Merge tag 'input-for-v6.1-rc0' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor...
[platform/kernel/linux-starfive.git] / kernel / futex / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/memblock.h>
38 #include <linux/fault-inject.h>
39 #include <linux/slab.h>
40
41 #include "futex.h"
42 #include "../locking/rtmutex_common.h"
43
44 /*
45  * The base of the bucket array and its size are always used together
46  * (after initialization only in futex_hash()), so ensure that they
47  * reside in the same cacheline.
48  */
49 static struct {
50         struct futex_hash_bucket *queues;
51         unsigned long            hashsize;
52 } __futex_data __read_mostly __aligned(2*sizeof(long));
53 #define futex_queues   (__futex_data.queues)
54 #define futex_hashsize (__futex_data.hashsize)
55
56
57 /*
58  * Fault injections for futexes.
59  */
60 #ifdef CONFIG_FAIL_FUTEX
61
62 static struct {
63         struct fault_attr attr;
64
65         bool ignore_private;
66 } fail_futex = {
67         .attr = FAULT_ATTR_INITIALIZER,
68         .ignore_private = false,
69 };
70
71 static int __init setup_fail_futex(char *str)
72 {
73         return setup_fault_attr(&fail_futex.attr, str);
74 }
75 __setup("fail_futex=", setup_fail_futex);
76
77 bool should_fail_futex(bool fshared)
78 {
79         if (fail_futex.ignore_private && !fshared)
80                 return false;
81
82         return should_fail(&fail_futex.attr, 1);
83 }
84
85 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
86
87 static int __init fail_futex_debugfs(void)
88 {
89         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
90         struct dentry *dir;
91
92         dir = fault_create_debugfs_attr("fail_futex", NULL,
93                                         &fail_futex.attr);
94         if (IS_ERR(dir))
95                 return PTR_ERR(dir);
96
97         debugfs_create_bool("ignore-private", mode, dir,
98                             &fail_futex.ignore_private);
99         return 0;
100 }
101
102 late_initcall(fail_futex_debugfs);
103
104 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
105
106 #endif /* CONFIG_FAIL_FUTEX */
107
108 /**
109  * futex_hash - Return the hash bucket in the global hash
110  * @key:        Pointer to the futex key for which the hash is calculated
111  *
112  * We hash on the keys returned from get_futex_key (see below) and return the
113  * corresponding hash bucket in the global hash.
114  */
115 struct futex_hash_bucket *futex_hash(union futex_key *key)
116 {
117         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
118                           key->both.offset);
119
120         return &futex_queues[hash & (futex_hashsize - 1)];
121 }
122
123
124 /**
125  * futex_setup_timer - set up the sleeping hrtimer.
126  * @time:       ptr to the given timeout value
127  * @timeout:    the hrtimer_sleeper structure to be set up
128  * @flags:      futex flags
129  * @range_ns:   optional range in ns
130  *
131  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
132  *         value given
133  */
134 struct hrtimer_sleeper *
135 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
136                   int flags, u64 range_ns)
137 {
138         if (!time)
139                 return NULL;
140
141         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
142                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
143                                       HRTIMER_MODE_ABS);
144         /*
145          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
146          * effectively the same as calling hrtimer_set_expires().
147          */
148         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
149
150         return timeout;
151 }
152
153 /*
154  * Generate a machine wide unique identifier for this inode.
155  *
156  * This relies on u64 not wrapping in the life-time of the machine; which with
157  * 1ns resolution means almost 585 years.
158  *
159  * This further relies on the fact that a well formed program will not unmap
160  * the file while it has a (shared) futex waiting on it. This mapping will have
161  * a file reference which pins the mount and inode.
162  *
163  * If for some reason an inode gets evicted and read back in again, it will get
164  * a new sequence number and will _NOT_ match, even though it is the exact same
165  * file.
166  *
167  * It is important that futex_match() will never have a false-positive, esp.
168  * for PI futexes that can mess up the state. The above argues that false-negatives
169  * are only possible for malformed programs.
