:                the from futex hash bucket, must be locked by the caller
1422  * @hb2:                the to futex hash bucket, must be locked by the caller
1423  * @key1:               the from futex key
1424  * @key2:               the to futex key
1425  * @ps:                 address to store the pi_state pointer
1426  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1427  *
1428  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1429  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1430  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1431  * hb1 and hb2 must be held by the caller.
1432  *
1433  * Return:
1434  *  0 - failed to acquire the lock atomically;
1435  * >0 - acquired the lock, return value is vpid of the top_waiter
1436  * <0 - error
1437  */
1438 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1439                                  struct futex_hash_bucket *hb1,
1440                                  struct futex_hash_bucket *hb2,
1441                                  union futex_key *key1, union futex_key *key2,
1442                                  struct futex_pi_state **ps, int set_waiters)
1443 {
1444         struct futex_q *top_waiter = NULL;
1445         u32 curval;
1446         int ret, vpid;
1447
1448         if (get_futex_value_locked(&curval, pifutex))
1449                 return -EFAULT;
1450
1451         /*
1452          * Find the top_waiter and determine if there are additional waiters.
1453          * If the caller intends to requeue more than 1 waiter to pifutex,
1454          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1455          * as we have means to handle the possible fault.  If not, don't set
1456          * the bit unecessarily as it will force the subsequent unlock to enter
1457          * the kernel.
1458          */
1459         top_waiter = futex_top_waiter(hb1, key1);
1460
1461         /* There are no waiters, nothing for us to do. */
1462         if (!top_waiter)
1463                 return 0;
1464
1465         /* Ensure we requeue to the expected futex. */
1466         if (!match_futex(top_waiter->requeue_pi_key, key2))
1467                 return -EINVAL;
1468
1469         /*
1470          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1471          * the contended case or if set_waiters is 1.  The pi_state is returned
1472          * in ps in contended cases.
1473          */
1474         vpid = task_pid_vnr(top_waiter->task);
1475         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1476                                    set_waiters);
1477         if (ret == 1) {
1478                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1479                 return vpid;
1480         }
1481         return ret;
1482 }
1483
1484 /**
1485  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1486  * @uaddr1:     source futex user address
1487  * @flags:      futex flags (FLAGS_SHARED, etc.)
1488  * @uaddr2:     target futex user address
1489  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1490  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1491  * @cmpval:     @uaddr1 expected value (or %NULL)
1492  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1493  *              pi futex (pi to pi requeue is not supported)
1494  *
1495  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1496  * uaddr2 atomically on behalf of the top waiter.
1497  *
1498  * Return:
1499  * >=0 - on success, the number of tasks requeued or woken;
1500  *  <0 - on error
1501  */
1502 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1503                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1504                          u32 *cmpval, int requeue_pi)
1505 {
1506         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1507         int drop_count = 0, task_count = 0, ret;
1508         struct futex_pi_state *pi_state = NULL;
1509         struct futex_hash_bucket *hb1, *hb2;
1510         struct futex_q *this, *next;
1511
1512         if (requeue_pi) {
1513                 /*
1514                  * Requeue PI only works on two distinct uaddrs. This
1515                  * check is only valid for private futexes. See below.
1516                  */
1517                 if (uaddr1 == uaddr2)
1518                         return -EINVAL;
1519
1520                 /*
1521                  * requeue_pi requires a pi_state, try to allocate it now
1522                  * without any locks in case it fails.
1523                  */
1524                 if (refill_pi_state_cache())
1525                         return -ENOMEM;
1526                 /*
1527                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1528                  * + nr_requeue, since it acquires the rt_mutex prior to
1529                  * returning to userspace, so as to not leave the rt_mutex with
1530                  * waiters and no owner.  However, second and third wake-ups
1531                  * cannot be predicted as they involve race conditions with the
1532                  * first wake and a fault while looking up the pi_state.  Both
1533                  * pthread_cond_signal() and pthread_cond_broadcast() should
1534                  * use nr_wake=1.
1535                  */
1536                 if (nr_wake != 1)
1537                         return -EINVAL;
1538         }
1539
1540 retry:
1541         if (pi_state != NULL) {
1542                 /*
1543                  * We will have to lookup the pi_state again, so free this one
1544                  * to keep the accounting correct.
1545                  */
1546                 free_pi_state(pi_state);
1547                 pi_state = NULL;
1548         }
1549
1550         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1551         if (unlikely(ret != 0))
1552                 goto out;
1553         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1554                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1555         if (unlikely(ret != 0))
1556                 goto out_put_key1;
1557
1558         /*
1559          * The check above which compares uaddrs is not sufficient for
1560          * shared futexes. We need to compare the keys:
1561          */
1562         if (requeue_pi && match_futex(&key1, &key2)) {
1563                 ret = -EINVAL;
1564                 goto out_put_keys;
1565         }
1566
1567         hb1 = hash_futex(&key1);
1568         hb2 = hash_futex(&key2);
1569
1570 retry_private:
1571         hb_waiters_inc(hb2);
1572         double_lock_hb(hb1, hb2);
1573
1574         if (likely(cmpval != NULL)) {
1575                 u32 curval;
1576
1577                 ret = get_futex_value_locked(&curval, uaddr1);
1578
1579                 if (unlikely(ret)) {
1580                         double_unlock_hb(hb1, hb2);
1581                         hb_waiters_dec(hb2);
1582
1583                         ret = get_user(curval, uaddr1);
1584                         if (ret)
1585                                 goto out_put_keys;
1586
1587                         if (!(flags & FLAGS_SHARED))
1588                                 goto retry_private;
1589
1590                         put_futex_key(&key2);
1591                         put_futex_key(&key1);
1592                         goto retry;
1593                 }
1594                 if (curval != *cmpval) {
1595                         ret = -EAGAIN;
1596                         goto out_unlock;
1597                 }
1598         }
1599
1600         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1601                 /*
1602                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1603                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1604                  * bit.  We force this here where we are able to easily handle
1605                  * faults rather in the requeue loop below.
1606                  */
1607                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1608                                                  &key2, &pi_state, nr_requeue);
1609
1610                 /*
1611                  * At this point the top_waiter has either taken uaddr2 or is
1612                  * waiting on it.  If the former, then the pi_state will not
1613                  * exist yet, look it up one more time to ensure we have a
1614                  * reference to it. If the lock was taken, ret contains the
1615                  * vpid of the top waiter task.
