4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
81 #include <trace/events/sched.h>
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
87 * Protected counters by write_lock_irq(&tasklist_lock)
89 unsigned long total_forks; /* Handle normal Linux uptimes. */
90 int nr_threads; /* The idle threads do not count.. */
92 int max_threads; /* tunable limit on nr_threads */
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
101 return lockdep_is_held(&tasklist_lock);
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
106 int nr_processes(void)
111 for_each_possible_cpu(cpu)
112 total += per_cpu(process_counts, cpu);
117 void __weak arch_release_task_struct(struct task_struct *tsk)
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
124 static inline struct task_struct *alloc_task_struct_node(int node)
126 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
129 static inline void free_task_struct(struct task_struct *tsk)
131 kmem_cache_free(task_struct_cachep, tsk);
135 void __weak arch_release_thread_info(struct thread_info *ti)
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
142 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143 * kmemcache based allocator.
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
149 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
152 return page ? page_address(page) : NULL;
155 static inline void free_thread_info(struct thread_info *ti)
157 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
160 static struct kmem_cache *thread_info_cache;
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
165 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
168 static void free_thread_info(struct thread_info *ti)
170 kmem_cache_free(thread_info_cache, ti);
173 void thread_info_cache_init(void)
175 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176 THREAD_SIZE, 0, NULL);
177 BUG_ON(thread_info_cache == NULL);
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache *sighand_cachep;
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache *files_cachep;
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache *fs_cachep;
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache *vm_area_cachep;
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
200 static void account_kernel_stack(struct thread_info *ti, int account)
202 struct zone *zone = page_zone(virt_to_page(ti));
204 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
207 void free_task(struct task_struct *tsk)
209 account_kernel_stack(tsk->stack, -1);
210 arch_release_thread_info(tsk->stack);
211 free_thread_info(tsk->stack);
212 rt_mutex_debug_task_free(tsk);
213 ftrace_graph_exit_task(tsk);
214 put_seccomp_filter(tsk);
215 arch_release_task_struct(tsk);
216 free_task_struct(tsk);
218 EXPORT_SYMBOL(free_task);
220 static inline void free_signal_struct(struct signal_struct *sig)
222 taskstats_tgid_free(sig);
223 sched_autogroup_exit(sig);
224 kmem_cache_free(signal_cachep, sig);
227 static inline void put_signal_struct(struct signal_struct *sig)
229 if (atomic_dec_and_test(&sig->sigcnt))
230 free_signal_struct(sig);
233 void __put_task_struct(struct task_struct *tsk)
235 WARN_ON(!tsk->exit_state);
236 WARN_ON(atomic_read(&tsk->usage));
237 WARN_ON(tsk == current);
239 security_task_free(tsk);
241 delayacct_tsk_free(tsk);
242 put_signal_struct(tsk->signal);
244 if (!profile_handoff_task(tsk))
247 EXPORT_SYMBOL_GPL(__put_task_struct);
249 void __init __weak arch_task_cache_init(void) { }
251 void __init fork_init(unsigned long mempages)
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
257 /* create a slab on which task_structs can be allocated */
259 kmem_cache_create("task_struct", sizeof(struct task_struct),
260 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
263 /* do the arch specific task caches init */
264 arch_task_cache_init();
267 * The default maximum number of threads is set to a safe
268 * value: the thread structures can take up at most half
271 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
274 * we need to allow at least 20 threads to boot a system
276 if (max_threads < 20)
279 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281 init_task.signal->rlim[RLIMIT_SIGPENDING] =
282 init_task.signal->rlim[RLIMIT_NPROC];
285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
286 struct task_struct *src)
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 struct task_struct *tsk;
295 struct thread_info *ti;
296 unsigned long *stackend;
297 int node = tsk_fork_get_node(orig);
300 tsk = alloc_task_struct_node(node);
304 ti = alloc_thread_info_node(tsk, node);
308 err = arch_dup_task_struct(tsk, orig);
314 setup_thread_stack(tsk, orig);
315 clear_user_return_notifier(tsk);
316 clear_tsk_need_resched(tsk);
317 stackend = end_of_stack(tsk);
318 *stackend = STACK_END_MAGIC; /* for overflow detection */