170  */
171 static u64 get_inode_sequence_number(struct inode *inode)
172 {
173         static atomic64_t i_seq;
174         u64 old;
175
176         /* Does the inode already have a sequence number? */
177         old = atomic64_read(&inode->i_sequence);
178         if (likely(old))
179                 return old;
180
181         for (;;) {
182                 u64 new = atomic64_add_return(1, &i_seq);
183                 if (WARN_ON_ONCE(!new))
184                         continue;
185
186                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
187                 if (old)
188                         return old;
189                 return new;
190         }
191 }
192
193 /**
194  * get_futex_key() - Get parameters which are the keys for a futex
195  * @uaddr:      virtual address of the futex
196  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
197  * @key:        address where result is stored.
198  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
199  *              FUTEX_WRITE)
200  *
201  * Return: a negative error code or 0
202  *
203  * The key words are stored in @key on success.
204  *
205  * For shared mappings (when @fshared), the key is:
206  *
207  *   ( inode->i_sequence, page->index, offset_within_page )
208  *
209  * [ also see get_inode_sequence_number() ]
210  *
211  * For private mappings (or when !@fshared), the key is:
212  *
213  *   ( current->mm, address, 0 )
214  *
215  * This allows (cross process, where applicable) identification of the futex
216  * without keeping the page pinned for the duration of the FUTEX_WAIT.
217  *
218  * lock_page() might sleep, the caller should not hold a spinlock.
219  */
220 int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
221                   enum futex_access rw)
222 {
223         unsigned long address = (unsigned long)uaddr;
224         struct mm_struct *mm = current->mm;
225         struct page *page, *tail;
226         struct address_space *mapping;
227         int err, ro = 0;
228
229         /*
230          * The futex address must be "naturally" aligned.
231          */
232         key->both.offset = address % PAGE_SIZE;
233         if (unlikely((address % sizeof(u32)) != 0))
234                 return -EINVAL;
235         address -= key->both.offset;
236
237         if (unlikely(!access_ok(uaddr, sizeof(u32))))
238                 return -EFAULT;
239
240         if (unlikely(should_fail_futex(fshared)))
241                 return -EFAULT;
242
243         /*
244          * PROCESS_PRIVATE futexes are fast.
245          * As the mm cannot disappear under us and the 'key' only needs
246          * virtual address, we dont even have to find the underlying vma.
247          * Note : We do have to check 'uaddr' is a valid user address,
248          *        but access_ok() should be faster than find_vma()
249          */
250         if (!fshared) {
251                 key->private.mm = mm;
252                 key->private.address = address;
253                 return 0;
254         }
255
256 again:
257         /* Ignore any VERIFY_READ mapping (futex common case) */
258         if (unlikely(should_fail_futex(true)))
259                 return -EFAULT;
260
261         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
262         /*
263          * If write access is not required (eg. FUTEX_WAIT), try
264          * and get read-only access.
265          */
266         if (err == -EFAULT && rw == FUTEX_READ) {
267                 err = get_user_pages_fast(address, 1, 0, &page);
268                 ro = 1;
269         }
270         if (err < 0)
271                 return err;
272         else
273                 err = 0;
274
275         /*
276          * The treatment of mapping from this point on is critical. The page
277          * lock protects many things but in this context the page lock
278          * stabilizes mapping, prevents inode freeing in the shared
279          * file-backed region case and guards against movement to swap cache.
280          *
281          * Strictly speaking the page lock is not needed in all cases being
282          * considered here and page lock forces unnecessarily serialization
283          * From this point on, mapping will be re-verified if necessary and
284          * page lock will be acquired only if it is unavoidable
285          *
286          * Mapping checks require the head page for any compound page so the
287          * head page and mapping is looked up now. For anonymous pages, it
288          * does not matter if the page splits in the future as the key is
289          * based on the address. For filesystem-backed pages, the tail is
290          * required as the index of the page determines the key. For
291          * base pages, there is no tail page and tail == page.
292          */
293         tail = page;
294         page = compound_head(page);
295         mapping = READ_ONCE(page->mapping);
296
297         /*
298          * If page->mapping is NULL, then it cannot be a PageAnon
299          * page; but it might be the ZERO_PAGE or in the gate area or
300          * in a special mapping (all cases which we are happy to fail);
301          * or it may have been a good file page when get_user_pages_fast
302          * found it, but truncated or holepunched or subjected to
303          * invalidate_complete_page2 before we got the page lock (also
304          * cases which we are happy to fail).  And we hold a reference,
305          * so refcount care in invalidate_inode_page's remove_mapping
306          * prevents drop_caches from setting mapping to NULL beneath us.