1616                  */
1617                 if (ret > 0) {
1618                         WARN_ON(pi_state);
1619                         drop_count++;
1620                         task_count++;
1621                         /*
1622                          * If we acquired the lock, then the user
1623                          * space value of uaddr2 should be vpid. It
1624                          * cannot be changed by the top waiter as it
1625                          * is blocked on hb2 lock if it tries to do
1626                          * so. If something fiddled with it behind our
1627                          * back the pi state lookup might unearth
1628                          * it. So we rather use the known value than
1629                          * rereading and handing potential crap to
1630                          * lookup_pi_state.
1631                          */
1632                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1633                 }
1634
1635                 switch (ret) {
1636                 case 0:
1637                         break;
1638                 case -EFAULT:
1639                         double_unlock_hb(hb1, hb2);
1640                         hb_waiters_dec(hb2);
1641                         put_futex_key(&key2);
1642                         put_futex_key(&key1);
1643                         ret = fault_in_user_writeable(uaddr2);
1644                         if (!ret)
1645                                 goto retry;
1646                         goto out;
1647                 case -EAGAIN:
1648                         /* The owner was exiting, try again. */
1649                         double_unlock_hb(hb1, hb2);
1650                         hb_waiters_dec(hb2);
1651                         put_futex_key(&key2);
1652                         put_futex_key(&key1);
1653                         cond_resched();
1654                         goto retry;
1655                 default:
1656                         goto out_unlock;
1657                 }
1658         }
1659
1660         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1661                 if (task_count - nr_wake >= nr_requeue)
1662                         break;
1663
1664                 if (!match_futex(&this->key, &key1))
1665                         continue;
1666
1667                 /*
1668                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1669                  * be paired with each other and no other futex ops.
1670                  *
1671                  * We should never be requeueing a futex_q with a pi_state,
1672                  * which is awaiting a futex_unlock_pi().
1673                  */
1674                 if ((requeue_pi && !this->rt_waiter) ||
1675                     (!requeue_pi && this->rt_waiter) ||
1676                     this->pi_state) {
1677                         ret = -EINVAL;
1678                         break;
1679                 }
1680
1681                 /*
1682                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1683                  * lock, we already woke the top_waiter.  If not, it will be
1684                  * woken by futex_unlock_pi().
1685                  */
1686                 if (++task_count <= nr_wake && !requeue_pi) {
1687                         wake_futex(this);
1688                         continue;
1689                 }
1690
1691                 /* Ensure we requeue to the expected futex for requeue_pi. */
1692                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1693                         ret = -EINVAL;
1694                         break;
1695                 }
1696
1697                 /*
1698                  * Requeue nr_requeue waiters and possibly one more in the case
1699                  * of requeue_pi if we couldn't acquire the lock atomically.
1700                  */
1701                 if (requeue_pi) {
1702                         /* Prepare the waiter to take the rt_mutex. */
1703                         atomic_inc(&pi_state->refcount);
1704                         this->pi_state = pi_state;
1705                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1706                                                         this->rt_waiter,
1707                                                         this->task, 1);
1708                         if (ret == 1) {
1709                                 /* We got the lock. */
1710                                 requeue_pi_wake_futex(this, &key2, hb2);
1711                                 drop_count++;
1712                                 continue;
1713                         } else if (ret) {
1714                                 /* -EDEADLK */
1715                                 this->pi_state = NULL;
1716                                 free_pi_state(pi_state);
1717                                 goto out_unlock;
1718                         }
1719                 }
1720                 requeue_futex(this, hb1, hb2, &key2);
1721                 drop_count++;
1722         }
1723
1724 out_unlock:
1725         double_unlock_hb(hb1, hb2);
1726         hb_waiters_dec(hb2);
1727
1728         /*
1729          * drop_futex_key_refs() must be called outside the spinlocks. During
1730          * the requeue we moved futex_q's from the hash bucket at key1 to the
1731          * one at key2 and updated their key pointer.  We no longer need to
1732          * hold the references to key1.
1733          */
1734         while (--drop_count >= 0)
1735                 drop_futex_key_refs(&key1);
1736
1737 out_put_keys:
1738         put_futex_key(&key2);
1739 out_put_key1:
1740         put_futex_key(&key1);
1741 out:
1742         if (pi_state != NULL)
1743                 free_pi_state(pi_state);
1744         return ret ? ret : task_count;
1745 }
1746
1747 /* The key must be already stored in q->key. */
1748 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1749         __acquires(&hb->lock)
1750 {
1751         struct futex_hash_bucket *hb;
1752
1753         hb = hash_futex(&q->key);
1754
1755         /*
1756          * Increment the counter before taking the lock so that
1757          * a potential waker won't miss a to-be-slept task that is
1758          * waiting for the spinlock. This is safe as all queue_lock()
1759          * users end up calling queue_me(). Similarly, for housekeeping,
1760          * decrement the counter at queue_unlock() when some error has
1761          * occurred and we don't end up adding the task to the list.
1762          */
1763         hb_waiters_inc(hb);
1764
1765         q->lock_ptr = &hb->lock;
1766
1767         spin_lock(&hb->lock); /* implies MB (A) */
1768         return hb;
1769 }
1770
1771 static inline void
1772 queue_unlock(struct futex_hash_bucket *hb)
1773         __releases(&hb->lock)
1774 {
1775         spin_unlock(&hb->lock);
1776         hb_waiters_dec(hb);
1777 }
1778
1779 /**
1780  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1781  * @q:  The futex_q to enqueue
1782  * @hb: The destination hash bucket
1783  *
1784  * The hb->lock must be held by the caller, and is released here. A call to
1785  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1786  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1787  * or nothing if the unqueue is done as part of the wake process and the unqueue
1788  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1789  * an example).
1790  */
1791 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1792         __releases(&hb->lock)
1793 {
1794         int prio;
1795
1796         /*
1797          * The priority used to register this element is
1798          * - either the real thread-priority for the real-time threads
1799          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1800          * - or MAX_RT_PRIO for non-RT threads.
1801          * Thus, all RT-threads are woken first in priority order, and
1802          * the others are woken last, in FIFO order.
1803          */
1804         prio = min(current->normal_prio, MAX_RT_PRIO);
1805
1806         plist_node_init(&q->list, prio);
1807         plist_add(&q->list, &hb->chain);
1808         q->task = current;
1809         spin_unlock(&hb->lock);
1810 }
1811
1812 /**
1813  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1814  * @q:  The futex_q to unqueue
1815  *
1816  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1817  * be paired with exactly one earlier call to queue_me().
