Merge tag 'perf-tools-for-v6.1-1-2022-10-07' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-starfive.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 #include <linux/sched/mm.h>
101
102 #include <asm/pgalloc.h>
103 #include <linux/uaccess.h>
104 #include <asm/mmu_context.h>
105 #include <asm/cacheflush.h>
106 #include <asm/tlbflush.h>
107
108 #include <trace/events/sched.h>
109
110 #define CREATE_TRACE_POINTS
111 #include <trace/events/task.h>
112
113 /*
114  * Minimum number of threads to boot the kernel
115  */
116 #define MIN_THREADS 20
117
118 /*
119  * Maximum number of threads
120  */
121 #define MAX_THREADS FUTEX_TID_MASK
122
123 /*
124  * Protected counters by write_lock_irq(&tasklist_lock)
125  */
126 unsigned long total_forks;      /* Handle normal Linux uptimes. */
127 int nr_threads;                 /* The idle threads do not count.. */
128
129 static int max_threads;         /* tunable limit on nr_threads */
130
131 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
132
133 static const char * const resident_page_types[] = {
134         NAMED_ARRAY_INDEX(MM_FILEPAGES),
135         NAMED_ARRAY_INDEX(MM_ANONPAGES),
136         NAMED_ARRAY_INDEX(MM_SWAPENTS),
137         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
138 };
139
140 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
141
142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
143
144 #ifdef CONFIG_PROVE_RCU
145 int lockdep_tasklist_lock_is_held(void)
146 {
147         return lockdep_is_held(&tasklist_lock);
148 }
149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
150 #endif /* #ifdef CONFIG_PROVE_RCU */
151
152 int nr_processes(void)
153 {
154         int cpu;
155         int total = 0;
156
157         for_each_possible_cpu(cpu)
158                 total += per_cpu(process_counts, cpu);
159
160         return total;
161 }
162
163 void __weak arch_release_task_struct(struct task_struct *tsk)
164 {
165 }
166
167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
168 static struct kmem_cache *task_struct_cachep;
169
170 static inline struct task_struct *alloc_task_struct_node(int node)
171 {
172         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
173 }
174
175 static inline void free_task_struct(struct task_struct *tsk)
176 {
177         kmem_cache_free(task_struct_cachep, tsk);
178 }
179 #endif
180
181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
182
183 /*
184  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
185  * kmemcache based allocator.
186  */
187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
188
189 #  ifdef CONFIG_VMAP_STACK
190 /*
191  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
192  * flush.  Try to minimize the number of calls by caching stacks.
193  */
194 #define NR_CACHED_STACKS 2
195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
196
197 struct vm_stack {
198         struct rcu_head rcu;
199         struct vm_struct *stack_vm_area;
200 };
201
202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
203 {
204         unsigned int i;
205
206         for (i = 0; i < NR_CACHED_STACKS; i++) {
207                 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
208                         continue;
209                 return true;
210         }
211         return false;
212 }
213
214 static void thread_stack_free_rcu(struct rcu_head *rh)
215 {
216         struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
217
218         if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
219                 return;
220
221         vfree(vm_stack);
222 }
223
224 static void thread_stack_delayed_free(struct task_struct *tsk)
225 {
226         struct vm_stack *vm_stack = tsk->stack;
227
228         vm_stack->stack_vm_area = tsk->stack_vm_area;
229         call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
230 }
231
232 static int free_vm_stack_cache(unsigned int cpu)
233 {
234         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
235         int i;
236
237         for (i = 0; i < NR_CACHED_STACKS; i++) {
238                 struct vm_struct *vm_stack = cached_vm_stacks[i];
239
240                 if (!vm_stack)
241                         continue;
242
243                 vfree(vm_stack->addr);
244                 cached_vm_stacks[i] = NULL;
245         }
246
247         return 0;
248 }
249
250 static int memcg_charge_kernel_stack(struct vm_struct *vm)
251 {
252         int i;
253         int ret;
254
255         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
256         BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
257
258         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
259                 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
260                 if (ret)
261                         goto err;
262         }
263         return 0;
264 err:
265         /*
266          * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
267          * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
268          * ignore this page.
269          */
270         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
271                 memcg_kmem_uncharge_page(vm->pages[i], 0);
272         return ret;
273 }
274
275 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
276 {
277         struct vm_struct *vm;
278         void *stack;
279         int i;
280
281         for (i = 0; i < NR_CACHED_STACKS; i++) {
282                 struct vm_struct *s;
283
284                 s = this_cpu_xchg(cached_stacks[i], NULL);
285
286                 if (!s)
287                         continue;
288
289                 /* Reset stack metadata. */
290                 kasan_unpoison_range(s->addr, THREAD_SIZE);
291
292                 stack = kasan_reset_tag(s->addr);
293
294                 /* Clear stale pointers from reused stack. */
295                 memset(stack, 0, THREAD_SIZE);
296
297                 if (memcg_charge_kernel_stack(s)) {
298                         vfree(s->addr);
299                         return -ENOMEM;
300                 }
301
302                 tsk->stack_vm_area = s;
303                 tsk->stack = stack;
304                 return 0;
305         }
306
307         /*
308          * Allocated stacks are cached and later reused by new threads,
309          * so memcg accounting is performed manually on assigning/releasing
310          * stacks to tasks. Drop __GFP_ACCOUNT.
311          */
312         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
313                                      VMALLOC_START, VMALLOC_END,
314                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
315                                      PAGE_KERNEL,
316                                      0, node, __builtin_return_address(0));
317         if (!stack)
318                 return -ENOMEM;
319
320         vm = find_vm_area(stack);
321         if (memcg_charge_kernel_stack(vm)) {
322                 vfree(stack);
323                 return -ENOMEM;
324         }
325         /*
326          * We can't call find_vm_area() in interrupt context, and
327          * free_thread_stack() can be called in interrupt context,
328          * so cache the vm_struct.
329          */
330         tsk->stack_vm_area = vm;
331         stack = kasan_reset_tag(stack);
332         tsk->stack = stack;
333         return 0;
334 }
335
336 static void free_thread_stack(struct task_struct *tsk)
337 {
338         if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
339                 thread_stack_delayed_free(tsk);
340
341         tsk->stack = NULL;
342         tsk->stack_vm_area = NULL;
343 }
344
345 #  else /* !CONFIG_VMAP_STACK */
346
347 static void thread_stack_free_rcu(struct rcu_head *rh)
348 {
349         __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
350 }
351
352 static void thread_stack_delayed_free(struct task_struct *tsk)
353 {
354         struct rcu_head *rh = tsk->stack;
355
356         call_rcu(rh, thread_stack_free_rcu);
357 }
358
359 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
360 {
361         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
362                                              THREAD_SIZE_ORDER);
363
364         if (likely(page)) {
365                 tsk->stack = kasan_reset_tag(page_address(page));
366                 return 0;
367         }
368         return -ENOMEM;
369 }
370
371 static void free_thread_stack(struct task_struct *tsk)
372 {
373         thread_stack_delayed_free(tsk);
374         tsk->stack = NULL;
375 }
376
377 #  endif /* CONFIG_VMAP_STACK */
378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
379
380 static struct kmem_cache *thread_stack_cache;
381
382 static void thread_stack_free_rcu(struct rcu_head *rh)
383 {
384         kmem_cache_free(thread_stack_cache, rh);
385 }
386
387 static void thread_stack_delayed_free(struct task_struct *tsk)
388 {
389         struct rcu_head *rh = tsk->stack;
390
391         call_rcu(rh, thread_stack_free_rcu);
392 }
393
394 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
395 {
396         unsigned long *stack;
397         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
398         stack = kasan_reset_tag(stack);
399         tsk->stack = stack;
400         return stack ? 0 : -ENOMEM;
401 }
402
403 static void free_thread_stack(struct task_struct *tsk)
404 {
405         thread_stack_delayed_free(tsk);
406         tsk->stack = NULL;
407 }
408
409 void thread_stack_cache_init(void)
410 {
411         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
412                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
413                                         THREAD_SIZE, NULL);
414         BUG_ON(thread_stack_cache == NULL);
415 }
416
417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
418 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
419
420 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
421 {
422         unsigned long *stack;
423
424         stack = arch_alloc_thread_stack_node(tsk, node);
425         tsk->stack = stack;
426         return stack ? 0 : -ENOMEM;
427 }
428
429 static void free_thread_stack(struct task_struct *tsk)
430 {
431         arch_free_thread_stack(tsk);
432         tsk->stack = NULL;
433 }
434
435 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
436
437 /* SLAB cache for signal_struct structures (tsk->signal) */
438 static struct kmem_cache *signal_cachep;
439
440 /* SLAB cache for sighand_struct structures (tsk->sighand) */
441 struct kmem_cache *sighand_cachep;
442
443 /* SLAB cache for files_struct structures (tsk->files) */
444 struct kmem_cache *files_cachep;
445
446 /* SLAB cache for fs_struct structures (tsk->fs) */
447 struct kmem_cache *fs_cachep;
448
449 /* SLAB cache for vm_area_struct structures */
450 static struct kmem_cache *vm_area_cachep;
451
452 /* SLAB cache for mm_struct structures (tsk->mm) */
453 static struct kmem_cache *mm_cachep;
454
455 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
456 {
457         struct vm_area_struct *vma;
458
459         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
460         if (vma)
461                 vma_init(vma, mm);
462         return vma;
463 }
464
465 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
466 {
467         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
468
469         if (new) {
470                 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
471                 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
472                 /*
473                  * orig->shared.rb may be modified concurrently, but the clone
474                  * will be reinitialized.
475                  */
476                 *new = data_race(*orig);
477                 INIT_LIST_HEAD(&new->anon_vma_chain);
478                 dup_anon_vma_name(orig, new);
479         }
480         return new;
481 }
482
483 void vm_area_free(struct vm_area_struct *vma)
484 {
485         free_anon_vma_name(vma);
486         kmem_cache_free(vm_area_cachep, vma);
487 }
488
489 static void account_kernel_stack(struct task_struct *tsk, int account)
490 {
491         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
492                 struct vm_struct *vm = task_stack_vm_area(tsk);
493                 int i;
494
495                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
496                         mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
497                                               account * (PAGE_SIZE / 1024));
498         } else {
499                 void *stack = task_stack_page(tsk);
500
501                 /* All stack pages are in the same node. */
502                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
503                                       account * (THREAD_SIZE / 1024));
504         }
505 }
506
507 void exit_task_stack_account(struct task_struct *tsk)
508 {
509         account_kernel_stack(tsk, -1);
510
511         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
512                 struct vm_struct *vm;
513                 int i;
514
515                 vm = task_stack_vm_area(tsk);
516                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
517                         memcg_kmem_uncharge_page(vm->pages[i], 0);
518         }
519 }
520
521 static void release_task_stack(struct task_struct *tsk)
522 {
523         if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
524                 return;  /* Better to leak the stack than to free prematurely */
525
526         free_thread_stack(tsk);
527 }
528
529 #ifdef CONFIG_THREAD_INFO_IN_TASK
530 void put_task_stack(struct task_struct *tsk)
531 {
532         if (refcount_dec_and_test(&tsk->stack_refcount))
533                 release_task_stack(tsk);
534 }
535 #endif
536
537 void free_task(struct task_struct *tsk)
538 {
539         release_user_cpus_ptr(tsk);
540         scs_release(tsk);
541
542 #ifndef CONFIG_THREAD_INFO_IN_TASK
543         /*
544          * The task is finally done with both the stack and thread_info,
545          * so free both.
546          */
547         release_task_stack(tsk);
548 #else
549         /*
550          * If the task had a separate stack allocation, it should be gone
551          * by now.
552          */
553         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
554 #endif
555         rt_mutex_debug_task_free(tsk);
556         ftrace_graph_exit_task(tsk);
557         arch_release_task_struct(tsk);
558         if (tsk->flags & PF_KTHREAD)
559                 free_kthread_struct(tsk);
560         free_task_struct(tsk);
561 }
562 EXPORT_SYMBOL(free_task);
563
564 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
565 {
566         struct file *exe_file;
567
568         exe_file = get_mm_exe_file(oldmm);
569         RCU_INIT_POINTER(mm->exe_file, exe_file);
570         /*
571          * We depend on the oldmm having properly denied write access to the
572          * exe_file already.
