1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
102 #include <asm/pgalloc.h>
103 #include <linux/uaccess.h>
104 #include <asm/mmu_context.h>
105 #include <asm/cacheflush.h>
106 #include <asm/tlbflush.h>
108 #include <trace/events/sched.h>
110 #define CREATE_TRACE_POINTS
111 #include <trace/events/task.h>
114 * Minimum number of threads to boot the kernel
116 #define MIN_THREADS 20
119 * Maximum number of threads
121 #define MAX_THREADS FUTEX_TID_MASK
124 * Protected counters by write_lock_irq(&tasklist_lock)
126 unsigned long total_forks; /* Handle normal Linux uptimes. */
127 int nr_threads; /* The idle threads do not count.. */
129 static int max_threads; /* tunable limit on nr_threads */
131 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
133 static const char * const resident_page_types[] = {
134 NAMED_ARRAY_INDEX(MM_FILEPAGES),
135 NAMED_ARRAY_INDEX(MM_ANONPAGES),
136 NAMED_ARRAY_INDEX(MM_SWAPENTS),
137 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
140 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
144 #ifdef CONFIG_PROVE_RCU
145 int lockdep_tasklist_lock_is_held(void)
147 return lockdep_is_held(&tasklist_lock);
149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
150 #endif /* #ifdef CONFIG_PROVE_RCU */
152 int nr_processes(void)
157 for_each_possible_cpu(cpu)
158 total += per_cpu(process_counts, cpu);
163 void __weak arch_release_task_struct(struct task_struct *tsk)
167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
168 static struct kmem_cache *task_struct_cachep;
170 static inline struct task_struct *alloc_task_struct_node(int node)
172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
175 static inline void free_task_struct(struct task_struct *tsk)
177 kmem_cache_free(task_struct_cachep, tsk);
181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
184 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
185 * kmemcache based allocator.
187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189 # ifdef CONFIG_VMAP_STACK
191 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
192 * flush. Try to minimize the number of calls by caching stacks.
194 #define NR_CACHED_STACKS 2
195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
199 struct vm_struct *stack_vm_area;
202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
206 for (i = 0; i < NR_CACHED_STACKS; i++) {
207 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
214 static void thread_stack_free_rcu(struct rcu_head *rh)
216 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
224 static void thread_stack_delayed_free(struct task_struct *tsk)
226 struct vm_stack *vm_stack = tsk->stack;
228 vm_stack->stack_vm_area = tsk->stack_vm_area;
229 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
232 static int free_vm_stack_cache(unsigned int cpu)
234 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
237 for (i = 0; i < NR_CACHED_STACKS; i++) {
238 struct vm_struct *vm_stack = cached_vm_stacks[i];
243 vfree(vm_stack->addr);
244 cached_vm_stacks[i] = NULL;
250 static int memcg_charge_kernel_stack(struct vm_struct *vm)
255 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
256 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
259 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
267 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
270 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
271 memcg_kmem_uncharge_page(vm->pages[i], 0);
275 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
277 struct vm_struct *vm;
281 for (i = 0; i < NR_CACHED_STACKS; i++) {
284 s = this_cpu_xchg(cached_stacks[i], NULL);
289 /* Reset stack metadata. */
290 kasan_unpoison_range(s->addr, THREAD_SIZE);
292 stack = kasan_reset_tag(s->addr);
294 /* Clear stale pointers from reused stack. */
295 memset(stack, 0, THREAD_SIZE);
297 if (memcg_charge_kernel_stack(s)) {
302 tsk->stack_vm_area = s;
308 * Allocated stacks are cached and later reused by new threads,
309 * so memcg accounting is performed manually on assigning/releasing
310 * stacks to tasks. Drop __GFP_ACCOUNT.
312 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
313 VMALLOC_START, VMALLOC_END,
314 THREADINFO_GFP & ~__GFP_ACCOUNT,
316 0, node, __builtin_return_address(0));
320 vm = find_vm_area(stack);
321 if (memcg_charge_kernel_stack(vm)) {
326 * We can't call find_vm_area() in interrupt context, and
327 * free_thread_stack() can be called in interrupt context,
328 * so cache the vm_struct.
330 tsk->stack_vm_area = vm;
331 stack = kasan_reset_tag(stack);
336 static void free_thread_stack(struct task_struct *tsk)
338 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
339 thread_stack_delayed_free(tsk);
342 tsk->stack_vm_area = NULL;
345 # else /* !CONFIG_VMAP_STACK */
347 static void thread_stack_free_rcu(struct rcu_head *rh)
349 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352 static void thread_stack_delayed_free(struct task_struct *tsk)
354 struct rcu_head *rh = tsk->stack;
356 call_rcu(rh, thread_stack_free_rcu);
359 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
361 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
365 tsk->stack = kasan_reset_tag(page_address(page));
371 static void free_thread_stack(struct task_struct *tsk)
373 thread_stack_delayed_free(tsk);
377 # endif /* CONFIG_VMAP_STACK */
378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
380 static struct kmem_cache *thread_stack_cache;
382 static void thread_stack_free_rcu(struct rcu_head *rh)
384 kmem_cache_free(thread_stack_cache, rh);
387 static void thread_stack_delayed_free(struct task_struct *tsk)
389 struct rcu_head *rh = tsk->stack;
391 call_rcu(rh, thread_stack_free_rcu);
394 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
396 unsigned long *stack;
397 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
398 stack = kasan_reset_tag(stack);
400 return stack ? 0 : -ENOMEM;
403 static void free_thread_stack(struct task_struct *tsk)
405 thread_stack_delayed_free(tsk);
409 void thread_stack_cache_init(void)
411 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
412 THREAD_SIZE, THREAD_SIZE, 0, 0,
414 BUG_ON(thread_stack_cache == NULL);
417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
418 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
420 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
422 unsigned long *stack;
424 stack = arch_alloc_thread_stack_node(tsk, node);
426 return stack ? 0 : -ENOMEM;
429 static void free_thread_stack(struct task_struct *tsk)
431 arch_free_thread_stack(tsk);
435 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
437 /* SLAB cache for signal_struct structures (tsk->signal) */
438 static struct kmem_cache *signal_cachep;
440 /* SLAB cache for sighand_struct structures (tsk->sighand) */
441 struct kmem_cache *sighand_cachep;
443 /* SLAB cache for files_struct structures (tsk->files) */
444 struct kmem_cache *files_cachep;
446 /* SLAB cache for fs_struct structures (tsk->fs) */
447 struct kmem_cache *fs_cachep;
449 /* SLAB cache for vm_area_struct structures */
450 static struct kmem_cache *vm_area_cachep;
452 /* SLAB cache for mm_struct structures (tsk->mm) */
453 static struct kmem_cache *mm_cachep;
455 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
457 struct vm_area_struct *vma;
459 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
465 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
467 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
470 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
471 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
473 * orig->shared.rb may be modified concurrently, but the clone
474 * will be reinitialized.
