Merge tag 'kbuild-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[platform/kernel/linux-rpi.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106
107 #include <trace/events/sched.h>
108
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;      /* Handle normal Linux uptimes. */
126 int nr_threads;                 /* The idle threads do not count.. */
127
128 static int max_threads;         /* tunable limit on nr_threads */
129
130 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
131
132 static const char * const resident_page_types[] = {
133         NAMED_ARRAY_INDEX(MM_FILEPAGES),
134         NAMED_ARRAY_INDEX(MM_ANONPAGES),
135         NAMED_ARRAY_INDEX(MM_SWAPENTS),
136         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146         return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150
151 int nr_processes(void)
152 {
153         int cpu;
154         int total = 0;
155
156         for_each_possible_cpu(cpu)
157                 total += per_cpu(process_counts, cpu);
158
159         return total;
160 }
161
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176         kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187
188 #ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195
196 static int free_vm_stack_cache(unsigned int cpu)
197 {
198         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
199         int i;
200
201         for (i = 0; i < NR_CACHED_STACKS; i++) {
202                 struct vm_struct *vm_stack = cached_vm_stacks[i];
203
204                 if (!vm_stack)
205                         continue;
206
207                 vfree(vm_stack->addr);
208                 cached_vm_stacks[i] = NULL;
209         }
210
211         return 0;
212 }
213 #endif
214
215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
216 {
217 #ifdef CONFIG_VMAP_STACK
218         void *stack;
219         int i;
220
221         for (i = 0; i < NR_CACHED_STACKS; i++) {
222                 struct vm_struct *s;
223
224                 s = this_cpu_xchg(cached_stacks[i], NULL);
225
226                 if (!s)
227                         continue;
228
229                 /* Mark stack accessible for KASAN. */
230                 kasan_unpoison_range(s->addr, THREAD_SIZE);
231
232                 /* Clear stale pointers from reused stack. */
233                 memset(s->addr, 0, THREAD_SIZE);
234
235                 tsk->stack_vm_area = s;
236                 tsk->stack = s->addr;
237                 return s->addr;
238         }
239
240         /*
241          * Allocated stacks are cached and later reused by new threads,
242          * so memcg accounting is performed manually on assigning/releasing
243          * stacks to tasks. Drop __GFP_ACCOUNT.
244          */
245         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
246                                      VMALLOC_START, VMALLOC_END,
247                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
248                                      PAGE_KERNEL,
249                                      0, node, __builtin_return_address(0));
250
251         /*
252          * We can't call find_vm_area() in interrupt context, and
253          * free_thread_stack() can be called in interrupt context,
254          * so cache the vm_struct.
255          */
256         if (stack) {
257                 tsk->stack_vm_area = find_vm_area(stack);
258                 tsk->stack = stack;
259         }
260         return stack;
261 #else
262         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
263                                              THREAD_SIZE_ORDER);
264
265         if (likely(page)) {
266                 tsk->stack = kasan_reset_tag(page_address(page));
267                 return tsk->stack;
268         }
269         return NULL;
270 #endif
271 }
272
273 static inline void free_thread_stack(struct task_struct *tsk)
274 {
275 #ifdef CONFIG_VMAP_STACK
276         struct vm_struct *vm = task_stack_vm_area(tsk);
277
278         if (vm) {
279                 int i;
280
281                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
282                         memcg_kmem_uncharge_page(vm->pages[i], 0);
283
284                 for (i = 0; i < NR_CACHED_STACKS; i++) {
285                         if (this_cpu_cmpxchg(cached_stacks[i],
286                                         NULL, tsk->stack_vm_area) != NULL)
287                                 continue;
288
289                         return;
290                 }
291
292                 vfree_atomic(tsk->stack);
293                 return;
294         }
295 #endif
296
297         __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303                                                   int node)
304 {
305         unsigned long *stack;
306         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307         stack = kasan_reset_tag(stack);
308         tsk->stack = stack;
309         return stack;
310 }
311
312 static void free_thread_stack(struct task_struct *tsk)
313 {
314         kmem_cache_free(thread_stack_cache, tsk->stack);
315 }
316
317 void thread_stack_cache_init(void)
318 {
319         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
320                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
321                                         THREAD_SIZE, NULL);
322         BUG_ON(thread_stack_cache == NULL);
323 }
324 # endif
325 #endif
326
327 /* SLAB cache for signal_struct structures (tsk->signal) */
328 static struct kmem_cache *signal_cachep;
329
330 /* SLAB cache for sighand_struct structures (tsk->sighand) */
331 struct kmem_cache *sighand_cachep;
332
333 /* SLAB cache for files_struct structures (tsk->files) */
334 struct kmem_cache *files_cachep;
335
336 /* SLAB cache for fs_struct structures (tsk->fs) */
337 struct kmem_cache *fs_cachep;
338
339 /* SLAB cache for vm_area_struct structures */
340 static struct kmem_cache *vm_area_cachep;
341
342 /* SLAB cache for mm_struct structures (tsk->mm) */
343 static struct kmem_cache *mm_cachep;
344
345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
346 {
347         struct vm_area_struct *vma;
348
349         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
350         if (vma)
351                 vma_init(vma, mm);
352         return vma;
353 }
354
355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
356 {
357         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
358
359         if (new) {
360                 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
361                 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
362                 /*
363                  * orig->shared.rb may be modified concurrently, but the clone
364                  * will be reinitialized.
365                  */
366                 *new = data_race(*orig);
367                 INIT_LIST_HEAD(&new->anon_vma_chain);
368                 new->vm_next = new->vm_prev = NULL;
369         }
370         return new;
371 }
372
373 void vm_area_free(struct vm_area_struct *vma)
374 {
375         kmem_cache_free(vm_area_cachep, vma);
376 }
377
378 static void account_kernel_stack(struct task_struct *tsk, int account)
379 {
380         void *stack = task_stack_page(tsk);
381         struct vm_struct *vm = task_stack_vm_area(tsk);
382
383
384         /* All stack pages are in the same node. */
385         if (vm)
386                 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
387                                       account * (THREAD_SIZE / 1024));
388         else
389                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
390                                       account * (THREAD_SIZE / 1024));
391 }
392
393 static int memcg_charge_kernel_stack(struct task_struct *tsk)
394 {
395 #ifdef CONFIG_VMAP_STACK
396         struct vm_struct *vm = task_stack_vm_area(tsk);
397         int ret;
398
399         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
400
401         if (vm) {
402                 int i;
403
404                 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
405
406                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
407                         /*
408                          * If memcg_kmem_charge_page() fails, page's
409                          * memory cgroup pointer is NULL, and
410                          * memcg_kmem_uncharge_page() in free_thread_stack()
411                          * will ignore this page.
412                          */
413                         ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
414                                                      0);
415                         if (ret)
416                                 return ret;
417                 }
418         }
419 #endif
420         return 0;
421 }
422
423 static void release_task_stack(struct task_struct *tsk)
424 {
425         if (WARN_ON(tsk->state != TASK_DEAD))
426                 return;  /* Better to leak the stack than to free prematurely */
427
428         account_kernel_stack(tsk, -1);
429         free_thread_stack(tsk);
430         tsk->stack = NULL;
431 #ifdef CONFIG_VMAP_STACK
432         tsk->stack_vm_area = NULL;
433 #endif
434 }
435
436 #ifdef CONFIG_THREAD_INFO_IN_TASK
437 void put_task_stack(struct task_struct *tsk)
438 {
439         if (refcount_dec_and_test(&tsk->stack_refcount))
440                 release_task_stack(tsk);
441 }
442 #endif
443
444 void free_task(struct task_struct *tsk)
445 {
446         scs_release(tsk);
447
448 #ifndef CONFIG_THREAD_INFO_IN_TASK
449         /*
450          * The task is finally done with both the stack and thread_info,
451          * so free both.
452          */
453         release_task_stack(tsk);
454 #else
455         /*
456          * If the task had a separate stack allocation, it should be gone
457          * by now.
458          */
459         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
460 #endif
461         rt_mutex_debug_task_free(tsk);
462         ftrace_graph_exit_task(tsk);
463         arch_release_task_struct(tsk);
464         if (tsk->flags & PF_KTHREAD)
465                 free_kthread_struct(tsk);
466         free_task_struct(tsk);
467 }
468 EXPORT_SYMBOL(free_task);
469
470 #ifdef CONFIG_MMU
471 static __latent_entropy int dup_mmap(struct mm_struct *mm,
472                                         struct mm_struct *oldmm)
473 {
474         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
475         struct rb_node **rb_link, *rb_parent;
476         int retval;
477         unsigned long charge;
478         LIST_HEAD(uf);
479
480         uprobe_start_dup_mmap();
481         if (mmap_write_lock_killable(oldmm)) {
482                 retval = -EINTR;
483                 goto fail_uprobe_end;
484         }
485         flush_cache_dup_mm(oldmm);
486         uprobe_dup_mmap(oldmm, mm);
487         /*
488          * Not linked in yet - no deadlock potential:
489          */
490         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
491
492         /* No ordering required: file already has been exposed. */
493         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
494
495         mm->total_vm = oldmm->total_vm;
496         mm->data_vm = oldmm->data_vm;
497         mm->exec_vm = oldmm->exec_vm;
498         mm->stack_vm = oldmm->stack_vm;
499
500         rb_link = &mm->mm_rb.rb_node;
501         rb_parent = NULL;
502         pprev = &mm->mmap;
503         retval = ksm_fork(mm, oldmm);
504         if (retval)
505                 goto out;
506         retval = khugepaged_fork(mm, oldmm);
507         if (retval)
508                 goto out;
509
510         prev = NULL;
511         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
512                 struct file *file;
513
514                 if (mpnt->vm_flags & VM_DONTCOPY) {
515                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
516                         continue;
517                 }
518                 charge = 0;
519                 /*
520                  * Don't duplicate many vmas if we've been oom-killed (for
521                  * example)
522                  */
523                 if (fatal_signal_pending(current)) {
524                         retval = -EINTR;
525                         goto out;
526                 }
527                 if (mpnt->vm_flags & VM_ACCOUNT) {
528                         unsigned long len = vma_pages(mpnt);
529
530                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
531                                 goto fail_nomem;
532                         charge = len;
533                 }
534                 tmp = vm_area_dup(mpnt);
535                 if (!tmp)
536                         goto fail_nomem;
537                 retval = vma_dup_policy(mpnt, tmp);
538                 if (retval)
539                         goto fail_nomem_policy;
540                 tmp->vm_mm = mm;
541                 retval = dup_userfaultfd(tmp, &uf);
542                 if (retval)
543                         goto fail_nomem_anon_vma_fork;
544                 if (tmp->vm_flags & VM_WIPEONFORK) {
545                         /*
546                          * VM_WIPEONFORK gets a clean slate in the child.
547                          * Don't prepare anon_vma until fault since we don't
548                          * copy page for current vma.