320 #ifdef CONFIG_CC_STACKPROTECTOR
321 tsk->stack_canary = get_random_int();
325 * One for us, one for whoever does the "release_task()" (usually
328 atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
332 tsk->splice_pipe = NULL;
334 account_kernel_stack(ti, 1);
339 free_thread_info(ti);
341 free_task_struct(tsk);
346 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
348 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
349 struct rb_node **rb_link, *rb_parent;
351 unsigned long charge;
352 struct mempolicy *pol;
354 down_write(&oldmm->mmap_sem);
355 flush_cache_dup_mm(oldmm);
356 uprobe_dup_mmap(oldmm, mm);
358 * Not linked in yet - no deadlock potential:
360 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
364 mm->mmap_cache = NULL;
365 mm->free_area_cache = oldmm->mmap_base;
366 mm->cached_hole_size = ~0UL;
368 cpumask_clear(mm_cpumask(mm));
370 rb_link = &mm->mm_rb.rb_node;
373 retval = ksm_fork(mm, oldmm);
376 retval = khugepaged_fork(mm, oldmm);
381 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
384 if (mpnt->vm_flags & VM_DONTCOPY) {
385 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
390 if (mpnt->vm_flags & VM_ACCOUNT) {
391 unsigned long len = vma_pages(mpnt);
393 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
397 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
401 INIT_LIST_HEAD(&tmp->anon_vma_chain);
402 pol = mpol_dup(vma_policy(mpnt));
403 retval = PTR_ERR(pol);
405 goto fail_nomem_policy;
406 vma_set_policy(tmp, pol);
408 if (anon_vma_fork(tmp, mpnt))
409 goto fail_nomem_anon_vma_fork;
410 tmp->vm_flags &= ~VM_LOCKED;
411 tmp->vm_next = tmp->vm_prev = NULL;
414 struct inode *inode = file->f_path.dentry->d_inode;
415 struct address_space *mapping = file->f_mapping;
418 if (tmp->vm_flags & VM_DENYWRITE)
419 atomic_dec(&inode->i_writecount);
420 mutex_lock(&mapping->i_mmap_mutex);
421 if (tmp->vm_flags & VM_SHARED)
422 mapping->i_mmap_writable++;
423 flush_dcache_mmap_lock(mapping);
424 /* insert tmp into the share list, just after mpnt */
425 vma_prio_tree_add(tmp, mpnt);
426 flush_dcache_mmap_unlock(mapping);
427 mutex_unlock(&mapping->i_mmap_mutex);
431 * Clear hugetlb-related page reserves for children. This only
432 * affects MAP_PRIVATE mappings. Faults generated by the child
433 * are not guaranteed to succeed, even if read-only
435 if (is_vm_hugetlb_page(tmp))
436 reset_vma_resv_huge_pages(tmp);
439 * Link in the new vma and copy the page table entries.
442 pprev = &tmp->vm_next;
446 __vma_link_rb(mm, tmp, rb_link, rb_parent);
447 rb_link = &tmp->vm_rb.rb_right;
448 rb_parent = &tmp->vm_rb;
451 retval = copy_page_range(mm, oldmm, mpnt);
453 if (tmp->vm_ops && tmp->vm_ops->open)
454 tmp->vm_ops->open(tmp);
459 /* a new mm has just been created */
460 arch_dup_mmap(oldmm, mm);
463 up_write(&mm->mmap_sem);
465 up_write(&oldmm->mmap_sem);
467 fail_nomem_anon_vma_fork:
470 kmem_cache_free(vm_area_cachep, tmp);
473 vm_unacct_memory(charge);
477 static inline int mm_alloc_pgd(struct mm_struct *mm)
479 mm->pgd = pgd_alloc(mm);
480 if (unlikely(!mm->pgd))
485 static inline void mm_free_pgd(struct mm_struct *mm)
487 pgd_free(mm, mm->pgd);
490 #define dup_mmap(mm, oldmm) (0)
491 #define mm_alloc_pgd(mm) (0)
492 #define mm_free_pgd(mm)
493 #endif /* CONFIG_MMU */
495 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
497 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
498 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
500 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
502 static int __init coredump_filter_setup(char *s)
504 default_dump_filter =
505 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
506 MMF_DUMP_FILTER_MASK;
510 __setup("coredump_filter=", coredump_filter_setup);
512 #include <linux/init_task.h>
514 static void mm_init_aio(struct mm_struct *mm)
517 spin_lock_init(&mm->ioctx_lock);
518 INIT_HLIST_HEAD(&mm->ioctx_list);
522 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
524 atomic_set(&mm->mm_users, 1);
525 atomic_set(&mm->mm_count, 1);
526 init_rwsem(&mm->mmap_sem);
527 INIT_LIST_HEAD(&mm->mmlist);
528 mm->flags = (current->mm) ?
529 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
530 mm->core_state = NULL;
532 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
533 spin_lock_init(&mm->page_table_lock);
534 mm->free_area_cache = TASK_UNMAPPED_BASE;
535 mm->cached_hole_size = ~0UL;
537 mm_init_owner(mm, p);
539 if (likely(!mm_alloc_pgd(mm))) {
541 mmu_notifier_mm_init(mm);
549 static void check_mm(struct mm_struct *mm)
553 for (i = 0; i < NR_MM_COUNTERS; i++) {
554 long x = atomic_long_read(&mm->rss_stat.count[i]);
557 printk(KERN_ALERT "BUG: Bad rss-counter state "
558 "mm:%p idx:%d val:%ld\n", mm, i, x);
561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
562 VM_BUG_ON(mm->pmd_huge_pte);
567 * Allocate and initialize an mm_struct.