1818  *
1819  * Return:
1820  *   1 - if the futex_q was still queued (and we removed unqueued it);
1821  *   0 - if the futex_q was already removed by the waking thread
1822  */
1823 static int unqueue_me(struct futex_q *q)
1824 {
1825         spinlock_t *lock_ptr;
1826         int ret = 0;
1827
1828         /* In the common case we don't take the spinlock, which is nice. */
1829 retry:
1830         lock_ptr = q->lock_ptr;
1831         barrier();
1832         if (lock_ptr != NULL) {
1833                 spin_lock(lock_ptr);
1834                 /*
1835                  * q->lock_ptr can change between reading it and
1836                  * spin_lock(), causing us to take the wrong lock.  This
1837                  * corrects the race condition.
1838                  *
1839                  * Reasoning goes like this: if we have the wrong lock,
1840                  * q->lock_ptr must have changed (maybe several times)
1841                  * between reading it and the spin_lock().  It can
1842                  * change again after the spin_lock() but only if it was
1843                  * already changed before the spin_lock().  It cannot,
1844                  * however, change back to the original value.  Therefore
1845                  * we can detect whether we acquired the correct lock.
1846                  */
1847                 if (unlikely(lock_ptr != q->lock_ptr)) {
1848                         spin_unlock(lock_ptr);
1849                         goto retry;
1850                 }
1851                 __unqueue_futex(q);
1852
1853                 BUG_ON(q->pi_state);
1854
1855                 spin_unlock(lock_ptr);
1856                 ret = 1;
1857         }
1858
1859         drop_futex_key_refs(&q->key);
1860         return ret;
1861 }
1862
1863 /*
1864  * PI futexes can not be requeued and must remove themself from the
1865  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1866  * and dropped here.
1867  */
1868 static void unqueue_me_pi(struct futex_q *q)
1869         __releases(q->lock_ptr)
1870 {
1871         __unqueue_futex(q);
1872
1873         BUG_ON(!q->pi_state);
1874         free_pi_state(q->pi_state);
1875         q->pi_state = NULL;
1876
1877         spin_unlock(q->lock_ptr);
1878 }
1879
1880 /*
1881  * Fixup the pi_state owner with the new owner.
1882  *
1883  * Must be called with hash bucket lock held and mm->sem held for non
1884  * private futexes.
1885  */
1886 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1887                                 struct task_struct *newowner)
1888 {
1889         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1890         struct futex_pi_state *pi_state = q->pi_state;
1891         struct task_struct *oldowner = pi_state->owner;
1892         u32 uval, uninitialized_var(curval), newval;
1893         int ret;
1894
1895         /* Owner died? */
1896         if (!pi_state->owner)
1897                 newtid |= FUTEX_OWNER_DIED;
1898
1899         /*
1900          * We are here either because we stole the rtmutex from the
1901          * previous highest priority waiter or we are the highest priority
1902          * waiter but failed to get the rtmutex the first time.
1903          * We have to replace the newowner TID in the user space variable.
1904          * This must be atomic as we have to preserve the owner died bit here.
1905          *
1906          * Note: We write the user space value _before_ changing the pi_state
1907          * because we can fault here. Imagine swapped out pages or a fork
1908          * that marked all the anonymous memory readonly for cow.
1909          *
1910          * Modifying pi_state _before_ the user space value would
1911          * leave the pi_state in an inconsistent state when we fault
1912          * here, because we need to drop the hash bucket lock to
1913          * handle the fault. This might be observed in the PID check
1914          * in lookup_pi_state.
1915          */
1916 retry:
1917         if (get_futex_value_locked(&uval, uaddr))
1918                 goto handle_fault;
1919
1920         while (1) {
1921                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1922
1923                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1924                         goto handle_fault;
1925                 if (curval == uval)
1926                         break;
1927                 uval = curval;
1928         }
1929
1930         /*
1931          * We fixed up user space. Now we need to fix the pi_state
1932          * itself.
1933          */
1934         if (pi_state->owner != NULL) {
1935                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1936                 WARN_ON(list_empty(&pi_state->list));
1937                 list_del_init(&pi_state->list);
1938                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1939         }
1940
1941         pi_state->owner = newowner;
1942
1943         raw_spin_lock_irq(&newowner->pi_lock);
1944         WARN_ON(!list_empty(&pi_state->list));
1945         list_add(&pi_state->list, &newowner->pi_state_list);
1946         raw_spin_unlock_irq(&newowner->pi_lock);
1947         return 0;
1948
1949         /*
1950          * To handle the page fault we need to drop the hash bucket
1951          * lock here. That gives the other task (either the highest priority
1952          * waiter itself or the task which stole the rtmutex) the
1953          * chance to try the fixup of the pi_state. So once we are
1954          * back from handling the fault we need to check the pi_state
1955          * after reacquiring the hash bucket lock and before trying to
1956          * do another fixup. When the fixup has been done already we
1957          * simply return.
1958          */
1959 handle_fault:
1960         spin_unlock(q->lock_ptr);
1961
1962         ret = fault_in_user_writeable(uaddr);
1963
1964         spin_lock(q->lock_ptr);
1965
1966         /*
1967          * Check if someone else fixed it for us:
1968          */
1969         if (pi_state->owner != oldowner)
1970                 return 0;
1971
1972         if (ret)
1973                 return ret;
1974
1975         goto retry;
1976 }
1977
1978 static long futex_wait_restart(struct restart_block *restart);
1979
1980 /**
1981  * fixup_owner() - Post lock pi_state and corner case management
1982  * @uaddr:      user address of the futex
1983  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1984  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1985  *
1986  * After attempting to lock an rt_mutex, this function is called to cleanup
1987  * the pi_state owner as well as handle race conditions that may allow us to
1988  * acquire the lock. Must be called with the hb lock held.
1989  *
1990  * Return:
1991  *  1 - success, lock taken;
1992  *  0 - success, lock not taken;
1993  * <0 - on error (-EFAULT)
1994  */
1995 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1996 {
1997         struct task_struct *owner;
1998         int ret = 0;
1999
2000         if (locked) {
2001                 /*
2002                  * Got the lock. We might not be the anticipated owner if we
2003                  * did a lock-steal - fix up the PI-state in that case:
2004                  */
2005                 if (q->pi_state->owner != current)
2006                         ret = fixup_pi_state_owner(uaddr, q, current);
2007                 goto out;
2008         }
2009
2010         /*
2011          * Catch the rare case, where the lock was released when we were on the
2012          * way back before we locked the hash bucket.