549                          */
550                         tmp->anon_vma = NULL;
551                 } else if (anon_vma_fork(tmp, mpnt))
552                         goto fail_nomem_anon_vma_fork;
553                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
554                 file = tmp->vm_file;
555                 if (file) {
556                         struct inode *inode = file_inode(file);
557                         struct address_space *mapping = file->f_mapping;
558
559                         get_file(file);
560                         if (tmp->vm_flags & VM_DENYWRITE)
561                                 put_write_access(inode);
562                         i_mmap_lock_write(mapping);
563                         if (tmp->vm_flags & VM_SHARED)
564                                 mapping_allow_writable(mapping);
565                         flush_dcache_mmap_lock(mapping);
566                         /* insert tmp into the share list, just after mpnt */
567                         vma_interval_tree_insert_after(tmp, mpnt,
568                                         &mapping->i_mmap);
569                         flush_dcache_mmap_unlock(mapping);
570                         i_mmap_unlock_write(mapping);
571                 }
572
573                 /*
574                  * Clear hugetlb-related page reserves for children. This only
575                  * affects MAP_PRIVATE mappings. Faults generated by the child
576                  * are not guaranteed to succeed, even if read-only
577                  */
578                 if (is_vm_hugetlb_page(tmp))
579                         reset_vma_resv_huge_pages(tmp);
580
581                 /*
582                  * Link in the new vma and copy the page table entries.
583                  */
584                 *pprev = tmp;
585                 pprev = &tmp->vm_next;
586                 tmp->vm_prev = prev;
587                 prev = tmp;
588
589                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
590                 rb_link = &tmp->vm_rb.rb_right;
591                 rb_parent = &tmp->vm_rb;
592
593                 mm->map_count++;
594                 if (!(tmp->vm_flags & VM_WIPEONFORK))
595                         retval = copy_page_range(tmp, mpnt);
596
597                 if (tmp->vm_ops && tmp->vm_ops->open)
598                         tmp->vm_ops->open(tmp);
599
600                 if (retval)
601                         goto out;
602         }
603         /* a new mm has just been created */
604         retval = arch_dup_mmap(oldmm, mm);
605 out:
606         mmap_write_unlock(mm);
607         flush_tlb_mm(oldmm);
608         mmap_write_unlock(oldmm);
609         dup_userfaultfd_complete(&uf);
610 fail_uprobe_end:
611         uprobe_end_dup_mmap();
612         return retval;
613 fail_nomem_anon_vma_fork:
614         mpol_put(vma_policy(tmp));
615 fail_nomem_policy:
616         vm_area_free(tmp);
617 fail_nomem:
618         retval = -ENOMEM;
619         vm_unacct_memory(charge);
620         goto out;
621 }
622
623 static inline int mm_alloc_pgd(struct mm_struct *mm)
624 {
625         mm->pgd = pgd_alloc(mm);
626         if (unlikely(!mm->pgd))
627                 return -ENOMEM;
628         return 0;
629 }
630
631 static inline void mm_free_pgd(struct mm_struct *mm)
632 {
633         pgd_free(mm, mm->pgd);
634 }
635 #else
636 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
637 {
638         mmap_write_lock(oldmm);
639         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
640         mmap_write_unlock(oldmm);
641         return 0;
642 }
643 #define mm_alloc_pgd(mm)        (0)
644 #define mm_free_pgd(mm)
645 #endif /* CONFIG_MMU */
646
647 static void check_mm(struct mm_struct *mm)
648 {
649         int i;
650
651         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
652                          "Please make sure 'struct resident_page_types[]' is updated as well");
653
654         for (i = 0; i < NR_MM_COUNTERS; i++) {
655                 long x = atomic_long_read(&mm->rss_stat.count[i]);
656
657                 if (unlikely(x))
658                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
659                                  mm, resident_page_types[i], x);
660         }
661
662         if (mm_pgtables_bytes(mm))
663                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
664                                 mm_pgtables_bytes(mm));
665
666 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
667         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
668 #endif
669 }
670
671 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
672 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
673
674 /*
675  * Called when the last reference to the mm
676  * is dropped: either by a lazy thread or by
677  * mmput. Free the page directory and the mm.
678  */
679 void __mmdrop(struct mm_struct *mm)
680 {
681         BUG_ON(mm == &init_mm);
682         WARN_ON_ONCE(mm == current->mm);
683         WARN_ON_ONCE(mm == current->active_mm);
684         mm_free_pgd(mm);
685         destroy_context(mm);
686         mmu_notifier_subscriptions_destroy(mm);
687         check_mm(mm);
688         put_user_ns(mm->user_ns);
689         free_mm(mm);
690 }
691 EXPORT_SYMBOL_GPL(__mmdrop);
692
693 static void mmdrop_async_fn(struct work_struct *work)
694 {
695         struct mm_struct *mm;
696
697         mm = container_of(work, struct mm_struct, async_put_work);
698         __mmdrop(mm);
699 }
700
701 static void mmdrop_async(struct mm_struct *mm)
702 {
703         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
704                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
705                 schedule_work(&mm->async_put_work);
706         }
707 }
708
709 static inline void free_signal_struct(struct signal_struct *sig)
710 {
711         taskstats_tgid_free(sig);
712         sched_autogroup_exit(sig);
713         /*
714          * __mmdrop is not safe to call from softirq context on x86 due to
715          * pgd_dtor so postpone it to the async context
716          */
717         if (sig->oom_mm)
718                 mmdrop_async(sig->oom_mm);
719         kmem_cache_free(signal_cachep, sig);
720 }
721
722 static inline void put_signal_struct(struct signal_struct *sig)
723 {
724         if (refcount_dec_and_test(&sig->sigcnt))
725                 free_signal_struct(sig);
726 }
727
728 void __put_task_struct(struct task_struct *tsk)
729 {
730         WARN_ON(!tsk->exit_state);
731         WARN_ON(refcount_read(&tsk->usage));
732         WARN_ON(tsk == current);
733
734         io_uring_free(tsk);
735         cgroup_free(tsk);
736         task_numa_free(tsk, true);
737         security_task_free(tsk);
738         bpf_task_storage_free(tsk);
739         exit_creds(tsk);
740         delayacct_tsk_free(tsk);
741         put_signal_struct(tsk->signal);
742
743         if (!profile_handoff_task(tsk))
744                 free_task(tsk);
745 }
746 EXPORT_SYMBOL_GPL(__put_task_struct);
747
748 void __init __weak arch_task_cache_init(void) { }
749
750 /*
751  * set_max_threads
752  */
753 static void set_max_threads(unsigned int max_threads_suggested)
754 {
755         u64 threads;
756         unsigned long nr_pages = totalram_pages();
757
758         /*
759          * The number of threads shall be limited such that the thread
760          * structures may only consume a small part of the available memory.
761          */
762         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
763                 threads = MAX_THREADS;
764         else
765                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
766                                     (u64) THREAD_SIZE * 8UL);
767
768         if (threads > max_threads_suggested)
769                 threads = max_threads_suggested;
770
771         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
772 }
773
774 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
775 /* Initialized by the architecture: */
776 int arch_task_struct_size __read_mostly;
777 #endif
778
779 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
780 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
781 {
782         /* Fetch thread_struct whitelist for the architecture. */
783         arch_thread_struct_whitelist(offset, size);
784
785         /*
786          * Handle zero-sized whitelist or empty thread_struct, otherwise
787          * adjust offset to position of thread_struct in task_struct.
788          */
789         if (unlikely(*size == 0))
790                 *offset = 0;
791         else
792                 *offset += offsetof(struct task_struct, thread);
793 }
794 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
795
796 void __init fork_init(void)
797 {
798         int i;
799 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
800 #ifndef ARCH_MIN_TASKALIGN
801 #define ARCH_MIN_TASKALIGN      0
802 #endif
803         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
804         unsigned long useroffset, usersize;
805
806         /* create a slab on which task_structs can be allocated */
807         task_struct_whitelist(&useroffset, &usersize);
808         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
809                         arch_task_struct_size, align,
810                         SLAB_PANIC|SLAB_ACCOUNT,
811                         useroffset, usersize, NULL);
812 #endif
813
814         /* do the arch specific task caches init */
815         arch_task_cache_init();
816
817         set_max_threads(MAX_THREADS);
818
819         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
820         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
821         init_task.signal->rlim[RLIMIT_SIGPENDING] =
822                 init_task.signal->rlim[RLIMIT_NPROC];
823
824         for (i = 0; i < UCOUNT_COUNTS; i++)
825                 init_user_ns.ucount_max[i] = max_threads/2;
826
827 #ifdef CONFIG_VMAP_STACK
828         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
829                           NULL, free_vm_stack_cache);
830 #endif
831
832         scs_init();
833
834         lockdep_init_task(&init_task);
835         uprobes_init();
836 }
837
838 int __weak arch_dup_task_struct(struct task_struct *dst,
839                                                struct task_struct *src)
840 {
841         *dst = *src;
842         return 0;
843 }
844
845 void set_task_stack_end_magic(struct task_struct *tsk)
846 {
847         unsigned long *stackend;
848
849         stackend = end_of_stack(tsk);
850         *stackend = STACK_END_MAGIC;    /* for overflow detection */
851 }
852
853 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
854 {
855         struct task_struct *tsk;
856         unsigned long *stack;
857         struct vm_struct *stack_vm_area __maybe_unused;
858         int err;
859
860         if (node == NUMA_NO_NODE)
861                 node = tsk_fork_get_node(orig);
862         tsk = alloc_task_struct_node(node);
863         if (!tsk)
864                 return NULL;
865
866         stack = alloc_thread_stack_node(tsk, node);
867         if (!stack)
868                 goto free_tsk;
869
870         if (memcg_charge_kernel_stack(tsk))
871                 goto free_stack;
872
873         stack_vm_area = task_stack_vm_area(tsk);
874
875         err = arch_dup_task_struct(tsk, orig);
876
877         /*
878          * arch_dup_task_struct() clobbers the stack-related fields.  Make
879          * sure they're properly initialized before using any stack-related
880          * functions again.
881          */
882         tsk->stack = stack;
883 #ifdef CONFIG_VMAP_STACK
884         tsk->stack_vm_area = stack_vm_area;
885 #endif
886 #ifdef CONFIG_THREAD_INFO_IN_TASK
887         refcount_set(&tsk->stack_refcount, 1);
888 #endif
889
890         if (err)
891                 goto free_stack;
892
893         err = scs_prepare(tsk, node);
894         if (err)
895                 goto free_stack;
896
897 #ifdef CONFIG_SECCOMP
898         /*
899          * We must handle setting up seccomp filters once we're under
900          * the sighand lock in case orig has changed between now and
901          * then. Until then, filter must be NULL to avoid messing up
902          * the usage counts on the error path calling free_task.
903          */
904         tsk->seccomp.filter = NULL;
905 #endif
906
907         setup_thread_stack(tsk, orig);
908         clear_user_return_notifier(tsk);
909         clear_tsk_need_resched(tsk);
910         set_task_stack_end_magic(tsk);
911         clear_syscall_work_syscall_user_dispatch(tsk);
912
913 #ifdef CONFIG_STACKPROTECTOR
914         tsk->stack_canary = get_random_canary();
915 #endif
916         if (orig->cpus_ptr == &orig->cpus_mask)
917                 tsk->cpus_ptr = &tsk->cpus_mask;
918
919         /*
920          * One for the user space visible state that goes away when reaped.
921          * One for the scheduler.