476 data_race(memcpy(new, orig, sizeof(*new)));
477 INIT_LIST_HEAD(&new->anon_vma_chain);
478 dup_anon_vma_name(orig, new);
483 void vm_area_free(struct vm_area_struct *vma)
485 free_anon_vma_name(vma);
486 kmem_cache_free(vm_area_cachep, vma);
489 static void account_kernel_stack(struct task_struct *tsk, int account)
491 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
492 struct vm_struct *vm = task_stack_vm_area(tsk);
495 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
496 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
497 account * (PAGE_SIZE / 1024));
499 void *stack = task_stack_page(tsk);
501 /* All stack pages are in the same node. */
502 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
503 account * (THREAD_SIZE / 1024));
507 void exit_task_stack_account(struct task_struct *tsk)
509 account_kernel_stack(tsk, -1);
511 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
512 struct vm_struct *vm;
515 vm = task_stack_vm_area(tsk);
516 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
517 memcg_kmem_uncharge_page(vm->pages[i], 0);
521 static void release_task_stack(struct task_struct *tsk)
523 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
524 return; /* Better to leak the stack than to free prematurely */
526 free_thread_stack(tsk);
529 #ifdef CONFIG_THREAD_INFO_IN_TASK
530 void put_task_stack(struct task_struct *tsk)
532 if (refcount_dec_and_test(&tsk->stack_refcount))
533 release_task_stack(tsk);
537 void free_task(struct task_struct *tsk)
539 #ifdef CONFIG_SECCOMP
540 WARN_ON_ONCE(tsk->seccomp.filter);
542 release_user_cpus_ptr(tsk);
545 #ifndef CONFIG_THREAD_INFO_IN_TASK
547 * The task is finally done with both the stack and thread_info,
550 release_task_stack(tsk);
553 * If the task had a separate stack allocation, it should be gone
556 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
558 rt_mutex_debug_task_free(tsk);
559 ftrace_graph_exit_task(tsk);
560 arch_release_task_struct(tsk);
561 if (tsk->flags & PF_KTHREAD)
562 free_kthread_struct(tsk);
563 free_task_struct(tsk);
565 EXPORT_SYMBOL(free_task);
567 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
569 struct file *exe_file;
571 exe_file = get_mm_exe_file(oldmm);
572 RCU_INIT_POINTER(mm->exe_file, exe_file);
574 * We depend on the oldmm having properly denied write access to the
577 if (exe_file && deny_write_access(exe_file))
578 pr_warn_once("deny_write_access() failed in %s\n", __func__);
582 static __latent_entropy int dup_mmap(struct mm_struct *mm,
583 struct mm_struct *oldmm)
585 struct vm_area_struct *mpnt, *tmp;
587 unsigned long charge = 0;
589 VMA_ITERATOR(old_vmi, oldmm, 0);
590 VMA_ITERATOR(vmi, mm, 0);
592 uprobe_start_dup_mmap();
593 if (mmap_write_lock_killable(oldmm)) {
595 goto fail_uprobe_end;
597 flush_cache_dup_mm(oldmm);
598 uprobe_dup_mmap(oldmm, mm);
600 * Not linked in yet - no deadlock potential:
602 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
604 /* No ordering required: file already has been exposed. */
605 dup_mm_exe_file(mm, oldmm);
607 mm->total_vm = oldmm->total_vm;
608 mm->data_vm = oldmm->data_vm;
609 mm->exec_vm = oldmm->exec_vm;
610 mm->stack_vm = oldmm->stack_vm;
612 retval = ksm_fork(mm, oldmm);
615 khugepaged_fork(mm, oldmm);
617 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
621 for_each_vma(old_vmi, mpnt) {
624 if (mpnt->vm_flags & VM_DONTCOPY) {
625 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
630 * Don't duplicate many vmas if we've been oom-killed (for
633 if (fatal_signal_pending(current)) {
637 if (mpnt->vm_flags & VM_ACCOUNT) {
638 unsigned long len = vma_pages(mpnt);
640 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
644 tmp = vm_area_dup(mpnt);
647 retval = vma_dup_policy(mpnt, tmp);
649 goto fail_nomem_policy;
651 retval = dup_userfaultfd(tmp, &uf);
653 goto fail_nomem_anon_vma_fork;
654 if (tmp->vm_flags & VM_WIPEONFORK) {
656 * VM_WIPEONFORK gets a clean slate in the child.
657 * Don't prepare anon_vma until fault since we don't
658 * copy page for current vma.
660 tmp->anon_vma = NULL;
661 } else if (anon_vma_fork(tmp, mpnt))
662 goto fail_nomem_anon_vma_fork;
663 vm_flags_clear(tmp, VM_LOCKED_MASK);
666 struct address_space *mapping = file->f_mapping;
669 i_mmap_lock_write(mapping);
670 if (tmp->vm_flags & VM_SHARED)
671 mapping_allow_writable(mapping);
672 flush_dcache_mmap_lock(mapping);
673 /* insert tmp into the share list, just after mpnt */
674 vma_interval_tree_insert_after(tmp, mpnt,
676 flush_dcache_mmap_unlock(mapping);
677 i_mmap_unlock_write(mapping);
681 * Copy/update hugetlb private vma information.
683 if (is_vm_hugetlb_page(tmp))
684 hugetlb_dup_vma_private(tmp);
686 /* Link the vma into the MT */
687 if (vma_iter_bulk_store(&vmi, tmp))
688 goto fail_nomem_vmi_store;
691 if (!(tmp->vm_flags & VM_WIPEONFORK))
692 retval = copy_page_range(tmp, mpnt);
694 if (tmp->vm_ops && tmp->vm_ops->open)
695 tmp->vm_ops->open(tmp);
700 /* a new mm has just been created */
701 retval = arch_dup_mmap(oldmm, mm);
705 mmap_write_unlock(mm);
707 mmap_write_unlock(oldmm);
708 dup_userfaultfd_complete(&uf);
710 uprobe_end_dup_mmap();
713 fail_nomem_vmi_store:
714 unlink_anon_vmas(tmp);
715 fail_nomem_anon_vma_fork:
716 mpol_put(vma_policy(tmp));
721 vm_unacct_memory(charge);
725 static inline int mm_alloc_pgd(struct mm_struct *mm)
727 mm->pgd = pgd_alloc(mm);
728 if (unlikely(!mm->pgd))
733 static inline void mm_free_pgd(struct mm_struct *mm)
735 pgd_free(mm, mm->pgd);
738 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
740 mmap_write_lock(oldmm);
741 dup_mm_exe_file(mm, oldmm);
742 mmap_write_unlock(oldmm);
745 #define mm_alloc_pgd(mm) (0)
746 #define mm_free_pgd(mm)
747 #endif /* CONFIG_MMU */
749 static void check_mm(struct mm_struct *mm)
753 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
754 "Please make sure 'struct resident_page_types[]' is updated as well");
756 for (i = 0; i < NR_MM_COUNTERS; i++) {
757 long x = percpu_counter_sum(&mm->rss_stat[i]);
762 /* Making sure this is not due to race with CPU offlining. */
763 x = percpu_counter_sum_all(&mm->rss_stat[i]);
765 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
766 mm, resident_page_types[i], x);
769 if (mm_pgtables_bytes(mm))
770 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
771 mm_pgtables_bytes(mm));
773 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
774 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
778 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
779 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
782 * Called when the last reference to the mm
783 * is dropped: either by a lazy thread or by
784 * mmput. Free the page directory and the mm.