2013          */
2014         if (q->pi_state->owner == current) {
2015                 /*
2016                  * Try to get the rt_mutex now. This might fail as some other
2017                  * task acquired the rt_mutex after we removed ourself from the
2018                  * rt_mutex waiters list.
2019                  */
2020                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2021                         locked = 1;
2022                         goto out;
2023                 }
2024
2025                 /*
2026                  * pi_state is incorrect, some other task did a lock steal and
2027                  * we returned due to timeout or signal without taking the
2028                  * rt_mutex. Too late.
2029                  */
2030                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2031                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2032                 if (!owner)
2033                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2034                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2035                 ret = fixup_pi_state_owner(uaddr, q, owner);
2036                 goto out;
2037         }
2038
2039         /*
2040          * Paranoia check. If we did not take the lock, then we should not be
2041          * the owner of the rt_mutex.
2042          */
2043         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2044                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2045                                 "pi-state %p\n", ret,
2046                                 q->pi_state->pi_mutex.owner,
2047                                 q->pi_state->owner);
2048
2049 out:
2050         return ret ? ret : locked;
2051 }
2052
2053 /**
2054  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2055  * @hb:         the futex hash bucket, must be locked by the caller
2056  * @q:          the futex_q to queue up on
2057  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2058  */
2059 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2060                                 struct hrtimer_sleeper *timeout)
2061 {
2062         /*
2063          * The task state is guaranteed to be set before another task can
2064          * wake it. set_current_state() is implemented using set_mb() and
2065          * queue_me() calls spin_unlock() upon completion, both serializing
2066          * access to the hash list and forcing another memory barrier.
2067          */
2068         set_current_state(TASK_INTERRUPTIBLE);
2069         queue_me(q, hb);
2070
2071         /* Arm the timer */
2072         if (timeout) {
2073                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2074                 if (!hrtimer_active(&timeout->timer))
2075                         timeout->task = NULL;
2076         }
2077
2078         /*
2079          * If we have been removed from the hash list, then another task
2080          * has tried to wake us, and we can skip the call to schedule().
2081          */
2082         if (likely(!plist_node_empty(&q->list))) {
2083                 /*
2084                  * If the timer has already expired, current will already be
2085                  * flagged for rescheduling. Only call schedule if there
2086                  * is no timeout, or if it has yet to expire.
2087                  */
2088                 if (!timeout || timeout->task)
2089                         freezable_schedule();
2090         }
2091         __set_current_state(TASK_RUNNING);
2092 }
2093
2094 /**
2095  * futex_wait_setup() - Prepare to wait on a futex
2096  * @uaddr:      the futex userspace address
2097  * @val:        the expected value
2098  * @flags:      futex flags (FLAGS_SHARED, etc.)
2099  * @q:          the associated futex_q
2100  * @hb:         storage for hash_bucket pointer to be returned to caller
2101  *
2102  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2103  * compare it with the expected value.  Handle atomic faults internally.
2104  * Return with the hb lock held and a q.key reference on success, and unlocked
2105  * with no q.key reference on failure.
2106  *
2107  * Return:
2108  *  0 - uaddr contains val and hb has been locked;
2109  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2110  */
2111 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2112                            struct futex_q *q, struct futex_hash_bucket **hb)
2113 {
2114         u32 uval;
2115         int ret;
2116
2117         /*
2118          * Access the page AFTER the hash-bucket is locked.
2119          * Order is important:
2120          *
2121          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2122          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2123          *
2124          * The basic logical guarantee of a futex is that it blocks ONLY
2125          * if cond(var) is known to be true at the time of blocking, for
2126          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2127          * would open a race condition where we could block indefinitely with
2128          * cond(var) false, which would violate the guarantee.
2129          *
2130          * On the other hand, we insert q and release the hash-bucket only
2131          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2132          * absorb a wakeup if *uaddr does not match the desired values
2133          * while the syscall executes.
2134          */
2135 retry:
2136         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2137         if (unlikely(ret != 0))
2138                 return ret;
2139
2140 retry_private:
2141         *hb = queue_lock(q);
2142
2143         ret = get_futex_value_locked(&uval, uaddr);
2144
2145         if (ret) {
2146                 queue_unlock(*hb);
2147
2148                 ret = get_user(uval, uaddr);
2149                 if (ret)
2150                         goto out;
2151
2152                 if (!(flags & FLAGS_SHARED))
2153                         goto retry_private;
2154
2155                 put_futex_key(&q->key);
2156                 goto retry;
2157         }
2158
2159         if (uval != val) {
2160                 queue_unlock(*hb);
2161                 ret = -EWOULDBLOCK;
2162         }
2163
2164 out:
2165         if (ret)
2166                 put_futex_key(&q->key);
2167         return ret;
2168 }
2169
2170 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2171                       ktime_t *abs_time, u32 bitset)
2172 {
2173         struct hrtimer_sleeper timeout, *to = NULL;
2174         struct restart_block *restart;
2175         struct futex_hash_bucket *hb;
2176         struct futex_q q = futex_q_init;
2177         int ret;
2178
2179         if (!bitset)
2180                 return -EINVAL;
2181         q.bitset = bitset;
2182
2183         if (abs_time) {
2184                 to = &timeout;
2185
2186                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2187                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2188                                       HRTIMER_MODE_ABS);
2189                 hrtimer_init_sleeper(to, current);
2190                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2191                                              current->timer_slack_ns);
2192         }
2193
2194 retry:
2195         /*
2196          * Prepare to wait on uaddr. On success, holds hb lock and increments
2197          * q.key refs.
2198          */
2199         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2200         if (ret)
2201                 goto out;
2202
2203         /* queue_me and wait for wakeup, timeout, or a signal. */
2204         futex_wait_queue_me(hb, &q, to);
2205
2206         /* If we were woken (and unqueued), we succeeded, whatever. */
2207         ret = 0;
2208         /* unqueue_me() drops q.key ref */
2209         if (!unqueue_me(&q))
2210                 goto out;
2211         ret = -ETIMEDOUT;
2212         if (to && !to->task)
2213                 goto out;
2214
2215         /*
2216          * We expect signal_pending(current), but we might be the
2217          * victim of a spurious wakeup as well.