573          */
574         if (exe_file && deny_write_access(exe_file))
575                 pr_warn_once("deny_write_access() failed in %s\n", __func__);
576 }
577
578 #ifdef CONFIG_MMU
579 static __latent_entropy int dup_mmap(struct mm_struct *mm,
580                                         struct mm_struct *oldmm)
581 {
582         struct vm_area_struct *mpnt, *tmp;
583         int retval;
584         unsigned long charge = 0;
585         LIST_HEAD(uf);
586         MA_STATE(old_mas, &oldmm->mm_mt, 0, 0);
587         MA_STATE(mas, &mm->mm_mt, 0, 0);
588
589         uprobe_start_dup_mmap();
590         if (mmap_write_lock_killable(oldmm)) {
591                 retval = -EINTR;
592                 goto fail_uprobe_end;
593         }
594         flush_cache_dup_mm(oldmm);
595         uprobe_dup_mmap(oldmm, mm);
596         /*
597          * Not linked in yet - no deadlock potential:
598          */
599         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
600
601         /* No ordering required: file already has been exposed. */
602         dup_mm_exe_file(mm, oldmm);
603
604         mm->total_vm = oldmm->total_vm;
605         mm->data_vm = oldmm->data_vm;
606         mm->exec_vm = oldmm->exec_vm;
607         mm->stack_vm = oldmm->stack_vm;
608
609         retval = ksm_fork(mm, oldmm);
610         if (retval)
611                 goto out;
612         khugepaged_fork(mm, oldmm);
613
614         retval = mas_expected_entries(&mas, oldmm->map_count);
615         if (retval)
616                 goto out;
617
618         mas_for_each(&old_mas, mpnt, ULONG_MAX) {
619                 struct file *file;
620
621                 if (mpnt->vm_flags & VM_DONTCOPY) {
622                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
623                         continue;
624                 }
625                 charge = 0;
626                 /*
627                  * Don't duplicate many vmas if we've been oom-killed (for
628                  * example)
629                  */
630                 if (fatal_signal_pending(current)) {
631                         retval = -EINTR;
632                         goto loop_out;
633                 }
634                 if (mpnt->vm_flags & VM_ACCOUNT) {
635                         unsigned long len = vma_pages(mpnt);
636
637                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
638                                 goto fail_nomem;
639                         charge = len;
640                 }
641                 tmp = vm_area_dup(mpnt);
642                 if (!tmp)
643                         goto fail_nomem;
644                 retval = vma_dup_policy(mpnt, tmp);
645                 if (retval)
646                         goto fail_nomem_policy;
647                 tmp->vm_mm = mm;
648                 retval = dup_userfaultfd(tmp, &uf);
649                 if (retval)
650                         goto fail_nomem_anon_vma_fork;
651                 if (tmp->vm_flags & VM_WIPEONFORK) {
652                         /*
653                          * VM_WIPEONFORK gets a clean slate in the child.
654                          * Don't prepare anon_vma until fault since we don't
655                          * copy page for current vma.
656                          */
657                         tmp->anon_vma = NULL;
658                 } else if (anon_vma_fork(tmp, mpnt))
659                         goto fail_nomem_anon_vma_fork;
660                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
661                 file = tmp->vm_file;
662                 if (file) {
663                         struct address_space *mapping = file->f_mapping;
664
665                         get_file(file);
666                         i_mmap_lock_write(mapping);
667                         if (tmp->vm_flags & VM_SHARED)
668                                 mapping_allow_writable(mapping);
669                         flush_dcache_mmap_lock(mapping);
670                         /* insert tmp into the share list, just after mpnt */
671                         vma_interval_tree_insert_after(tmp, mpnt,
672                                         &mapping->i_mmap);
673                         flush_dcache_mmap_unlock(mapping);
674                         i_mmap_unlock_write(mapping);
675                 }
676
677                 /*
678                  * Copy/update hugetlb private vma information.
679                  */
680                 if (is_vm_hugetlb_page(tmp))
681                         hugetlb_dup_vma_private(tmp);
682
683                 /* Link the vma into the MT */
684                 mas.index = tmp->vm_start;
685                 mas.last = tmp->vm_end - 1;
686                 mas_store(&mas, tmp);
687                 if (mas_is_err(&mas))
688                         goto fail_nomem_mas_store;
689
690                 mm->map_count++;
691                 if (!(tmp->vm_flags & VM_WIPEONFORK))
692                         retval = copy_page_range(tmp, mpnt);
693
694                 if (tmp->vm_ops && tmp->vm_ops->open)
695                         tmp->vm_ops->open(tmp);
696
697                 if (retval)
698                         goto loop_out;
699         }
700         /* a new mm has just been created */
701         retval = arch_dup_mmap(oldmm, mm);
702 loop_out:
703         mas_destroy(&mas);
704 out:
705         mmap_write_unlock(mm);
706         flush_tlb_mm(oldmm);
707         mmap_write_unlock(oldmm);
708         dup_userfaultfd_complete(&uf);
709 fail_uprobe_end:
710         uprobe_end_dup_mmap();
711         return retval;
712
713 fail_nomem_mas_store:
714         unlink_anon_vmas(tmp);
715 fail_nomem_anon_vma_fork:
716         mpol_put(vma_policy(tmp));
717 fail_nomem_policy:
718         vm_area_free(tmp);
719 fail_nomem:
720         retval = -ENOMEM;
721         vm_unacct_memory(charge);
722         goto loop_out;
723 }
724
725 static inline int mm_alloc_pgd(struct mm_struct *mm)
726 {
727         mm->pgd = pgd_alloc(mm);
728         if (unlikely(!mm->pgd))
729                 return -ENOMEM;
730         return 0;
731 }
732
733 static inline void mm_free_pgd(struct mm_struct *mm)
734 {
735         pgd_free(mm, mm->pgd);
736 }
737 #else
738 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
739 {
740         mmap_write_lock(oldmm);
741         dup_mm_exe_file(mm, oldmm);
742         mmap_write_unlock(oldmm);
743         return 0;
744 }
745 #define mm_alloc_pgd(mm)        (0)
746 #define mm_free_pgd(mm)
747 #endif /* CONFIG_MMU */
748
749 static void check_mm(struct mm_struct *mm)
750 {
751         int i;
752
753         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
754                          "Please make sure 'struct resident_page_types[]' is updated as well");
755
756         for (i = 0; i < NR_MM_COUNTERS; i++) {
757                 long x = atomic_long_read(&mm->rss_stat.count[i]);
758
759                 if (unlikely(x))
760                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
761                                  mm, resident_page_types[i], x);
762         }
763
764         if (mm_pgtables_bytes(mm))
765                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
766                                 mm_pgtables_bytes(mm));
767
768 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
769         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
770 #endif
771 }
772
773 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
774 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
775
776 /*
777  * Called when the last reference to the mm
778  * is dropped: either by a lazy thread or by
779  * mmput. Free the page directory and the mm.
780  */
781 void __mmdrop(struct mm_struct *mm)
782 {
783         BUG_ON(mm == &init_mm);
784         WARN_ON_ONCE(mm == current->mm);
785         WARN_ON_ONCE(mm == current->active_mm);
786         mm_free_pgd(mm);
787         destroy_context(mm);
788         mmu_notifier_subscriptions_destroy(mm);
789         check_mm(mm);
790         put_user_ns(mm->user_ns);
791         mm_pasid_drop(mm);
792         free_mm(mm);
793 }
794 EXPORT_SYMBOL_GPL(__mmdrop);
795
796 static void mmdrop_async_fn(struct work_struct *work)
797 {
798         struct mm_struct *mm;
799
800         mm = container_of(work, struct mm_struct, async_put_work);
801         __mmdrop(mm);
802 }
803
804 static void mmdrop_async(struct mm_struct *mm)
805 {
806         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
807                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
808                 schedule_work(&mm->async_put_work);
809         }
810 }
811
812 static inline void free_signal_struct(struct signal_struct *sig)
813 {
814         taskstats_tgid_free(sig);
815         sched_autogroup_exit(sig);
816         /*
817          * __mmdrop is not safe to call from softirq context on x86 due to
818          * pgd_dtor so postpone it to the async context
819          */
820         if (sig->oom_mm)
821                 mmdrop_async(sig->oom_mm);
822         kmem_cache_free(signal_cachep, sig);
823 }
824
825 static inline void put_signal_struct(struct signal_struct *sig)
826 {
827         if (refcount_dec_and_test(&sig->sigcnt))
828                 free_signal_struct(sig);
829 }
830
831 void __put_task_struct(struct task_struct *tsk)
832 {
833         WARN_ON(!tsk->exit_state);
834         WARN_ON(refcount_read(&tsk->usage));
835         WARN_ON(tsk == current);
836
837         io_uring_free(tsk);
838         cgroup_free(tsk);
839         task_numa_free(tsk, true);
840         security_task_free(tsk);
841         bpf_task_storage_free(tsk);
842         exit_creds(tsk);
843         delayacct_tsk_free(tsk);
844         put_signal_struct(tsk->signal);
845         sched_core_free(tsk);
846         free_task(tsk);
847 }
848 EXPORT_SYMBOL_GPL(__put_task_struct);
849
850 void __init __weak arch_task_cache_init(void) { }
851
852 /*
853  * set_max_threads
854  */
855 static void set_max_threads(unsigned int max_threads_suggested)
856 {
857         u64 threads;
858         unsigned long nr_pages = totalram_pages();
859
860         /*
861          * The number of threads shall be limited such that the thread
862          * structures may only consume a small part of the available memory.
863          */
864         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
865                 threads = MAX_THREADS;
866         else
867                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
868                                     (u64) THREAD_SIZE * 8UL);
869
870         if (threads > max_threads_suggested)
871                 threads = max_threads_suggested;
872
873         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
874 }
875
876 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
877 /* Initialized by the architecture: */
878 int arch_task_struct_size __read_mostly;
879 #endif
880
881 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
882 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
883 {
884         /* Fetch thread_struct whitelist for the architecture. */
885         arch_thread_struct_whitelist(offset, size);
886
887         /*
888          * Handle zero-sized whitelist or empty thread_struct, otherwise
889          * adjust offset to position of thread_struct in task_struct.
890          */
891         if (unlikely(*size == 0))
892                 *offset = 0;
893         else
894                 *offset += offsetof(struct task_struct, thread);
895 }
896 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
897
898 void __init fork_init(void)
899 {
900         int i;
901 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
902 #ifndef ARCH_MIN_TASKALIGN
903 #define ARCH_MIN_TASKALIGN      0
904 #endif
905         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
906         unsigned long useroffset, usersize;
907
908         /* create a slab on which task_structs can be allocated */
909         task_struct_whitelist(&useroffset, &usersize);
910         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
911                         arch_task_struct_size, align,
912                         SLAB_PANIC|SLAB_ACCOUNT,
913                         useroffset, usersize, NULL);
914 #endif
915
916         /* do the arch specific task caches init */
917         arch_task_cache_init();
918
919         set_max_threads(MAX_THREADS);
920
921         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
922         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
923         init_task.signal->rlim[RLIMIT_SIGPENDING] =
924                 init_task.signal->rlim[RLIMIT_NPROC];
925
926         for (i = 0; i < UCOUNT_COUNTS; i++)
927                 init_user_ns.ucount_max[i] = max_threads/2;
928
929         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
930         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
931         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
932         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
933
934 #ifdef CONFIG_VMAP_STACK
935         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
936                           NULL, free_vm_stack_cache);
937 #endif
938
939         scs_init();
940
941         lockdep_init_task(&init_task);
942         uprobes_init();
943 }
944
945 int __weak arch_dup_task_struct(struct task_struct *dst,
946                                                struct task_struct *src)
947 {
948         *dst = *src;
949         return 0;
950 }
951
952 void set_task_stack_end_magic(struct task_struct *tsk)
953 {
954         unsigned long *stackend;
955
956         stackend = end_of_stack(tsk);
957         *stackend = STACK_END_MAGIC;    /* for overflow detection */
958 }
959
960 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
961 {
962         struct task_struct *tsk;
963         int err;
964
965         if (node == NUMA_NO_NODE)
966                 node = tsk_fork_get_node(orig);
967         tsk = alloc_task_struct_node(node);
968         if (!tsk)
969                 return NULL;
970
971         err = arch_dup_task_struct(tsk, orig);
972         if (err)
973                 goto free_tsk;
974
975         err = alloc_thread_stack_node(tsk, node);
976         if (err)
977                 goto free_tsk;
978
979 #ifdef CONFIG_THREAD_INFO_IN_TASK
980         refcount_set(&tsk->stack_refcount, 1);
981 #endif
982         account_kernel_stack(tsk, 1);
983
984         err = scs_prepare(tsk, node);
985         if (err)
986                 goto free_stack;
987
988 #ifdef CONFIG_SECCOMP
989         /*
990          * We must handle setting up seccomp filters once we're under
991          * the sighand lock in case orig has changed between now and
992          * then. Until then, filter must be NULL to avoid messing up
993          * the usage counts on the error path calling free_task.