922          */
923         refcount_set(&tsk->rcu_users, 2);
924         /* One for the rcu users */
925         refcount_set(&tsk->usage, 1);
926 #ifdef CONFIG_BLK_DEV_IO_TRACE
927         tsk->btrace_seq = 0;
928 #endif
929         tsk->splice_pipe = NULL;
930         tsk->task_frag.page = NULL;
931         tsk->wake_q.next = NULL;
932         tsk->pf_io_worker = NULL;
933
934         account_kernel_stack(tsk, 1);
935
936         kcov_task_init(tsk);
937         kmap_local_fork(tsk);
938
939 #ifdef CONFIG_FAULT_INJECTION
940         tsk->fail_nth = 0;
941 #endif
942
943 #ifdef CONFIG_BLK_CGROUP
944         tsk->throttle_queue = NULL;
945         tsk->use_memdelay = 0;
946 #endif
947
948 #ifdef CONFIG_MEMCG
949         tsk->active_memcg = NULL;
950 #endif
951         return tsk;
952
953 free_stack:
954         free_thread_stack(tsk);
955 free_tsk:
956         free_task_struct(tsk);
957         return NULL;
958 }
959
960 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
961
962 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
963
964 static int __init coredump_filter_setup(char *s)
965 {
966         default_dump_filter =
967                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
968                 MMF_DUMP_FILTER_MASK;
969         return 1;
970 }
971
972 __setup("coredump_filter=", coredump_filter_setup);
973
974 #include <linux/init_task.h>
975
976 static void mm_init_aio(struct mm_struct *mm)
977 {
978 #ifdef CONFIG_AIO
979         spin_lock_init(&mm->ioctx_lock);
980         mm->ioctx_table = NULL;
981 #endif
982 }
983
984 static __always_inline void mm_clear_owner(struct mm_struct *mm,
985                                            struct task_struct *p)
986 {
987 #ifdef CONFIG_MEMCG
988         if (mm->owner == p)
989                 WRITE_ONCE(mm->owner, NULL);
990 #endif
991 }
992
993 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
994 {
995 #ifdef CONFIG_MEMCG
996         mm->owner = p;
997 #endif
998 }
999
1000 static void mm_init_pasid(struct mm_struct *mm)
1001 {
1002 #ifdef CONFIG_IOMMU_SUPPORT
1003         mm->pasid = INIT_PASID;
1004 #endif
1005 }
1006
1007 static void mm_init_uprobes_state(struct mm_struct *mm)
1008 {
1009 #ifdef CONFIG_UPROBES
1010         mm->uprobes_state.xol_area = NULL;
1011 #endif
1012 }
1013
1014 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1015         struct user_namespace *user_ns)
1016 {
1017         mm->mmap = NULL;
1018         mm->mm_rb = RB_ROOT;
1019         mm->vmacache_seqnum = 0;
1020         atomic_set(&mm->mm_users, 1);
1021         atomic_set(&mm->mm_count, 1);
1022         seqcount_init(&mm->write_protect_seq);
1023         mmap_init_lock(mm);
1024         INIT_LIST_HEAD(&mm->mmlist);
1025         mm->core_state = NULL;
1026         mm_pgtables_bytes_init(mm);
1027         mm->map_count = 0;
1028         mm->locked_vm = 0;
1029         atomic_set(&mm->has_pinned, 0);
1030         atomic64_set(&mm->pinned_vm, 0);
1031         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1032         spin_lock_init(&mm->page_table_lock);
1033         spin_lock_init(&mm->arg_lock);
1034         mm_init_cpumask(mm);
1035         mm_init_aio(mm);
1036         mm_init_owner(mm, p);
1037         mm_init_pasid(mm);
1038         RCU_INIT_POINTER(mm->exe_file, NULL);
1039         mmu_notifier_subscriptions_init(mm);
1040         init_tlb_flush_pending(mm);
1041 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1042         mm->pmd_huge_pte = NULL;
1043 #endif
1044         mm_init_uprobes_state(mm);
1045
1046         if (current->mm) {
1047                 mm->flags = current->mm->flags & MMF_INIT_MASK;
1048                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1049         } else {
1050                 mm->flags = default_dump_filter;
1051                 mm->def_flags = 0;
1052         }
1053
1054         if (mm_alloc_pgd(mm))
1055                 goto fail_nopgd;
1056
1057         if (init_new_context(p, mm))
1058                 goto fail_nocontext;
1059
1060         mm->user_ns = get_user_ns(user_ns);
1061         return mm;
1062
1063 fail_nocontext:
1064         mm_free_pgd(mm);
1065 fail_nopgd:
1066         free_mm(mm);
1067         return NULL;
1068 }
1069
1070 /*
1071  * Allocate and initialize an mm_struct.
1072  */
1073 struct mm_struct *mm_alloc(void)
1074 {
1075         struct mm_struct *mm;
1076
1077         mm = allocate_mm();
1078         if (!mm)
1079                 return NULL;
1080
1081         memset(mm, 0, sizeof(*mm));
1082         return mm_init(mm, current, current_user_ns());
1083 }
1084
1085 static inline void __mmput(struct mm_struct *mm)
1086 {
1087         VM_BUG_ON(atomic_read(&mm->mm_users));
1088
1089         uprobe_clear_state(mm);
1090         exit_aio(mm);
1091         ksm_exit(mm);
1092         khugepaged_exit(mm); /* must run before exit_mmap */
1093         exit_mmap(mm);
1094         mm_put_huge_zero_page(mm);
1095         set_mm_exe_file(mm, NULL);
1096         if (!list_empty(&mm->mmlist)) {
1097                 spin_lock(&mmlist_lock);
1098                 list_del(&mm->mmlist);
1099                 spin_unlock(&mmlist_lock);
1100         }
1101         if (mm->binfmt)
1102                 module_put(mm->binfmt->module);
1103         mmdrop(mm);
1104 }
1105
1106 /*
1107  * Decrement the use count and release all resources for an mm.
1108  */
1109 void mmput(struct mm_struct *mm)
1110 {
1111         might_sleep();
1112
1113         if (atomic_dec_and_test(&mm->mm_users))
1114                 __mmput(mm);
1115 }
1116 EXPORT_SYMBOL_GPL(mmput);
1117
1118 #ifdef CONFIG_MMU
1119 static void mmput_async_fn(struct work_struct *work)
1120 {
1121         struct mm_struct *mm = container_of(work, struct mm_struct,
1122                                             async_put_work);
1123
1124         __mmput(mm);
1125 }
1126
1127 void mmput_async(struct mm_struct *mm)
1128 {
1129         if (atomic_dec_and_test(&mm->mm_users)) {
1130                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1131                 schedule_work(&mm->async_put_work);
1132         }
1133 }
1134 #endif
1135
1136 /**
1137  * set_mm_exe_file - change a reference to the mm's executable file
1138  *
1139  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1140  *
1141  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1142  * invocations: in mmput() nobody alive left, in execve task is single
1143  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1144  * mm->exe_file, but does so without using set_mm_exe_file() in order
1145  * to do avoid the need for any locks.
1146  */
1147 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1148 {
1149         struct file *old_exe_file;
1150
1151         /*
1152          * It is safe to dereference the exe_file without RCU as
1153          * this function is only called if nobody else can access
1154          * this mm -- see comment above for justification.
1155          */
1156         old_exe_file = rcu_dereference_raw(mm->exe_file);
1157
1158         if (new_exe_file)
1159                 get_file(new_exe_file);
1160         rcu_assign_pointer(mm->exe_file, new_exe_file);
1161         if (old_exe_file)
1162                 fput(old_exe_file);
1163 }
1164
1165 /**
1166  * get_mm_exe_file - acquire a reference to the mm's executable file
1167  *
1168  * Returns %NULL if mm has no associated executable file.
1169  * User must release file via fput().
1170  */
1171 struct file *get_mm_exe_file(struct mm_struct *mm)
1172 {
1173         struct file *exe_file;
1174
1175         rcu_read_lock();
1176         exe_file = rcu_dereference(mm->exe_file);
1177         if (exe_file && !get_file_rcu(exe_file))
1178                 exe_file = NULL;
1179         rcu_read_unlock();
1180         return exe_file;
1181 }
1182 EXPORT_SYMBOL(get_mm_exe_file);
1183
1184 /**
1185  * get_task_exe_file - acquire a reference to the task's executable file
1186  *
1187  * Returns %NULL if task's mm (if any) has no associated executable file or
1188  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1189  * User must release file via fput().
1190  */
1191 struct file *get_task_exe_file(struct task_struct *task)
1192 {
1193         struct file *exe_file = NULL;
1194         struct mm_struct *mm;
1195
1196         task_lock(task);
1197         mm = task->mm;
1198         if (mm) {
1199                 if (!(task->flags & PF_KTHREAD))
1200                         exe_file = get_mm_exe_file(mm);
1201         }
1202         task_unlock(task);
1203         return exe_file;
1204 }
1205 EXPORT_SYMBOL(get_task_exe_file);
1206
1207 /**
1208  * get_task_mm - acquire a reference to the task's mm
1209  *
1210  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1211  * this kernel workthread has transiently adopted a user mm with use_mm,
1212  * to do its AIO) is not set and if so returns a reference to it, after
1213  * bumping up the use count.  User must release the mm via mmput()
1214  * after use.  Typically used by /proc and ptrace.
1215  */
1216 struct mm_struct *get_task_mm(struct task_struct *task)
1217 {
1218         struct mm_struct *mm;
1219
1220         task_lock(task);
1221         mm = task->mm;
1222         if (mm) {
1223                 if (task->flags & PF_KTHREAD)
1224                         mm = NULL;
1225                 else
1226                         mmget(mm);
1227         }
1228         task_unlock(task);
1229         return mm;
1230 }
1231 EXPORT_SYMBOL_GPL(get_task_mm);
1232
1233 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1234 {
1235         struct mm_struct *mm;
1236         int err;
1237
1238         err =  down_read_killable(&task->signal->exec_update_lock);
1239         if (err)
1240                 return ERR_PTR(err);
1241
1242         mm = get_task_mm(task);
1243         if (mm && mm != current->mm &&
1244                         !ptrace_may_access(task, mode)) {
1245                 mmput(mm);
1246                 mm = ERR_PTR(-EACCES);
1247         }
1248         up_read(&task->signal->exec_update_lock);
1249
1250         return mm;
1251 }
1252
1253 static void complete_vfork_done(struct task_struct *tsk)
1254 {
1255         struct completion *vfork;
1256
1257         task_lock(tsk);
1258         vfork = tsk->vfork_done;
1259         if (likely(vfork)) {
1260                 tsk->vfork_done = NULL;
1261                 complete(vfork);
1262         }
1263         task_unlock(tsk);
1264 }
1265
1266 static int wait_for_vfork_done(struct task_struct *child,
1267                                 struct completion *vfork)
1268 {
1269         int killed;
1270
1271         freezer_do_not_count();
1272         cgroup_enter_frozen();
1273         killed = wait_for_completion_killable(vfork);
1274         cgroup_leave_frozen(false);
1275         freezer_count();
1276
1277         if (killed) {
1278                 task_lock(child);
1279                 child->vfork_done = NULL;
1280                 task_unlock(child);
1281         }
1282
1283         put_task_struct(child);
1284         return killed;
1285 }
1286
1287 /* Please note the differences between mmput and mm_release.
1288  * mmput is called whenever we stop holding onto a mm_struct,
1289  * error success whatever.
1290  *
1291  * mm_release is called after a mm_struct has been removed
1292  * from the current process.
1293  *
1294  * This difference is important for error handling, when we
1295  * only half set up a mm_struct for a new process and need to restore
1296  * the old one.  Because we mmput the new mm_struct before
1297  * restoring the old one. . .
1298  * Eric Biederman 10 January 1998
1299  */
1300 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1301 {
1302         uprobe_free_utask(tsk);
1303
1304         /* Get rid of any cached register state */
1305         deactivate_mm(tsk, mm);
1306
1307         /*
1308          * Signal userspace if we're not exiting with a core dump
1309          * because we want to leave the value intact for debugging
1310          * purposes.