307          *
308          * The case we do have to guard against is when memory pressure made
309          * shmem_writepage move it from filecache to swapcache beneath us:
310          * an unlikely race, but we do need to retry for page->mapping.
311          */
312         if (unlikely(!mapping)) {
313                 int shmem_swizzled;
314
315                 /*
316                  * Page lock is required to identify which special case above
317                  * applies. If this is really a shmem page then the page lock
318                  * will prevent unexpected transitions.
319                  */
320                 lock_page(page);
321                 shmem_swizzled = PageSwapCache(page) || page->mapping;
322                 unlock_page(page);
323                 put_page(page);
324
325                 if (shmem_swizzled)
326                         goto again;
327
328                 return -EFAULT;
329         }
330
331         /*
332          * Private mappings are handled in a simple way.
333          *
334          * If the futex key is stored on an anonymous page, then the associated
335          * object is the mm which is implicitly pinned by the calling process.
336          *
337          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
338          * it's a read-only handle, it's expected that futexes attach to
339          * the object not the particular process.
340          */
341         if (PageAnon(page)) {
342                 /*
343                  * A RO anonymous page will never change and thus doesn't make
344                  * sense for futex operations.
345                  */
346                 if (unlikely(should_fail_futex(true)) || ro) {
347                         err = -EFAULT;
348                         goto out;
349                 }
350
351                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
352                 key->private.mm = mm;
353                 key->private.address = address;
354
355         } else {
356                 struct inode *inode;
357
358                 /*
359                  * The associated futex object in this case is the inode and
360                  * the page->mapping must be traversed. Ordinarily this should
361                  * be stabilised under page lock but it's not strictly
362                  * necessary in this case as we just want to pin the inode, not
363                  * update the radix tree or anything like that.
364                  *
365                  * The RCU read lock is taken as the inode is finally freed
366                  * under RCU. If the mapping still matches expectations then the
367                  * mapping->host can be safely accessed as being a valid inode.
368                  */
369                 rcu_read_lock();
370
371                 if (READ_ONCE(page->mapping) != mapping) {
372                         rcu_read_unlock();
373                         put_page(page);
374
375                         goto again;
376                 }
377
378                 inode = READ_ONCE(mapping->host);
379                 if (!inode) {
380                         rcu_read_unlock();
381                         put_page(page);
382
383                         goto again;
384                 }
385
386                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
387                 key->shared.i_seq = get_inode_sequence_number(inode);
388                 key->shared.pgoff = page_to_pgoff(tail);
389                 rcu_read_unlock();
390         }
391
392 out:
393         put_page(page);
394         return err;
395 }
396
397 /**
398  * fault_in_user_writeable() - Fault in user address and verify RW access
399  * @uaddr:      pointer to faulting user space address
400  *
401  * Slow path to fixup the fault we just took in the atomic write
402  * access to @uaddr.
403  *
404  * We have no generic implementation of a non-destructive write to the
405  * user address. We know that we faulted in the atomic pagefault
406  * disabled section so we can as well avoid the #PF overhead by
407  * calling get_user_pages() right away.
408  */
409 int fault_in_user_writeable(u32 __user *uaddr)
410 {
411         struct mm_struct *mm = current->mm;
412         int ret;
413
414         mmap_read_lock(mm);
415         ret = fixup_user_fault(mm, (unsigned long)uaddr,
416                                FAULT_FLAG_WRITE, NULL);
417         mmap_read_unlock(mm);
418
419         return ret < 0 ? ret : 0;
420 }
421
422 /**
423  * futex_top_waiter() - Return the highest priority waiter on a futex
424  * @hb:         the hash bucket the futex_q's reside in
425  * @key:        the futex key (to distinguish it from other futex futex_q's)
426  *
427  * Must be called with the hb lock held.
428  */
429 struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
430 {
431         struct futex_q *this;
432
433         plist_for_each_entry(this, &hb->chain, list) {
434                 if (futex_match(&this->key, key))
435                         return this;
436         }
437         return NULL;
438 }
439
440 int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval)
441 {
442         int ret;
443
444         pagefault_disable();
445         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
446         pagefault_enable();
447
448         return ret;
449 }
450
451 int futex_get_value_locked(u32 *dest, u32 __user *from)
452 {
453         int ret;
454
455         pagefault_disable();
456         ret = __get_user(*dest, from);
457         pagefault_enable();
458
459         return ret ? -EFAULT : 0;
460 }
461
462 /**
463  * wait_for_owner_exiting - Block until the owner has exited
464  * @ret: owner's current futex lock status
465  * @exiting:    Pointer to the exiting task
466  *
467  * Caller must hold a refcount on @exiting.