994          */
995         tsk->seccomp.filter = NULL;
996 #endif
997
998         setup_thread_stack(tsk, orig);
999         clear_user_return_notifier(tsk);
1000         clear_tsk_need_resched(tsk);
1001         set_task_stack_end_magic(tsk);
1002         clear_syscall_work_syscall_user_dispatch(tsk);
1003
1004 #ifdef CONFIG_STACKPROTECTOR
1005         tsk->stack_canary = get_random_canary();
1006 #endif
1007         if (orig->cpus_ptr == &orig->cpus_mask)
1008                 tsk->cpus_ptr = &tsk->cpus_mask;
1009         dup_user_cpus_ptr(tsk, orig, node);
1010
1011         /*
1012          * One for the user space visible state that goes away when reaped.
1013          * One for the scheduler.
1014          */
1015         refcount_set(&tsk->rcu_users, 2);
1016         /* One for the rcu users */
1017         refcount_set(&tsk->usage, 1);
1018 #ifdef CONFIG_BLK_DEV_IO_TRACE
1019         tsk->btrace_seq = 0;
1020 #endif
1021         tsk->splice_pipe = NULL;
1022         tsk->task_frag.page = NULL;
1023         tsk->wake_q.next = NULL;
1024         tsk->worker_private = NULL;
1025
1026         kcov_task_init(tsk);
1027         kmsan_task_create(tsk);
1028         kmap_local_fork(tsk);
1029
1030 #ifdef CONFIG_FAULT_INJECTION
1031         tsk->fail_nth = 0;
1032 #endif
1033
1034 #ifdef CONFIG_BLK_CGROUP
1035         tsk->throttle_queue = NULL;
1036         tsk->use_memdelay = 0;
1037 #endif
1038
1039 #ifdef CONFIG_IOMMU_SVA
1040         tsk->pasid_activated = 0;
1041 #endif
1042
1043 #ifdef CONFIG_MEMCG
1044         tsk->active_memcg = NULL;
1045 #endif
1046
1047 #ifdef CONFIG_CPU_SUP_INTEL
1048         tsk->reported_split_lock = 0;
1049 #endif
1050
1051         return tsk;
1052
1053 free_stack:
1054         exit_task_stack_account(tsk);
1055         free_thread_stack(tsk);
1056 free_tsk:
1057         free_task_struct(tsk);
1058         return NULL;
1059 }
1060
1061 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1062
1063 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1064
1065 static int __init coredump_filter_setup(char *s)
1066 {
1067         default_dump_filter =
1068                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1069                 MMF_DUMP_FILTER_MASK;
1070         return 1;
1071 }
1072
1073 __setup("coredump_filter=", coredump_filter_setup);
1074
1075 #include <linux/init_task.h>
1076
1077 static void mm_init_aio(struct mm_struct *mm)
1078 {
1079 #ifdef CONFIG_AIO
1080         spin_lock_init(&mm->ioctx_lock);
1081         mm->ioctx_table = NULL;
1082 #endif
1083 }
1084
1085 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1086                                            struct task_struct *p)
1087 {
1088 #ifdef CONFIG_MEMCG
1089         if (mm->owner == p)
1090                 WRITE_ONCE(mm->owner, NULL);
1091 #endif
1092 }
1093
1094 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1095 {
1096 #ifdef CONFIG_MEMCG
1097         mm->owner = p;
1098 #endif
1099 }
1100
1101 static void mm_init_uprobes_state(struct mm_struct *mm)
1102 {
1103 #ifdef CONFIG_UPROBES
1104         mm->uprobes_state.xol_area = NULL;
1105 #endif
1106 }
1107
1108 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1109         struct user_namespace *user_ns)
1110 {
1111         mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1112         mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1113         atomic_set(&mm->mm_users, 1);
1114         atomic_set(&mm->mm_count, 1);
1115         seqcount_init(&mm->write_protect_seq);
1116         mmap_init_lock(mm);
1117         INIT_LIST_HEAD(&mm->mmlist);
1118         mm_pgtables_bytes_init(mm);
1119         mm->map_count = 0;
1120         mm->locked_vm = 0;
1121         atomic64_set(&mm->pinned_vm, 0);
1122         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1123         spin_lock_init(&mm->page_table_lock);
1124         spin_lock_init(&mm->arg_lock);
1125         mm_init_cpumask(mm);
1126         mm_init_aio(mm);
1127         mm_init_owner(mm, p);
1128         mm_pasid_init(mm);
1129         RCU_INIT_POINTER(mm->exe_file, NULL);
1130         mmu_notifier_subscriptions_init(mm);
1131         init_tlb_flush_pending(mm);
1132 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1133         mm->pmd_huge_pte = NULL;
1134 #endif
1135         mm_init_uprobes_state(mm);
1136         hugetlb_count_init(mm);
1137
1138         if (current->mm) {
1139                 mm->flags = current->mm->flags & MMF_INIT_MASK;
1140                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1141         } else {
1142                 mm->flags = default_dump_filter;
1143                 mm->def_flags = 0;
1144         }
1145
1146         if (mm_alloc_pgd(mm))
1147                 goto fail_nopgd;
1148
1149         if (init_new_context(p, mm))
1150                 goto fail_nocontext;
1151
1152         mm->user_ns = get_user_ns(user_ns);
1153         lru_gen_init_mm(mm);
1154         return mm;
1155
1156 fail_nocontext:
1157         mm_free_pgd(mm);
1158 fail_nopgd:
1159         free_mm(mm);
1160         return NULL;
1161 }
1162
1163 /*
1164  * Allocate and initialize an mm_struct.
1165  */
1166 struct mm_struct *mm_alloc(void)
1167 {
1168         struct mm_struct *mm;
1169
1170         mm = allocate_mm();
1171         if (!mm)
1172                 return NULL;
1173
1174         memset(mm, 0, sizeof(*mm));
1175         return mm_init(mm, current, current_user_ns());
1176 }
1177
1178 static inline void __mmput(struct mm_struct *mm)
1179 {
1180         VM_BUG_ON(atomic_read(&mm->mm_users));
1181
1182         uprobe_clear_state(mm);
1183         exit_aio(mm);
1184         ksm_exit(mm);
1185         khugepaged_exit(mm); /* must run before exit_mmap */
1186         exit_mmap(mm);
1187         mm_put_huge_zero_page(mm);
1188         set_mm_exe_file(mm, NULL);
1189         if (!list_empty(&mm->mmlist)) {
1190                 spin_lock(&mmlist_lock);
1191                 list_del(&mm->mmlist);
1192                 spin_unlock(&mmlist_lock);
1193         }
1194         if (mm->binfmt)
1195                 module_put(mm->binfmt->module);
1196         lru_gen_del_mm(mm);
1197         mmdrop(mm);
1198 }
1199
1200 /*
1201  * Decrement the use count and release all resources for an mm.
1202  */
1203 void mmput(struct mm_struct *mm)
1204 {
1205         might_sleep();
1206
1207         if (atomic_dec_and_test(&mm->mm_users))
1208                 __mmput(mm);
1209 }
1210 EXPORT_SYMBOL_GPL(mmput);
1211
1212 #ifdef CONFIG_MMU
1213 static void mmput_async_fn(struct work_struct *work)
1214 {
1215         struct mm_struct *mm = container_of(work, struct mm_struct,
1216                                             async_put_work);
1217
1218         __mmput(mm);
1219 }
1220
1221 void mmput_async(struct mm_struct *mm)
1222 {
1223         if (atomic_dec_and_test(&mm->mm_users)) {
1224                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1225                 schedule_work(&mm->async_put_work);
1226         }
1227 }
1228 EXPORT_SYMBOL_GPL(mmput_async);
1229 #endif
1230
1231 /**
1232  * set_mm_exe_file - change a reference to the mm's executable file
1233  *
1234  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1235  *
1236  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1237  * invocations: in mmput() nobody alive left, in execve task is single
1238  * threaded.
1239  *
1240  * Can only fail if new_exe_file != NULL.
1241  */
1242 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1243 {
1244         struct file *old_exe_file;
1245
1246         /*
1247          * It is safe to dereference the exe_file without RCU as
1248          * this function is only called if nobody else can access
1249          * this mm -- see comment above for justification.
1250          */
1251         old_exe_file = rcu_dereference_raw(mm->exe_file);
1252
1253         if (new_exe_file) {
1254                 /*
1255                  * We expect the caller (i.e., sys_execve) to already denied
1256                  * write access, so this is unlikely to fail.
1257                  */
1258                 if (unlikely(deny_write_access(new_exe_file)))
1259                         return -EACCES;
1260                 get_file(new_exe_file);
1261         }
1262         rcu_assign_pointer(mm->exe_file, new_exe_file);
1263         if (old_exe_file) {
1264                 allow_write_access(old_exe_file);
1265                 fput(old_exe_file);
1266         }
1267         return 0;
1268 }
1269
1270 /**
1271  * replace_mm_exe_file - replace a reference to the mm's executable file
1272  *
1273  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1274  * dealing with concurrent invocation and without grabbing the mmap lock in
1275  * write mode.
1276  *
1277  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1278  */
1279 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1280 {
1281         struct vm_area_struct *vma;
1282         struct file *old_exe_file;
1283         int ret = 0;
1284
1285         /* Forbid mm->exe_file change if old file still mapped. */
1286         old_exe_file = get_mm_exe_file(mm);
1287         if (old_exe_file) {
1288                 VMA_ITERATOR(vmi, mm, 0);
1289                 mmap_read_lock(mm);
1290                 for_each_vma(vmi, vma) {
1291                         if (!vma->vm_file)
1292                                 continue;
1293                         if (path_equal(&vma->vm_file->f_path,
1294                                        &old_exe_file->f_path)) {
1295                                 ret = -EBUSY;
1296                                 break;
1297                         }
1298                 }
1299                 mmap_read_unlock(mm);
1300                 fput(old_exe_file);
1301                 if (ret)
1302                         return ret;
1303         }
1304
1305         /* set the new file, lockless */
1306         ret = deny_write_access(new_exe_file);
1307         if (ret)
1308                 return -EACCES;
1309         get_file(new_exe_file);
1310
1311         old_exe_file = xchg(&mm->exe_file, new_exe_file);
1312         if (old_exe_file) {
1313                 /*
1314                  * Don't race with dup_mmap() getting the file and disallowing
1315                  * write access while someone might open the file writable.
1316                  */
1317                 mmap_read_lock(mm);
1318                 allow_write_access(old_exe_file);
1319                 fput(old_exe_file);
1320                 mmap_read_unlock(mm);
1321         }
1322         return 0;
1323 }
1324
1325 /**
1326  * get_mm_exe_file - acquire a reference to the mm's executable file
1327  *
1328  * Returns %NULL if mm has no associated executable file.
1329  * User must release file via fput().
1330  */
1331 struct file *get_mm_exe_file(struct mm_struct *mm)
1332 {
1333         struct file *exe_file;
1334
1335         rcu_read_lock();
1336         exe_file = rcu_dereference(mm->exe_file);
1337         if (exe_file && !get_file_rcu(exe_file))
1338                 exe_file = NULL;
1339         rcu_read_unlock();
1340         return exe_file;
1341 }
1342
1343 /**
1344  * get_task_exe_file - acquire a reference to the task's executable file
1345  *
1346  * Returns %NULL if task's mm (if any) has no associated executable file or
1347  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1348  * User must release file via fput().