569 struct mm_struct *mm_alloc(void)
571 struct mm_struct *mm;
577 memset(mm, 0, sizeof(*mm));
579 return mm_init(mm, current);
583 * Called when the last reference to the mm
584 * is dropped: either by a lazy thread or by
585 * mmput. Free the page directory and the mm.
587 void __mmdrop(struct mm_struct *mm)
589 BUG_ON(mm == &init_mm);
592 mmu_notifier_mm_destroy(mm);
596 EXPORT_SYMBOL_GPL(__mmdrop);
599 * Decrement the use count and release all resources for an mm.
601 void mmput(struct mm_struct *mm)
605 if (atomic_dec_and_test(&mm->mm_users)) {
606 uprobe_clear_state(mm);
609 khugepaged_exit(mm); /* must run before exit_mmap */
611 set_mm_exe_file(mm, NULL);
612 if (!list_empty(&mm->mmlist)) {
613 spin_lock(&mmlist_lock);
614 list_del(&mm->mmlist);
615 spin_unlock(&mmlist_lock);
618 module_put(mm->binfmt->module);
622 EXPORT_SYMBOL_GPL(mmput);
625 * We added or removed a vma mapping the executable. The vmas are only mapped
626 * during exec and are not mapped with the mmap system call.
627 * Callers must hold down_write() on the mm's mmap_sem for these
629 void added_exe_file_vma(struct mm_struct *mm)
631 mm->num_exe_file_vmas++;
634 void removed_exe_file_vma(struct mm_struct *mm)
636 mm->num_exe_file_vmas--;
637 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
644 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
647 get_file(new_exe_file);
650 mm->exe_file = new_exe_file;
651 mm->num_exe_file_vmas = 0;
654 struct file *get_mm_exe_file(struct mm_struct *mm)
656 struct file *exe_file;
658 /* We need mmap_sem to protect against races with removal of
659 * VM_EXECUTABLE vmas */
660 down_read(&mm->mmap_sem);
661 exe_file = mm->exe_file;
664 up_read(&mm->mmap_sem);
668 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
670 /* It's safe to write the exe_file pointer without exe_file_lock because
671 * this is called during fork when the task is not yet in /proc */
672 newmm->exe_file = get_mm_exe_file(oldmm);
676 * get_task_mm - acquire a reference to the task's mm
678 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
679 * this kernel workthread has transiently adopted a user mm with use_mm,
680 * to do its AIO) is not set and if so returns a reference to it, after
681 * bumping up the use count. User must release the mm via mmput()
682 * after use. Typically used by /proc and ptrace.
684 struct mm_struct *get_task_mm(struct task_struct *task)
686 struct mm_struct *mm;
691 if (task->flags & PF_KTHREAD)
694 atomic_inc(&mm->mm_users);
699 EXPORT_SYMBOL_GPL(get_task_mm);
701 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
703 struct mm_struct *mm;
706 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
710 mm = get_task_mm(task);
711 if (mm && mm != current->mm &&
712 !ptrace_may_access(task, mode)) {
714 mm = ERR_PTR(-EACCES);
716 mutex_unlock(&task->signal->cred_guard_mutex);
721 static void complete_vfork_done(struct task_struct *tsk)
723 struct completion *vfork;
726 vfork = tsk->vfork_done;
728 tsk->vfork_done = NULL;
734 static int wait_for_vfork_done(struct task_struct *child,
735 struct completion *vfork)
739 freezer_do_not_count();
740 killed = wait_for_completion_killable(vfork);
745 child->vfork_done = NULL;
749 put_task_struct(child);
753 /* Please note the differences between mmput and mm_release.
754 * mmput is called whenever we stop holding onto a mm_struct,
755 * error success whatever.
757 * mm_release is called after a mm_struct has been removed
758 * from the current process.
760 * This difference is important for error handling, when we
761 * only half set up a mm_struct for a new process and need to restore
762 * the old one. Because we mmput the new mm_struct before
763 * restoring the old one. . .
764 * Eric Biederman 10 January 1998
766 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
768 /* Get rid of any futexes when releasing the mm */
770 if (unlikely(tsk->robust_list)) {
771 exit_robust_list(tsk);
772 tsk->robust_list = NULL;
775 if (unlikely(tsk->compat_robust_list)) {
776 compat_exit_robust_list(tsk);
777 tsk->compat_robust_list = NULL;
780 if (unlikely(!list_empty(&tsk->pi_state_list)))
781 exit_pi_state_list(tsk);
784 uprobe_free_utask(tsk);
786 /* Get rid of any cached register state */
787 deactivate_mm(tsk, mm);
790 * If we're exiting normally, clear a user-space tid field if
791 * requested. We leave this alone when dying by signal, to leave
792 * the value intact in a core dump, and to save the unnecessary
793 * trouble, say, a killed vfork parent shouldn't touch this mm.
794 * Userland only wants this done for a sys_exit.
796 if (tsk->clear_child_tid) {
797 if (!(tsk->flags & PF_SIGNALED) &&
798 atomic_read(&mm->mm_users) > 1) {
800 * We don't check the error code - if userspace has
801 * not set up a proper pointer then tough luck.