2218          */
2219         if (!signal_pending(current))
2220                 goto retry;
2221
2222         ret = -ERESTARTSYS;
2223         if (!abs_time)
2224                 goto out;
2225
2226         restart = &current_thread_info()->restart_block;
2227         restart->fn = futex_wait_restart;
2228         restart->futex.uaddr = uaddr;
2229         restart->futex.val = val;
2230         restart->futex.time = abs_time->tv64;
2231         restart->futex.bitset = bitset;
2232         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2233
2234         ret = -ERESTART_RESTARTBLOCK;
2235
2236 out:
2237         if (to) {
2238                 hrtimer_cancel(&to->timer);
2239                 destroy_hrtimer_on_stack(&to->timer);
2240         }
2241         return ret;
2242 }
2243
2244
2245 static long futex_wait_restart(struct restart_block *restart)
2246 {
2247         u32 __user *uaddr = restart->futex.uaddr;
2248         ktime_t t, *tp = NULL;
2249
2250         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2251                 t.tv64 = restart->futex.time;
2252                 tp = &t;
2253         }
2254         restart->fn = do_no_restart_syscall;
2255
2256         return (long)futex_wait(uaddr, restart->futex.flags,
2257                                 restart->futex.val, tp, restart->futex.bitset);
2258 }
2259
2260
2261 /*
2262  * Userspace tried a 0 -> TID atomic transition of the futex value
2263  * and failed. The kernel side here does the whole locking operation:
2264  * if there are waiters then it will block, it does PI, etc. (Due to
2265  * races the kernel might see a 0 value of the futex too.)
2266  */
2267 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2268                          ktime_t *time, int trylock)
2269 {
2270         struct hrtimer_sleeper timeout, *to = NULL;
2271         struct futex_hash_bucket *hb;
2272         struct futex_q q = futex_q_init;
2273         int res, ret;
2274
2275         if (refill_pi_state_cache())
2276                 return -ENOMEM;
2277
2278         if (time) {
2279                 to = &timeout;
2280                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2281                                       HRTIMER_MODE_ABS);
2282                 hrtimer_init_sleeper(to, current);
2283                 hrtimer_set_expires(&to->timer, *time);
2284         }
2285
2286 retry:
2287         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2288         if (unlikely(ret != 0))
2289                 goto out;
2290
2291 retry_private:
2292         hb = queue_lock(&q);
2293
2294         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2295         if (unlikely(ret)) {
2296                 switch (ret) {
2297                 case 1:
2298                         /* We got the lock. */
2299                         ret = 0;
2300                         goto out_unlock_put_key;
2301                 case -EFAULT:
2302                         goto uaddr_faulted;
2303                 case -EAGAIN:
2304                         /*
2305                          * Task is exiting and we just wait for the
2306                          * exit to complete.
2307                          */
2308                         queue_unlock(hb);
2309                         put_futex_key(&q.key);
2310                         cond_resched();
2311                         goto retry;
2312                 default:
2313                         goto out_unlock_put_key;
2314                 }
2315         }
2316
2317         /*
2318          * Only actually queue now that the atomic ops are done:
2319          */
2320         queue_me(&q, hb);
2321
2322         WARN_ON(!q.pi_state);
2323         /*
2324          * Block on the PI mutex:
2325          */
2326         if (!trylock)
2327                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2328         else {
2329                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2330                 /* Fixup the trylock return value: */
2331                 ret = ret ? 0 : -EWOULDBLOCK;
2332         }
2333
2334         spin_lock(q.lock_ptr);
2335         /*
2336          * Fixup the pi_state owner and possibly acquire the lock if we
2337          * haven't already.
2338          */
2339         res = fixup_owner(uaddr, &q, !ret);
2340         /*
2341          * If fixup_owner() returned an error, proprogate that.  If it acquired
2342          * the lock, clear our -ETIMEDOUT or -EINTR.
2343          */
2344         if (res)
2345                 ret = (res < 0) ? res : 0;
2346
2347         /*
2348          * If fixup_owner() faulted and was unable to handle the fault, unlock
2349          * it and return the fault to userspace.
2350          */
2351         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2352                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2353
2354         /* Unqueue and drop the lock */
2355         unqueue_me_pi(&q);
2356
2357         goto out_put_key;
2358
2359 out_unlock_put_key:
2360         queue_unlock(hb);
2361
2362 out_put_key:
2363         put_futex_key(&q.key);
2364 out:
2365         if (to)
2366                 destroy_hrtimer_on_stack(&to->timer);
2367         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2368
2369 uaddr_faulted:
2370         queue_unlock(hb);
2371
2372         ret = fault_in_user_writeable(uaddr);
2373         if (ret)
2374                 goto out_put_key;
2375
2376         if (!(flags & FLAGS_SHARED))
2377                 goto retry_private;
2378
2379         put_futex_key(&q.key);
2380         goto retry;
2381 }
2382
2383 /*
2384  * Userspace attempted a TID -> 0 atomic transition, and failed.
2385  * This is the in-kernel slowpath: we look up the PI state (if any),
2386  * and do the rt-mutex unlock.
2387  */
2388 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2389 {
2390         struct futex_hash_bucket *hb;
2391         struct futex_q *this, *next;
2392         union futex_key key = FUTEX_KEY_INIT;
2393         u32 uval, vpid = task_pid_vnr(current);
2394         int ret;
2395
2396 retry:
2397         if (get_user(uval, uaddr))
2398                 return -EFAULT;
2399         /*
2400          * We release only a lock we actually own:
2401          */
2402         if ((uval & FUTEX_TID_MASK) != vpid)
2403                 return -EPERM;
2404
2405         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2406         if (unlikely(ret != 0))
2407                 goto out;
2408
2409         hb = hash_futex(&key);
2410         spin_lock(&hb->lock);
2411
2412         /*
2413          * To avoid races, try to do the TID -> 0 atomic transition
2414          * again. If it succeeds then we can return without waking
2415          * anyone else up. We only try this if neither the waiters nor
2416          * the owner died bit are set.