1311          */
1312         if (tsk->clear_child_tid) {
1313                 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1314                     atomic_read(&mm->mm_users) > 1) {
1315                         /*
1316                          * We don't check the error code - if userspace has
1317                          * not set up a proper pointer then tough luck.
1318                          */
1319                         put_user(0, tsk->clear_child_tid);
1320                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1321                                         1, NULL, NULL, 0, 0);
1322                 }
1323                 tsk->clear_child_tid = NULL;
1324         }
1325
1326         /*
1327          * All done, finally we can wake up parent and return this mm to him.
1328          * Also kthread_stop() uses this completion for synchronization.
1329          */
1330         if (tsk->vfork_done)
1331                 complete_vfork_done(tsk);
1332 }
1333
1334 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1335 {
1336         futex_exit_release(tsk);
1337         mm_release(tsk, mm);
1338 }
1339
1340 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1341 {
1342         futex_exec_release(tsk);
1343         mm_release(tsk, mm);
1344 }
1345
1346 /**
1347  * dup_mm() - duplicates an existing mm structure
1348  * @tsk: the task_struct with which the new mm will be associated.
1349  * @oldmm: the mm to duplicate.
1350  *
1351  * Allocates a new mm structure and duplicates the provided @oldmm structure
1352  * content into it.
1353  *
1354  * Return: the duplicated mm or NULL on failure.
1355  */
1356 static struct mm_struct *dup_mm(struct task_struct *tsk,
1357                                 struct mm_struct *oldmm)
1358 {
1359         struct mm_struct *mm;
1360         int err;
1361
1362         mm = allocate_mm();
1363         if (!mm)
1364                 goto fail_nomem;
1365
1366         memcpy(mm, oldmm, sizeof(*mm));
1367
1368         if (!mm_init(mm, tsk, mm->user_ns))
1369                 goto fail_nomem;
1370
1371         err = dup_mmap(mm, oldmm);
1372         if (err)
1373                 goto free_pt;
1374
1375         mm->hiwater_rss = get_mm_rss(mm);
1376         mm->hiwater_vm = mm->total_vm;
1377
1378         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1379                 goto free_pt;
1380
1381         return mm;
1382
1383 free_pt:
1384         /* don't put binfmt in mmput, we haven't got module yet */
1385         mm->binfmt = NULL;
1386         mm_init_owner(mm, NULL);
1387         mmput(mm);
1388
1389 fail_nomem:
1390         return NULL;
1391 }
1392
1393 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1394 {
1395         struct mm_struct *mm, *oldmm;
1396         int retval;
1397
1398         tsk->min_flt = tsk->maj_flt = 0;
1399         tsk->nvcsw = tsk->nivcsw = 0;
1400 #ifdef CONFIG_DETECT_HUNG_TASK
1401         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1402         tsk->last_switch_time = 0;
1403 #endif
1404
1405         tsk->mm = NULL;
1406         tsk->active_mm = NULL;
1407
1408         /*
1409          * Are we cloning a kernel thread?
1410          *
1411          * We need to steal a active VM for that..
1412          */
1413         oldmm = current->mm;
1414         if (!oldmm)
1415                 return 0;
1416
1417         /* initialize the new vmacache entries */
1418         vmacache_flush(tsk);
1419
1420         if (clone_flags & CLONE_VM) {
1421                 mmget(oldmm);
1422                 mm = oldmm;
1423                 goto good_mm;
1424         }
1425
1426         retval = -ENOMEM;
1427         mm = dup_mm(tsk, current->mm);
1428         if (!mm)
1429                 goto fail_nomem;
1430
1431 good_mm:
1432         tsk->mm = mm;
1433         tsk->active_mm = mm;
1434         return 0;
1435
1436 fail_nomem:
1437         return retval;
1438 }
1439
1440 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1441 {
1442         struct fs_struct *fs = current->fs;
1443         if (clone_flags & CLONE_FS) {
1444                 /* tsk->fs is already what we want */
1445                 spin_lock(&fs->lock);
1446                 if (fs->in_exec) {
1447                         spin_unlock(&fs->lock);
1448                         return -EAGAIN;
1449                 }
1450                 fs->users++;
1451                 spin_unlock(&fs->lock);
1452                 return 0;
1453         }
1454         tsk->fs = copy_fs_struct(fs);
1455         if (!tsk->fs)
1456                 return -ENOMEM;
1457         return 0;
1458 }
1459
1460 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1461 {
1462         struct files_struct *oldf, *newf;
1463         int error = 0;
1464
1465         /*
1466          * A background process may not have any files ...
1467          */
1468         oldf = current->files;
1469         if (!oldf)
1470                 goto out;
1471
1472         if (clone_flags & CLONE_FILES) {
1473                 atomic_inc(&oldf->count);
1474                 goto out;
1475         }
1476
1477         newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1478         if (!newf)
1479                 goto out;
1480
1481         tsk->files = newf;
1482         error = 0;
1483 out:
1484         return error;
1485 }
1486
1487 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1488 {
1489 #ifdef CONFIG_BLOCK
1490         struct io_context *ioc = current->io_context;
1491         struct io_context *new_ioc;
1492
1493         if (!ioc)
1494                 return 0;
1495         /*
1496          * Share io context with parent, if CLONE_IO is set
1497          */
1498         if (clone_flags & CLONE_IO) {
1499                 ioc_task_link(ioc);
1500                 tsk->io_context = ioc;
1501         } else if (ioprio_valid(ioc->ioprio)) {
1502                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1503                 if (unlikely(!new_ioc))
1504                         return -ENOMEM;
1505
1506                 new_ioc->ioprio = ioc->ioprio;
1507                 put_io_context(new_ioc);
1508         }
1509 #endif
1510         return 0;
1511 }
1512
1513 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1514 {
1515         struct sighand_struct *sig;
1516
1517         if (clone_flags & CLONE_SIGHAND) {
1518                 refcount_inc(&current->sighand->count);
1519                 return 0;
1520         }
1521         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1522         RCU_INIT_POINTER(tsk->sighand, sig);
1523         if (!sig)
1524                 return -ENOMEM;
1525
1526         refcount_set(&sig->count, 1);
1527         spin_lock_irq(&current->sighand->siglock);
1528         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1529         spin_unlock_irq(&current->sighand->siglock);
1530
1531         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1532         if (clone_flags & CLONE_CLEAR_SIGHAND)
1533                 flush_signal_handlers(tsk, 0);
1534
1535         return 0;
1536 }
1537
1538 void __cleanup_sighand(struct sighand_struct *sighand)
1539 {
1540         if (refcount_dec_and_test(&sighand->count)) {
1541                 signalfd_cleanup(sighand);
1542                 /*
1543                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1544                  * without an RCU grace period, see __lock_task_sighand().
1545                  */
1546                 kmem_cache_free(sighand_cachep, sighand);
1547         }
1548 }
1549
1550 /*
1551  * Initialize POSIX timer handling for a thread group.
1552  */
1553 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1554 {
1555         struct posix_cputimers *pct = &sig->posix_cputimers;
1556         unsigned long cpu_limit;
1557
1558         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1559         posix_cputimers_group_init(pct, cpu_limit);
1560 }
1561
1562 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1563 {
1564         struct signal_struct *sig;
1565
1566         if (clone_flags & CLONE_THREAD)
1567                 return 0;
1568
1569         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1570         tsk->signal = sig;
1571         if (!sig)
1572                 return -ENOMEM;
1573
1574         sig->nr_threads = 1;
1575         atomic_set(&sig->live, 1);
1576         refcount_set(&sig->sigcnt, 1);
1577
1578         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1579         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1580         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1581
1582         init_waitqueue_head(&sig->wait_chldexit);
1583         sig->curr_target = tsk;
1584         init_sigpending(&sig->shared_pending);
1585         INIT_HLIST_HEAD(&sig->multiprocess);
1586         seqlock_init(&sig->stats_lock);
1587         prev_cputime_init(&sig->prev_cputime);
1588
1589 #ifdef CONFIG_POSIX_TIMERS
1590         INIT_LIST_HEAD(&sig->posix_timers);
1591         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1592         sig->real_timer.function = it_real_fn;
1593 #endif
1594
1595         task_lock(current->group_leader);
1596         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1597         task_unlock(current->group_leader);
1598
1599         posix_cpu_timers_init_group(sig);
1600
1601         tty_audit_fork(sig);
1602         sched_autogroup_fork(sig);
1603
1604         sig->oom_score_adj = current->signal->oom_score_adj;
1605         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1606
1607         mutex_init(&sig->cred_guard_mutex);
1608         init_rwsem(&sig->exec_update_lock);
1609
1610         return 0;
1611 }
1612
1613 static void copy_seccomp(struct task_struct *p)
1614 {
1615 #ifdef CONFIG_SECCOMP
1616         /*
1617          * Must be called with sighand->lock held, which is common to
1618          * all threads in the group. Holding cred_guard_mutex is not
1619          * needed because this new task is not yet running and cannot
1620          * be racing exec.
1621          */
1622         assert_spin_locked(&current->sighand->siglock);
1623
1624         /* Ref-count the new filter user, and assign it. */
1625         get_seccomp_filter(current);
1626         p->seccomp = current->seccomp;
1627
1628         /*
1629          * Explicitly enable no_new_privs here in case it got set
1630          * between the task_struct being duplicated and holding the
1631          * sighand lock. The seccomp state and nnp must be in sync.
1632          */
1633         if (task_no_new_privs(current))
1634                 task_set_no_new_privs(p);
1635
1636         /*
1637          * If the parent gained a seccomp mode after copying thread
1638          * flags and between before we held the sighand lock, we have
1639          * to manually enable the seccomp thread flag here.
1640          */
1641         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1642                 set_task_syscall_work(p, SECCOMP);
1643 #endif
1644 }
1645
1646 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1647 {
1648         current->clear_child_tid = tidptr;
1649
1650         return task_pid_vnr(current);
1651 }
1652
1653 static void rt_mutex_init_task(struct task_struct *p)
1654 {
1655         raw_spin_lock_init(&p->pi_lock);
1656 #ifdef CONFIG_RT_MUTEXES
1657         p->pi_waiters = RB_ROOT_CACHED;
1658         p->pi_top_task = NULL;
1659         p->pi_blocked_on = NULL;
1660 #endif
1661 }
1662
1663 static inline void init_task_pid_links(struct task_struct *task)
1664 {
1665         enum pid_type type;
1666
1667         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1668                 INIT_HLIST_NODE(&task->pid_links[type]);
1669 }
1670
1671 static inline void
1672 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1673 {
1674         if (type == PIDTYPE_PID)
1675                 task->thread_pid = pid;
1676         else
1677                 task->signal->pids[type] = pid;
1678 }
1679
1680 static inline void rcu_copy_process(struct task_struct *p)
1681 {
1682 #ifdef CONFIG_PREEMPT_RCU
1683         p->rcu_read_lock_nesting = 0;
1684         p->rcu_read_unlock_special.s = 0;
1685         p->rcu_blocked_node = NULL;
1686         INIT_LIST_HEAD(&p->rcu_node_entry);
1687 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1688 #ifdef CONFIG_TASKS_RCU
1689         p->rcu_tasks_holdout = false;
1690         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1691         p->rcu_tasks_idle_cpu = -1;
1692 #endif /* #ifdef CONFIG_TASKS_RCU */
1693 #ifdef CONFIG_TASKS_TRACE_RCU
1694         p->trc_reader_nesting = 0;
1695         p->trc_reader_special.s = 0;
1696         INIT_LIST_HEAD(&p->trc_holdout_list);
1697 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1698 }
1699
1700 struct pid *pidfd_pid(const struct file *file)
1701 {
1702         if (file->f_op == &pidfd_fops)
1703                 return file->private_data;
1704
1705         return ERR_PTR(-EBADF);
1706 }
1707
1708 static int pidfd_release(struct inode *inode, struct file *file)
1709 {
1710         struct pid *pid = file->private_data;
1711
1712         file->private_data = NULL;
1713         put_pid(pid);
1714         return 0;
1715 }
1716
1717 #ifdef CONFIG_PROC_FS
1718 /**
1719  * pidfd_show_fdinfo - print information about a pidfd
1720  * @m: proc fdinfo file
1721  * @f: file referencing a pidfd
1722  *
1723  * Pid:
1724  * This function will print the pid that a given pidfd refers to in the
1725  * pid namespace of the procfs instance.