803 put_user(0, tsk->clear_child_tid);
804 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
807 tsk->clear_child_tid = NULL;
811 * All done, finally we can wake up parent and return this mm to him.
812 * Also kthread_stop() uses this completion for synchronization.
815 complete_vfork_done(tsk);
819 * Allocate a new mm structure and copy contents from the
820 * mm structure of the passed in task structure.
822 struct mm_struct *dup_mm(struct task_struct *tsk)
824 struct mm_struct *mm, *oldmm = current->mm;
834 memcpy(mm, oldmm, sizeof(*mm));
837 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
838 mm->pmd_huge_pte = NULL;
840 if (!mm_init(mm, tsk))
843 if (init_new_context(tsk, mm))
846 dup_mm_exe_file(oldmm, mm);
848 err = dup_mmap(mm, oldmm);
852 mm->hiwater_rss = get_mm_rss(mm);
853 mm->hiwater_vm = mm->total_vm;
855 if (mm->binfmt && !try_module_get(mm->binfmt->module))
861 /* don't put binfmt in mmput, we haven't got module yet */
870 * If init_new_context() failed, we cannot use mmput() to free the mm
871 * because it calls destroy_context()
878 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
880 struct mm_struct *mm, *oldmm;
883 tsk->min_flt = tsk->maj_flt = 0;
884 tsk->nvcsw = tsk->nivcsw = 0;
885 #ifdef CONFIG_DETECT_HUNG_TASK
886 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
890 tsk->active_mm = NULL;
893 * Are we cloning a kernel thread?
895 * We need to steal a active VM for that..
901 if (clone_flags & CLONE_VM) {
902 atomic_inc(&oldmm->mm_users);
921 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
923 struct fs_struct *fs = current->fs;
924 if (clone_flags & CLONE_FS) {
925 /* tsk->fs is already what we want */
926 spin_lock(&fs->lock);
928 spin_unlock(&fs->lock);
932 spin_unlock(&fs->lock);
935 tsk->fs = copy_fs_struct(fs);
941 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
943 struct files_struct *oldf, *newf;
947 * A background process may not have any files ...
949 oldf = current->files;
953 if (clone_flags & CLONE_FILES) {
954 atomic_inc(&oldf->count);
958 newf = dup_fd(oldf, &error);
968 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
971 struct io_context *ioc = current->io_context;
972 struct io_context *new_ioc;
977 * Share io context with parent, if CLONE_IO is set
979 if (clone_flags & CLONE_IO) {
981 tsk->io_context = ioc;
982 } else if (ioprio_valid(ioc->ioprio)) {
983 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
984 if (unlikely(!new_ioc))
987 new_ioc->ioprio = ioc->ioprio;
988 put_io_context(new_ioc);
994 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
996 struct sighand_struct *sig;
998 if (clone_flags & CLONE_SIGHAND) {
999 atomic_inc(¤t->sighand->count);
1002 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1003 rcu_assign_pointer(tsk->sighand, sig);
1006 atomic_set(&sig->count, 1);
1007 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1011 void __cleanup_sighand(struct sighand_struct *sighand)
1013 if (atomic_dec_and_test(&sighand->count)) {
1014 signalfd_cleanup(sighand);
1015 kmem_cache_free(sighand_cachep, sighand);
1021 * Initialize POSIX timer handling for a thread group.
1023 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1025 unsigned long cpu_limit;
1027 /* Thread group counters. */
1028 thread_group_cputime_init(sig);
1030 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1031 if (cpu_limit != RLIM_INFINITY) {
1032 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1033 sig->cputimer.running = 1;
1036 /* The timer lists. */
1037 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1038 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1039 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1042 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1044 struct signal_struct *sig;
1046 if (clone_flags & CLONE_THREAD)
1049 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1054 sig->nr_threads = 1;
1055 atomic_set(&sig->live, 1);
1056 atomic_set(&sig->sigcnt, 1);
1057 init_waitqueue_head(&sig->wait_chldexit);
1058 if (clone_flags & CLONE_NEWPID)
1059 sig->flags |= SIGNAL_UNKILLABLE;
1060 sig->curr_target = tsk;
1061 init_sigpending(&sig->shared_pending);
1062 INIT_LIST_HEAD(&sig->posix_timers);
1064 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1065 sig->real_timer.function = it_real_fn;
1067 task_lock(current->group_leader);
1068 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1069 task_unlock(current->group_leader);
1071 posix_cpu_timers_init_group(sig);
1073 tty_audit_fork(sig);
1074 sched_autogroup_fork(sig);
1076 #ifdef CONFIG_CGROUPS
1077 init_rwsem(&sig->group_rwsem);
1080 sig->oom_adj = current->signal->oom_adj;
1081 sig->oom_score_adj = current->signal->oom_score_adj;
1082 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1084 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1085 current->signal->is_child_subreaper;
1087 mutex_init(&sig->cred_guard_mutex);
1092 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1094 unsigned long new_flags = p->flags;
1096 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1097 new_flags |= PF_FORKNOEXEC;
1098 p->flags = new_flags;
1101 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1103 current->clear_child_tid = tidptr;
1105 return task_pid_vnr(current);
1108 static void rt_mutex_init_task(struct task_struct *p)
1110 raw_spin_lock_init(&p->pi_lock);
1111 #ifdef CONFIG_RT_MUTEXES
1112 plist_head_init(&p->pi_waiters);
1113 p->pi_blocked_on = NULL;
1117 #ifdef CONFIG_MM_OWNER
1118 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1122 #endif /* CONFIG_MM_OWNER */
1125 * Initialize POSIX timer handling for a single task.