468  */
469 void wait_for_owner_exiting(int ret, struct task_struct *exiting)
470 {
471         if (ret != -EBUSY) {
472                 WARN_ON_ONCE(exiting);
473                 return;
474         }
475
476         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
477                 return;
478
479         mutex_lock(&exiting->futex_exit_mutex);
480         /*
481          * No point in doing state checking here. If the waiter got here
482          * while the task was in exec()->exec_futex_release() then it can
483          * have any FUTEX_STATE_* value when the waiter has acquired the
484          * mutex. OK, if running, EXITING or DEAD if it reached exit()
485          * already. Highly unlikely and not a problem. Just one more round
486          * through the futex maze.
487          */
488         mutex_unlock(&exiting->futex_exit_mutex);
489
490         put_task_struct(exiting);
491 }
492
493 /**
494  * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
495  * @q:  The futex_q to unqueue
496  *
497  * The q->lock_ptr must not be NULL and must be held by the caller.
498  */
499 void __futex_unqueue(struct futex_q *q)
500 {
501         struct futex_hash_bucket *hb;
502
503         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
504                 return;
505         lockdep_assert_held(q->lock_ptr);
506
507         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
508         plist_del(&q->list, &hb->chain);
509         futex_hb_waiters_dec(hb);
510 }
511
512 /* The key must be already stored in q->key. */
513 struct futex_hash_bucket *futex_q_lock(struct futex_q *q)
514         __acquires(&hb->lock)
515 {
516         struct futex_hash_bucket *hb;
517
518         hb = futex_hash(&q->key);
519
520         /*
521          * Increment the counter before taking the lock so that
522          * a potential waker won't miss a to-be-slept task that is
523          * waiting for the spinlock. This is safe as all futex_q_lock()
524          * users end up calling futex_queue(). Similarly, for housekeeping,
525          * decrement the counter at futex_q_unlock() when some error has
526          * occurred and we don't end up adding the task to the list.
527          */
528         futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
529
530         q->lock_ptr = &hb->lock;
531
532         spin_lock(&hb->lock);
533         return hb;
534 }
535
536 void futex_q_unlock(struct futex_hash_bucket *hb)
537         __releases(&hb->lock)
538 {
539         spin_unlock(&hb->lock);
540         futex_hb_waiters_dec(hb);
541 }
542
543 void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
544 {
545         int prio;
546
547         /*
548          * The priority used to register this element is
549          * - either the real thread-priority for the real-time threads
550          * (i.e. threads with a priority lower than MAX_RT_PRIO)
551          * - or MAX_RT_PRIO for non-RT threads.
552          * Thus, all RT-threads are woken first in priority order, and
553          * the others are woken last, in FIFO order.
554          */
555         prio = min(current->normal_prio, MAX_RT_PRIO);
556
557         plist_node_init(&q->list, prio);
558         plist_add(&q->list, &hb->chain);
559         q->task = current;
560 }
561
562 /**
563  * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
564  * @q:  The futex_q to unqueue
565  *
566  * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
567  * be paired with exactly one earlier call to futex_queue().
568  *
569  * Return:
570  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
571  *  - 0 - if the futex_q was already removed by the waking thread
572  */
573 int futex_unqueue(struct futex_q *q)
574 {
575         spinlock_t *lock_ptr;
576         int ret = 0;
577
578         /* In the common case we don't take the spinlock, which is nice. */
579 retry:
580         /*
581          * q->lock_ptr can change between this read and the following spin_lock.
582          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
583          * optimizing lock_ptr out of the logic below.
584          */
585         lock_ptr = READ_ONCE(q->lock_ptr);
586         if (lock_ptr != NULL) {
587                 spin_lock(lock_ptr);
588                 /*
589                  * q->lock_ptr can change between reading it and
590                  * spin_lock(), causing us to take the wrong lock.  This
591                  * corrects the race condition.