1349  */
1350 struct file *get_task_exe_file(struct task_struct *task)
1351 {
1352         struct file *exe_file = NULL;
1353         struct mm_struct *mm;
1354
1355         task_lock(task);
1356         mm = task->mm;
1357         if (mm) {
1358                 if (!(task->flags & PF_KTHREAD))
1359                         exe_file = get_mm_exe_file(mm);
1360         }
1361         task_unlock(task);
1362         return exe_file;
1363 }
1364
1365 /**
1366  * get_task_mm - acquire a reference to the task's mm
1367  *
1368  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1369  * this kernel workthread has transiently adopted a user mm with use_mm,
1370  * to do its AIO) is not set and if so returns a reference to it, after
1371  * bumping up the use count.  User must release the mm via mmput()
1372  * after use.  Typically used by /proc and ptrace.
1373  */
1374 struct mm_struct *get_task_mm(struct task_struct *task)
1375 {
1376         struct mm_struct *mm;
1377
1378         task_lock(task);
1379         mm = task->mm;
1380         if (mm) {
1381                 if (task->flags & PF_KTHREAD)
1382                         mm = NULL;
1383                 else
1384                         mmget(mm);
1385         }
1386         task_unlock(task);
1387         return mm;
1388 }
1389 EXPORT_SYMBOL_GPL(get_task_mm);
1390
1391 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1392 {
1393         struct mm_struct *mm;
1394         int err;
1395
1396         err =  down_read_killable(&task->signal->exec_update_lock);
1397         if (err)
1398                 return ERR_PTR(err);
1399
1400         mm = get_task_mm(task);
1401         if (mm && mm != current->mm &&
1402                         !ptrace_may_access(task, mode)) {
1403                 mmput(mm);
1404                 mm = ERR_PTR(-EACCES);
1405         }
1406         up_read(&task->signal->exec_update_lock);
1407
1408         return mm;
1409 }
1410
1411 static void complete_vfork_done(struct task_struct *tsk)
1412 {
1413         struct completion *vfork;
1414
1415         task_lock(tsk);
1416         vfork = tsk->vfork_done;
1417         if (likely(vfork)) {
1418                 tsk->vfork_done = NULL;
1419                 complete(vfork);
1420         }
1421         task_unlock(tsk);
1422 }
1423
1424 static int wait_for_vfork_done(struct task_struct *child,
1425                                 struct completion *vfork)
1426 {
1427         unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1428         int killed;
1429
1430         cgroup_enter_frozen();
1431         killed = wait_for_completion_state(vfork, state);
1432         cgroup_leave_frozen(false);
1433
1434         if (killed) {
1435                 task_lock(child);
1436                 child->vfork_done = NULL;
1437                 task_unlock(child);
1438         }
1439
1440         put_task_struct(child);
1441         return killed;
1442 }
1443
1444 /* Please note the differences between mmput and mm_release.
1445  * mmput is called whenever we stop holding onto a mm_struct,
1446  * error success whatever.
1447  *
1448  * mm_release is called after a mm_struct has been removed
1449  * from the current process.
1450  *
1451  * This difference is important for error handling, when we
1452  * only half set up a mm_struct for a new process and need to restore
1453  * the old one.  Because we mmput the new mm_struct before
1454  * restoring the old one. . .
1455  * Eric Biederman 10 January 1998
1456  */
1457 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1458 {
1459         uprobe_free_utask(tsk);
1460
1461         /* Get rid of any cached register state */
1462         deactivate_mm(tsk, mm);
1463
1464         /*
1465          * Signal userspace if we're not exiting with a core dump
1466          * because we want to leave the value intact for debugging
1467          * purposes.
1468          */
1469         if (tsk->clear_child_tid) {
1470                 if (atomic_read(&mm->mm_users) > 1) {
1471                         /*
1472                          * We don't check the error code - if userspace has
1473                          * not set up a proper pointer then tough luck.
1474                          */
1475                         put_user(0, tsk->clear_child_tid);
1476                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1477                                         1, NULL, NULL, 0, 0);
1478                 }
1479                 tsk->clear_child_tid = NULL;
1480         }
1481
1482         /*
1483          * All done, finally we can wake up parent and return this mm to him.
1484          * Also kthread_stop() uses this completion for synchronization.
1485          */
1486         if (tsk->vfork_done)
1487                 complete_vfork_done(tsk);
1488 }
1489
1490 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1491 {
1492         futex_exit_release(tsk);
1493         mm_release(tsk, mm);
1494 }
1495
1496 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1497 {
1498         futex_exec_release(tsk);
1499         mm_release(tsk, mm);
1500 }
1501
1502 /**
1503  * dup_mm() - duplicates an existing mm structure
1504  * @tsk: the task_struct with which the new mm will be associated.
1505  * @oldmm: the mm to duplicate.
1506  *
1507  * Allocates a new mm structure and duplicates the provided @oldmm structure
1508  * content into it.
1509  *
1510  * Return: the duplicated mm or NULL on failure.
1511  */
1512 static struct mm_struct *dup_mm(struct task_struct *tsk,
1513                                 struct mm_struct *oldmm)
1514 {
1515         struct mm_struct *mm;
1516         int err;
1517
1518         mm = allocate_mm();
1519         if (!mm)
1520                 goto fail_nomem;
1521
1522         memcpy(mm, oldmm, sizeof(*mm));
1523
1524         if (!mm_init(mm, tsk, mm->user_ns))
1525                 goto fail_nomem;
1526
1527         err = dup_mmap(mm, oldmm);
1528         if (err)
1529                 goto free_pt;
1530
1531         mm->hiwater_rss = get_mm_rss(mm);
1532         mm->hiwater_vm = mm->total_vm;
1533
1534         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1535                 goto free_pt;
1536
1537         return mm;
1538
1539 free_pt:
1540         /* don't put binfmt in mmput, we haven't got module yet */
1541         mm->binfmt = NULL;
1542         mm_init_owner(mm, NULL);
1543         mmput(mm);
1544
1545 fail_nomem:
1546         return NULL;
1547 }
1548
1549 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1550 {
1551         struct mm_struct *mm, *oldmm;
1552
1553         tsk->min_flt = tsk->maj_flt = 0;
1554         tsk->nvcsw = tsk->nivcsw = 0;
1555 #ifdef CONFIG_DETECT_HUNG_TASK
1556         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1557         tsk->last_switch_time = 0;
1558 #endif
1559
1560         tsk->mm = NULL;
1561         tsk->active_mm = NULL;
1562
1563         /*
1564          * Are we cloning a kernel thread?
1565          *
1566          * We need to steal a active VM for that..
1567          */
1568         oldmm = current->mm;
1569         if (!oldmm)
1570                 return 0;
1571
1572         if (clone_flags & CLONE_VM) {
1573                 mmget(oldmm);
1574                 mm = oldmm;
1575         } else {
1576                 mm = dup_mm(tsk, current->mm);
1577                 if (!mm)
1578                         return -ENOMEM;
1579         }
1580
1581         tsk->mm = mm;
1582         tsk->active_mm = mm;
1583         return 0;
1584 }
1585
1586 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1587 {
1588         struct fs_struct *fs = current->fs;
1589         if (clone_flags & CLONE_FS) {
1590                 /* tsk->fs is already what we want */
1591                 spin_lock(&fs->lock);
1592                 if (fs->in_exec) {
1593                         spin_unlock(&fs->lock);
1594                         return -EAGAIN;
1595                 }
1596                 fs->users++;
1597                 spin_unlock(&fs->lock);
1598                 return 0;
1599         }
1600         tsk->fs = copy_fs_struct(fs);
1601         if (!tsk->fs)
1602                 return -ENOMEM;
1603         return 0;
1604 }
1605
1606 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1607 {
1608         struct files_struct *oldf, *newf;
1609         int error = 0;
1610
1611         /*
1612          * A background process may not have any files ...
1613          */
1614         oldf = current->files;
1615         if (!oldf)
1616                 goto out;
1617
1618         if (clone_flags & CLONE_FILES) {
1619                 atomic_inc(&oldf->count);
1620                 goto out;
1621         }
1622
1623         newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1624         if (!newf)
1625                 goto out;
1626
1627         tsk->files = newf;
1628         error = 0;
1629 out:
1630         return error;
1631 }
1632
1633 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1634 {
1635         struct sighand_struct *sig;
1636
1637         if (clone_flags & CLONE_SIGHAND) {
1638                 refcount_inc(&current->sighand->count);
1639                 return 0;
1640         }
1641         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1642         RCU_INIT_POINTER(tsk->sighand, sig);
1643         if (!sig)
1644                 return -ENOMEM;
1645
1646         refcount_set(&sig->count, 1);
1647         spin_lock_irq(&current->sighand->siglock);
1648         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1649         spin_unlock_irq(&current->sighand->siglock);
1650
1651         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1652         if (clone_flags & CLONE_CLEAR_SIGHAND)
1653                 flush_signal_handlers(tsk, 0);
1654
1655         return 0;
1656 }
1657
1658 void __cleanup_sighand(struct sighand_struct *sighand)
1659 {
1660         if (refcount_dec_and_test(&sighand->count)) {
1661                 signalfd_cleanup(sighand);
1662                 /*
1663                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1664                  * without an RCU grace period, see __lock_task_sighand().
1665                  */
1666                 kmem_cache_free(sighand_cachep, sighand);
1667         }
1668 }
1669
1670 /*
1671  * Initialize POSIX timer handling for a thread group.
1672  */
1673 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1674 {
1675         struct posix_cputimers *pct = &sig->posix_cputimers;
1676         unsigned long cpu_limit;
1677
1678         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1679         posix_cputimers_group_init(pct, cpu_limit);
1680 }
1681
1682 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1683 {
1684         struct signal_struct *sig;
1685
1686         if (clone_flags & CLONE_THREAD)
1687                 return 0;
1688
1689         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1690         tsk->signal = sig;
1691         if (!sig)
1692                 return -ENOMEM;
1693
1694         sig->nr_threads = 1;
1695         sig->quick_threads = 1;
1696         atomic_set(&sig->live, 1);
1697         refcount_set(&sig->sigcnt, 1);
1698
1699         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1700         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1701         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1702
1703         init_waitqueue_head(&sig->wait_chldexit);
1704         sig->curr_target = tsk;
1705         init_sigpending(&sig->shared_pending);
1706         INIT_HLIST_HEAD(&sig->multiprocess);
1707         seqlock_init(&sig->stats_lock);
1708         prev_cputime_init(&sig->prev_cputime);
1709
1710 #ifdef CONFIG_POSIX_TIMERS
1711         INIT_LIST_HEAD(&sig->posix_timers);
1712         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1713         sig->real_timer.function = it_real_fn;
1714 #endif
1715
1716         task_lock(current->group_leader);
1717         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1718         task_unlock(current->group_leader);
1719
1720         posix_cpu_timers_init_group(sig);
1721
1722         tty_audit_fork(sig);
1723         sched_autogroup_fork(sig);
1724
1725         sig->oom_score_adj = current->signal->oom_score_adj;
1726         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1727
1728         mutex_init(&sig->cred_guard_mutex);
1729         init_rwsem(&sig->exec_update_lock);
1730
1731         return 0;
1732 }
1733
1734 static void copy_seccomp(struct task_struct *p)
1735 {
1736 #ifdef CONFIG_SECCOMP
1737         /*
1738          * Must be called with sighand->lock held, which is common to
1739          * all threads in the group. Holding cred_guard_mutex is not
1740          * needed because this new task is not yet running and cannot
1741          * be racing exec.
1742          */
1743         assert_spin_locked(&current->sighand->siglock);
1744
1745         /* Ref-count the new filter user, and assign it. */
1746         get_seccomp_filter(current);
1747         p->seccomp = current->seccomp;
1748
1749         /*
1750          * Explicitly enable no_new_privs here in case it got set
1751          * between the task_struct being duplicated and holding the
1752          * sighand lock. The seccomp state and nnp must be in sync.
1753          */
1754         if (task_no_new_privs(current))
1755                 task_set_no_new_privs(p);
1756
1757         /*
1758          * If the parent gained a seccomp mode after copying thread
1759          * flags and between before we held the sighand lock, we have
1760          * to manually enable the seccomp thread flag here.