786 void __mmdrop(struct mm_struct *mm)
790 BUG_ON(mm == &init_mm);
791 WARN_ON_ONCE(mm == current->mm);
792 WARN_ON_ONCE(mm == current->active_mm);
795 mmu_notifier_subscriptions_destroy(mm);
797 put_user_ns(mm->user_ns);
800 for (i = 0; i < NR_MM_COUNTERS; i++)
801 percpu_counter_destroy(&mm->rss_stat[i]);
804 EXPORT_SYMBOL_GPL(__mmdrop);
806 static void mmdrop_async_fn(struct work_struct *work)
808 struct mm_struct *mm;
810 mm = container_of(work, struct mm_struct, async_put_work);
814 static void mmdrop_async(struct mm_struct *mm)
816 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
817 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
818 schedule_work(&mm->async_put_work);
822 static inline void free_signal_struct(struct signal_struct *sig)
824 taskstats_tgid_free(sig);
825 sched_autogroup_exit(sig);
827 * __mmdrop is not safe to call from softirq context on x86 due to
828 * pgd_dtor so postpone it to the async context
831 mmdrop_async(sig->oom_mm);
832 kmem_cache_free(signal_cachep, sig);
835 static inline void put_signal_struct(struct signal_struct *sig)
837 if (refcount_dec_and_test(&sig->sigcnt))
838 free_signal_struct(sig);
841 void __put_task_struct(struct task_struct *tsk)
843 WARN_ON(!tsk->exit_state);
844 WARN_ON(refcount_read(&tsk->usage));
845 WARN_ON(tsk == current);
849 task_numa_free(tsk, true);
850 security_task_free(tsk);
851 bpf_task_storage_free(tsk);
853 delayacct_tsk_free(tsk);
854 put_signal_struct(tsk->signal);
855 sched_core_free(tsk);
858 EXPORT_SYMBOL_GPL(__put_task_struct);
860 void __init __weak arch_task_cache_init(void) { }
865 static void set_max_threads(unsigned int max_threads_suggested)
868 unsigned long nr_pages = totalram_pages();
871 * The number of threads shall be limited such that the thread
872 * structures may only consume a small part of the available memory.
874 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
875 threads = MAX_THREADS;
877 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
878 (u64) THREAD_SIZE * 8UL);
880 if (threads > max_threads_suggested)
881 threads = max_threads_suggested;
883 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
886 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
887 /* Initialized by the architecture: */
888 int arch_task_struct_size __read_mostly;
891 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
892 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
894 /* Fetch thread_struct whitelist for the architecture. */
895 arch_thread_struct_whitelist(offset, size);
898 * Handle zero-sized whitelist or empty thread_struct, otherwise
899 * adjust offset to position of thread_struct in task_struct.
901 if (unlikely(*size == 0))
904 *offset += offsetof(struct task_struct, thread);
906 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
908 void __init fork_init(void)
911 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
912 #ifndef ARCH_MIN_TASKALIGN
913 #define ARCH_MIN_TASKALIGN 0
915 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
916 unsigned long useroffset, usersize;
918 /* create a slab on which task_structs can be allocated */
919 task_struct_whitelist(&useroffset, &usersize);
920 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
921 arch_task_struct_size, align,
922 SLAB_PANIC|SLAB_ACCOUNT,
923 useroffset, usersize, NULL);
926 /* do the arch specific task caches init */
927 arch_task_cache_init();
929 set_max_threads(MAX_THREADS);
931 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
932 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
933 init_task.signal->rlim[RLIMIT_SIGPENDING] =
934 init_task.signal->rlim[RLIMIT_NPROC];
936 for (i = 0; i < UCOUNT_COUNTS; i++)
937 init_user_ns.ucount_max[i] = max_threads/2;
939 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
940 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
941 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
942 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
944 #ifdef CONFIG_VMAP_STACK
945 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
946 NULL, free_vm_stack_cache);
951 lockdep_init_task(&init_task);
955 int __weak arch_dup_task_struct(struct task_struct *dst,
956 struct task_struct *src)
962 void set_task_stack_end_magic(struct task_struct *tsk)
964 unsigned long *stackend;
966 stackend = end_of_stack(tsk);
967 *stackend = STACK_END_MAGIC; /* for overflow detection */
970 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
972 struct task_struct *tsk;
975 if (node == NUMA_NO_NODE)
976 node = tsk_fork_get_node(orig);
977 tsk = alloc_task_struct_node(node);
981 err = arch_dup_task_struct(tsk, orig);
985 err = alloc_thread_stack_node(tsk, node);
989 #ifdef CONFIG_THREAD_INFO_IN_TASK
990 refcount_set(&tsk->stack_refcount, 1);
992 account_kernel_stack(tsk, 1);
994 err = scs_prepare(tsk, node);
998 #ifdef CONFIG_SECCOMP
1000 * We must handle setting up seccomp filters once we're under
1001 * the sighand lock in case orig has changed between now and
1002 * then. Until then, filter must be NULL to avoid messing up
1003 * the usage counts on the error path calling free_task.
1005 tsk->seccomp.filter = NULL;
1008 setup_thread_stack(tsk, orig);
1009 clear_user_return_notifier(tsk);
1010 clear_tsk_need_resched(tsk);
1011 set_task_stack_end_magic(tsk);
1012 clear_syscall_work_syscall_user_dispatch(tsk);
1014 #ifdef CONFIG_STACKPROTECTOR
1015 tsk->stack_canary = get_random_canary();
1017 if (orig->cpus_ptr == &orig->cpus_mask)
1018 tsk->cpus_ptr = &tsk->cpus_mask;
1019 dup_user_cpus_ptr(tsk, orig, node);
1022 * One for the user space visible state that goes away when reaped.
1023 * One for the scheduler.