592                  *
593                  * Reasoning goes like this: if we have the wrong lock,
594                  * q->lock_ptr must have changed (maybe several times)
595                  * between reading it and the spin_lock().  It can
596                  * change again after the spin_lock() but only if it was
597                  * already changed before the spin_lock().  It cannot,
598                  * however, change back to the original value.  Therefore
599                  * we can detect whether we acquired the correct lock.
600                  */
601                 if (unlikely(lock_ptr != q->lock_ptr)) {
602                         spin_unlock(lock_ptr);
603                         goto retry;
604                 }
605                 __futex_unqueue(q);
606
607                 BUG_ON(q->pi_state);
608
609                 spin_unlock(lock_ptr);
610                 ret = 1;
611         }
612
613         return ret;
614 }
615
616 /*
617  * PI futexes can not be requeued and must remove themselves from the
618  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
619  */
620 void futex_unqueue_pi(struct futex_q *q)
621 {
622         __futex_unqueue(q);
623
624         BUG_ON(!q->pi_state);
625         put_pi_state(q->pi_state);
626         q->pi_state = NULL;
627 }
628
629 /* Constants for the pending_op argument of handle_futex_death */
630 #define HANDLE_DEATH_PENDING    true
631 #define HANDLE_DEATH_LIST       false
632
633 /*
634  * Process a futex-list entry, check whether it's owned by the
635  * dying task, and do notification if so:
636  */
637 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
638                               bool pi, bool pending_op)
639 {
640         u32 uval, nval, mval;
641         int err;
642
643         /* Futex address must be 32bit aligned */
644         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
645                 return -1;
646
647 retry:
648         if (get_user(uval, uaddr))
649                 return -1;
650
651         /*
652          * Special case for regular (non PI) futexes. The unlock path in
653          * user space has two race scenarios:
654          *
655          * 1. The unlock path releases the user space futex value and
656          *    before it can execute the futex() syscall to wake up
657          *    waiters it is killed.
658          *
659          * 2. A woken up waiter is killed before it can acquire the
660          *    futex in user space.
661          *
662          * In both cases the TID validation below prevents a wakeup of
663          * potential waiters which can cause these waiters to block
664          * forever.
665          *
666          * In both cases the following conditions are met:
667          *
668          *      1) task->robust_list->list_op_pending != NULL
669          *         @pending_op == true
670          *      2) User space futex value == 0
671          *      3) Regular futex: @pi == false
672          *
673          * If these conditions are met, it is safe to attempt waking up a
674          * potential waiter without touching the user space futex value and
675          * trying to set the OWNER_DIED bit. The user space futex value is
676          * uncontended and the rest of the user space mutex state is
677          * consistent, so a woken waiter will just take over the
678          * uncontended futex. Setting the OWNER_DIED bit would create
679          * inconsistent state and malfunction of the user space owner died
680          * handling.
681          */
682         if (pending_op && !pi && !uval) {
683                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
684                 return 0;
685         }
686
687         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
688                 return 0;
689
690         /*
691          * Ok, this dying thread is truly holding a futex
692          * of interest. Set the OWNER_DIED bit atomically
693          * via cmpxchg, and if the value had FUTEX_WAITERS
694          * set, wake up a waiter (if any). (We have to do a
695          * futex_wake() even if OWNER_DIED is already set -
696          * to handle the rare but possible case of recursive
697          * thread-death.) The rest of the cleanup is done in
698          * userspace.
699          */
700         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
701
702         /*
703          * We are not holding a lock here, but we want to have
704          * the pagefault_disable/enable() protection because
705          * we want to handle the fault gracefully. If the
706          * access fails we try to fault in the futex with R/W
707          * verification via get_user_pages. get_user() above
708          * does not guarantee R/W access. If that fails we
709          * give up and leave the futex locked.
710          */
711         if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
712                 switch (err) {
713                 case -EFAULT:
714                         if (fault_in_user_writeable(uaddr))
715                                 return -1;
716                         goto retry;
717
718                 case -EAGAIN:
719                         cond_resched();
720                         goto retry;
721
722                 default:
723                         WARN_ON_ONCE(1);
724                         return err;
725                 }
726         }
727
728         if (nval != uval)
729                 goto retry;
730
731         /*
732          * Wake robust non-PI futexes here. The wakeup of
733          * PI futexes happens in exit_pi_state():
734          */
735         if (!pi && (uval & FUTEX_WAITERS))
736                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
737
738         return 0;
739 }
740
741 /*
742  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
743  */
744 static inline int fetch_robust_entry(struct robust_list __user **entry,
745                                      struct robust_list __user * __user *head,
746                                      unsigned int *pi)
747 {
748         unsigned long uentry;
749
750         if (get_user(uentry, (unsigned long __user *)head))
751                 return -EFAULT;
752
753         *entry = (void __user *)(uentry & ~1UL);
754         *pi = uentry & 1;
755
756         return 0;
757 }
758
759 /*
760  * Walk curr->robust_list (very carefully, it's a userspace list!)