1127 static void posix_cpu_timers_init(struct task_struct *tsk)
1129 tsk->cputime_expires.prof_exp = 0;
1130 tsk->cputime_expires.virt_exp = 0;
1131 tsk->cputime_expires.sched_exp = 0;
1132 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1133 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1134 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1138 * This creates a new process as a copy of the old one,
1139 * but does not actually start it yet.
1141 * It copies the registers, and all the appropriate
1142 * parts of the process environment (as per the clone
1143 * flags). The actual kick-off is left to the caller.
1145 static struct task_struct *copy_process(unsigned long clone_flags,
1146 unsigned long stack_start,
1147 struct pt_regs *regs,
1148 unsigned long stack_size,
1149 int __user *child_tidptr,
1154 struct task_struct *p;
1155 int cgroup_callbacks_done = 0;
1157 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1158 return ERR_PTR(-EINVAL);
1161 * Thread groups must share signals as well, and detached threads
1162 * can only be started up within the thread group.
1164 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1165 return ERR_PTR(-EINVAL);
1168 * Shared signal handlers imply shared VM. By way of the above,
1169 * thread groups also imply shared VM. Blocking this case allows
1170 * for various simplifications in other code.
1172 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1173 return ERR_PTR(-EINVAL);
1176 * Siblings of global init remain as zombies on exit since they are
1177 * not reaped by their parent (swapper). To solve this and to avoid
1178 * multi-rooted process trees, prevent global and container-inits
1179 * from creating siblings.
1181 if ((clone_flags & CLONE_PARENT) &&
1182 current->signal->flags & SIGNAL_UNKILLABLE)
1183 return ERR_PTR(-EINVAL);
1185 retval = security_task_create(clone_flags);
1190 p = dup_task_struct(current);
1194 ftrace_graph_init_task(p);
1195 get_seccomp_filter(p);
1197 rt_mutex_init_task(p);
1199 #ifdef CONFIG_PROVE_LOCKING
1200 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1201 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1204 if (atomic_read(&p->real_cred->user->processes) >=
1205 task_rlimit(p, RLIMIT_NPROC)) {
1206 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1207 p->real_cred->user != INIT_USER)
1210 current->flags &= ~PF_NPROC_EXCEEDED;
1212 retval = copy_creds(p, clone_flags);
1217 * If multiple threads are within copy_process(), then this check
1218 * triggers too late. This doesn't hurt, the check is only there
1219 * to stop root fork bombs.
1222 if (nr_threads >= max_threads)
1223 goto bad_fork_cleanup_count;
1225 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1226 goto bad_fork_cleanup_count;
1229 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1230 copy_flags(clone_flags, p);
1231 INIT_LIST_HEAD(&p->children);
1232 INIT_LIST_HEAD(&p->sibling);
1233 rcu_copy_process(p);
1234 p->vfork_done = NULL;
1235 spin_lock_init(&p->alloc_lock);
1237 init_sigpending(&p->pending);
1239 p->utime = p->stime = p->gtime = 0;
1240 p->utimescaled = p->stimescaled = 0;
1241 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1242 p->prev_utime = p->prev_stime = 0;
1244 #if defined(SPLIT_RSS_COUNTING)
1245 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1248 p->default_timer_slack_ns = current->timer_slack_ns;
1250 task_io_accounting_init(&p->ioac);
1251 acct_clear_integrals(p);
1253 posix_cpu_timers_init(p);
1255 do_posix_clock_monotonic_gettime(&p->start_time);
1256 p->real_start_time = p->start_time;
1257 monotonic_to_bootbased(&p->real_start_time);
1258 p->io_context = NULL;
1259 p->audit_context = NULL;
1260 if (clone_flags & CLONE_THREAD)
1261 threadgroup_change_begin(current);
1264 p->mempolicy = mpol_dup(p->mempolicy);
1265 if (IS_ERR(p->mempolicy)) {
1266 retval = PTR_ERR(p->mempolicy);
1267 p->mempolicy = NULL;
1268 goto bad_fork_cleanup_cgroup;
1270 mpol_fix_fork_child_flag(p);
1272 #ifdef CONFIG_CPUSETS
1273 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1274 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1275 seqcount_init(&p->mems_allowed_seq);
1277 #ifdef CONFIG_TRACE_IRQFLAGS