1025 refcount_set(&tsk->rcu_users, 2);
1026 /* One for the rcu users */
1027 refcount_set(&tsk->usage, 1);
1028 #ifdef CONFIG_BLK_DEV_IO_TRACE
1029 tsk->btrace_seq = 0;
1031 tsk->splice_pipe = NULL;
1032 tsk->task_frag.page = NULL;
1033 tsk->wake_q.next = NULL;
1034 tsk->worker_private = NULL;
1036 kcov_task_init(tsk);
1037 kmsan_task_create(tsk);
1038 kmap_local_fork(tsk);
1040 #ifdef CONFIG_FAULT_INJECTION
1044 #ifdef CONFIG_BLK_CGROUP
1045 tsk->throttle_disk = NULL;
1046 tsk->use_memdelay = 0;
1049 #ifdef CONFIG_IOMMU_SVA
1050 tsk->pasid_activated = 0;
1054 tsk->active_memcg = NULL;
1057 #ifdef CONFIG_CPU_SUP_INTEL
1058 tsk->reported_split_lock = 0;
1061 #ifdef CONFIG_SCHED_MM_CID
1063 tsk->mm_cid_active = 0;
1068 exit_task_stack_account(tsk);
1069 free_thread_stack(tsk);
1071 free_task_struct(tsk);
1075 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1077 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1079 static int __init coredump_filter_setup(char *s)
1081 default_dump_filter =
1082 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1083 MMF_DUMP_FILTER_MASK;
1087 __setup("coredump_filter=", coredump_filter_setup);
1089 #include <linux/init_task.h>
1091 static void mm_init_aio(struct mm_struct *mm)
1094 spin_lock_init(&mm->ioctx_lock);
1095 mm->ioctx_table = NULL;
1099 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1100 struct task_struct *p)
1104 WRITE_ONCE(mm->owner, NULL);
1108 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1115 static void mm_init_uprobes_state(struct mm_struct *mm)
1117 #ifdef CONFIG_UPROBES
1118 mm->uprobes_state.xol_area = NULL;
1122 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1123 struct user_namespace *user_ns)
1127 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1128 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1129 atomic_set(&mm->mm_users, 1);
1130 atomic_set(&mm->mm_count, 1);
1131 seqcount_init(&mm->write_protect_seq);
1133 INIT_LIST_HEAD(&mm->mmlist);
1134 mm_pgtables_bytes_init(mm);
1137 atomic64_set(&mm->pinned_vm, 0);
1138 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1139 spin_lock_init(&mm->page_table_lock);
1140 spin_lock_init(&mm->arg_lock);
1141 mm_init_cpumask(mm);
1143 mm_init_owner(mm, p);
1145 RCU_INIT_POINTER(mm->exe_file, NULL);
1146 mmu_notifier_subscriptions_init(mm);
1147 init_tlb_flush_pending(mm);
1148 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1149 mm->pmd_huge_pte = NULL;
1151 mm_init_uprobes_state(mm);
1152 hugetlb_count_init(mm);
1155 mm->flags = current->mm->flags & MMF_INIT_MASK;
1156 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1158 mm->flags = default_dump_filter;
1162 if (mm_alloc_pgd(mm))
1165 if (init_new_context(p, mm))
1166 goto fail_nocontext;
1168 for (i = 0; i < NR_MM_COUNTERS; i++)
1169 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1172 mm->user_ns = get_user_ns(user_ns);
1173 lru_gen_init_mm(mm);
1179 percpu_counter_destroy(&mm->rss_stat[--i]);
1188 * Allocate and initialize an mm_struct.
1190 struct mm_struct *mm_alloc(void)
1192 struct mm_struct *mm;
1198 memset(mm, 0, sizeof(*mm));
1199 return mm_init(mm, current, current_user_ns());
1202 static inline void __mmput(struct mm_struct *mm)
1204 VM_BUG_ON(atomic_read(&mm->mm_users));
1206 uprobe_clear_state(mm);
1209 khugepaged_exit(mm); /* must run before exit_mmap */
1211 mm_put_huge_zero_page(mm);
1212 set_mm_exe_file(mm, NULL);
1213 if (!list_empty(&mm->mmlist)) {
1214 spin_lock(&mmlist_lock);
1215 list_del(&mm->mmlist);
1216 spin_unlock(&mmlist_lock);
1219 module_put(mm->binfmt->module);
1225 * Decrement the use count and release all resources for an mm.
1227 void mmput(struct mm_struct *mm)
1231 if (atomic_dec_and_test(&mm->mm_users))
1234 EXPORT_SYMBOL_GPL(mmput);
1237 static void mmput_async_fn(struct work_struct *work)
1239 struct mm_struct *mm = container_of(work, struct mm_struct,
1245 void mmput_async(struct mm_struct *mm)
1247 if (atomic_dec_and_test(&mm->mm_users)) {
1248 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1249 schedule_work(&mm->async_put_work);
1252 EXPORT_SYMBOL_GPL(mmput_async);
1256 * set_mm_exe_file - change a reference to the mm's executable file
1258 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1260 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1261 * invocations: in mmput() nobody alive left, in execve task is single
1264 * Can only fail if new_exe_file != NULL.
1266 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1268 struct file *old_exe_file;
1271 * It is safe to dereference the exe_file without RCU as
1272 * this function is only called if nobody else can access
1273 * this mm -- see comment above for justification.
1275 old_exe_file = rcu_dereference_raw(mm->exe_file);
1279 * We expect the caller (i.e., sys_execve) to already denied
1280 * write access, so this is unlikely to fail.
1282 if (unlikely(deny_write_access(new_exe_file)))
1284 get_file(new_exe_file);
1286 rcu_assign_pointer(mm->exe_file, new_exe_file);
1288 allow_write_access(old_exe_file);
1295 * replace_mm_exe_file - replace a reference to the mm's executable file
1297 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1298 * dealing with concurrent invocation and without grabbing the mmap lock in
1301 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1303 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1305 struct vm_area_struct *vma;
1306 struct file *old_exe_file;
1309 /* Forbid mm->exe_file change if old file still mapped. */
1310 old_exe_file = get_mm_exe_file(mm);
1312 VMA_ITERATOR(vmi, mm, 0);
1314 for_each_vma(vmi, vma) {
1317 if (path_equal(&vma->vm_file->f_path,
1318 &old_exe_file->f_path)) {
1323 mmap_read_unlock(mm);
1329 /* set the new file, lockless */
1330 ret = deny_write_access(new_exe_file);
1333 get_file(new_exe_file);
1335 old_exe_file = xchg(&mm->exe_file, new_exe_file);
1338 * Don't race with dup_mmap() getting the file and disallowing
1339 * write access while someone might open the file writable.
1342 allow_write_access(old_exe_file);
1344 mmap_read_unlock(mm);
1350 * get_mm_exe_file - acquire a reference to the mm's executable file
1352 * Returns %NULL if mm has no associated executable file.
1353 * User must release file via fput().
1355 struct file *get_mm_exe_file(struct mm_struct *mm)
1357 struct file *exe_file;
1360 exe_file = rcu_dereference(mm->exe_file);
1361 if (exe_file && !get_file_rcu(exe_file))
1368 * get_task_exe_file - acquire a reference to the task's executable file
1370 * Returns %NULL if task's mm (if any) has no associated executable file or
1371 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1372 * User must release file via fput().
1374 struct file *get_task_exe_file(struct task_struct *task)
1376 struct file *exe_file = NULL;
1377 struct mm_struct *mm;
1382 if (!(task->flags & PF_KTHREAD))
1383 exe_file = get_mm_exe_file(mm);
1390 * get_task_mm - acquire a reference to the task's mm
1392 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1393 * this kernel workthread has transiently adopted a user mm with use_mm,
1394 * to do its AIO) is not set and if so returns a reference to it, after
1395 * bumping up the use count. User must release the mm via mmput()
1396 * after use. Typically used by /proc and ptrace.