761  * and mark any locks found there dead, and notify any waiters.
762  *
763  * We silently return on any sign of list-walking problem.
764  */
765 static void exit_robust_list(struct task_struct *curr)
766 {
767         struct robust_list_head __user *head = curr->robust_list;
768         struct robust_list __user *entry, *next_entry, *pending;
769         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
770         unsigned int next_pi;
771         unsigned long futex_offset;
772         int rc;
773
774         /*
775          * Fetch the list head (which was registered earlier, via
776          * sys_set_robust_list()):
777          */
778         if (fetch_robust_entry(&entry, &head->list.next, &pi))
779                 return;
780         /*
781          * Fetch the relative futex offset:
782          */
783         if (get_user(futex_offset, &head->futex_offset))
784                 return;
785         /*
786          * Fetch any possibly pending lock-add first, and handle it
787          * if it exists:
788          */
789         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
790                 return;
791
792         next_entry = NULL;      /* avoid warning with gcc */
793         while (entry != &head->list) {
794                 /*
795                  * Fetch the next entry in the list before calling
796                  * handle_futex_death:
797                  */
798                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
799                 /*
800                  * A pending lock might already be on the list, so
801                  * don't process it twice:
802                  */
803                 if (entry != pending) {
804                         if (handle_futex_death((void __user *)entry + futex_offset,
805                                                 curr, pi, HANDLE_DEATH_LIST))
806                                 return;
807                 }
808                 if (rc)
809                         return;
810                 entry = next_entry;
811                 pi = next_pi;
812                 /*
813                  * Avoid excessively long or circular lists:
814                  */
815                 if (!--limit)
816                         break;
817
818                 cond_resched();
819         }
820
821         if (pending) {
822                 handle_futex_death((void __user *)pending + futex_offset,
823                                    curr, pip, HANDLE_DEATH_PENDING);
824         }
825 }
826
827 #ifdef CONFIG_COMPAT
828 static void __user *futex_uaddr(struct robust_list __user *entry,
829                                 compat_long_t futex_offset)
830 {
831         compat_uptr_t base = ptr_to_compat(entry);
832         void __user *uaddr = compat_ptr(base + futex_offset);
833
834         return uaddr;
835 }
836
837 /*
838  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
839  */
840 static inline int
841 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
842                    compat_uptr_t __user *head, unsigned int *pi)
843 {
844         if (get_user(*uentry, head))
845                 return -EFAULT;
846
847         *entry = compat_ptr((*uentry) & ~1);
848         *pi = (unsigned int)(*uentry) & 1;
849
850         return 0;
851 }
852
853 /*
854  * Walk curr->robust_list (very carefully, it's a userspace list!)
855  * and mark any locks found there dead, and notify any waiters.
856  *
857  * We silently return on any sign of list-walking problem.