1761          */
1762         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1763                 set_task_syscall_work(p, SECCOMP);
1764 #endif
1765 }
1766
1767 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1768 {
1769         current->clear_child_tid = tidptr;
1770
1771         return task_pid_vnr(current);
1772 }
1773
1774 static void rt_mutex_init_task(struct task_struct *p)
1775 {
1776         raw_spin_lock_init(&p->pi_lock);
1777 #ifdef CONFIG_RT_MUTEXES
1778         p->pi_waiters = RB_ROOT_CACHED;
1779         p->pi_top_task = NULL;
1780         p->pi_blocked_on = NULL;
1781 #endif
1782 }
1783
1784 static inline void init_task_pid_links(struct task_struct *task)
1785 {
1786         enum pid_type type;
1787
1788         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1789                 INIT_HLIST_NODE(&task->pid_links[type]);
1790 }
1791
1792 static inline void
1793 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1794 {
1795         if (type == PIDTYPE_PID)
1796                 task->thread_pid = pid;
1797         else
1798                 task->signal->pids[type] = pid;
1799 }
1800
1801 static inline void rcu_copy_process(struct task_struct *p)
1802 {
1803 #ifdef CONFIG_PREEMPT_RCU
1804         p->rcu_read_lock_nesting = 0;
1805         p->rcu_read_unlock_special.s = 0;
1806         p->rcu_blocked_node = NULL;
1807         INIT_LIST_HEAD(&p->rcu_node_entry);
1808 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1809 #ifdef CONFIG_TASKS_RCU
1810         p->rcu_tasks_holdout = false;
1811         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1812         p->rcu_tasks_idle_cpu = -1;
1813 #endif /* #ifdef CONFIG_TASKS_RCU */
1814 #ifdef CONFIG_TASKS_TRACE_RCU
1815         p->trc_reader_nesting = 0;
1816         p->trc_reader_special.s = 0;
1817         INIT_LIST_HEAD(&p->trc_holdout_list);
1818         INIT_LIST_HEAD(&p->trc_blkd_node);
1819 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1820 }
1821
1822 struct pid *pidfd_pid(const struct file *file)
1823 {
1824         if (file->f_op == &pidfd_fops)
1825                 return file->private_data;
1826
1827         return ERR_PTR(-EBADF);
1828 }
1829
1830 static int pidfd_release(struct inode *inode, struct file *file)
1831 {
1832         struct pid *pid = file->private_data;
1833
1834         file->private_data = NULL;
1835         put_pid(pid);
1836         return 0;
1837 }
1838
1839 #ifdef CONFIG_PROC_FS
1840 /**
1841  * pidfd_show_fdinfo - print information about a pidfd
1842  * @m: proc fdinfo file
1843  * @f: file referencing a pidfd
1844  *
1845  * Pid:
1846  * This function will print the pid that a given pidfd refers to in the
1847  * pid namespace of the procfs instance.
1848  * If the pid namespace of the process is not a descendant of the pid
1849  * namespace of the procfs instance 0 will be shown as its pid. This is
1850  * similar to calling getppid() on a process whose parent is outside of
1851  * its pid namespace.
1852  *
1853  * NSpid:
1854  * If pid namespaces are supported then this function will also print
1855  * the pid of a given pidfd refers to for all descendant pid namespaces
1856  * starting from the current pid namespace of the instance, i.e. the
1857  * Pid field and the first entry in the NSpid field will be identical.
1858  * If the pid namespace of the process is not a descendant of the pid
1859  * namespace of the procfs instance 0 will be shown as its first NSpid
1860  * entry and no others will be shown.
1861  * Note that this differs from the Pid and NSpid fields in
1862  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1863  * the  pid namespace of the procfs instance. The difference becomes
1864  * obvious when sending around a pidfd between pid namespaces from a
1865  * different branch of the tree, i.e. where no ancestral relation is
1866  * present between the pid namespaces:
1867  * - create two new pid namespaces ns1 and ns2 in the initial pid
1868  *   namespace (also take care to create new mount namespaces in the
1869  *   new pid namespace and mount procfs)
1870  * - create a process with a pidfd in ns1
1871  * - send pidfd from ns1 to ns2
1872  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1873  *   have exactly one entry, which is 0
1874  */
1875 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1876 {
1877         struct pid *pid = f->private_data;
1878         struct pid_namespace *ns;
1879         pid_t nr = -1;
1880
1881         if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1882                 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1883                 nr = pid_nr_ns(pid, ns);
1884         }
1885
1886         seq_put_decimal_ll(m, "Pid:\t", nr);
1887
1888 #ifdef CONFIG_PID_NS
1889         seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1890         if (nr > 0) {
1891                 int i;
1892
1893                 /* If nr is non-zero it means that 'pid' is valid and that
1894                  * ns, i.e. the pid namespace associated with the procfs
1895                  * instance, is in the pid namespace hierarchy of pid.
1896                  * Start at one below the already printed level.
1897                  */
1898                 for (i = ns->level + 1; i <= pid->level; i++)
1899                         seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1900         }
1901 #endif
1902         seq_putc(m, '\n');
1903 }
1904 #endif
1905
1906 /*
1907  * Poll support for process exit notification.
1908  */
1909 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1910 {
1911         struct pid *pid = file->private_data;
1912         __poll_t poll_flags = 0;
1913
1914         poll_wait(file, &pid->wait_pidfd, pts);
1915
1916         /*
1917          * Inform pollers only when the whole thread group exits.
1918          * If the thread group leader exits before all other threads in the
1919          * group, then poll(2) should block, similar to the wait(2) family.
1920          */
1921         if (thread_group_exited(pid))
1922                 poll_flags = EPOLLIN | EPOLLRDNORM;
1923
1924         return poll_flags;
1925 }
1926
1927 const struct file_operations pidfd_fops = {
1928         .release = pidfd_release,
1929         .poll = pidfd_poll,
1930 #ifdef CONFIG_PROC_FS
1931         .show_fdinfo = pidfd_show_fdinfo,
1932 #endif
1933 };
1934
1935 static void __delayed_free_task(struct rcu_head *rhp)
1936 {
1937         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1938
1939         free_task(tsk);
1940 }
1941
1942 static __always_inline void delayed_free_task(struct task_struct *tsk)
1943 {
1944         if (IS_ENABLED(CONFIG_MEMCG))
1945                 call_rcu(&tsk->rcu, __delayed_free_task);
1946         else
1947                 free_task(tsk);
1948 }
1949
1950 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1951 {
1952         /* Skip if kernel thread */
1953         if (!tsk->mm)
1954                 return;
1955
1956         /* Skip if spawning a thread or using vfork */
1957         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1958                 return;
1959
1960         /* We need to synchronize with __set_oom_adj */
1961         mutex_lock(&oom_adj_mutex);
1962         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1963         /* Update the values in case they were changed after copy_signal */
1964         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1965         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1966         mutex_unlock(&oom_adj_mutex);
1967 }
1968
1969 #ifdef CONFIG_RV
1970 static void rv_task_fork(struct task_struct *p)
1971 {
1972         int i;
1973
1974         for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1975                 p->rv[i].da_mon.monitoring = false;
1976 }
1977 #else
1978 #define rv_task_fork(p) do {} while (0)
1979 #endif
1980
1981 /*
1982  * This creates a new process as a copy of the old one,
1983  * but does not actually start it yet.
1984  *
1985  * It copies the registers, and all the appropriate
1986  * parts of the process environment (as per the clone
1987  * flags). The actual kick-off is left to the caller.
1988  */
1989 static __latent_entropy struct task_struct *copy_process(
1990                                         struct pid *pid,
1991                                         int trace,
1992                                         int node,
1993                                         struct kernel_clone_args *args)
1994 {
1995         int pidfd = -1, retval;
1996         struct task_struct *p;
1997         struct multiprocess_signals delayed;
1998         struct file *pidfile = NULL;
1999         const u64 clone_flags = args->flags;
2000         struct nsproxy *nsp = current->nsproxy;
2001
2002         /*
2003          * Don't allow sharing the root directory with processes in a different
2004          * namespace
2005          */
2006         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2007                 return ERR_PTR(-EINVAL);
2008
2009         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2010                 return ERR_PTR(-EINVAL);
2011
2012         /*
2013          * Thread groups must share signals as well, and detached threads
2014          * can only be started up within the thread group.
2015          */
2016         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2017                 return ERR_PTR(-EINVAL);
2018
2019         /*
2020          * Shared signal handlers imply shared VM. By way of the above,
2021          * thread groups also imply shared VM. Blocking this case allows
2022          * for various simplifications in other code.
2023          */
2024         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2025                 return ERR_PTR(-EINVAL);
2026
2027         /*
2028          * Siblings of global init remain as zombies on exit since they are
2029          * not reaped by their parent (swapper). To solve this and to avoid
2030          * multi-rooted process trees, prevent global and container-inits
2031          * from creating siblings.
2032          */
2033         if ((clone_flags & CLONE_PARENT) &&
2034                                 current->signal->flags & SIGNAL_UNKILLABLE)
2035                 return ERR_PTR(-EINVAL);
2036
2037         /*
2038          * If the new process will be in a different pid or user namespace
2039          * do not allow it to share a thread group with the forking task.
2040          */
2041         if (clone_flags & CLONE_THREAD) {
2042                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2043                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2044                         return ERR_PTR(-EINVAL);
2045         }
2046
2047         /*
2048          * If the new process will be in a different time namespace
2049          * do not allow it to share VM or a thread group with the forking task.
2050          */
2051         if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2052                 if (nsp->time_ns != nsp->time_ns_for_children)
2053                         return ERR_PTR(-EINVAL);
2054         }
2055
2056         if (clone_flags & CLONE_PIDFD) {
2057                 /*
2058                  * - CLONE_DETACHED is blocked so that we can potentially
2059                  *   reuse it later for CLONE_PIDFD.
2060                  * - CLONE_THREAD is blocked until someone really needs it.
2061                  */
2062                 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2063                         return ERR_PTR(-EINVAL);
2064         }
2065
2066         /*
2067          * Force any signals received before this point to be delivered
2068          * before the fork happens.  Collect up signals sent to multiple
2069          * processes that happen during the fork and delay them so that
2070          * they appear to happen after the fork.
2071          */
2072         sigemptyset(&delayed.signal);
2073         INIT_HLIST_NODE(&delayed.node);
2074
2075         spin_lock_irq(&current->sighand->siglock);
2076         if (!(clone_flags & CLONE_THREAD))
2077                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2078         recalc_sigpending();
2079         spin_unlock_irq(&current->sighand->siglock);
2080         retval = -ERESTARTNOINTR;
2081         if (task_sigpending(current))
2082                 goto fork_out;
2083
2084         retval = -ENOMEM;
2085         p = dup_task_struct(current, node);
2086         if (!p)
2087                 goto fork_out;
2088         p->flags &= ~PF_KTHREAD;
2089         if (args->kthread)
2090                 p->flags |= PF_KTHREAD;
2091         if (args->io_thread) {
2092                 /*
2093                  * Mark us an IO worker, and block any signal that isn't
2094                  * fatal or STOP
2095                  */
2096                 p->flags |= PF_IO_WORKER;
2097                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2098         }
2099
2100         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2101         /*
2102          * Clear TID on mm_release()?
2103          */
2104         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2105
2106         ftrace_graph_init_task(p);
2107
2108         rt_mutex_init_task(p);
2109
2110         lockdep_assert_irqs_enabled();
2111 #ifdef CONFIG_PROVE_LOCKING
2112         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2113 #endif
2114         retval = copy_creds(p, clone_flags);
2115         if (retval < 0)
2116                 goto bad_fork_free;
2117
2118         retval = -EAGAIN;
2119         if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2120                 if (p->real_cred->user != INIT_USER &&
2121                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2122                         goto bad_fork_cleanup_count;
2123         }
2124         current->flags &= ~PF_NPROC_EXCEEDED;
2125
2126         /*
2127          * If multiple threads are within copy_process(), then this check
2128          * triggers too late. This doesn't hurt, the check is only there
2129          * to stop root fork bombs.