1398 struct mm_struct *get_task_mm(struct task_struct *task)
1400 struct mm_struct *mm;
1405 if (task->flags & PF_KTHREAD)
1413 EXPORT_SYMBOL_GPL(get_task_mm);
1415 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1417 struct mm_struct *mm;
1420 err = down_read_killable(&task->signal->exec_update_lock);
1422 return ERR_PTR(err);
1424 mm = get_task_mm(task);
1425 if (mm && mm != current->mm &&
1426 !ptrace_may_access(task, mode)) {
1428 mm = ERR_PTR(-EACCES);
1430 up_read(&task->signal->exec_update_lock);
1435 static void complete_vfork_done(struct task_struct *tsk)
1437 struct completion *vfork;
1440 vfork = tsk->vfork_done;
1441 if (likely(vfork)) {
1442 tsk->vfork_done = NULL;
1448 static int wait_for_vfork_done(struct task_struct *child,
1449 struct completion *vfork)
1451 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1454 cgroup_enter_frozen();
1455 killed = wait_for_completion_state(vfork, state);
1456 cgroup_leave_frozen(false);
1460 child->vfork_done = NULL;
1464 put_task_struct(child);
1468 /* Please note the differences between mmput and mm_release.
1469 * mmput is called whenever we stop holding onto a mm_struct,
1470 * error success whatever.
1472 * mm_release is called after a mm_struct has been removed
1473 * from the current process.
1475 * This difference is important for error handling, when we
1476 * only half set up a mm_struct for a new process and need to restore
1477 * the old one. Because we mmput the new mm_struct before
1478 * restoring the old one. . .
1479 * Eric Biederman 10 January 1998
1481 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1483 uprobe_free_utask(tsk);
1485 /* Get rid of any cached register state */
1486 deactivate_mm(tsk, mm);
1489 * Signal userspace if we're not exiting with a core dump
1490 * because we want to leave the value intact for debugging
1493 if (tsk->clear_child_tid) {
1494 if (atomic_read(&mm->mm_users) > 1) {
1496 * We don't check the error code - if userspace has
1497 * not set up a proper pointer then tough luck.
1499 put_user(0, tsk->clear_child_tid);
1500 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1501 1, NULL, NULL, 0, 0);
1503 tsk->clear_child_tid = NULL;
1507 * All done, finally we can wake up parent and return this mm to him.
1508 * Also kthread_stop() uses this completion for synchronization.
1510 if (tsk->vfork_done)
1511 complete_vfork_done(tsk);
1514 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1516 futex_exit_release(tsk);
1517 mm_release(tsk, mm);
1520 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1522 futex_exec_release(tsk);
1523 mm_release(tsk, mm);
1527 * dup_mm() - duplicates an existing mm structure
1528 * @tsk: the task_struct with which the new mm will be associated.
1529 * @oldmm: the mm to duplicate.
1531 * Allocates a new mm structure and duplicates the provided @oldmm structure
1534 * Return: the duplicated mm or NULL on failure.
1536 static struct mm_struct *dup_mm(struct task_struct *tsk,
1537 struct mm_struct *oldmm)
1539 struct mm_struct *mm;
1546 memcpy(mm, oldmm, sizeof(*mm));
1548 if (!mm_init(mm, tsk, mm->user_ns))
1551 err = dup_mmap(mm, oldmm);
1555 mm->hiwater_rss = get_mm_rss(mm);
1556 mm->hiwater_vm = mm->total_vm;
1558 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1564 /* don't put binfmt in mmput, we haven't got module yet */
1566 mm_init_owner(mm, NULL);
1573 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1575 struct mm_struct *mm, *oldmm;
1577 tsk->min_flt = tsk->maj_flt = 0;
1578 tsk->nvcsw = tsk->nivcsw = 0;
1579 #ifdef CONFIG_DETECT_HUNG_TASK
1580 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1581 tsk->last_switch_time = 0;
1585 tsk->active_mm = NULL;
1588 * Are we cloning a kernel thread?
1590 * We need to steal a active VM for that..
1592 oldmm = current->mm;
1596 if (clone_flags & CLONE_VM) {
1600 mm = dup_mm(tsk, current->mm);
1606 tsk->active_mm = mm;
1607 sched_mm_cid_fork(tsk);
1611 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1613 struct fs_struct *fs = current->fs;
1614 if (clone_flags & CLONE_FS) {
1615 /* tsk->fs is already what we want */
1616 spin_lock(&fs->lock);
1618 spin_unlock(&fs->lock);
1622 spin_unlock(&fs->lock);
1625 tsk->fs = copy_fs_struct(fs);
1631 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1633 struct files_struct *oldf, *newf;
1637 * A background process may not have any files ...
1639 oldf = current->files;
1643 if (clone_flags & CLONE_FILES) {
1644 atomic_inc(&oldf->count);
1648 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1658 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1660 struct sighand_struct *sig;
1662 if (clone_flags & CLONE_SIGHAND) {
1663 refcount_inc(¤t->sighand->count);
1666 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1667 RCU_INIT_POINTER(tsk->sighand, sig);
1671 refcount_set(&sig->count, 1);
1672 spin_lock_irq(¤t->sighand->siglock);
1673 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1674 spin_unlock_irq(¤t->sighand->siglock);
1676 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1677 if (clone_flags & CLONE_CLEAR_SIGHAND)
1678 flush_signal_handlers(tsk, 0);
1683 void __cleanup_sighand(struct sighand_struct *sighand)
1685 if (refcount_dec_and_test(&sighand->count)) {
1686 signalfd_cleanup(sighand);
1688 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1689 * without an RCU grace period, see __lock_task_sighand().
1691 kmem_cache_free(sighand_cachep, sighand);
1696 * Initialize POSIX timer handling for a thread group.
1698 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1700 struct posix_cputimers *pct = &sig->posix_cputimers;
1701 unsigned long cpu_limit;
1703 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1704 posix_cputimers_group_init(pct, cpu_limit);
1707 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1709 struct signal_struct *sig;
1711 if (clone_flags & CLONE_THREAD)
1714 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1719 sig->nr_threads = 1;
1720 sig->quick_threads = 1;
1721 atomic_set(&sig->live, 1);
1722 refcount_set(&sig->sigcnt, 1);
1724 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1725 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1726 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1728 init_waitqueue_head(&sig->wait_chldexit);
1729 sig->curr_target = tsk;
1730 init_sigpending(&sig->shared_pending);
1731 INIT_HLIST_HEAD(&sig->multiprocess);
1732 seqlock_init(&sig->stats_lock);
1733 prev_cputime_init(&sig->prev_cputime);
1735 #ifdef CONFIG_POSIX_TIMERS
1736 INIT_LIST_HEAD(&sig->posix_timers);
1737 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1738 sig->real_timer.function = it_real_fn;
1741 task_lock(current->group_leader);
1742 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1743 task_unlock(current->group_leader);
1745 posix_cpu_timers_init_group(sig);
1747 tty_audit_fork(sig);
1748 sched_autogroup_fork(sig);
1750 sig->oom_score_adj = current->signal->oom_score_adj;
1751 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1753 mutex_init(&sig->cred_guard_mutex);
1754 init_rwsem(&sig->exec_update_lock);
1759 static void copy_seccomp(struct task_struct *p)
1761 #ifdef CONFIG_SECCOMP
1763 * Must be called with sighand->lock held, which is common to
1764 * all threads in the group. Holding cred_guard_mutex is not
1765 * needed because this new task is not yet running and cannot
1768 assert_spin_locked(¤t->sighand->siglock);
1770 /* Ref-count the new filter user, and assign it. */
1771 get_seccomp_filter(current);
1772 p->seccomp = current->seccomp;
1775 * Explicitly enable no_new_privs here in case it got set
1776 * between the task_struct being duplicated and holding the
1777 * sighand lock. The seccomp state and nnp must be in sync.