1279 p->hardirqs_enabled = 0;
1280 p->hardirq_enable_ip = 0;
1281 p->hardirq_enable_event = 0;
1282 p->hardirq_disable_ip = _THIS_IP_;
1283 p->hardirq_disable_event = 0;
1284 p->softirqs_enabled = 1;
1285 p->softirq_enable_ip = _THIS_IP_;
1286 p->softirq_enable_event = 0;
1287 p->softirq_disable_ip = 0;
1288 p->softirq_disable_event = 0;
1289 p->hardirq_context = 0;
1290 p->softirq_context = 0;
1292 #ifdef CONFIG_LOCKDEP
1293 p->lockdep_depth = 0; /* no locks held yet */
1294 p->curr_chain_key = 0;
1295 p->lockdep_recursion = 0;
1298 #ifdef CONFIG_DEBUG_MUTEXES
1299 p->blocked_on = NULL; /* not blocked yet */
1302 p->memcg_batch.do_batch = 0;
1303 p->memcg_batch.memcg = NULL;
1306 /* Perform scheduler related setup. Assign this task to a CPU. */
1309 retval = perf_event_init_task(p);
1311 goto bad_fork_cleanup_policy;
1312 retval = audit_alloc(p);
1314 goto bad_fork_cleanup_policy;
1315 /* copy all the process information */
1316 retval = copy_semundo(clone_flags, p);
1318 goto bad_fork_cleanup_audit;
1319 retval = copy_files(clone_flags, p);
1321 goto bad_fork_cleanup_semundo;
1322 retval = copy_fs(clone_flags, p);
1324 goto bad_fork_cleanup_files;
1325 retval = copy_sighand(clone_flags, p);
1327 goto bad_fork_cleanup_fs;
1328 retval = copy_signal(clone_flags, p);
1330 goto bad_fork_cleanup_sighand;
1331 retval = copy_mm(clone_flags, p);
1333 goto bad_fork_cleanup_signal;
1334 retval = copy_namespaces(clone_flags, p);
1336 goto bad_fork_cleanup_mm;
1337 retval = copy_io(clone_flags, p);
1339 goto bad_fork_cleanup_namespaces;
1340 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1342 goto bad_fork_cleanup_io;
1344 if (pid != &init_struct_pid) {
1346 pid = alloc_pid(p->nsproxy->pid_ns);
1348 goto bad_fork_cleanup_io;
1351 p->pid = pid_nr(pid);
1353 if (clone_flags & CLONE_THREAD)
1354 p->tgid = current->tgid;
1356 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1358 * Clear TID on mm_release()?
1360 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1365 p->robust_list = NULL;
1366 #ifdef CONFIG_COMPAT
1367 p->compat_robust_list = NULL;
1369 INIT_LIST_HEAD(&p->pi_state_list);
1370 p->pi_state_cache = NULL;
1372 uprobe_copy_process(p);
1374 * sigaltstack should be cleared when sharing the same VM
1376 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1377 p->sas_ss_sp = p->sas_ss_size = 0;
1380 * Syscall tracing and stepping should be turned off in the
1381 * child regardless of CLONE_PTRACE.
1383 user_disable_single_step(p);
1384 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1385 #ifdef TIF_SYSCALL_EMU
1386 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1388 clear_all_latency_tracing(p);
1390 /* ok, now we should be set up.. */
1391 if (clone_flags & CLONE_THREAD)
1392 p->exit_signal = -1;
1393 else if (clone_flags & CLONE_PARENT)
1394 p->exit_signal = current->group_leader->exit_signal;
1396 p->exit_signal = (clone_flags & CSIGNAL);
1398 p->pdeath_signal = 0;
1402 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1403 p->dirty_paused_when = 0;
1406 * Ok, make it visible to the rest of the system.
1407 * We dont wake it up yet.
1409 p->group_leader = p;
1410 INIT_LIST_HEAD(&p->thread_group);
1411 p->task_works = NULL;
1413 /* Now that the task is set up, run cgroup callbacks if
1414 * necessary. We need to run them before the task is visible
1415 * on the tasklist. */
1416 cgroup_fork_callbacks(p);
1417 cgroup_callbacks_done = 1;
1419 /* Need tasklist lock for parent etc handling! */
1420 write_lock_irq(&tasklist_lock);
1422 /* CLONE_PARENT re-uses the old parent */
1423 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1424 p->real_parent = current->real_parent;
1425 p->parent_exec_id = current->parent_exec_id;
1427 p->real_parent = current;
1428 p->parent_exec_id = current->self_exec_id;
1431 spin_lock(¤t->sighand->siglock);
1434 * Process group and session signals need to be delivered to just the
1435 * parent before the fork or both the parent and the child after the
1436 * fork. Restart if a signal comes in before we add the new process to
1437 * it's process group.
1438 * A fatal signal pending means that current will exit, so the new
1439 * thread can't slip out of an OOM kill (or normal SIGKILL).