2417          */
2418         if (!(uval & ~FUTEX_TID_MASK) &&
2419             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2420                 goto pi_faulted;
2421         /*
2422          * Rare case: we managed to release the lock atomically,
2423          * no need to wake anyone else up:
2424          */
2425         if (unlikely(uval == vpid))
2426                 goto out_unlock;
2427
2428         /*
2429          * Ok, other tasks may need to be woken up - check waiters
2430          * and do the wakeup if necessary:
2431          */
2432         plist_for_each_entry_safe(this, next, &hb->chain, list) {
2433                 if (!match_futex (&this->key, &key))
2434                         continue;
2435                 ret = wake_futex_pi(uaddr, uval, this);
2436                 /*
2437                  * The atomic access to the futex value
2438                  * generated a pagefault, so retry the
2439                  * user-access and the wakeup:
2440                  */
2441                 if (ret == -EFAULT)
2442                         goto pi_faulted;
2443                 goto out_unlock;
2444         }
2445         /*
2446          * No waiters - kernel unlocks the futex:
2447          */
2448         ret = unlock_futex_pi(uaddr, uval);
2449         if (ret == -EFAULT)
2450                 goto pi_faulted;
2451
2452 out_unlock:
2453         spin_unlock(&hb->lock);
2454         put_futex_key(&key);
2455
2456 out:
2457         return ret;
2458
2459 pi_faulted:
2460         spin_unlock(&hb->lock);
2461         put_futex_key(&key);
2462
2463         ret = fault_in_user_writeable(uaddr);
2464         if (!ret)
2465                 goto retry;
2466
2467         return ret;
2468 }
2469
2470 /**
2471  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2472  * @hb:         the hash_bucket futex_q was original enqueued on
2473  * @q:          the futex_q woken while waiting to be requeued
2474  * @key2:       the futex_key of the requeue target futex
2475  * @timeout:    the timeout associated with the wait (NULL if none)
2476  *
2477  * Detect if the task was woken on the initial futex as opposed to the requeue
2478  * target futex.  If so, determine if it was a timeout or a signal that caused
2479  * the wakeup and return the appropriate error code to the caller.  Must be
2480  * called with the hb lock held.
2481  *
2482  * Return:
2483  *  0 = no early wakeup detected;
2484  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2485  */
2486 static inline
2487 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2488                                    struct futex_q *q, union futex_key *key2,
2489                                    struct hrtimer_sleeper *timeout)
2490 {
2491         int ret = 0;
2492
2493         /*
2494          * With the hb lock held, we avoid races while we process the wakeup.
2495          * We only need to hold hb (and not hb2) to ensure atomicity as the
2496          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2497          * It can't be requeued from uaddr2 to something else since we don't
2498          * support a PI aware source futex for requeue.
2499          */
2500         if (!match_futex(&q->key, key2)) {
2501                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2502                 /*
2503                  * We were woken prior to requeue by a timeout or a signal.
2504                  * Unqueue the futex_q and determine which it was.
2505                  */
2506                 plist_del(&q->list, &hb->chain);
2507                 hb_waiters_dec(hb);
2508
2509                 /* Handle spurious wakeups gracefully */
2510                 ret = -EWOULDBLOCK;
2511                 if (timeout && !timeout->task)
2512                         ret = -ETIMEDOUT;
2513                 else if (signal_pending(current))
2514                         ret = -ERESTARTNOINTR;
2515         }
2516         return ret;
2517 }
2518
2519 /**
2520  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2521  * @uaddr:      the futex we initially wait on (non-pi)
2522  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2523  *              the same type, no requeueing from private to shared, etc.
2524  * @val:        the expected value of uaddr
2525  * @abs_time:   absolute timeout
2526  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2527  * @uaddr2:     the pi futex we will take prior to returning to user-space
2528  *
2529  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2530  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2531  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2532  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2533  * without one, the pi logic would not know which task to boost/deboost, if
2534  * there was a need to.
2535  *
2536  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2537  * via the following--
2538  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2539  * 2) wakeup on uaddr2 after a requeue
2540  * 3) signal
2541  * 4) timeout
2542  *
2543  * If 3, cleanup and return -ERESTARTNOINTR.
2544  *
2545  * If 2, we may then block on trying to take the rt_mutex and return via:
2546  * 5) successful lock
2547  * 6) signal
2548  * 7) timeout
2549  * 8) other lock acquisition failure
2550  *
2551  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2552  *
2553  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2554  *
2555  * Return:
2556  *  0 - On success;
2557  * <0 - On error
2558  */
2559 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2560                                  u32 val, ktime_t *abs_time, u32 bitset,
2561                                  u32 __user *uaddr2)
2562 {
2563         struct hrtimer_sleeper timeout, *to = NULL;
2564         struct rt_mutex_waiter rt_waiter;
2565         struct rt_mutex *pi_mutex = NULL;
2566         struct futex_hash_bucket *hb;
2567         union futex_key key2 = FUTEX_KEY_INIT;
2568         struct futex_q q = futex_q_init;
2569         int res, ret;
2570
2571         if (uaddr == uaddr2)
2572                 return -EINVAL;
2573
2574         if (!bitset)
2575                 return -EINVAL;
2576
2577         if (abs_time) {
2578                 to = &timeout;
2579                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2580                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2581                                       HRTIMER_MODE_ABS);
2582                 hrtimer_init_sleeper(to, current);
2583                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2584                                              current->timer_slack_ns);
2585         }
2586
2587         /*
2588          * The waiter is allocated on our stack, manipulated by the requeue
2589          * code while we sleep on uaddr.
2590          */
2591         debug_rt_mutex_init_waiter(&rt_waiter);
2592         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2593         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2594         rt_waiter.task = NULL;
2595
2596         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2597         if (unlikely(ret != 0))
2598                 goto out;
2599
2600         q.bitset = bitset;
2601         q.rt_waiter = &rt_waiter;
2602         q.requeue_pi_key = &key2;
2603
2604         /*
2605          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2606          * count.
2607          */
2608         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2609         if (ret)
2610                 goto out_key2;
2611
2612         /*
2613          * The check above which compares uaddrs is not sufficient for
2614          * shared futexes. We need to compare the keys:
2615          */
2616         if (match_futex(&q.key, &key2)) {
2617                 queue_unlock(hb);
2618                 ret = -EINVAL;
2619                 goto out_put_keys;
2620         }
2621
2622         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2623         futex_wait_queue_me(hb, &q, to);
2624
2625         spin_lock(&hb->lock);
2626         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2627         spin_unlock(&hb->lock);
2628         if (ret)
2629                 goto out_put_keys;
2630
2631         /*
2632          * In order for us to be here, we know our q.key == key2, and since
2633          * we took the hb->lock above, we also know that futex_requeue() has
2634          * completed and we no longer have to concern ourselves with a wakeup
2635          * race with the atomic proxy lock acquisition by the requeue code. The
2636          * futex_requeue dropped our key1 reference and incremented our key2
2637          * reference count.
2638          */
2639
2640         /* Check if the requeue code acquired the second futex for us. */
2641         if (!q.rt_waiter) {
2642                 /*
2643                  * Got the lock. We might not be the anticipated owner if we
2644                  * did a lock-steal - fix up the PI-state in that case.
2645                  */
2646                 if (q.pi_state && (q.pi_state->owner != current)) {
2647                         spin_lock(q.lock_ptr);
2648                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2649                         spin_unlock(q.lock_ptr);
2650                 }
2651         } else {
2652                 /*
2653                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2654                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2655                  * the pi_state.