1779 if (task_no_new_privs(current))
1780 task_set_no_new_privs(p);
1783 * If the parent gained a seccomp mode after copying thread
1784 * flags and between before we held the sighand lock, we have
1785 * to manually enable the seccomp thread flag here.
1787 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1788 set_task_syscall_work(p, SECCOMP);
1792 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1794 current->clear_child_tid = tidptr;
1796 return task_pid_vnr(current);
1799 static void rt_mutex_init_task(struct task_struct *p)
1801 raw_spin_lock_init(&p->pi_lock);
1802 #ifdef CONFIG_RT_MUTEXES
1803 p->pi_waiters = RB_ROOT_CACHED;
1804 p->pi_top_task = NULL;
1805 p->pi_blocked_on = NULL;
1809 static inline void init_task_pid_links(struct task_struct *task)
1813 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1814 INIT_HLIST_NODE(&task->pid_links[type]);
1818 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1820 if (type == PIDTYPE_PID)
1821 task->thread_pid = pid;
1823 task->signal->pids[type] = pid;
1826 static inline void rcu_copy_process(struct task_struct *p)
1828 #ifdef CONFIG_PREEMPT_RCU
1829 p->rcu_read_lock_nesting = 0;
1830 p->rcu_read_unlock_special.s = 0;
1831 p->rcu_blocked_node = NULL;
1832 INIT_LIST_HEAD(&p->rcu_node_entry);
1833 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1834 #ifdef CONFIG_TASKS_RCU
1835 p->rcu_tasks_holdout = false;
1836 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1837 p->rcu_tasks_idle_cpu = -1;
1838 #endif /* #ifdef CONFIG_TASKS_RCU */
1839 #ifdef CONFIG_TASKS_TRACE_RCU
1840 p->trc_reader_nesting = 0;
1841 p->trc_reader_special.s = 0;
1842 INIT_LIST_HEAD(&p->trc_holdout_list);
1843 INIT_LIST_HEAD(&p->trc_blkd_node);
1844 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1847 struct pid *pidfd_pid(const struct file *file)
1849 if (file->f_op == &pidfd_fops)
1850 return file->private_data;
1852 return ERR_PTR(-EBADF);
1855 static int pidfd_release(struct inode *inode, struct file *file)
1857 struct pid *pid = file->private_data;
1859 file->private_data = NULL;
1864 #ifdef CONFIG_PROC_FS
1866 * pidfd_show_fdinfo - print information about a pidfd
1867 * @m: proc fdinfo file
1868 * @f: file referencing a pidfd
1871 * This function will print the pid that a given pidfd refers to in the
1872 * pid namespace of the procfs instance.
1873 * If the pid namespace of the process is not a descendant of the pid
1874 * namespace of the procfs instance 0 will be shown as its pid. This is
1875 * similar to calling getppid() on a process whose parent is outside of
1876 * its pid namespace.
1879 * If pid namespaces are supported then this function will also print
1880 * the pid of a given pidfd refers to for all descendant pid namespaces
1881 * starting from the current pid namespace of the instance, i.e. the
1882 * Pid field and the first entry in the NSpid field will be identical.
1883 * If the pid namespace of the process is not a descendant of the pid
1884 * namespace of the procfs instance 0 will be shown as its first NSpid
1885 * entry and no others will be shown.
1886 * Note that this differs from the Pid and NSpid fields in
1887 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1888 * the pid namespace of the procfs instance. The difference becomes
1889 * obvious when sending around a pidfd between pid namespaces from a
1890 * different branch of the tree, i.e. where no ancestral relation is
1891 * present between the pid namespaces:
1892 * - create two new pid namespaces ns1 and ns2 in the initial pid
1893 * namespace (also take care to create new mount namespaces in the
1894 * new pid namespace and mount procfs)
1895 * - create a process with a pidfd in ns1
1896 * - send pidfd from ns1 to ns2
1897 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1898 * have exactly one entry, which is 0
1900 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1902 struct pid *pid = f->private_data;
1903 struct pid_namespace *ns;
1906 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1907 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1908 nr = pid_nr_ns(pid, ns);
1911 seq_put_decimal_ll(m, "Pid:\t", nr);
1913 #ifdef CONFIG_PID_NS
1914 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1918 /* If nr is non-zero it means that 'pid' is valid and that
1919 * ns, i.e. the pid namespace associated with the procfs
1920 * instance, is in the pid namespace hierarchy of pid.
1921 * Start at one below the already printed level.
1923 for (i = ns->level + 1; i <= pid->level; i++)
1924 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1932 * Poll support for process exit notification.
1934 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1936 struct pid *pid = file->private_data;
1937 __poll_t poll_flags = 0;
1939 poll_wait(file, &pid->wait_pidfd, pts);
1942 * Inform pollers only when the whole thread group exits.
1943 * If the thread group leader exits before all other threads in the
1944 * group, then poll(2) should block, similar to the wait(2) family.
1946 if (thread_group_exited(pid))
1947 poll_flags = EPOLLIN | EPOLLRDNORM;
1952 const struct file_operations pidfd_fops = {
1953 .release = pidfd_release,
1955 #ifdef CONFIG_PROC_FS
1956 .show_fdinfo = pidfd_show_fdinfo,
1960 static void __delayed_free_task(struct rcu_head *rhp)
1962 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1967 static __always_inline void delayed_free_task(struct task_struct *tsk)
1969 if (IS_ENABLED(CONFIG_MEMCG))
1970 call_rcu(&tsk->rcu, __delayed_free_task);
1975 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1977 /* Skip if kernel thread */
1981 /* Skip if spawning a thread or using vfork */
1982 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1985 /* We need to synchronize with __set_oom_adj */
1986 mutex_lock(&oom_adj_mutex);
1987 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1988 /* Update the values in case they were changed after copy_signal */
1989 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1990 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1991 mutex_unlock(&oom_adj_mutex);
1995 static void rv_task_fork(struct task_struct *p)
1999 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2000 p->rv[i].da_mon.monitoring = false;
2003 #define rv_task_fork(p) do {} while (0)
2007 * This creates a new process as a copy of the old one,
2008 * but does not actually start it yet.
2010 * It copies the registers, and all the appropriate
2011 * parts of the process environment (as per the clone
2012 * flags). The actual kick-off is left to the caller.
2014 static __latent_entropy struct task_struct *copy_process(
2018 struct kernel_clone_args *args)
2020 int pidfd = -1, retval;
2021 struct task_struct *p;
2022 struct multiprocess_signals delayed;
2023 struct file *pidfile = NULL;
2024 const u64 clone_flags = args->flags;
2025 struct nsproxy *nsp = current->nsproxy;
2028 * Don't allow sharing the root directory with processes in a different
2031 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2032 return ERR_PTR(-EINVAL);
2034 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2035 return ERR_PTR(-EINVAL);
2038 * Thread groups must share signals as well, and detached threads
2039 * can only be started up within the thread group.