1441 recalc_sigpending();
1442 if (signal_pending(current)) {
1443 spin_unlock(¤t->sighand->siglock);
1444 write_unlock_irq(&tasklist_lock);
1445 retval = -ERESTARTNOINTR;
1446 goto bad_fork_free_pid;
1449 if (clone_flags & CLONE_THREAD) {
1450 current->signal->nr_threads++;
1451 atomic_inc(¤t->signal->live);
1452 atomic_inc(¤t->signal->sigcnt);
1453 p->group_leader = current->group_leader;
1454 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1457 if (likely(p->pid)) {
1458 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1460 if (thread_group_leader(p)) {
1461 if (is_child_reaper(pid))
1462 p->nsproxy->pid_ns->child_reaper = p;
1464 p->signal->leader_pid = pid;
1465 p->signal->tty = tty_kref_get(current->signal->tty);
1466 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1467 attach_pid(p, PIDTYPE_SID, task_session(current));
1468 list_add_tail(&p->sibling, &p->real_parent->children);
1469 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1470 __this_cpu_inc(process_counts);
1472 attach_pid(p, PIDTYPE_PID, pid);
1477 spin_unlock(¤t->sighand->siglock);
1478 write_unlock_irq(&tasklist_lock);
1479 proc_fork_connector(p);
1480 cgroup_post_fork(p);
1481 if (clone_flags & CLONE_THREAD)
1482 threadgroup_change_end(current);
1485 trace_task_newtask(p, clone_flags);
1490 if (pid != &init_struct_pid)
1492 bad_fork_cleanup_io:
1495 bad_fork_cleanup_namespaces:
1496 if (unlikely(clone_flags & CLONE_NEWPID))
1497 pid_ns_release_proc(p->nsproxy->pid_ns);
1498 exit_task_namespaces(p);
1499 bad_fork_cleanup_mm:
1502 bad_fork_cleanup_signal:
1503 if (!(clone_flags & CLONE_THREAD))
1504 free_signal_struct(p->signal);
1505 bad_fork_cleanup_sighand:
1506 __cleanup_sighand(p->sighand);
1507 bad_fork_cleanup_fs:
1508 exit_fs(p); /* blocking */
1509 bad_fork_cleanup_files:
1510 exit_files(p); /* blocking */
1511 bad_fork_cleanup_semundo:
1513 bad_fork_cleanup_audit:
1515 bad_fork_cleanup_policy:
1516 perf_event_free_task(p);
1518 mpol_put(p->mempolicy);
1519 bad_fork_cleanup_cgroup:
1521 if (clone_flags & CLONE_THREAD)
1522 threadgroup_change_end(current);
1523 cgroup_exit(p, cgroup_callbacks_done);
1524 delayacct_tsk_free(p);
1525 module_put(task_thread_info(p)->exec_domain->module);
1526 bad_fork_cleanup_count:
1527 atomic_dec(&p->cred->user->processes);
1532 return ERR_PTR(retval);
1535 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1537 memset(regs, 0, sizeof(struct pt_regs));
1541 static inline void init_idle_pids(struct pid_link *links)
1545 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1546 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1547 links[type].pid = &init_struct_pid;
1551 struct task_struct * __cpuinit fork_idle(int cpu)
1553 struct task_struct *task;
1554 struct pt_regs regs;
1556 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL,
1557 &init_struct_pid, 0);
1558 if (!IS_ERR(task)) {
1559 init_idle_pids(task->pids);
1560 init_idle(task, cpu);
1567 * Ok, this is the main fork-routine.
1569 * It copies the process, and if successful kick-starts
1570 * it and waits for it to finish using the VM if required.
1572 long do_fork(unsigned long clone_flags,
1573 unsigned long stack_start,
1574 struct pt_regs *regs,
1575 unsigned long stack_size,
1576 int __user *parent_tidptr,
1577 int __user *child_tidptr)
1579 struct task_struct *p;
1584 * Do some preliminary argument and permissions checking before we
1585 * actually start allocating stuff
1587 if (clone_flags & CLONE_NEWUSER) {
1588 if (clone_flags & CLONE_THREAD)
1590 /* hopefully this check will go away when userns support is
1593 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1594 !capable(CAP_SETGID))
1599 * Determine whether and which event to report to ptracer. When
1600 * called from kernel_thread or CLONE_UNTRACED is explicitly
1601 * requested, no event is reported; otherwise, report if the event
1602 * for the type of forking is enabled.
1604 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1605 if (clone_flags & CLONE_VFORK)
1606 trace = PTRACE_EVENT_VFORK;
1607 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1608 trace = PTRACE_EVENT_CLONE;
1610 trace = PTRACE_EVENT_FORK;
1612 if (likely(!ptrace_event_enabled(current, trace)))
1616 p = copy_process(clone_flags, stack_start, regs, stack_size,
1617 child_tidptr, NULL, trace);
1619 * Do this prior waking up the new thread - the thread pointer
1620 * might get invalid after that point, if the thread exits quickly.