2656                  */
2657                 WARN_ON(!q.pi_state);
2658                 pi_mutex = &q.pi_state->pi_mutex;
2659                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2660                 debug_rt_mutex_free_waiter(&rt_waiter);
2661
2662                 spin_lock(q.lock_ptr);
2663                 /*
2664                  * Fixup the pi_state owner and possibly acquire the lock if we
2665                  * haven't already.
2666                  */
2667                 res = fixup_owner(uaddr2, &q, !ret);
2668                 /*
2669                  * If fixup_owner() returned an error, proprogate that.  If it
2670                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2671                  */
2672                 if (res)
2673                         ret = (res < 0) ? res : 0;
2674
2675                 /* Unqueue and drop the lock. */
2676                 unqueue_me_pi(&q);
2677         }
2678
2679         /*
2680          * If fixup_pi_state_owner() faulted and was unable to handle the
2681          * fault, unlock the rt_mutex and return the fault to userspace.
2682          */
2683         if (ret == -EFAULT) {
2684                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2685                         rt_mutex_unlock(pi_mutex);
2686         } else if (ret == -EINTR) {
2687                 /*
2688                  * We've already been requeued, but cannot restart by calling
2689                  * futex_lock_pi() directly. We could restart this syscall, but
2690                  * it would detect that the user space "val" changed and return
2691                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2692                  * -EWOULDBLOCK directly.
2693                  */
2694                 ret = -EWOULDBLOCK;
2695         }
2696
2697 out_put_keys:
2698         put_futex_key(&q.key);
2699 out_key2:
2700         put_futex_key(&key2);
2701
2702 out:
2703         if (to) {
2704                 hrtimer_cancel(&to->timer);
2705                 destroy_hrtimer_on_stack(&to->timer);
2706         }
2707         return ret;
2708 }
2709
2710 /*
2711  * Support for robust futexes: the kernel cleans up held futexes at
2712  * thread exit time.
2713  *
2714  * Implementation: user-space maintains a per-thread list of locks it
2715  * is holding. Upon do_exit(), the kernel carefully walks this list,
2716  * and marks all locks that are owned by this thread with the
2717  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2718  * always manipulated with the lock held, so the list is private and
2719  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2720  * field, to allow the kernel to clean up if the thread dies after
2721  * acquiring the lock, but just before it could have added itself to
2722  * the list. There can only be one such pending lock.
2723  */
2724
2725 /**
2726  * sys_set_robust_list() - Set the robust-futex list head of a task
2727  * @head:       pointer to the list-head
2728  * @len:        length of the list-head, as userspace expects
2729  */
2730 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2731                 size_t, len)
2732 {
2733         if (!futex_cmpxchg_enabled)
2734                 return -ENOSYS;
2735         /*
2736          * The kernel knows only one size for now:
2737          */
2738         if (unlikely(len != sizeof(*head)))
2739                 return -EINVAL;
2740
2741         current->robust_list = head;
2742
2743         return 0;
2744 }
2745
2746 /**
2747  * sys_get_robust_list() - Get the robust-futex list head of a task
2748  * @pid:        pid of the process [zero for current task]
2749  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2750  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2751  */
2752 SYSCALL_DEFINE3(get_robust_list, int, pid,
2753                 struct robust_list_head __user * __user *, head_ptr,
2754                 size_t __user *, len_ptr)
2755 {
2756         struct robust_list_head __user *head;
2757         unsigned long ret;
2758         struct task_struct *p;
2759
2760         if (!futex_cmpxchg_enabled)
2761                 return -ENOSYS;
2762
2763         rcu_read_lock();
2764
2765         ret = -ESRCH;
2766         if (!pid)
2767                 p = current;
2768         else {
2769                 p = find_task_by_vpid(pid);
2770                 if (!p)
2771                         goto err_unlock;
2772         }
2773
2774         ret = -EPERM;
2775         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2776                 goto err_unlock;
2777
2778         head = p->robust_list;
2779         rcu_read_unlock();
2780
2781         if (put_user(sizeof(*head), len_ptr))
2782                 return -EFAULT;
2783         return put_user(head, head_ptr);
2784
2785 err_unlock:
2786         rcu_read_unlock();
2787
2788         return ret;
2789 }
2790
2791 /*
2792  * Process a futex-list entry, check whether it's owned by the
2793  * dying task, and do notification if so:
2794  */
2795 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2796 {
2797         u32 uval, uninitialized_var(nval), mval;
2798
2799 retry:
2800         if (get_user(uval, uaddr))
2801                 return -1;
2802
2803         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2804                 /*
2805                  * Ok, this dying thread is truly holding a futex
2806                  * of interest. Set the OWNER_DIED bit atomically
2807                  * via cmpxchg, and if the value had FUTEX_WAITERS
2808                  * set, wake up a waiter (if any). (We have to do a
2809                  * futex_wake() even if OWNER_DIED is already set -
2810                  * to handle the rare but possible case of recursive
2811                  * thread-death.) The rest of the cleanup is done in
2812                  * userspace.
2813                  */
2814                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2815                 /*
2816                  * We are not holding a lock here, but we want to have
2817                  * the pagefault_disable/enable() protection because
2818                  * we want to handle the fault gracefully. If the
2819                  * access fails we try to fault in the futex with R/W
2820                  * verification via get_user_pages. get_user() above
2821                  * does not guarantee R/W access. If that fails we
2822                  * give up and leave the futex locked.
2823                  */
2824                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2825                         if (fault_in_user_writeable(uaddr))
2826                                 return -1;
2827                         goto retry;
2828                 }
2829                 if (nval != uval)
2830                         goto retry;
2831
2832                 /*
2833                  * Wake robust non-PI futexes here. The wakeup of
2834                  * PI futexes happens in exit_pi_state():
2835                  */
2836                 if (!pi && (uval & FUTEX_WAITERS))
2837                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2838         }
2839         return 0;
2840 }
2841
2842 /*
2843  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2844  */
2845 static inline int fetch_robust_entry(struct robust_list __user **entry,
2846                                      struct robust_list __user * __user *head,
2847                                      unsigned int *pi)
2848 {
2849         unsigned long uentry;
2850
2851         if (get_user(uentry, (unsigned long __user *)head))
2852                 return -EFAULT;
2853
2854         *entry = (void __user *)(uentry & ~1UL);
2855         *pi = uentry & 1;
2856
2857         return 0;
2858 }
2859
2860 /*
2861  * Walk curr->robust_list (very carefully, it's a userspace list!)