858  */
859 static void compat_exit_robust_list(struct task_struct *curr)
860 {
861         struct compat_robust_list_head __user *head = curr->compat_robust_list;
862         struct robust_list __user *entry, *next_entry, *pending;
863         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
864         unsigned int next_pi;
865         compat_uptr_t uentry, next_uentry, upending;
866         compat_long_t futex_offset;
867         int rc;
868
869         /*
870          * Fetch the list head (which was registered earlier, via
871          * sys_set_robust_list()):
872          */
873         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
874                 return;
875         /*
876          * Fetch the relative futex offset:
877          */
878         if (get_user(futex_offset, &head->futex_offset))
879                 return;
880         /*
881          * Fetch any possibly pending lock-add first, and handle it
882          * if it exists:
883          */
884         if (compat_fetch_robust_entry(&upending, &pending,
885                                &head->list_op_pending, &pip))
886                 return;
887
888         next_entry = NULL;      /* avoid warning with gcc */
889         while (entry != (struct robust_list __user *) &head->list) {
890                 /*
891                  * Fetch the next entry in the list before calling
892                  * handle_futex_death:
893                  */
894                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
895                         (compat_uptr_t __user *)&entry->next, &next_pi);
896                 /*
897                  * A pending lock might already be on the list, so
898                  * dont process it twice:
899                  */
900                 if (entry != pending) {
901                         void __user *uaddr = futex_uaddr(entry, futex_offset);
902
903                         if (handle_futex_death(uaddr, curr, pi,
904                                                HANDLE_DEATH_LIST))
905                                 return;
906                 }
907                 if (rc)
908                         return;
909                 uentry = next_uentry;
910                 entry = next_entry;
911                 pi = next_pi;
912                 /*
913                  * Avoid excessively long or circular lists:
914                  */
915                 if (!--limit)
916                         break;
917
918                 cond_resched();
919         }
920         if (pending) {
921                 void __user *uaddr = futex_uaddr(pending, futex_offset);
922
923                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
924         }
925 }
926 #endif
927
928 #ifdef CONFIG_FUTEX_PI
929
930 /*
931  * This task is holding PI mutexes at exit time => bad.
932  * Kernel cleans up PI-state, but userspace is likely hosed.
933  * (Robust-futex cleanup is separate and might save the day for userspace.)
934  */
935 static void exit_pi_state_list(struct task_struct *curr)
936 {
937         struct list_head *next, *head = &curr->pi_state_list;
938         struct futex_pi_state *pi_state;
939         struct futex_hash_bucket *hb;
940         union futex_key key = FUTEX_KEY_INIT;
941
942         /*
943          * We are a ZOMBIE and nobody can enqueue itself on
944          * pi_state_list anymore, but we have to be careful
945          * versus waiters unqueueing themselves:
946          */
947         raw_spin_lock_irq(&curr->pi_lock);
948         while (!list_empty(head)) {
949                 next = head->next;
950                 pi_state = list_entry(next, struct futex_pi_state, list);
951                 key = pi_state->key;
952                 hb = futex_hash(&key);
953
954                 /*
955                  * We can race against put_pi_state() removing itself from the
956                  * list (a waiter going away). put_pi_state() will first
957                  * decrement the reference count and then modify the list, so
958                  * its possible to see the list entry but fail this reference
959                  * acquire.
960                  *
961                  * In that case; drop the locks to let put_pi_state() make
962                  * progress and retry the loop.
963                  */
964                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
965                         raw_spin_unlock_irq(&curr->pi_lock);
966                         cpu_relax();
967                         raw_spin_lock_irq(&curr->pi_lock);
968                         continue;
969                 }
970                 raw_spin_unlock_irq(&curr->pi_lock);
971
972                 spin_lock(&hb->lock);
973                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
974                 raw_spin_lock(&curr->pi_lock);
975                 /*
976                  * We dropped the pi-lock, so re-check whether this
977                  * task still owns the PI-state:
978                  */
979                 if (head->next != next) {
980                         /* retain curr->pi_lock for the loop invariant */
981                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
982                         spin_unlock(&hb->lock);
983                         put_pi_state(pi_state);
984                         continue;
985                 }
986
987                 WARN_ON(pi_state->owner != curr);
988                 WARN_ON(list_empty(&pi_state->list));
989                 list_del_init(&pi_state->list);
990                 pi_state->owner = NULL;
991
992                 raw_spin_unlock(&curr->pi_lock);
993                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
994                 spin_unlock(&hb->lock);
995
996                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
997                 put_pi_state(pi_state);
998
999                 raw_spin_lock_irq(&curr->pi_lock);
1000         }
1001         raw_spin_unlock_irq(&curr->pi_lock);
1002 }
1003 #else
1004 static inline void exit_pi_state_list(struct task_struct *curr) { }
1005 #endif
1006
1007 static void futex_cleanup(struct task_struct *tsk)
1008 {
1009         if (unlikely(tsk->robust_list)) {
1010                 exit_robust_list(tsk);
1011                 tsk->robust_list = NULL;
1012         }
1013
1014 #ifdef CONFIG_COMPAT
1015         if (unlikely(tsk->compat_robust_list)) {
1016                 compat_exit_robust_list(tsk);
1017                 tsk->compat_robust_list = NULL;
1018         }
1019 #endif
1020
1021         if (unlikely(!list_empty(&tsk->pi_state_list)))
1022                 exit_pi_state_list(tsk);
1023 }
1024
1025 /**
1026  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
1027  * @tsk:        task to set the state on
1028  *
1029  * Set the futex exit state of the task lockless. The futex waiter code
1030  * observes that state when a task is exiting and loops until the task has
1031  * actually finished the futex cleanup. The worst case for this is that the
1032  * waiter runs through the wait loop until the state becomes visible.