1623 struct completion vfork;
1625 trace_sched_process_fork(current, p);
1627 nr = task_pid_vnr(p);
1629 if (clone_flags & CLONE_PARENT_SETTID)
1630 put_user(nr, parent_tidptr);
1632 if (clone_flags & CLONE_VFORK) {
1633 p->vfork_done = &vfork;
1634 init_completion(&vfork);
1638 wake_up_new_task(p);
1640 /* forking complete and child started to run, tell ptracer */
1641 if (unlikely(trace))
1642 ptrace_event(trace, nr);
1644 if (clone_flags & CLONE_VFORK) {
1645 if (!wait_for_vfork_done(p, &vfork))
1646 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1654 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1655 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1658 static void sighand_ctor(void *data)
1660 struct sighand_struct *sighand = data;
1662 spin_lock_init(&sighand->siglock);
1663 init_waitqueue_head(&sighand->signalfd_wqh);
1666 void __init proc_caches_init(void)
1668 sighand_cachep = kmem_cache_create("sighand_cache",
1669 sizeof(struct sighand_struct), 0,
1670 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1671 SLAB_NOTRACK, sighand_ctor);
1672 signal_cachep = kmem_cache_create("signal_cache",
1673 sizeof(struct signal_struct), 0,
1674 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1675 files_cachep = kmem_cache_create("files_cache",
1676 sizeof(struct files_struct), 0,
1677 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1678 fs_cachep = kmem_cache_create("fs_cache",
1679 sizeof(struct fs_struct), 0,
1680 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1682 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1683 * whole struct cpumask for the OFFSTACK case. We could change
1684 * this to *only* allocate as much of it as required by the
1685 * maximum number of CPU's we can ever have. The cpumask_allocation
1686 * is at the end of the structure, exactly for that reason.
1688 mm_cachep = kmem_cache_create("mm_struct",
1689 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1690 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1691 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1693 nsproxy_cache_init();
1697 * Check constraints on flags passed to the unshare system call.
1699 static int check_unshare_flags(unsigned long unshare_flags)
1701 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1702 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1703 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1706 * Not implemented, but pretend it works if there is nothing to
1707 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1708 * needs to unshare vm.
1710 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1711 /* FIXME: get_task_mm() increments ->mm_users */
1712 if (atomic_read(¤t->mm->mm_users) > 1)
1720 * Unshare the filesystem structure if it is being shared
1722 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1724 struct fs_struct *fs = current->fs;
1726 if (!(unshare_flags & CLONE_FS) || !fs)
1729 /* don't need lock here; in the worst case we'll do useless copy */
1733 *new_fsp = copy_fs_struct(fs);
1741 * Unshare file descriptor table if it is being shared
1743 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1745 struct files_struct *fd = current->files;
1748 if ((unshare_flags & CLONE_FILES) &&
1749 (fd && atomic_read(&fd->count) > 1)) {
1750 *new_fdp = dup_fd(fd, &error);
1759 * unshare allows a process to 'unshare' part of the process
1760 * context which was originally shared using clone. copy_*
1761 * functions used by do_fork() cannot be used here directly
1762 * because they modify an inactive task_struct that is being
1763 * constructed. Here we are modifying the current, active,
1766 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1768 struct fs_struct *fs, *new_fs = NULL;
1769 struct files_struct *fd, *new_fd = NULL;
1770 struct nsproxy *new_nsproxy = NULL;
1774 err = check_unshare_flags(unshare_flags);
1776 goto bad_unshare_out;
1779 * If unsharing namespace, must also unshare filesystem information.
1781 if (unshare_flags & CLONE_NEWNS)
1782 unshare_flags |= CLONE_FS;
1784 * CLONE_NEWIPC must also detach from the undolist: after switching
1785 * to a new ipc namespace, the semaphore arrays from the old
1786 * namespace are unreachable.
1788 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1790 err = unshare_fs(unshare_flags, &new_fs);
1792 goto bad_unshare_out;
1793 err = unshare_fd(unshare_flags, &new_fd);
1795 goto bad_unshare_cleanup_fs;
1796 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1798 goto bad_unshare_cleanup_fd;
1800 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1803 * CLONE_SYSVSEM is equivalent to sys_exit().
1809 switch_task_namespaces(current, new_nsproxy);
1817 spin_lock(&fs->lock);
1818 current->fs = new_fs;
1823 spin_unlock(&fs->lock);
1827 fd = current->files;
1828 current->files = new_fd;
1832 task_unlock(current);
1836 put_nsproxy(new_nsproxy);
1838 bad_unshare_cleanup_fd:
1840 put_files_struct(new_fd);
1842 bad_unshare_cleanup_fs:
1844 free_fs_struct(new_fs);
1851 * Helper to unshare the files of the current task.
1852 * We don't want to expose copy_files internals to
1853 * the exec layer of the kernel.
1856 int unshare_files(struct files_struct **displaced)
1858 struct task_struct *task = current;
1859 struct files_struct *copy = NULL;
1862 error = unshare_fd(CLONE_FILES, ©);
1863 if (error || !copy) {
1867 *displaced = task->files;