2862  * and mark any locks found there dead, and notify any waiters.
2863  *
2864  * We silently return on any sign of list-walking problem.
2865  */
2866 void exit_robust_list(struct task_struct *curr)
2867 {
2868         struct robust_list_head __user *head = curr->robust_list;
2869         struct robust_list __user *entry, *next_entry, *pending;
2870         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2871         unsigned int uninitialized_var(next_pi);
2872         unsigned long futex_offset;
2873         int rc;
2874
2875         if (!futex_cmpxchg_enabled)
2876                 return;
2877
2878         /*
2879          * Fetch the list head (which was registered earlier, via
2880          * sys_set_robust_list()):
2881          */
2882         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2883                 return;
2884         /*
2885          * Fetch the relative futex offset:
2886          */
2887         if (get_user(futex_offset, &head->futex_offset))
2888                 return;
2889         /*
2890          * Fetch any possibly pending lock-add first, and handle it
2891          * if it exists:
2892          */
2893         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2894                 return;
2895
2896         next_entry = NULL;      /* avoid warning with gcc */
2897         while (entry != &head->list) {
2898                 /*
2899                  * Fetch the next entry in the list before calling
2900                  * handle_futex_death:
2901                  */
2902                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2903                 /*
2904                  * A pending lock might already be on the list, so
2905                  * don't process it twice:
2906                  */
2907                 if (entry != pending)
2908                         if (handle_futex_death((void __user *)entry + futex_offset,
2909                                                 curr, pi))
2910                                 return;
2911                 if (rc)
2912                         return;
2913                 entry = next_entry;
2914                 pi = next_pi;
2915                 /*
2916                  * Avoid excessively long or circular lists:
2917                  */
2918                 if (!--limit)
2919                         break;
2920
2921                 cond_resched();
2922         }
2923
2924         if (pending)
2925                 handle_futex_death((void __user *)pending + futex_offset,
2926                                    curr, pip);
2927 }
2928
2929 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2930                 u32 __user *uaddr2, u32 val2, u32 val3)
2931 {
2932         int cmd = op & FUTEX_CMD_MASK;
2933         unsigned int flags = 0;
2934
2935         if (!(op & FUTEX_PRIVATE_FLAG))
2936                 flags |= FLAGS_SHARED;
2937
2938         if (op & FUTEX_CLOCK_REALTIME) {
2939                 flags |= FLAGS_CLOCKRT;
2940                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2941                         return -ENOSYS;
2942         }
2943
2944         switch (cmd) {
2945         case FUTEX_LOCK_PI:
2946         case FUTEX_UNLOCK_PI:
2947         case FUTEX_TRYLOCK_PI:
2948         case FUTEX_WAIT_REQUEUE_PI:
2949         case FUTEX_CMP_REQUEUE_PI:
2950                 if (!futex_cmpxchg_enabled)
2951                         return -ENOSYS;
2952         }
2953
2954         switch (cmd) {
2955         case FUTEX_WAIT:
2956                 val3 = FUTEX_BITSET_MATCH_ANY;
2957         case FUTEX_WAIT_BITSET:
2958                 return futex_wait(uaddr, flags, val, timeout, val3);
2959         case FUTEX_WAKE:
2960                 val3 = FUTEX_BITSET_MATCH_ANY;
2961         case FUTEX_WAKE_BITSET:
2962                 return futex_wake(uaddr, flags, val, val3);
2963         case FUTEX_REQUEUE:
2964                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2965         case FUTEX_CMP_REQUEUE:
2966                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2967         case FUTEX_WAKE_OP:
2968                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2969         case FUTEX_LOCK_PI:
2970                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2971         case FUTEX_UNLOCK_PI:
2972                 return futex_unlock_pi(uaddr, flags);
2973         case FUTEX_TRYLOCK_PI:
2974                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2975         case FUTEX_WAIT_REQUEUE_PI:
2976                 val3 = FUTEX_BITSET_MATCH_ANY;
2977                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2978                                              uaddr2);
2979         case FUTEX_CMP_REQUEUE_PI:
2980                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2981         }
2982         return -ENOSYS;
2983 }
2984
2985
2986 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2987                 struct timespec __user *, utime, u32 __user *, uaddr2,
2988                 u32, val3)
2989 {
2990         struct timespec ts;
2991         ktime_t t, *tp = NULL;
2992         u32 val2 = 0;
2993         int cmd = op & FUTEX_CMD_MASK;
2994
2995         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2996                       cmd == FUTEX_WAIT_BITSET ||
2997                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2998                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2999                         return -EFAULT;
3000                 if (!timespec_valid(&ts))
3001                         return -EINVAL;
3002
3003                 t = timespec_to_ktime(ts);
3004                 if (cmd == FUTEX_WAIT)
3005                         t = ktime_add_safe(ktime_get(), t);
3006                 tp = &t;
3007         }
3008         /*
3009          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3010          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3011          */
3012         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3013             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3014                 val2 = (u32) (unsigned long) utime;
3015
3016         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3017 }
3018
3019 static void __init futex_detect_cmpxchg(void)
3020 {
3021 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3022         u32 curval;
3023
3024         /*
3025          * This will fail and we want it. Some arch implementations do
3026          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3027          * functionality. We want to know that before we call in any
3028          * of the complex code paths. Also we want to prevent
3029          * registration of robust lists in that case. NULL is
3030          * guaranteed to fault and we get -EFAULT on functional
3031          * implementation, the non-functional ones will return
3032          * -ENOSYS.
3033          */
3034         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3035                 futex_cmpxchg_enabled = 1;
3036 #endif
3037 }
3038
3039 static int __init futex_init(void)
3040 {
3041         unsigned int futex_shift;
3042         unsigned long i;
3043
3044 #if CONFIG_BASE_SMALL
3045         futex_hashsize = 16;
3046 #else
3047         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3048 #endif
3049
3050         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3051                                                futex_hashsize, 0,
3052                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3053                                                &futex_shift, NULL,
3054                                                futex_hashsize, futex_hashsize);
3055         futex_hashsize = 1UL << futex_shift;
3056
3057         futex_detect_cmpxchg();
3058
3059         for (i = 0; i < futex_hashsize; i++) {
3060                 atomic_set(&futex_queues[i].waiters, 0);
3061                 plist_head_init(&futex_queues[i].chain);
3062                 spin_lock_init(&futex_queues[i].lock);
3063         }
3064
3065         return 0;
3066 }
3067 __initcall(futex_init);