1033  *
1034  * This is called from the recursive fault handling path in make_task_dead().
1035  *
1036  * This is best effort. Either the futex exit code has run already or
1037  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
1038  * take it over. If not, the problem is pushed back to user space. If the
1039  * futex exit code did not run yet, then an already queued waiter might
1040  * block forever, but there is nothing which can be done about that.
1041  */
1042 void futex_exit_recursive(struct task_struct *tsk)
1043 {
1044         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
1045         if (tsk->futex_state == FUTEX_STATE_EXITING)
1046                 mutex_unlock(&tsk->futex_exit_mutex);
1047         tsk->futex_state = FUTEX_STATE_DEAD;
1048 }
1049
1050 static void futex_cleanup_begin(struct task_struct *tsk)
1051 {
1052         /*
1053          * Prevent various race issues against a concurrent incoming waiter
1054          * including live locks by forcing the waiter to block on
1055          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
1056          * attach_to_pi_owner().
1057          */
1058         mutex_lock(&tsk->futex_exit_mutex);
1059
1060         /*
1061          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
1062          *
1063          * This ensures that all subsequent checks of tsk->futex_state in
1064          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
1065          * tsk->pi_lock held.
1066          *
1067          * It guarantees also that a pi_state which was queued right before
1068          * the state change under tsk->pi_lock by a concurrent waiter must
1069          * be observed in exit_pi_state_list().
1070          */
1071         raw_spin_lock_irq(&tsk->pi_lock);
1072         tsk->futex_state = FUTEX_STATE_EXITING;
1073         raw_spin_unlock_irq(&tsk->pi_lock);
1074 }
1075
1076 static void futex_cleanup_end(struct task_struct *tsk, int state)
1077 {
1078         /*
1079          * Lockless store. The only side effect is that an observer might
1080          * take another loop until it becomes visible.
1081          */
1082         tsk->futex_state = state;
1083         /*
1084          * Drop the exit protection. This unblocks waiters which observed
1085          * FUTEX_STATE_EXITING to reevaluate the state.
1086          */
1087         mutex_unlock(&tsk->futex_exit_mutex);
1088 }
1089
1090 void futex_exec_release(struct task_struct *tsk)
1091 {
1092         /*
1093          * The state handling is done for consistency, but in the case of
1094          * exec() there is no way to prevent further damage as the PID stays
1095          * the same. But for the unlikely and arguably buggy case that a
1096          * futex is held on exec(), this provides at least as much state
1097          * consistency protection which is possible.
1098          */
1099         futex_cleanup_begin(tsk);
1100         futex_cleanup(tsk);
1101         /*
1102          * Reset the state to FUTEX_STATE_OK. The task is alive and about
1103          * exec a new binary.
1104          */
1105         futex_cleanup_end(tsk, FUTEX_STATE_OK);
1106 }
1107
1108 void futex_exit_release(struct task_struct *tsk)
1109 {
1110         futex_cleanup_begin(tsk);
1111         futex_cleanup(tsk);
1112         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
1113 }
1114
1115 static int __init futex_init(void)
1116 {
1117         unsigned int futex_shift;
1118         unsigned long i;
1119
1120 #if CONFIG_BASE_SMALL
1121         futex_hashsize = 16;
1122 #else
1123         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
1124 #endif
1125
1126         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
1127                                                futex_hashsize, 0,
1128                                                futex_hashsize < 256 ? HASH_SMALL : 0,
1129                                                &futex_shift, NULL,
1130                                                futex_hashsize, futex_hashsize);
1131         futex_hashsize = 1UL << futex_shift;
1132
1133         for (i = 0; i < futex_hashsize; i++) {
1134                 atomic_set(&futex_queues[i].waiters, 0);
1135                 plist_head_init(&futex_queues[i].chain);
1136                 spin_lock_init(&futex_queues[i].lock);
1137         }
1138
1139         return 0;
1140 }
1141 core_initcall(futex_init);