2041 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2042 return ERR_PTR(-EINVAL);
2045 * Shared signal handlers imply shared VM. By way of the above,
2046 * thread groups also imply shared VM. Blocking this case allows
2047 * for various simplifications in other code.
2049 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2050 return ERR_PTR(-EINVAL);
2053 * Siblings of global init remain as zombies on exit since they are
2054 * not reaped by their parent (swapper). To solve this and to avoid
2055 * multi-rooted process trees, prevent global and container-inits
2056 * from creating siblings.
2058 if ((clone_flags & CLONE_PARENT) &&
2059 current->signal->flags & SIGNAL_UNKILLABLE)
2060 return ERR_PTR(-EINVAL);
2063 * If the new process will be in a different pid or user namespace
2064 * do not allow it to share a thread group with the forking task.
2066 if (clone_flags & CLONE_THREAD) {
2067 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2068 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2069 return ERR_PTR(-EINVAL);
2072 if (clone_flags & CLONE_PIDFD) {
2074 * - CLONE_DETACHED is blocked so that we can potentially
2075 * reuse it later for CLONE_PIDFD.
2076 * - CLONE_THREAD is blocked until someone really needs it.
2078 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2079 return ERR_PTR(-EINVAL);
2083 * Force any signals received before this point to be delivered
2084 * before the fork happens. Collect up signals sent to multiple
2085 * processes that happen during the fork and delay them so that
2086 * they appear to happen after the fork.
2088 sigemptyset(&delayed.signal);
2089 INIT_HLIST_NODE(&delayed.node);
2091 spin_lock_irq(¤t->sighand->siglock);
2092 if (!(clone_flags & CLONE_THREAD))
2093 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2094 recalc_sigpending();
2095 spin_unlock_irq(¤t->sighand->siglock);
2096 retval = -ERESTARTNOINTR;
2097 if (task_sigpending(current))
2101 p = dup_task_struct(current, node);
2104 p->flags &= ~PF_KTHREAD;
2106 p->flags |= PF_KTHREAD;
2107 if (args->io_thread) {
2109 * Mark us an IO worker, and block any signal that isn't
2112 p->flags |= PF_IO_WORKER;
2113 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2116 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2118 * Clear TID on mm_release()?
2120 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2122 ftrace_graph_init_task(p);
2124 rt_mutex_init_task(p);
2126 lockdep_assert_irqs_enabled();
2127 #ifdef CONFIG_PROVE_LOCKING
2128 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2130 retval = copy_creds(p, clone_flags);
2135 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2136 if (p->real_cred->user != INIT_USER &&
2137 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2138 goto bad_fork_cleanup_count;
2140 current->flags &= ~PF_NPROC_EXCEEDED;
2143 * If multiple threads are within copy_process(), then this check
2144 * triggers too late. This doesn't hurt, the check is only there
2145 * to stop root fork bombs.
2148 if (data_race(nr_threads >= max_threads))
2149 goto bad_fork_cleanup_count;
2151 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2152 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2153 p->flags |= PF_FORKNOEXEC;
2154 INIT_LIST_HEAD(&p->children);
2155 INIT_LIST_HEAD(&p->sibling);
2156 rcu_copy_process(p);
2157 p->vfork_done = NULL;
2158 spin_lock_init(&p->alloc_lock);
2160 init_sigpending(&p->pending);
2162 p->utime = p->stime = p->gtime = 0;
2163 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2164 p->utimescaled = p->stimescaled = 0;
2166 prev_cputime_init(&p->prev_cputime);
2168 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2169 seqcount_init(&p->vtime.seqcount);
2170 p->vtime.starttime = 0;
2171 p->vtime.state = VTIME_INACTIVE;
2174 #ifdef CONFIG_IO_URING
2178 #if defined(SPLIT_RSS_COUNTING)
2179 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2182 p->default_timer_slack_ns = current->timer_slack_ns;
2188 task_io_accounting_init(&p->ioac);
2189 acct_clear_integrals(p);
2191 posix_cputimers_init(&p->posix_cputimers);
2193 p->io_context = NULL;
2194 audit_set_context(p, NULL);
2196 if (args->kthread) {
2197 if (!set_kthread_struct(p))
2198 goto bad_fork_cleanup_delayacct;
2201 p->mempolicy = mpol_dup(p->mempolicy);
2202 if (IS_ERR(p->mempolicy)) {
2203 retval = PTR_ERR(p->mempolicy);
2204 p->mempolicy = NULL;
2205 goto bad_fork_cleanup_delayacct;
2208 #ifdef CONFIG_CPUSETS
2209 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2210 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2211 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2213 #ifdef CONFIG_TRACE_IRQFLAGS
2214 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2215 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2216 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2217 p->softirqs_enabled = 1;
2218 p->softirq_context = 0;
2221 p->pagefault_disabled = 0;
2223 #ifdef CONFIG_LOCKDEP
2224 lockdep_init_task(p);
2227 #ifdef CONFIG_DEBUG_MUTEXES
2228 p->blocked_on = NULL; /* not blocked yet */
2230 #ifdef CONFIG_BCACHE
2231 p->sequential_io = 0;
2232 p->sequential_io_avg = 0;
2234 #ifdef CONFIG_BPF_SYSCALL
2235 RCU_INIT_POINTER(p->bpf_storage, NULL);
2239 /* Perform scheduler related setup. Assign this task to a CPU. */
2240 retval = sched_fork(clone_flags, p);
2242 goto bad_fork_cleanup_policy;
2244 retval = perf_event_init_task(p, clone_flags);
2246 goto bad_fork_cleanup_policy;
2247 retval = audit_alloc(p);
2249 goto bad_fork_cleanup_perf;
2250 /* copy all the process information */
2252 retval = security_task_alloc(p, clone_flags);
2254 goto bad_fork_cleanup_audit;
2255 retval = copy_semundo(clone_flags, p);
2257 goto bad_fork_cleanup_security;
2258 retval = copy_files(clone_flags, p);
2260 goto bad_fork_cleanup_semundo;
2261 retval = copy_fs(clone_flags, p);
2263 goto bad_fork_cleanup_files;
2264 retval = copy_sighand(clone_flags, p);
2266 goto bad_fork_cleanup_fs;
2267 retval = copy_signal(clone_flags, p);
2269 goto bad_fork_cleanup_sighand;
2270 retval = copy_mm(clone_flags, p);
2272 goto bad_fork_cleanup_signal;
2273 retval = copy_namespaces(clone_flags, p);
2275 goto bad_fork_cleanup_mm;
2276 retval = copy_io(clone_flags, p);
2278 goto bad_fork_cleanup_namespaces;
2279 retval = copy_thread(p, args);
2281 goto bad_fork_cleanup_io;
2283 stackleak_task_init(p);
2285 if (pid != &init_struct_pid) {
2286 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2287 args->set_tid_size);
2289 retval = PTR_ERR(pid);
2290 goto bad_fork_cleanup_thread;
2295 * This has to happen after we've potentially unshared the file
2296 * descriptor table (so that the pidfd doesn't leak into the child
2297 * if the fd table isn't shared).