1726  * If the pid namespace of the process is not a descendant of the pid
1727  * namespace of the procfs instance 0 will be shown as its pid. This is
1728  * similar to calling getppid() on a process whose parent is outside of
1729  * its pid namespace.
1730  *
1731  * NSpid:
1732  * If pid namespaces are supported then this function will also print
1733  * the pid of a given pidfd refers to for all descendant pid namespaces
1734  * starting from the current pid namespace of the instance, i.e. the
1735  * Pid field and the first entry in the NSpid field will be identical.
1736  * If the pid namespace of the process is not a descendant of the pid
1737  * namespace of the procfs instance 0 will be shown as its first NSpid
1738  * entry and no others will be shown.
1739  * Note that this differs from the Pid and NSpid fields in
1740  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1741  * the  pid namespace of the procfs instance. The difference becomes
1742  * obvious when sending around a pidfd between pid namespaces from a
1743  * different branch of the tree, i.e. where no ancestoral relation is
1744  * present between the pid namespaces:
1745  * - create two new pid namespaces ns1 and ns2 in the initial pid
1746  *   namespace (also take care to create new mount namespaces in the
1747  *   new pid namespace and mount procfs)
1748  * - create a process with a pidfd in ns1
1749  * - send pidfd from ns1 to ns2
1750  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1751  *   have exactly one entry, which is 0
1752  */
1753 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1754 {
1755         struct pid *pid = f->private_data;
1756         struct pid_namespace *ns;
1757         pid_t nr = -1;
1758
1759         if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1760                 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1761                 nr = pid_nr_ns(pid, ns);
1762         }
1763
1764         seq_put_decimal_ll(m, "Pid:\t", nr);
1765
1766 #ifdef CONFIG_PID_NS
1767         seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1768         if (nr > 0) {
1769                 int i;
1770
1771                 /* If nr is non-zero it means that 'pid' is valid and that
1772                  * ns, i.e. the pid namespace associated with the procfs
1773                  * instance, is in the pid namespace hierarchy of pid.
1774                  * Start at one below the already printed level.
1775                  */
1776                 for (i = ns->level + 1; i <= pid->level; i++)
1777                         seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1778         }
1779 #endif
1780         seq_putc(m, '\n');
1781 }
1782 #endif
1783
1784 /*
1785  * Poll support for process exit notification.
1786  */
1787 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1788 {
1789         struct pid *pid = file->private_data;
1790         __poll_t poll_flags = 0;
1791
1792         poll_wait(file, &pid->wait_pidfd, pts);
1793
1794         /*
1795          * Inform pollers only when the whole thread group exits.
1796          * If the thread group leader exits before all other threads in the
1797          * group, then poll(2) should block, similar to the wait(2) family.
1798          */
1799         if (thread_group_exited(pid))
1800                 poll_flags = EPOLLIN | EPOLLRDNORM;
1801
1802         return poll_flags;
1803 }
1804
1805 const struct file_operations pidfd_fops = {
1806         .release = pidfd_release,
1807         .poll = pidfd_poll,
1808 #ifdef CONFIG_PROC_FS
1809         .show_fdinfo = pidfd_show_fdinfo,
1810 #endif
1811 };
1812
1813 static void __delayed_free_task(struct rcu_head *rhp)
1814 {
1815         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1816
1817         free_task(tsk);
1818 }
1819
1820 static __always_inline void delayed_free_task(struct task_struct *tsk)
1821 {
1822         if (IS_ENABLED(CONFIG_MEMCG))
1823                 call_rcu(&tsk->rcu, __delayed_free_task);
1824         else
1825                 free_task(tsk);
1826 }
1827
1828 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1829 {
1830         /* Skip if kernel thread */
1831         if (!tsk->mm)
1832                 return;
1833
1834         /* Skip if spawning a thread or using vfork */
1835         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1836                 return;
1837
1838         /* We need to synchronize with __set_oom_adj */
1839         mutex_lock(&oom_adj_mutex);
1840         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1841         /* Update the values in case they were changed after copy_signal */
1842         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1843         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1844         mutex_unlock(&oom_adj_mutex);
1845 }
1846
1847 /*
1848  * This creates a new process as a copy of the old one,
1849  * but does not actually start it yet.
1850  *
1851  * It copies the registers, and all the appropriate
1852  * parts of the process environment (as per the clone
1853  * flags). The actual kick-off is left to the caller.
1854  */
1855 static __latent_entropy struct task_struct *copy_process(
1856                                         struct pid *pid,
1857                                         int trace,
1858                                         int node,
1859                                         struct kernel_clone_args *args)
1860 {
1861         int pidfd = -1, retval;
1862         struct task_struct *p;
1863         struct multiprocess_signals delayed;
1864         struct file *pidfile = NULL;
1865         u64 clone_flags = args->flags;
1866         struct nsproxy *nsp = current->nsproxy;
1867
1868         /*
1869          * Don't allow sharing the root directory with processes in a different
1870          * namespace
1871          */
1872         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1873                 return ERR_PTR(-EINVAL);
1874
1875         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1876                 return ERR_PTR(-EINVAL);
1877
1878         /*
1879          * Thread groups must share signals as well, and detached threads
1880          * can only be started up within the thread group.
1881          */
1882         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1883                 return ERR_PTR(-EINVAL);
1884
1885         /*
1886          * Shared signal handlers imply shared VM. By way of the above,
1887          * thread groups also imply shared VM. Blocking this case allows
1888          * for various simplifications in other code.
1889          */
1890         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1891                 return ERR_PTR(-EINVAL);
1892
1893         /*
1894          * Siblings of global init remain as zombies on exit since they are
1895          * not reaped by their parent (swapper). To solve this and to avoid
1896          * multi-rooted process trees, prevent global and container-inits
1897          * from creating siblings.
1898          */
1899         if ((clone_flags & CLONE_PARENT) &&
1900                                 current->signal->flags & SIGNAL_UNKILLABLE)
1901                 return ERR_PTR(-EINVAL);
1902
1903         /*
1904          * If the new process will be in a different pid or user namespace
1905          * do not allow it to share a thread group with the forking task.
1906          */
1907         if (clone_flags & CLONE_THREAD) {
1908                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1909                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1910                         return ERR_PTR(-EINVAL);
1911         }
1912
1913         /*
1914          * If the new process will be in a different time namespace
1915          * do not allow it to share VM or a thread group with the forking task.
1916          */
1917         if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1918                 if (nsp->time_ns != nsp->time_ns_for_children)
1919                         return ERR_PTR(-EINVAL);
1920         }
1921
1922         if (clone_flags & CLONE_PIDFD) {
1923                 /*
1924                  * - CLONE_DETACHED is blocked so that we can potentially
1925                  *   reuse it later for CLONE_PIDFD.
1926                  * - CLONE_THREAD is blocked until someone really needs it.
1927                  */
1928                 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1929                         return ERR_PTR(-EINVAL);
1930         }
1931
1932         /*
1933          * Force any signals received before this point to be delivered
1934          * before the fork happens.  Collect up signals sent to multiple
1935          * processes that happen during the fork and delay them so that
1936          * they appear to happen after the fork.
1937          */
1938         sigemptyset(&delayed.signal);
1939         INIT_HLIST_NODE(&delayed.node);
1940
1941         spin_lock_irq(&current->sighand->siglock);
1942         if (!(clone_flags & CLONE_THREAD))
1943                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1944         recalc_sigpending();
1945         spin_unlock_irq(&current->sighand->siglock);
1946         retval = -ERESTARTNOINTR;
1947         if (task_sigpending(current))
1948                 goto fork_out;
1949
1950         retval = -ENOMEM;
1951         p = dup_task_struct(current, node);
1952         if (!p)
1953                 goto fork_out;
1954         if (args->io_thread) {
1955                 /*
1956                  * Mark us an IO worker, and block any signal that isn't
1957                  * fatal or STOP
1958                  */
1959                 p->flags |= PF_IO_WORKER;
1960                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1961         }
1962
1963         /*
1964          * This _must_ happen before we call free_task(), i.e. before we jump
1965          * to any of the bad_fork_* labels. This is to avoid freeing
1966          * p->set_child_tid which is (ab)used as a kthread's data pointer for
1967          * kernel threads (PF_KTHREAD).
1968          */
1969         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1970         /*
1971          * Clear TID on mm_release()?
1972          */
1973         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1974
1975         ftrace_graph_init_task(p);
1976
1977         rt_mutex_init_task(p);
1978
1979         lockdep_assert_irqs_enabled();
1980 #ifdef CONFIG_PROVE_LOCKING
1981         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1982 #endif
1983         retval = -EAGAIN;
1984         if (atomic_read(&p->real_cred->user->processes) >=
1985                         task_rlimit(p, RLIMIT_NPROC)) {
1986                 if (p->real_cred->user != INIT_USER &&
1987                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1988                         goto bad_fork_free;
1989         }
1990         current->flags &= ~PF_NPROC_EXCEEDED;
1991
1992         retval = copy_creds(p, clone_flags);
1993         if (retval < 0)
1994                 goto bad_fork_free;
1995
1996         /*
1997          * If multiple threads are within copy_process(), then this check
1998          * triggers too late. This doesn't hurt, the check is only there
1999          * to stop root fork bombs.