2130          */
2131         retval = -EAGAIN;
2132         if (data_race(nr_threads >= max_threads))
2133                 goto bad_fork_cleanup_count;
2134
2135         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
2136         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2137         p->flags |= PF_FORKNOEXEC;
2138         INIT_LIST_HEAD(&p->children);
2139         INIT_LIST_HEAD(&p->sibling);
2140         rcu_copy_process(p);
2141         p->vfork_done = NULL;
2142         spin_lock_init(&p->alloc_lock);
2143
2144         init_sigpending(&p->pending);
2145
2146         p->utime = p->stime = p->gtime = 0;
2147 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2148         p->utimescaled = p->stimescaled = 0;
2149 #endif
2150         prev_cputime_init(&p->prev_cputime);
2151
2152 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2153         seqcount_init(&p->vtime.seqcount);
2154         p->vtime.starttime = 0;
2155         p->vtime.state = VTIME_INACTIVE;
2156 #endif
2157
2158 #ifdef CONFIG_IO_URING
2159         p->io_uring = NULL;
2160 #endif
2161
2162 #if defined(SPLIT_RSS_COUNTING)
2163         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2164 #endif
2165
2166         p->default_timer_slack_ns = current->timer_slack_ns;
2167
2168 #ifdef CONFIG_PSI
2169         p->psi_flags = 0;
2170 #endif
2171
2172         task_io_accounting_init(&p->ioac);
2173         acct_clear_integrals(p);
2174
2175         posix_cputimers_init(&p->posix_cputimers);
2176
2177         p->io_context = NULL;
2178         audit_set_context(p, NULL);
2179         cgroup_fork(p);
2180         if (args->kthread) {
2181                 if (!set_kthread_struct(p))
2182                         goto bad_fork_cleanup_delayacct;
2183         }
2184 #ifdef CONFIG_NUMA
2185         p->mempolicy = mpol_dup(p->mempolicy);
2186         if (IS_ERR(p->mempolicy)) {
2187                 retval = PTR_ERR(p->mempolicy);
2188                 p->mempolicy = NULL;
2189                 goto bad_fork_cleanup_delayacct;
2190         }
2191 #endif
2192 #ifdef CONFIG_CPUSETS
2193         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2194         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2195         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2196 #endif
2197 #ifdef CONFIG_TRACE_IRQFLAGS
2198         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2199         p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2200         p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2201         p->softirqs_enabled             = 1;
2202         p->softirq_context              = 0;
2203 #endif
2204
2205         p->pagefault_disabled = 0;
2206
2207 #ifdef CONFIG_LOCKDEP
2208         lockdep_init_task(p);
2209 #endif
2210
2211 #ifdef CONFIG_DEBUG_MUTEXES
2212         p->blocked_on = NULL; /* not blocked yet */
2213 #endif
2214 #ifdef CONFIG_BCACHE
2215         p->sequential_io        = 0;
2216         p->sequential_io_avg    = 0;
2217 #endif
2218 #ifdef CONFIG_BPF_SYSCALL
2219         RCU_INIT_POINTER(p->bpf_storage, NULL);
2220         p->bpf_ctx = NULL;
2221 #endif
2222
2223         /* Perform scheduler related setup. Assign this task to a CPU. */
2224         retval = sched_fork(clone_flags, p);
2225         if (retval)
2226                 goto bad_fork_cleanup_policy;
2227
2228         retval = perf_event_init_task(p, clone_flags);
2229         if (retval)
2230                 goto bad_fork_cleanup_policy;
2231         retval = audit_alloc(p);
2232         if (retval)
2233                 goto bad_fork_cleanup_perf;
2234         /* copy all the process information */
2235         shm_init_task(p);
2236         retval = security_task_alloc(p, clone_flags);
2237         if (retval)
2238                 goto bad_fork_cleanup_audit;
2239         retval = copy_semundo(clone_flags, p);
2240         if (retval)
2241                 goto bad_fork_cleanup_security;
2242         retval = copy_files(clone_flags, p);
2243         if (retval)
2244                 goto bad_fork_cleanup_semundo;
2245         retval = copy_fs(clone_flags, p);
2246         if (retval)
2247                 goto bad_fork_cleanup_files;
2248         retval = copy_sighand(clone_flags, p);
2249         if (retval)
2250                 goto bad_fork_cleanup_fs;
2251         retval = copy_signal(clone_flags, p);
2252         if (retval)
2253                 goto bad_fork_cleanup_sighand;
2254         retval = copy_mm(clone_flags, p);
2255         if (retval)
2256                 goto bad_fork_cleanup_signal;
2257         retval = copy_namespaces(clone_flags, p);
2258         if (retval)
2259                 goto bad_fork_cleanup_mm;
2260         retval = copy_io(clone_flags, p);
2261         if (retval)
2262                 goto bad_fork_cleanup_namespaces;
2263         retval = copy_thread(p, args);
2264         if (retval)
2265                 goto bad_fork_cleanup_io;
2266
2267         stackleak_task_init(p);
2268
2269         if (pid != &init_struct_pid) {
2270                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2271                                 args->set_tid_size);
2272                 if (IS_ERR(pid)) {
2273                         retval = PTR_ERR(pid);
2274                         goto bad_fork_cleanup_thread;
2275                 }
2276         }
2277
2278         /*
2279          * This has to happen after we've potentially unshared the file
2280          * descriptor table (so that the pidfd doesn't leak into the child
2281          * if the fd table isn't shared).
2282          */
2283         if (clone_flags & CLONE_PIDFD) {
2284                 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2285                 if (retval < 0)
2286                         goto bad_fork_free_pid;
2287
2288                 pidfd = retval;
2289
2290                 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2291                                               O_RDWR | O_CLOEXEC);
2292                 if (IS_ERR(pidfile)) {
2293                         put_unused_fd(pidfd);
2294                         retval = PTR_ERR(pidfile);
2295                         goto bad_fork_free_pid;
2296                 }
2297                 get_pid(pid);   /* held by pidfile now */
2298
2299                 retval = put_user(pidfd, args->pidfd);
2300                 if (retval)
2301                         goto bad_fork_put_pidfd;
2302         }
2303
2304 #ifdef CONFIG_BLOCK
2305         p->plug = NULL;
2306 #endif
2307         futex_init_task(p);
2308
2309         /*
2310          * sigaltstack should be cleared when sharing the same VM
2311          */
2312         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2313                 sas_ss_reset(p);
2314
2315         /*
2316          * Syscall tracing and stepping should be turned off in the
2317          * child regardless of CLONE_PTRACE.
2318          */
2319         user_disable_single_step(p);
2320         clear_task_syscall_work(p, SYSCALL_TRACE);
2321 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2322         clear_task_syscall_work(p, SYSCALL_EMU);
2323 #endif
2324         clear_tsk_latency_tracing(p);
2325
2326         /* ok, now we should be set up.. */
2327         p->pid = pid_nr(pid);
2328         if (clone_flags & CLONE_THREAD) {
2329                 p->group_leader = current->group_leader;
2330                 p->tgid = current->tgid;
2331         } else {
2332                 p->group_leader = p;
2333                 p->tgid = p->pid;
2334         }
2335
2336         p->nr_dirtied = 0;
2337         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2338         p->dirty_paused_when = 0;
2339
2340         p->pdeath_signal = 0;
2341         INIT_LIST_HEAD(&p->thread_group);
2342         p->task_works = NULL;
2343         clear_posix_cputimers_work(p);
2344
2345 #ifdef CONFIG_KRETPROBES
2346         p->kretprobe_instances.first = NULL;
2347 #endif
2348 #ifdef CONFIG_RETHOOK
2349         p->rethooks.first = NULL;
2350 #endif
2351
2352         /*
2353          * Ensure that the cgroup subsystem policies allow the new process to be
2354          * forked. It should be noted that the new process's css_set can be changed
2355          * between here and cgroup_post_fork() if an organisation operation is in
2356          * progress.
2357          */
2358         retval = cgroup_can_fork(p, args);
2359         if (retval)
2360                 goto bad_fork_put_pidfd;
2361
2362         /*
2363          * Now that the cgroups are pinned, re-clone the parent cgroup and put
2364          * the new task on the correct runqueue. All this *before* the task
2365          * becomes visible.
2366          *
2367          * This isn't part of ->can_fork() because while the re-cloning is
2368          * cgroup specific, it unconditionally needs to place the task on a
2369          * runqueue.
2370          */
2371         sched_cgroup_fork(p, args);
2372
2373         /*
2374          * From this point on we must avoid any synchronous user-space
2375          * communication until we take the tasklist-lock. In particular, we do
2376          * not want user-space to be able to predict the process start-time by
2377          * stalling fork(2) after we recorded the start_time but before it is
2378          * visible to the system.
2379          */
2380
2381         p->start_time = ktime_get_ns();
2382         p->start_boottime = ktime_get_boottime_ns();
2383
2384         /*
2385          * Make it visible to the rest of the system, but dont wake it up yet.
2386          * Need tasklist lock for parent etc handling!
2387          */
2388         write_lock_irq(&tasklist_lock);
2389
2390         /* CLONE_PARENT re-uses the old parent */
2391         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2392                 p->real_parent = current->real_parent;
2393                 p->parent_exec_id = current->parent_exec_id;
2394                 if (clone_flags & CLONE_THREAD)
2395                         p->exit_signal = -1;
2396                 else
2397                         p->exit_signal = current->group_leader->exit_signal;
2398         } else {
2399                 p->real_parent = current;
2400                 p->parent_exec_id = current->self_exec_id;
2401                 p->exit_signal = args->exit_signal;
2402         }
2403
2404         klp_copy_process(p);
2405
2406         sched_core_fork(p);
2407
2408         spin_lock(&current->sighand->siglock);
2409
2410         /*
2411          * Copy seccomp details explicitly here, in case they were changed
2412          * before holding sighand lock.
2413          */
2414         copy_seccomp(p);
2415
2416         rv_task_fork(p);
2417
2418         rseq_fork(p, clone_flags);
2419
2420         /* Don't start children in a dying pid namespace */
2421         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2422                 retval = -ENOMEM;
2423                 goto bad_fork_cancel_cgroup;
2424         }
2425
2426         /* Let kill terminate clone/fork in the middle */
2427         if (fatal_signal_pending(current)) {
2428                 retval = -EINTR;
2429                 goto bad_fork_cancel_cgroup;
2430         }
2431
2432         init_task_pid_links(p);
2433         if (likely(p->pid)) {
2434                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2435
2436                 init_task_pid(p, PIDTYPE_PID, pid);
2437                 if (thread_group_leader(p)) {
2438                         init_task_pid(p, PIDTYPE_TGID, pid);
2439                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2440                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2441
2442                         if (is_child_reaper(pid)) {
2443                                 ns_of_pid(pid)->child_reaper = p;
2444                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2445                         }
2446                         p->signal->shared_pending.signal = delayed.signal;
2447                         p->signal->tty = tty_kref_get(current->signal->tty);
2448                         /*
2449                          * Inherit has_child_subreaper flag under the same
2450                          * tasklist_lock with adding child to the process tree
2451                          * for propagate_has_child_subreaper optimization.