2000          */
2001         retval = -EAGAIN;
2002         if (data_race(nr_threads >= max_threads))
2003                 goto bad_fork_cleanup_count;
2004
2005         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
2006         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2007         p->flags |= PF_FORKNOEXEC;
2008         INIT_LIST_HEAD(&p->children);
2009         INIT_LIST_HEAD(&p->sibling);
2010         rcu_copy_process(p);
2011         p->vfork_done = NULL;
2012         spin_lock_init(&p->alloc_lock);
2013
2014         init_sigpending(&p->pending);
2015         p->sigqueue_cache = NULL;
2016
2017         p->utime = p->stime = p->gtime = 0;
2018 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2019         p->utimescaled = p->stimescaled = 0;
2020 #endif
2021         prev_cputime_init(&p->prev_cputime);
2022
2023 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2024         seqcount_init(&p->vtime.seqcount);
2025         p->vtime.starttime = 0;
2026         p->vtime.state = VTIME_INACTIVE;
2027 #endif
2028
2029 #ifdef CONFIG_IO_URING
2030         p->io_uring = NULL;
2031 #endif
2032
2033 #if defined(SPLIT_RSS_COUNTING)
2034         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2035 #endif
2036
2037         p->default_timer_slack_ns = current->timer_slack_ns;
2038
2039 #ifdef CONFIG_PSI
2040         p->psi_flags = 0;
2041 #endif
2042
2043         task_io_accounting_init(&p->ioac);
2044         acct_clear_integrals(p);
2045
2046         posix_cputimers_init(&p->posix_cputimers);
2047
2048         p->io_context = NULL;
2049         audit_set_context(p, NULL);
2050         cgroup_fork(p);
2051 #ifdef CONFIG_NUMA
2052         p->mempolicy = mpol_dup(p->mempolicy);
2053         if (IS_ERR(p->mempolicy)) {
2054                 retval = PTR_ERR(p->mempolicy);
2055                 p->mempolicy = NULL;
2056                 goto bad_fork_cleanup_threadgroup_lock;
2057         }
2058 #endif
2059 #ifdef CONFIG_CPUSETS
2060         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2061         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2062         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2063 #endif
2064 #ifdef CONFIG_TRACE_IRQFLAGS
2065         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2066         p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2067         p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2068         p->softirqs_enabled             = 1;
2069         p->softirq_context              = 0;
2070 #endif
2071
2072         p->pagefault_disabled = 0;
2073
2074 #ifdef CONFIG_LOCKDEP
2075         lockdep_init_task(p);
2076 #endif
2077
2078 #ifdef CONFIG_DEBUG_MUTEXES
2079         p->blocked_on = NULL; /* not blocked yet */
2080 #endif
2081 #ifdef CONFIG_BCACHE
2082         p->sequential_io        = 0;
2083         p->sequential_io_avg    = 0;
2084 #endif
2085 #ifdef CONFIG_BPF_SYSCALL
2086         RCU_INIT_POINTER(p->bpf_storage, NULL);
2087 #endif
2088
2089         /* Perform scheduler related setup. Assign this task to a CPU. */
2090         retval = sched_fork(clone_flags, p);
2091         if (retval)
2092                 goto bad_fork_cleanup_policy;
2093
2094         retval = perf_event_init_task(p, clone_flags);
2095         if (retval)
2096                 goto bad_fork_cleanup_policy;
2097         retval = audit_alloc(p);
2098         if (retval)
2099                 goto bad_fork_cleanup_perf;
2100         /* copy all the process information */
2101         shm_init_task(p);
2102         retval = security_task_alloc(p, clone_flags);
2103         if (retval)
2104                 goto bad_fork_cleanup_audit;
2105         retval = copy_semundo(clone_flags, p);
2106         if (retval)
2107                 goto bad_fork_cleanup_security;
2108         retval = copy_files(clone_flags, p);
2109         if (retval)
2110                 goto bad_fork_cleanup_semundo;
2111         retval = copy_fs(clone_flags, p);
2112         if (retval)
2113                 goto bad_fork_cleanup_files;
2114         retval = copy_sighand(clone_flags, p);
2115         if (retval)
2116                 goto bad_fork_cleanup_fs;
2117         retval = copy_signal(clone_flags, p);
2118         if (retval)
2119                 goto bad_fork_cleanup_sighand;
2120         retval = copy_mm(clone_flags, p);
2121         if (retval)
2122                 goto bad_fork_cleanup_signal;
2123         retval = copy_namespaces(clone_flags, p);
2124         if (retval)
2125                 goto bad_fork_cleanup_mm;
2126         retval = copy_io(clone_flags, p);
2127         if (retval)
2128                 goto bad_fork_cleanup_namespaces;
2129         retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2130         if (retval)
2131                 goto bad_fork_cleanup_io;
2132
2133         stackleak_task_init(p);
2134
2135         if (pid != &init_struct_pid) {
2136                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2137                                 args->set_tid_size);
2138                 if (IS_ERR(pid)) {
2139                         retval = PTR_ERR(pid);
2140                         goto bad_fork_cleanup_thread;
2141                 }
2142         }
2143
2144         /*
2145          * This has to happen after we've potentially unshared the file
2146          * descriptor table (so that the pidfd doesn't leak into the child
2147          * if the fd table isn't shared).
2148          */
2149         if (clone_flags & CLONE_PIDFD) {
2150                 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2151                 if (retval < 0)
2152                         goto bad_fork_free_pid;
2153
2154                 pidfd = retval;
2155
2156                 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2157                                               O_RDWR | O_CLOEXEC);
2158                 if (IS_ERR(pidfile)) {
2159                         put_unused_fd(pidfd);
2160                         retval = PTR_ERR(pidfile);
2161                         goto bad_fork_free_pid;
2162                 }
2163                 get_pid(pid);   /* held by pidfile now */
2164
2165                 retval = put_user(pidfd, args->pidfd);
2166                 if (retval)
2167                         goto bad_fork_put_pidfd;
2168         }
2169
2170 #ifdef CONFIG_BLOCK
2171         p->plug = NULL;
2172 #endif
2173         futex_init_task(p);
2174
2175         /*
2176          * sigaltstack should be cleared when sharing the same VM
2177          */
2178         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2179                 sas_ss_reset(p);
2180
2181         /*
2182          * Syscall tracing and stepping should be turned off in the
2183          * child regardless of CLONE_PTRACE.
2184          */
2185         user_disable_single_step(p);
2186         clear_task_syscall_work(p, SYSCALL_TRACE);
2187 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2188         clear_task_syscall_work(p, SYSCALL_EMU);
2189 #endif
2190         clear_tsk_latency_tracing(p);
2191
2192         /* ok, now we should be set up.. */
2193         p->pid = pid_nr(pid);
2194         if (clone_flags & CLONE_THREAD) {
2195                 p->group_leader = current->group_leader;
2196                 p->tgid = current->tgid;
2197         } else {
2198                 p->group_leader = p;
2199                 p->tgid = p->pid;
2200         }
2201
2202         p->nr_dirtied = 0;
2203         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2204         p->dirty_paused_when = 0;
2205
2206         p->pdeath_signal = 0;
2207         INIT_LIST_HEAD(&p->thread_group);
2208         p->task_works = NULL;
2209
2210 #ifdef CONFIG_KRETPROBES
2211         p->kretprobe_instances.first = NULL;
2212 #endif
2213
2214         /*
2215          * Ensure that the cgroup subsystem policies allow the new process to be
2216          * forked. It should be noted that the new process's css_set can be changed
2217          * between here and cgroup_post_fork() if an organisation operation is in
2218          * progress.
2219          */
2220         retval = cgroup_can_fork(p, args);
2221         if (retval)
2222                 goto bad_fork_put_pidfd;
2223
2224         /*
2225          * From this point on we must avoid any synchronous user-space
2226          * communication until we take the tasklist-lock. In particular, we do
2227          * not want user-space to be able to predict the process start-time by
2228          * stalling fork(2) after we recorded the start_time but before it is
2229          * visible to the system.
2230          */
2231
2232         p->start_time = ktime_get_ns();
2233         p->start_boottime = ktime_get_boottime_ns();
2234
2235         /*
2236          * Make it visible to the rest of the system, but dont wake it up yet.
2237          * Need tasklist lock for parent etc handling!
2238          */
2239         write_lock_irq(&tasklist_lock);
2240
2241         /* CLONE_PARENT re-uses the old parent */
2242         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2243                 p->real_parent = current->real_parent;
2244                 p->parent_exec_id = current->parent_exec_id;
2245                 if (clone_flags & CLONE_THREAD)
2246                         p->exit_signal = -1;
2247                 else
2248                         p->exit_signal = current->group_leader->exit_signal;
2249         } else {
2250                 p->real_parent = current;
2251                 p->parent_exec_id = current->self_exec_id;
2252                 p->exit_signal = args->exit_signal;
2253         }
2254
2255         klp_copy_process(p);
2256
2257         spin_lock(&current->sighand->siglock);
2258
2259         /*
2260          * Copy seccomp details explicitly here, in case they were changed
2261          * before holding sighand lock.
2262          */
2263         copy_seccomp(p);
2264
2265         rseq_fork(p, clone_flags);
2266
2267         /* Don't start children in a dying pid namespace */
2268         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2269                 retval = -ENOMEM;
2270                 goto bad_fork_cancel_cgroup;
2271         }
2272
2273         /* Let kill terminate clone/fork in the middle */
2274         if (fatal_signal_pending(current)) {
2275                 retval = -EINTR;
2276                 goto bad_fork_cancel_cgroup;
2277         }
2278
2279         /* past the last point of failure */
2280         if (pidfile)
2281                 fd_install(pidfd, pidfile);
2282
2283         init_task_pid_links(p);
2284         if (likely(p->pid)) {
2285                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2286
2287                 init_task_pid(p, PIDTYPE_PID, pid);
2288                 if (thread_group_leader(p)) {
2289                         init_task_pid(p, PIDTYPE_TGID, pid);
2290                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2291                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2292
2293                         if (is_child_reaper(pid)) {
2294                                 ns_of_pid(pid)->child_reaper = p;
2295                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2296                         }
2297                         p->signal->shared_pending.signal = delayed.signal;
2298                         p->signal->tty = tty_kref_get(current->signal->tty);
2299                         /*
2300                          * Inherit has_child_subreaper flag under the same
2301                          * tasklist_lock with adding child to the process tree
2302                          * for propagate_has_child_subreaper optimization.
2303                          */
2304                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2305                                                          p->real_parent->signal->is_child_subreaper;
2306                         list_add_tail(&p->sibling, &p->real_parent->children);
2307                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2308                         attach_pid(p, PIDTYPE_TGID);
2309                         attach_pid(p, PIDTYPE_PGID);
2310                         attach_pid(p, PIDTYPE_SID);
2311                         __this_cpu_inc(process_counts);
2312                 } else {
2313                         current->signal->nr_threads++;
2314                         atomic_inc(&current->signal->live);
2315                         refcount_inc(&current->signal->sigcnt);
2316                         task_join_group_stop(p);
2317                         list_add_tail_rcu(&p->thread_group,
2318                                           &p->group_leader->thread_group);
2319                         list_add_tail_rcu(&p->thread_node,
2320                                           &p->signal->thread_head);
2321                 }
2322                 attach_pid(p, PIDTYPE_PID);
2323                 nr_threads++;
2324         }
2325         total_forks++;
2326         hlist_del_init(&delayed.node);
2327         spin_unlock(&current->sighand->siglock);
2328         syscall_tracepoint_update(p);
2329         write_unlock_irq(&tasklist_lock);
2330
2331         proc_fork_connector(p);
2332         sched_post_fork(p);
2333         cgroup_post_fork(p, args);
2334         perf_event_fork(p);
2335
2336         trace_task_newtask(p, clone_flags);
2337         uprobe_copy_process(p, clone_flags);
2338
2339         copy_oom_score_adj(clone_flags, p);
2340
2341         return p;
2342
2343 bad_fork_cancel_cgroup:
2344         spin_unlock(&current->sighand->siglock);
2345         write_unlock_irq(&tasklist_lock);
2346         cgroup_cancel_fork(p, args);
2347 bad_fork_put_pidfd:
2348         if (clone_flags & CLONE_PIDFD) {
2349                 fput(pidfile);
2350                 put_unused_fd(pidfd);
2351         }
2352 bad_fork_free_pid:
2353         if (pid != &init_struct_pid)
2354                 free_pid(pid);
2355 bad_fork_cleanup_thread:
2356         exit_thread(p);
2357 bad_fork_cleanup_io:
2358         if (p->io_context)
2359                 exit_io_context(p);
2360 bad_fork_cleanup_namespaces:
2361         exit_task_namespaces(p);
2362 bad_fork_cleanup_mm:
2363         if (p->mm) {
2364                 mm_clear_owner(p->mm, p);
2365                 mmput(p->mm);
2366         }
2367 bad_fork_cleanup_signal:
2368         if (!(clone_flags & CLONE_THREAD))
2369                 free_signal_struct(p->signal);
2370 bad_fork_cleanup_sighand:
2371         __cleanup_sighand(p->sighand);
2372 bad_fork_cleanup_fs:
2373         exit_fs(p); /* blocking */
2374 bad_fork_cleanup_files:
2375         exit_files(p); /* blocking */
2376 bad_fork_cleanup_semundo:
2377         exit_sem(p);
2378 bad_fork_cleanup_security:
2379         security_task_free(p);
2380 bad_fork_cleanup_audit:
2381         audit_free(p);
2382 bad_fork_cleanup_perf:
2383         perf_event_free_task(p);
2384 bad_fork_cleanup_policy:
2385         lockdep_free_task(p);
2386 #ifdef CONFIG_NUMA
2387         mpol_put(p->mempolicy);
2388 bad_fork_cleanup_threadgroup_lock:
2389 #endif
2390         delayacct_tsk_free(p);
2391 bad_fork_cleanup_count:
2392         atomic_dec(&p->cred->user->processes);
2393         exit_creds(p);
2394 bad_fork_free:
2395         p->state = TASK_DEAD;
2396         put_task_stack(p);
2397         delayed_free_task(p);
2398 fork_out:
2399         spin_lock_irq(&current->sighand->siglock);
2400         hlist_del_init(&delayed.node);
2401         spin_unlock_irq(&current->sighand->siglock);
2402         return ERR_PTR(retval);
2403 }
2404
2405 static inline void init_idle_pids(struct task_struct *idle)
2406 {
2407         enum pid_type type;
2408
2409         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2410                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2411                 init_task_pid(idle, type, &init_struct_pid);
2412         }
2413 }
2414
2415 struct task_struct *fork_idle(int cpu)
2416 {
2417         struct task_struct *task;
2418         struct kernel_clone_args args = {
2419                 .flags = CLONE_VM,
2420         };
2421
2422         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2423         if (!IS_ERR(task)) {
2424                 init_idle_pids(task);
2425                 init_idle(task, cpu);
2426         }
2427
2428         return task;
2429 }
2430
2431 struct mm_struct *copy_init_mm(void)
2432 {
2433         return dup_mm(NULL, &init_mm);
2434 }
2435
2436 /*
2437  * This is like kernel_clone(), but shaved down and tailored to just
2438  * creating io_uring workers. It returns a created task, or an error pointer.
2439  * The returned task is inactive, and the caller must fire it up through
2440  * wake_up_new_task(p). All signals are blocked in the created task.
2441  */
2442 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2443 {
2444         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2445                                 CLONE_IO;
2446         struct kernel_clone_args args = {
2447                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2448                                     CLONE_UNTRACED) & ~CSIGNAL),
2449                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2450                 .stack          = (unsigned long)fn,
2451                 .stack_size     = (unsigned long)arg,
2452                 .io_thread      = 1,
2453         };
2454
2455         return copy_process(NULL, 0, node, &args);
2456 }
2457
2458 /*
2459  *  Ok, this is the main fork-routine.
2460  *
2461  * It copies the process, and if successful kick-starts
2462  * it and waits for it to finish using the VM if required.
2463  *
2464  * args->exit_signal is expected to be checked for sanity by the caller.
2465  */
2466 pid_t kernel_clone(struct kernel_clone_args *args)
2467 {
2468         u64 clone_flags = args->flags;
2469         struct completion vfork;
2470         struct pid *pid;
2471         struct task_struct *p;
2472         int trace = 0;
2473         pid_t nr;
2474
2475         /*
2476          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2477          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2478          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2479          * field in struct clone_args and it still doesn't make sense to have
2480          * them both point at the same memory location. Performing this check
2481          * here has the advantage that we don't need to have a separate helper
2482          * to check for legacy clone().
2483          */
2484         if ((args->flags & CLONE_PIDFD) &&
2485             (args->flags & CLONE_PARENT_SETTID) &&
2486             (args->pidfd == args->parent_tid))
2487                 return -EINVAL;
2488
2489         /*
2490          * Determine whether and which event to report to ptracer.  When
2491          * called from kernel_thread or CLONE_UNTRACED is explicitly
2492          * requested, no event is reported; otherwise, report if the event
2493          * for the type of forking is enabled.
2494          */
2495         if (!(clone_flags & CLONE_UNTRACED)) {
2496                 if (clone_flags & CLONE_VFORK)
2497                         trace = PTRACE_EVENT_VFORK;
2498                 else if (args->exit_signal != SIGCHLD)
2499                         trace = PTRACE_EVENT_CLONE;
2500                 else
2501                         trace = PTRACE_EVENT_FORK;
2502
2503                 if (likely(!ptrace_event_enabled(current, trace)))
2504                         trace = 0;
2505         }
2506
2507         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2508         add_latent_entropy();
2509
2510         if (IS_ERR(p))
2511                 return PTR_ERR(p);
2512
2513         /*
2514          * Do this prior waking up the new thread - the thread pointer
2515          * might get invalid after that point, if the thread exits quickly.
2516          */
2517         trace_sched_process_fork(current, p);
2518
2519         pid = get_task_pid(p, PIDTYPE_PID);
2520         nr = pid_vnr(pid);
2521
2522         if (clone_flags & CLONE_PARENT_SETTID)
2523                 put_user(nr, args->parent_tid);
2524
2525         if (clone_flags & CLONE_VFORK) {
2526                 p->vfork_done = &vfork;
2527                 init_completion(&vfork);
2528                 get_task_struct(p);
2529         }
2530
2531         wake_up_new_task(p);
2532
2533         /* forking complete and child started to run, tell ptracer */
2534         if (unlikely(trace))
2535                 ptrace_event_pid(trace, pid);
2536
2537         if (clone_flags & CLONE_VFORK) {
2538                 if (!wait_for_vfork_done(p, &vfork))
2539                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2540         }
2541
2542         put_pid(pid);
2543         return nr;
2544 }
2545
2546 /*
2547  * Create a kernel thread.
2548  */
2549 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2550 {
2551         struct kernel_clone_args args = {
2552                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2553                                     CLONE_UNTRACED) & ~CSIGNAL),
2554                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2555                 .stack          = (unsigned long)fn,
2556                 .stack_size     = (unsigned long)arg,
2557         };
2558
2559         return kernel_clone(&args);
2560 }
2561
2562 #ifdef __ARCH_WANT_SYS_FORK
2563 SYSCALL_DEFINE0(fork)
2564 {
2565 #ifdef CONFIG_MMU
2566         struct kernel_clone_args args = {
2567                 .exit_signal = SIGCHLD,
2568         };
2569
2570         return kernel_clone(&args);
2571 #else
2572         /* can not support in nommu mode */
2573         return -EINVAL;
2574 #endif
2575 }
2576 #endif
2577
2578 #ifdef __ARCH_WANT_SYS_VFORK
2579 SYSCALL_DEFINE0(vfork)
2580 {
2581         struct kernel_clone_args args = {
2582                 .flags          = CLONE_VFORK | CLONE_VM,
2583                 .exit_signal    = SIGCHLD,
2584         };
2585
2586         return kernel_clone(&args);
2587 }
2588 #endif
2589
2590 #ifdef __ARCH_WANT_SYS_CLONE
2591 #ifdef CONFIG_CLONE_BACKWARDS
2592 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2593                  int __user *, parent_tidptr,
2594                  unsigned long, tls,
2595                  int __user *, child_tidptr)
2596 #elif defined(CONFIG_CLONE_BACKWARDS2)
2597 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2598                  int __user *, parent_tidptr,
2599                  int __user *, child_tidptr,
2600                  unsigned long, tls)
2601 #elif defined(CONFIG_CLONE_BACKWARDS3)
2602 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2603                 int, stack_size,
2604                 int __user *, parent_tidptr,
2605                 int __user *, child_tidptr,
2606                 unsigned long, tls)
2607 #else
2608 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2609                  int __user *, parent_tidptr,
2610                  int __user *, child_tidptr,
2611                  unsigned long, tls)
2612 #endif
2613 {
2614         struct kernel_clone_args args = {
2615                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2616                 .pidfd          = parent_tidptr,
2617                 .child_tid      = child_tidptr,
2618                 .parent_tid     = parent_tidptr,
2619                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2620                 .stack          = newsp,
2621                 .tls            = tls,
2622         };
2623
2624         return kernel_clone(&args);
2625 }
2626 #endif
2627
2628 #ifdef __ARCH_WANT_SYS_CLONE3
2629
2630 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2631                                               struct clone_args __user *uargs,
2632                                               size_t usize)
2633 {
2634         int err;
2635         struct clone_args args;
2636         pid_t *kset_tid = kargs->set_tid;
2637
2638         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2639                      CLONE_ARGS_SIZE_VER0);
2640         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2641                      CLONE_ARGS_SIZE_VER1);
2642         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2643                      CLONE_ARGS_SIZE_VER2);
2644         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2645
2646         if (unlikely(usize > PAGE_SIZE))
2647                 return -E2BIG;
2648         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2649                 return -EINVAL;
2650
2651         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2652         if (err)
2653                 return err;
2654
2655         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2656                 return -EINVAL;
2657
2658         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2659                 return -EINVAL;
2660
2661         if (unlikely(args.set_tid && args.set_tid_size == 0))
2662                 return -EINVAL;
2663
2664         /*
2665          * Verify that higher 32bits of exit_signal are unset and that
2666          * it is a valid signal
2667          */
2668         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2669                      !valid_signal(args.exit_signal)))
2670                 return -EINVAL;
2671
2672         if ((args.flags & CLONE_INTO_CGROUP) &&
2673             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2674                 return -EINVAL;
2675
2676         *kargs = (struct kernel_clone_args){
2677                 .flags          = args.flags,
2678                 .pidfd          = u64_to_user_ptr(args.pidfd),
2679                 .child_tid      = u64_to_user_ptr(args.child_tid),
2680                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
2681                 .exit_signal    = args.exit_signal,
2682                 .stack          = args.stack,
2683                 .stack_size     = args.stack_size,
2684                 .tls            = args.tls,
2685                 .set_tid_size   = args.set_tid_size,
2686                 .cgroup         = args.cgroup,
2687         };
2688
2689         if (args.set_tid &&
2690                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2691                         (kargs->set_tid_size * sizeof(pid_t))))
2692                 return -EFAULT;
2693
2694         kargs->set_tid = kset_tid;
2695
2696         return 0;
2697 }
2698
2699 /**
2700  * clone3_stack_valid - check and prepare stack
2701  * @kargs: kernel clone args
2702  *
2703  * Verify that the stack arguments userspace gave us are sane.
2704  * In addition, set the stack direction for userspace since it's easy for us to
2705  * determine.