2452                          */
2453                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2454                                                          p->real_parent->signal->is_child_subreaper;
2455                         list_add_tail(&p->sibling, &p->real_parent->children);
2456                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2457                         attach_pid(p, PIDTYPE_TGID);
2458                         attach_pid(p, PIDTYPE_PGID);
2459                         attach_pid(p, PIDTYPE_SID);
2460                         __this_cpu_inc(process_counts);
2461                 } else {
2462                         current->signal->nr_threads++;
2463                         current->signal->quick_threads++;
2464                         atomic_inc(&current->signal->live);
2465                         refcount_inc(&current->signal->sigcnt);
2466                         task_join_group_stop(p);
2467                         list_add_tail_rcu(&p->thread_group,
2468                                           &p->group_leader->thread_group);
2469                         list_add_tail_rcu(&p->thread_node,
2470                                           &p->signal->thread_head);
2471                 }
2472                 attach_pid(p, PIDTYPE_PID);
2473                 nr_threads++;
2474         }
2475         total_forks++;
2476         hlist_del_init(&delayed.node);
2477         spin_unlock(&current->sighand->siglock);
2478         syscall_tracepoint_update(p);
2479         write_unlock_irq(&tasklist_lock);
2480
2481         if (pidfile)
2482                 fd_install(pidfd, pidfile);
2483
2484         proc_fork_connector(p);
2485         sched_post_fork(p);
2486         cgroup_post_fork(p, args);
2487         perf_event_fork(p);
2488
2489         trace_task_newtask(p, clone_flags);
2490         uprobe_copy_process(p, clone_flags);
2491
2492         copy_oom_score_adj(clone_flags, p);
2493
2494         return p;
2495
2496 bad_fork_cancel_cgroup:
2497         sched_core_free(p);
2498         spin_unlock(&current->sighand->siglock);
2499         write_unlock_irq(&tasklist_lock);
2500         cgroup_cancel_fork(p, args);
2501 bad_fork_put_pidfd:
2502         if (clone_flags & CLONE_PIDFD) {
2503                 fput(pidfile);
2504                 put_unused_fd(pidfd);
2505         }
2506 bad_fork_free_pid:
2507         if (pid != &init_struct_pid)
2508                 free_pid(pid);
2509 bad_fork_cleanup_thread:
2510         exit_thread(p);
2511 bad_fork_cleanup_io:
2512         if (p->io_context)
2513                 exit_io_context(p);
2514 bad_fork_cleanup_namespaces:
2515         exit_task_namespaces(p);
2516 bad_fork_cleanup_mm:
2517         if (p->mm) {
2518                 mm_clear_owner(p->mm, p);
2519                 mmput(p->mm);
2520         }
2521 bad_fork_cleanup_signal:
2522         if (!(clone_flags & CLONE_THREAD))
2523                 free_signal_struct(p->signal);
2524 bad_fork_cleanup_sighand:
2525         __cleanup_sighand(p->sighand);
2526 bad_fork_cleanup_fs:
2527         exit_fs(p); /* blocking */
2528 bad_fork_cleanup_files:
2529         exit_files(p); /* blocking */
2530 bad_fork_cleanup_semundo:
2531         exit_sem(p);
2532 bad_fork_cleanup_security:
2533         security_task_free(p);
2534 bad_fork_cleanup_audit:
2535         audit_free(p);
2536 bad_fork_cleanup_perf:
2537         perf_event_free_task(p);
2538 bad_fork_cleanup_policy:
2539         lockdep_free_task(p);
2540 #ifdef CONFIG_NUMA
2541         mpol_put(p->mempolicy);
2542 #endif
2543 bad_fork_cleanup_delayacct:
2544         delayacct_tsk_free(p);
2545 bad_fork_cleanup_count:
2546         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2547         exit_creds(p);
2548 bad_fork_free:
2549         WRITE_ONCE(p->__state, TASK_DEAD);
2550         exit_task_stack_account(p);
2551         put_task_stack(p);
2552         delayed_free_task(p);
2553 fork_out:
2554         spin_lock_irq(&current->sighand->siglock);
2555         hlist_del_init(&delayed.node);
2556         spin_unlock_irq(&current->sighand->siglock);
2557         return ERR_PTR(retval);
2558 }
2559
2560 static inline void init_idle_pids(struct task_struct *idle)
2561 {
2562         enum pid_type type;
2563
2564         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2565                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2566                 init_task_pid(idle, type, &init_struct_pid);
2567         }
2568 }
2569
2570 static int idle_dummy(void *dummy)
2571 {
2572         /* This function is never called */
2573         return 0;
2574 }
2575
2576 struct task_struct * __init fork_idle(int cpu)
2577 {
2578         struct task_struct *task;
2579         struct kernel_clone_args args = {
2580                 .flags          = CLONE_VM,
2581                 .fn             = &idle_dummy,
2582                 .fn_arg         = NULL,
2583                 .kthread        = 1,
2584                 .idle           = 1,
2585         };
2586
2587         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2588         if (!IS_ERR(task)) {
2589                 init_idle_pids(task);
2590                 init_idle(task, cpu);
2591         }
2592
2593         return task;
2594 }
2595
2596 struct mm_struct *copy_init_mm(void)
2597 {
2598         return dup_mm(NULL, &init_mm);
2599 }
2600
2601 /*
2602  * This is like kernel_clone(), but shaved down and tailored to just
2603  * creating io_uring workers. It returns a created task, or an error pointer.
2604  * The returned task is inactive, and the caller must fire it up through
2605  * wake_up_new_task(p). All signals are blocked in the created task.
2606  */
2607 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2608 {
2609         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2610                                 CLONE_IO;
2611         struct kernel_clone_args args = {
2612                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2613                                     CLONE_UNTRACED) & ~CSIGNAL),
2614                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2615                 .fn             = fn,
2616                 .fn_arg         = arg,
2617                 .io_thread      = 1,
2618         };
2619
2620         return copy_process(NULL, 0, node, &args);
2621 }
2622
2623 /*
2624  *  Ok, this is the main fork-routine.
2625  *
2626  * It copies the process, and if successful kick-starts
2627  * it and waits for it to finish using the VM if required.
2628  *
2629  * args->exit_signal is expected to be checked for sanity by the caller.
2630  */
2631 pid_t kernel_clone(struct kernel_clone_args *args)
2632 {
2633         u64 clone_flags = args->flags;
2634         struct completion vfork;
2635         struct pid *pid;
2636         struct task_struct *p;
2637         int trace = 0;
2638         pid_t nr;
2639
2640         /*
2641          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2642          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2643          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2644          * field in struct clone_args and it still doesn't make sense to have
2645          * them both point at the same memory location. Performing this check
2646          * here has the advantage that we don't need to have a separate helper
2647          * to check for legacy clone().
2648          */
2649         if ((args->flags & CLONE_PIDFD) &&
2650             (args->flags & CLONE_PARENT_SETTID) &&
2651             (args->pidfd == args->parent_tid))
2652                 return -EINVAL;
2653
2654         /*
2655          * Determine whether and which event to report to ptracer.  When
2656          * called from kernel_thread or CLONE_UNTRACED is explicitly
2657          * requested, no event is reported; otherwise, report if the event
2658          * for the type of forking is enabled.
2659          */
2660         if (!(clone_flags & CLONE_UNTRACED)) {
2661                 if (clone_flags & CLONE_VFORK)
2662                         trace = PTRACE_EVENT_VFORK;
2663                 else if (args->exit_signal != SIGCHLD)
2664                         trace = PTRACE_EVENT_CLONE;
2665                 else
2666                         trace = PTRACE_EVENT_FORK;
2667
2668                 if (likely(!ptrace_event_enabled(current, trace)))
2669                         trace = 0;
2670         }
2671
2672         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2673         add_latent_entropy();
2674
2675         if (IS_ERR(p))
2676                 return PTR_ERR(p);
2677
2678         /*
2679          * Do this prior waking up the new thread - the thread pointer
2680          * might get invalid after that point, if the thread exits quickly.
2681          */
2682         trace_sched_process_fork(current, p);
2683
2684         pid = get_task_pid(p, PIDTYPE_PID);
2685         nr = pid_vnr(pid);
2686
2687         if (clone_flags & CLONE_PARENT_SETTID)
2688                 put_user(nr, args->parent_tid);
2689
2690         if (clone_flags & CLONE_VFORK) {
2691                 p->vfork_done = &vfork;
2692                 init_completion(&vfork);
2693                 get_task_struct(p);
2694         }
2695
2696         if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2697                 /* lock the task to synchronize with memcg migration */
2698                 task_lock(p);
2699                 lru_gen_add_mm(p->mm);
2700                 task_unlock(p);
2701         }
2702
2703         wake_up_new_task(p);
2704
2705         /* forking complete and child started to run, tell ptracer */
2706         if (unlikely(trace))
2707                 ptrace_event_pid(trace, pid);
2708
2709         if (clone_flags & CLONE_VFORK) {
2710                 if (!wait_for_vfork_done(p, &vfork))
2711                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2712         }
2713
2714         put_pid(pid);
2715         return nr;
2716 }
2717
2718 /*
2719  * Create a kernel thread.
2720  */
2721 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2722 {
2723         struct kernel_clone_args args = {
2724                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2725                                     CLONE_UNTRACED) & ~CSIGNAL),
2726                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2727                 .fn             = fn,
2728                 .fn_arg         = arg,
2729                 .kthread        = 1,
2730         };
2731
2732         return kernel_clone(&args);
2733 }
2734
2735 /*
2736  * Create a user mode thread.
2737  */
2738 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2739 {
2740         struct kernel_clone_args args = {
2741                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2742                                     CLONE_UNTRACED) & ~CSIGNAL),
2743                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2744                 .fn             = fn,
2745                 .fn_arg         = arg,
2746         };
2747
2748         return kernel_clone(&args);
2749 }
2750
2751 #ifdef __ARCH_WANT_SYS_FORK
2752 SYSCALL_DEFINE0(fork)
2753 {
2754 #ifdef CONFIG_MMU
2755         struct kernel_clone_args args = {
2756                 .exit_signal = SIGCHLD,
2757         };
2758
2759         return kernel_clone(&args);
2760 #else
2761         /* can not support in nommu mode */
2762         return -EINVAL;
2763 #endif
2764 }
2765 #endif
2766
2767 #ifdef __ARCH_WANT_SYS_VFORK
2768 SYSCALL_DEFINE0(vfork)
2769 {
2770         struct kernel_clone_args args = {
2771                 .flags          = CLONE_VFORK | CLONE_VM,
2772                 .exit_signal    = SIGCHLD,
2773         };
2774
2775         return kernel_clone(&args);
2776 }
2777 #endif
2778
2779 #ifdef __ARCH_WANT_SYS_CLONE
2780 #ifdef CONFIG_CLONE_BACKWARDS
2781 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2782                  int __user *, parent_tidptr,
2783                  unsigned long, tls,
2784                  int __user *, child_tidptr)
2785 #elif defined(CONFIG_CLONE_BACKWARDS2)
2786 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2787                  int __user *, parent_tidptr,
2788                  int __user *, child_tidptr,
2789                  unsigned long, tls)
2790 #elif defined(CONFIG_CLONE_BACKWARDS3)
2791 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2792                 int, stack_size,
2793                 int __user *, parent_tidptr,
2794                 int __user *, child_tidptr,
2795                 unsigned long, tls)
2796 #else
2797 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2798                  int __user *, parent_tidptr,
2799                  int __user *, child_tidptr,
2800                  unsigned long, tls)
2801 #endif
2802 {
2803         struct kernel_clone_args args = {
2804                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2805                 .pidfd          = parent_tidptr,
2806                 .child_tid      = child_tidptr,
2807                 .parent_tid     = parent_tidptr,
2808                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2809                 .stack          = newsp,
2810                 .tls            = tls,
2811         };
2812
2813         return kernel_clone(&args);
2814 }
2815 #endif
2816
2817 #ifdef __ARCH_WANT_SYS_CLONE3
2818
2819 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2820                                               struct clone_args __user *uargs,
2821                                               size_t usize)
2822 {
2823         int err;
2824         struct clone_args args;
2825         pid_t *kset_tid = kargs->set_tid;
2826
2827         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2828                      CLONE_ARGS_SIZE_VER0);
2829         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2830                      CLONE_ARGS_SIZE_VER1);
2831         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2832                      CLONE_ARGS_SIZE_VER2);
2833         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2834
2835         if (unlikely(usize > PAGE_SIZE))
2836                 return -E2BIG;
2837         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2838                 return -EINVAL;
2839
2840         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2841         if (err)
2842                 return err;
2843
2844         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2845                 return -EINVAL;
2846
2847         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2848                 return -EINVAL;
2849
2850         if (unlikely(args.set_tid && args.set_tid_size == 0))
2851                 return -EINVAL;
2852
2853         /*
2854          * Verify that higher 32bits of exit_signal are unset and that
2855          * it is a valid signal
2856          */
2857         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2858                      !valid_signal(args.exit_signal)))
2859                 return -EINVAL;
2860
2861         if ((args.flags & CLONE_INTO_CGROUP) &&
2862             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2863                 return -EINVAL;
2864
2865         *kargs = (struct kernel_clone_args){
2866                 .flags          = args.flags,
2867                 .pidfd          = u64_to_user_ptr(args.pidfd),
2868                 .child_tid      = u64_to_user_ptr(args.child_tid),
2869                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
2870                 .exit_signal    = args.exit_signal,
2871                 .stack          = args.stack,
2872                 .stack_size     = args.stack_size,
2873                 .tls            = args.tls,
2874                 .set_tid_size   = args.set_tid_size,
2875                 .cgroup         = args.cgroup,
2876         };
2877
2878         if (args.set_tid &&
2879                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2880                         (kargs->set_tid_size * sizeof(pid_t))))
2881                 return -EFAULT;
2882
2883         kargs->set_tid = kset_tid;
2884
2885         return 0;
2886 }
2887
2888 /**
2889  * clone3_stack_valid - check and prepare stack
2890  * @kargs: kernel clone args
2891  *
2892  * Verify that the stack arguments userspace gave us are sane.