2706  */
2707 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2708 {
2709         if (kargs->stack == 0) {
2710                 if (kargs->stack_size > 0)
2711                         return false;
2712         } else {
2713                 if (kargs->stack_size == 0)
2714                         return false;
2715
2716                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2717                         return false;
2718
2719 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2720                 kargs->stack += kargs->stack_size;
2721 #endif
2722         }
2723
2724         return true;
2725 }
2726
2727 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2728 {
2729         /* Verify that no unknown flags are passed along. */
2730         if (kargs->flags &
2731             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2732                 return false;
2733
2734         /*
2735          * - make the CLONE_DETACHED bit reuseable for clone3
2736          * - make the CSIGNAL bits reuseable for clone3
2737          */
2738         if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2739                 return false;
2740
2741         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2742             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2743                 return false;
2744
2745         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2746             kargs->exit_signal)
2747                 return false;
2748
2749         if (!clone3_stack_valid(kargs))
2750                 return false;
2751
2752         return true;
2753 }
2754
2755 /**
2756  * clone3 - create a new process with specific properties
2757  * @uargs: argument structure
2758  * @size:  size of @uargs
2759  *
2760  * clone3() is the extensible successor to clone()/clone2().
2761  * It takes a struct as argument that is versioned by its size.
2762  *
2763  * Return: On success, a positive PID for the child process.
2764  *         On error, a negative errno number.
2765  */
2766 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2767 {
2768         int err;
2769
2770         struct kernel_clone_args kargs;
2771         pid_t set_tid[MAX_PID_NS_LEVEL];
2772
2773         kargs.set_tid = set_tid;
2774
2775         err = copy_clone_args_from_user(&kargs, uargs, size);
2776         if (err)
2777                 return err;
2778
2779         if (!clone3_args_valid(&kargs))
2780                 return -EINVAL;
2781
2782         return kernel_clone(&kargs);
2783 }
2784 #endif
2785
2786 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2787 {
2788         struct task_struct *leader, *parent, *child;
2789         int res;
2790
2791         read_lock(&tasklist_lock);
2792         leader = top = top->group_leader;
2793 down:
2794         for_each_thread(leader, parent) {
2795                 list_for_each_entry(child, &parent->children, sibling) {
2796                         res = visitor(child, data);
2797                         if (res) {
2798                                 if (res < 0)
2799                                         goto out;
2800                                 leader = child;
2801                                 goto down;
2802                         }
2803 up:
2804                         ;
2805                 }
2806         }
2807
2808         if (leader != top) {
2809                 child = leader;
2810                 parent = child->real_parent;
2811                 leader = parent->group_leader;
2812                 goto up;
2813         }
2814 out:
2815         read_unlock(&tasklist_lock);
2816 }
2817
2818 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2819 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2820 #endif
2821
2822 static void sighand_ctor(void *data)
2823 {
2824         struct sighand_struct *sighand = data;
2825
2826         spin_lock_init(&sighand->siglock);
2827         init_waitqueue_head(&sighand->signalfd_wqh);
2828 }
2829
2830 void __init proc_caches_init(void)
2831 {
2832         unsigned int mm_size;
2833
2834         sighand_cachep = kmem_cache_create("sighand_cache",
2835                         sizeof(struct sighand_struct), 0,
2836                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2837                         SLAB_ACCOUNT, sighand_ctor);
2838         signal_cachep = kmem_cache_create("signal_cache",
2839                         sizeof(struct signal_struct), 0,
2840                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2841                         NULL);
2842         files_cachep = kmem_cache_create("files_cache",
2843                         sizeof(struct files_struct), 0,
2844                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2845                         NULL);
2846         fs_cachep = kmem_cache_create("fs_cache",
2847                         sizeof(struct fs_struct), 0,
2848                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2849                         NULL);
2850
2851         /*
2852          * The mm_cpumask is located at the end of mm_struct, and is
2853          * dynamically sized based on the maximum CPU number this system
2854          * can have, taking hotplug into account (nr_cpu_ids).
2855          */
2856         mm_size = sizeof(struct mm_struct) + cpumask_size();
2857
2858         mm_cachep = kmem_cache_create_usercopy("mm_struct",
2859                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2860                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2861                         offsetof(struct mm_struct, saved_auxv),
2862                         sizeof_field(struct mm_struct, saved_auxv),
2863                         NULL);
2864         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2865         mmap_init();
2866         nsproxy_cache_init();
2867 }
2868
2869 /*
2870  * Check constraints on flags passed to the unshare system call.
2871  */
2872 static int check_unshare_flags(unsigned long unshare_flags)
2873 {
2874         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2875                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2876                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2877                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2878                                 CLONE_NEWTIME))
2879                 return -EINVAL;
2880         /*
2881          * Not implemented, but pretend it works if there is nothing
2882          * to unshare.  Note that unsharing the address space or the
2883          * signal handlers also need to unshare the signal queues (aka
2884          * CLONE_THREAD).
2885          */
2886         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2887                 if (!thread_group_empty(current))
2888                         return -EINVAL;
2889         }
2890         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2891                 if (refcount_read(&current->sighand->count) > 1)
2892                         return -EINVAL;
2893         }
2894         if (unshare_flags & CLONE_VM) {
2895                 if (!current_is_single_threaded())
2896                         return -EINVAL;
2897         }
2898
2899         return 0;
2900 }
2901
2902 /*
2903  * Unshare the filesystem structure if it is being shared
2904  */
2905 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2906 {
2907         struct fs_struct *fs = current->fs;
2908
2909         if (!(unshare_flags & CLONE_FS) || !fs)
2910                 return 0;
2911
2912         /* don't need lock here; in the worst case we'll do useless copy */
2913         if (fs->users == 1)
2914                 return 0;
2915
2916         *new_fsp = copy_fs_struct(fs);
2917         if (!*new_fsp)
2918                 return -ENOMEM;
2919
2920         return 0;
2921 }
2922
2923 /*
2924  * Unshare file descriptor table if it is being shared
2925  */
2926 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2927                struct files_struct **new_fdp)
2928 {
2929         struct files_struct *fd = current->files;
2930         int error = 0;
2931
2932         if ((unshare_flags & CLONE_FILES) &&
2933             (fd && atomic_read(&fd->count) > 1)) {
2934                 *new_fdp = dup_fd(fd, max_fds, &error);
2935                 if (!*new_fdp)
2936                         return error;
2937         }
2938
2939         return 0;
2940 }
2941
2942 /*
2943  * unshare allows a process to 'unshare' part of the process
2944  * context which was originally shared using clone.  copy_*
2945  * functions used by kernel_clone() cannot be used here directly
2946  * because they modify an inactive task_struct that is being
2947  * constructed. Here we are modifying the current, active,
2948  * task_struct.
2949  */
2950 int ksys_unshare(unsigned long unshare_flags)
2951 {
2952         struct fs_struct *fs, *new_fs = NULL;
2953         struct files_struct *fd, *new_fd = NULL;
2954         struct cred *new_cred = NULL;
2955         struct nsproxy *new_nsproxy = NULL;
2956         int do_sysvsem = 0;
2957         int err;
2958
2959         /*
2960          * If unsharing a user namespace must also unshare the thread group
2961          * and unshare the filesystem root and working directories.
2962          */
2963         if (unshare_flags & CLONE_NEWUSER)
2964                 unshare_flags |= CLONE_THREAD | CLONE_FS;
2965         /*
2966          * If unsharing vm, must also unshare signal handlers.
2967          */
2968         if (unshare_flags & CLONE_VM)
2969                 unshare_flags |= CLONE_SIGHAND;
2970         /*
2971          * If unsharing a signal handlers, must also unshare the signal queues.
2972          */
2973         if (unshare_flags & CLONE_SIGHAND)
2974                 unshare_flags |= CLONE_THREAD;
2975         /*
2976          * If unsharing namespace, must also unshare filesystem information.
2977          */
2978         if (unshare_flags & CLONE_NEWNS)
2979                 unshare_flags |= CLONE_FS;
2980
2981         err = check_unshare_flags(unshare_flags);
2982         if (err)
2983                 goto bad_unshare_out;
2984         /*
2985          * CLONE_NEWIPC must also detach from the undolist: after switching
2986          * to a new ipc namespace, the semaphore arrays from the old
2987          * namespace are unreachable.
2988          */
2989         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2990                 do_sysvsem = 1;
2991         err = unshare_fs(unshare_flags, &new_fs);
2992         if (err)
2993                 goto bad_unshare_out;
2994         err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2995         if (err)
2996                 goto bad_unshare_cleanup_fs;
2997         err = unshare_userns(unshare_flags, &new_cred);
2998         if (err)
2999                 goto bad_unshare_cleanup_fd;
3000         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3001                                          new_cred, new_fs);
3002         if (err)
3003                 goto bad_unshare_cleanup_cred;
3004
3005         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3006                 if (do_sysvsem) {
3007                         /*
3008                          * CLONE_SYSVSEM is equivalent to sys_exit().
3009                          */
3010                         exit_sem(current);
3011                 }
3012                 if (unshare_flags & CLONE_NEWIPC) {
3013                         /* Orphan segments in old ns (see sem above). */
3014                         exit_shm(current);
3015                         shm_init_task(current);
3016                 }
3017
3018                 if (new_nsproxy)
3019                         switch_task_namespaces(current, new_nsproxy);
3020
3021                 task_lock(current);
3022
3023                 if (new_fs) {
3024                         fs = current->fs;
3025                         spin_lock(&fs->lock);
3026                         current->fs = new_fs;
3027                         if (--fs->users)
3028                                 new_fs = NULL;
3029                         else
3030                                 new_fs = fs;
3031                         spin_unlock(&fs->lock);
3032                 }
3033
3034                 if (new_fd) {
3035                         fd = current->files;
3036                         current->files = new_fd;
3037                         new_fd = fd;
3038                 }
3039
3040                 task_unlock(current);
3041
3042                 if (new_cred) {
3043                         /* Install the new user namespace */
3044                         commit_creds(new_cred);
3045                         new_cred = NULL;
3046                 }
3047         }
3048
3049         perf_event_namespaces(current);
3050
3051 bad_unshare_cleanup_cred:
3052         if (new_cred)
3053                 put_cred(new_cred);
3054 bad_unshare_cleanup_fd:
3055         if (new_fd)
3056                 put_files_struct(new_fd);
3057
3058 bad_unshare_cleanup_fs:
3059         if (new_fs)
3060                 free_fs_struct(new_fs);
3061
3062 bad_unshare_out:
3063         return err;
3064 }
3065
3066 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3067 {
3068         return ksys_unshare(unshare_flags);
3069 }
3070
3071 /*
3072  *      Helper to unshare the files of the current task.
3073  *      We don't want to expose copy_files internals to
3074  *      the exec layer of the kernel.
3075  */
3076
3077 int unshare_files(void)
3078 {
3079         struct task_struct *task = current;
3080         struct files_struct *old, *copy = NULL;
3081         int error;
3082
3083         error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3084         if (error || !copy)
3085                 return error;
3086
3087         old = task->files;
3088         task_lock(task);
3089         task->files = copy;
3090         task_unlock(task);
3091         put_files_struct(old);
3092         return 0;
3093 }
3094
3095 int sysctl_max_threads(struct ctl_table *table, int write,
3096                        void *buffer, size_t *lenp, loff_t *ppos)
3097 {
3098         struct ctl_table t;
3099         int ret;
3100         int threads = max_threads;
3101         int min = 1;
3102         int max = MAX_THREADS;
3103
3104         t = *table;
3105         t.data = &threads;
3106         t.extra1 = &min;
3107         t.extra2 = &max;
3108
3109         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3110         if (ret || !write)
3111                 return ret;
3112
3113         max_threads = threads;
3114
3115         return 0;
3116 }