2893  * In addition, set the stack direction for userspace since it's easy for us to
2894  * determine.
2895  */
2896 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2897 {
2898         if (kargs->stack == 0) {
2899                 if (kargs->stack_size > 0)
2900                         return false;
2901         } else {
2902                 if (kargs->stack_size == 0)
2903                         return false;
2904
2905                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2906                         return false;
2907
2908 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2909                 kargs->stack += kargs->stack_size;
2910 #endif
2911         }
2912
2913         return true;
2914 }
2915
2916 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2917 {
2918         /* Verify that no unknown flags are passed along. */
2919         if (kargs->flags &
2920             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2921                 return false;
2922
2923         /*
2924          * - make the CLONE_DETACHED bit reusable for clone3
2925          * - make the CSIGNAL bits reusable for clone3
2926          */
2927         if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2928                 return false;
2929
2930         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2931             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2932                 return false;
2933
2934         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2935             kargs->exit_signal)
2936                 return false;
2937
2938         if (!clone3_stack_valid(kargs))
2939                 return false;
2940
2941         return true;
2942 }
2943
2944 /**
2945  * clone3 - create a new process with specific properties
2946  * @uargs: argument structure
2947  * @size:  size of @uargs
2948  *
2949  * clone3() is the extensible successor to clone()/clone2().
2950  * It takes a struct as argument that is versioned by its size.
2951  *
2952  * Return: On success, a positive PID for the child process.
2953  *         On error, a negative errno number.
2954  */
2955 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2956 {
2957         int err;
2958
2959         struct kernel_clone_args kargs;
2960         pid_t set_tid[MAX_PID_NS_LEVEL];
2961
2962         kargs.set_tid = set_tid;
2963
2964         err = copy_clone_args_from_user(&kargs, uargs, size);
2965         if (err)
2966                 return err;
2967
2968         if (!clone3_args_valid(&kargs))
2969                 return -EINVAL;
2970
2971         return kernel_clone(&kargs);
2972 }
2973 #endif
2974
2975 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2976 {
2977         struct task_struct *leader, *parent, *child;
2978         int res;
2979
2980         read_lock(&tasklist_lock);
2981         leader = top = top->group_leader;
2982 down:
2983         for_each_thread(leader, parent) {
2984                 list_for_each_entry(child, &parent->children, sibling) {
2985                         res = visitor(child, data);
2986                         if (res) {
2987                                 if (res < 0)
2988                                         goto out;
2989                                 leader = child;
2990                                 goto down;
2991                         }
2992 up:
2993                         ;
2994                 }
2995         }
2996
2997         if (leader != top) {
2998                 child = leader;
2999                 parent = child->real_parent;
3000                 leader = parent->group_leader;
3001                 goto up;
3002         }
3003 out:
3004         read_unlock(&tasklist_lock);
3005 }
3006
3007 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3008 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3009 #endif
3010
3011 static void sighand_ctor(void *data)
3012 {
3013         struct sighand_struct *sighand = data;
3014
3015         spin_lock_init(&sighand->siglock);
3016         init_waitqueue_head(&sighand->signalfd_wqh);
3017 }
3018
3019 void __init proc_caches_init(void)
3020 {
3021         unsigned int mm_size;
3022
3023         sighand_cachep = kmem_cache_create("sighand_cache",
3024                         sizeof(struct sighand_struct), 0,
3025                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3026                         SLAB_ACCOUNT, sighand_ctor);
3027         signal_cachep = kmem_cache_create("signal_cache",
3028                         sizeof(struct signal_struct), 0,
3029                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3030                         NULL);
3031         files_cachep = kmem_cache_create("files_cache",
3032                         sizeof(struct files_struct), 0,
3033                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3034                         NULL);
3035         fs_cachep = kmem_cache_create("fs_cache",
3036                         sizeof(struct fs_struct), 0,
3037                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3038                         NULL);
3039
3040         /*
3041          * The mm_cpumask is located at the end of mm_struct, and is
3042          * dynamically sized based on the maximum CPU number this system
3043          * can have, taking hotplug into account (nr_cpu_ids).
3044          */
3045         mm_size = sizeof(struct mm_struct) + cpumask_size();
3046
3047         mm_cachep = kmem_cache_create_usercopy("mm_struct",
3048                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3049                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3050                         offsetof(struct mm_struct, saved_auxv),
3051                         sizeof_field(struct mm_struct, saved_auxv),
3052                         NULL);
3053         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3054         mmap_init();
3055         nsproxy_cache_init();
3056 }
3057
3058 /*
3059  * Check constraints on flags passed to the unshare system call.
3060  */
3061 static int check_unshare_flags(unsigned long unshare_flags)
3062 {
3063         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3064                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3065                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3066                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3067                                 CLONE_NEWTIME))
3068                 return -EINVAL;
3069         /*
3070          * Not implemented, but pretend it works if there is nothing
3071          * to unshare.  Note that unsharing the address space or the
3072          * signal handlers also need to unshare the signal queues (aka
3073          * CLONE_THREAD).
3074          */
3075         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3076                 if (!thread_group_empty(current))
3077                         return -EINVAL;
3078         }
3079         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3080                 if (refcount_read(&current->sighand->count) > 1)
3081                         return -EINVAL;
3082         }
3083         if (unshare_flags & CLONE_VM) {
3084                 if (!current_is_single_threaded())
3085                         return -EINVAL;
3086         }
3087
3088         return 0;
3089 }
3090
3091 /*
3092  * Unshare the filesystem structure if it is being shared
3093  */
3094 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3095 {
3096         struct fs_struct *fs = current->fs;
3097
3098         if (!(unshare_flags & CLONE_FS) || !fs)
3099                 return 0;
3100
3101         /* don't need lock here; in the worst case we'll do useless copy */
3102         if (fs->users == 1)
3103                 return 0;
3104
3105         *new_fsp = copy_fs_struct(fs);
3106         if (!*new_fsp)
3107                 return -ENOMEM;
3108
3109         return 0;
3110 }
3111
3112 /*
3113  * Unshare file descriptor table if it is being shared
3114  */
3115 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3116                struct files_struct **new_fdp)
3117 {
3118         struct files_struct *fd = current->files;
3119         int error = 0;
3120
3121         if ((unshare_flags & CLONE_FILES) &&
3122             (fd && atomic_read(&fd->count) > 1)) {
3123                 *new_fdp = dup_fd(fd, max_fds, &error);
3124                 if (!*new_fdp)
3125                         return error;
3126         }
3127
3128         return 0;
3129 }
3130
3131 /*
3132  * unshare allows a process to 'unshare' part of the process
3133  * context which was originally shared using clone.  copy_*
3134  * functions used by kernel_clone() cannot be used here directly
3135  * because they modify an inactive task_struct that is being
3136  * constructed. Here we are modifying the current, active,
3137  * task_struct.
3138  */
3139 int ksys_unshare(unsigned long unshare_flags)
3140 {
3141         struct fs_struct *fs, *new_fs = NULL;
3142         struct files_struct *new_fd = NULL;
3143         struct cred *new_cred = NULL;
3144         struct nsproxy *new_nsproxy = NULL;
3145         int do_sysvsem = 0;
3146         int err;
3147
3148         /*
3149          * If unsharing a user namespace must also unshare the thread group
3150          * and unshare the filesystem root and working directories.
3151          */
3152         if (unshare_flags & CLONE_NEWUSER)
3153                 unshare_flags |= CLONE_THREAD | CLONE_FS;
3154         /*
3155          * If unsharing vm, must also unshare signal handlers.
3156          */
3157         if (unshare_flags & CLONE_VM)
3158                 unshare_flags |= CLONE_SIGHAND;
3159         /*
3160          * If unsharing a signal handlers, must also unshare the signal queues.
3161          */
3162         if (unshare_flags & CLONE_SIGHAND)
3163                 unshare_flags |= CLONE_THREAD;
3164         /*
3165          * If unsharing namespace, must also unshare filesystem information.
3166          */
3167         if (unshare_flags & CLONE_NEWNS)
3168                 unshare_flags |= CLONE_FS;
3169
3170         err = check_unshare_flags(unshare_flags);
3171         if (err)
3172                 goto bad_unshare_out;
3173         /*
3174          * CLONE_NEWIPC must also detach from the undolist: after switching
3175          * to a new ipc namespace, the semaphore arrays from the old
3176          * namespace are unreachable.
3177          */
3178         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3179                 do_sysvsem = 1;
3180         err = unshare_fs(unshare_flags, &new_fs);
3181         if (err)
3182                 goto bad_unshare_out;
3183         err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3184         if (err)
3185                 goto bad_unshare_cleanup_fs;
3186         err = unshare_userns(unshare_flags, &new_cred);
3187         if (err)
3188                 goto bad_unshare_cleanup_fd;
3189         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3190                                          new_cred, new_fs);
3191         if (err)
3192                 goto bad_unshare_cleanup_cred;
3193
3194         if (new_cred) {
3195                 err = set_cred_ucounts(new_cred);
3196                 if (err)
3197                         goto bad_unshare_cleanup_cred;
3198         }
3199
3200         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3201                 if (do_sysvsem) {
3202                         /*
3203                          * CLONE_SYSVSEM is equivalent to sys_exit().
3204                          */
3205                         exit_sem(current);
3206                 }
3207                 if (unshare_flags & CLONE_NEWIPC) {
3208                         /* Orphan segments in old ns (see sem above). */
3209                         exit_shm(current);
3210                         shm_init_task(current);
3211                 }
3212
3213                 if (new_nsproxy)
3214                         switch_task_namespaces(current, new_nsproxy);
3215
3216                 task_lock(current);
3217
3218                 if (new_fs) {
3219                         fs = current->fs;
3220                         spin_lock(&fs->lock);
3221                         current->fs = new_fs;
3222                         if (--fs->users)
3223                                 new_fs = NULL;
3224                         else
3225                                 new_fs = fs;
3226                         spin_unlock(&fs->lock);
3227                 }
3228
3229                 if (new_fd)
3230                         swap(current->files, new_fd);
3231
3232                 task_unlock(current);
3233
3234                 if (new_cred) {
3235                         /* Install the new user namespace */
3236                         commit_creds(new_cred);
3237                         new_cred = NULL;
3238                 }
3239         }
3240
3241         perf_event_namespaces(current);
3242
3243 bad_unshare_cleanup_cred:
3244         if (new_cred)
3245                 put_cred(new_cred);
3246 bad_unshare_cleanup_fd:
3247         if (new_fd)
3248                 put_files_struct(new_fd);
3249
3250 bad_unshare_cleanup_fs:
3251         if (new_fs)
3252                 free_fs_struct(new_fs);
3253
3254 bad_unshare_out:
3255         return err;
3256 }
3257
3258 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3259 {
3260         return ksys_unshare(unshare_flags);
3261 }
3262
3263 /*
3264  *      Helper to unshare the files of the current task.
3265  *      We don't want to expose copy_files internals to
3266  *      the exec layer of the kernel.
3267  */
3268
3269 int unshare_files(void)
3270 {
3271         struct task_struct *task = current;
3272         struct files_struct *old, *copy = NULL;
3273         int error;
3274
3275         error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3276         if (error || !copy)
3277                 return error;
3278
3279         old = task->files;
3280         task_lock(task);
3281         task->files = copy;
3282         task_unlock(task);
3283         put_files_struct(old);
3284         return 0;
3285 }
3286
3287 int sysctl_max_threads(struct ctl_table *table, int write,
3288                        void *buffer, size_t *lenp, loff_t *ppos)
3289 {
3290         struct ctl_table t;
3291         int ret;
3292         int threads = max_threads;
3293         int min = 1;
3294         int max = MAX_THREADS;
3295
3296         t = *table;
3297         t.data = &threads;
3298         t.extra1 = &min;
3299         t.extra2 = &max;
3300
3301         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3302         if (ret || !write)
3303                 return ret;
3304
3305         max_threads = threads;
3306
3307         return 0;
3308 }