2299 if (clone_flags & CLONE_PIDFD) {
2300 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2302 goto bad_fork_free_pid;
2306 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2307 O_RDWR | O_CLOEXEC);
2308 if (IS_ERR(pidfile)) {
2309 put_unused_fd(pidfd);
2310 retval = PTR_ERR(pidfile);
2311 goto bad_fork_free_pid;
2313 get_pid(pid); /* held by pidfile now */
2315 retval = put_user(pidfd, args->pidfd);
2317 goto bad_fork_put_pidfd;
2326 * sigaltstack should be cleared when sharing the same VM
2328 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2332 * Syscall tracing and stepping should be turned off in the
2333 * child regardless of CLONE_PTRACE.
2335 user_disable_single_step(p);
2336 clear_task_syscall_work(p, SYSCALL_TRACE);
2337 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2338 clear_task_syscall_work(p, SYSCALL_EMU);
2340 clear_tsk_latency_tracing(p);
2342 /* ok, now we should be set up.. */
2343 p->pid = pid_nr(pid);
2344 if (clone_flags & CLONE_THREAD) {
2345 p->group_leader = current->group_leader;
2346 p->tgid = current->tgid;
2348 p->group_leader = p;
2353 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2354 p->dirty_paused_when = 0;
2356 p->pdeath_signal = 0;
2357 INIT_LIST_HEAD(&p->thread_group);
2358 p->task_works = NULL;
2359 clear_posix_cputimers_work(p);
2361 #ifdef CONFIG_KRETPROBES
2362 p->kretprobe_instances.first = NULL;
2364 #ifdef CONFIG_RETHOOK
2365 p->rethooks.first = NULL;
2369 * Ensure that the cgroup subsystem policies allow the new process to be
2370 * forked. It should be noted that the new process's css_set can be changed
2371 * between here and cgroup_post_fork() if an organisation operation is in
2374 retval = cgroup_can_fork(p, args);
2376 goto bad_fork_put_pidfd;
2379 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2380 * the new task on the correct runqueue. All this *before* the task
2383 * This isn't part of ->can_fork() because while the re-cloning is
2384 * cgroup specific, it unconditionally needs to place the task on a
2387 sched_cgroup_fork(p, args);
2390 * From this point on we must avoid any synchronous user-space
2391 * communication until we take the tasklist-lock. In particular, we do
2392 * not want user-space to be able to predict the process start-time by
2393 * stalling fork(2) after we recorded the start_time but before it is
2394 * visible to the system.
2397 p->start_time = ktime_get_ns();
2398 p->start_boottime = ktime_get_boottime_ns();
2401 * Make it visible to the rest of the system, but dont wake it up yet.
2402 * Need tasklist lock for parent etc handling!
2404 write_lock_irq(&tasklist_lock);
2406 /* CLONE_PARENT re-uses the old parent */
2407 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2408 p->real_parent = current->real_parent;
2409 p->parent_exec_id = current->parent_exec_id;
2410 if (clone_flags & CLONE_THREAD)
2411 p->exit_signal = -1;
2413 p->exit_signal = current->group_leader->exit_signal;
2415 p->real_parent = current;
2416 p->parent_exec_id = current->self_exec_id;
2417 p->exit_signal = args->exit_signal;
2420 klp_copy_process(p);
2424 spin_lock(¤t->sighand->siglock);
2428 rseq_fork(p, clone_flags);
2430 /* Don't start children in a dying pid namespace */
2431 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2433 goto bad_fork_cancel_cgroup;
2436 /* Let kill terminate clone/fork in the middle */
2437 if (fatal_signal_pending(current)) {
2439 goto bad_fork_cancel_cgroup;
2442 /* No more failure paths after this point. */
2445 * Copy seccomp details explicitly here, in case they were changed
2446 * before holding sighand lock.
2450 init_task_pid_links(p);
2451 if (likely(p->pid)) {
2452 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2454 init_task_pid(p, PIDTYPE_PID, pid);
2455 if (thread_group_leader(p)) {
2456 init_task_pid(p, PIDTYPE_TGID, pid);
2457 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2458 init_task_pid(p, PIDTYPE_SID, task_session(current));
2460 if (is_child_reaper(pid)) {
2461 ns_of_pid(pid)->child_reaper = p;
2462 p->signal->flags |= SIGNAL_UNKILLABLE;
2464 p->signal->shared_pending.signal = delayed.signal;
2465 p->signal->tty = tty_kref_get(current->signal->tty);
2467 * Inherit has_child_subreaper flag under the same
2468 * tasklist_lock with adding child to the process tree
2469 * for propagate_has_child_subreaper optimization.
2471 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2472 p->real_parent->signal->is_child_subreaper;
2473 list_add_tail(&p->sibling, &p->real_parent->children);
2474 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2475 attach_pid(p, PIDTYPE_TGID);
2476 attach_pid(p, PIDTYPE_PGID);
2477 attach_pid(p, PIDTYPE_SID);
2478 __this_cpu_inc(process_counts);
2480 current->signal->nr_threads++;
2481 current->signal->quick_threads++;
2482 atomic_inc(¤t->signal->live);
2483 refcount_inc(¤t->signal->sigcnt);
2484 task_join_group_stop(p);
2485 list_add_tail_rcu(&p->thread_group,
2486 &p->group_leader->thread_group);
2487 list_add_tail_rcu(&p->thread_node,
2488 &p->signal->thread_head);
2490 attach_pid(p, PIDTYPE_PID);
2494 hlist_del_init(&delayed.node);
2495 spin_unlock(¤t->sighand->siglock);
2496 syscall_tracepoint_update(p);
2497 write_unlock_irq(&tasklist_lock);
2500 fd_install(pidfd, pidfile);
2502 proc_fork_connector(p);
2504 cgroup_post_fork(p, args);
2507 trace_task_newtask(p, clone_flags);
2508 uprobe_copy_process(p, clone_flags);
2509 user_events_fork(p, clone_flags);
2511 copy_oom_score_adj(clone_flags, p);
2515 bad_fork_cancel_cgroup:
2517 spin_unlock(¤t->sighand->siglock);
2518 write_unlock_irq(&tasklist_lock);
2519 cgroup_cancel_fork(p, args);
2521 if (clone_flags & CLONE_PIDFD) {
2523 put_unused_fd(pidfd);
2526 if (pid != &init_struct_pid)
2528 bad_fork_cleanup_thread:
2530 bad_fork_cleanup_io:
2533 bad_fork_cleanup_namespaces:
2534 exit_task_namespaces(p);
2535 bad_fork_cleanup_mm:
2537 mm_clear_owner(p->mm, p);
2540 bad_fork_cleanup_signal:
2541 if (!(clone_flags & CLONE_THREAD))
2542 free_signal_struct(p->signal);
2543 bad_fork_cleanup_sighand:
2544 __cleanup_sighand(p->sighand);
2545 bad_fork_cleanup_fs:
2546 exit_fs(p); /* blocking */
2547 bad_fork_cleanup_files:
2548 exit_files(p); /* blocking */
2549 bad_fork_cleanup_semundo:
2551 bad_fork_cleanup_security:
2552 security_task_free(p);
2553 bad_fork_cleanup_audit:
2555 bad_fork_cleanup_perf:
2556 perf_event_free_task(p);
2557 bad_fork_cleanup_policy:
2558 lockdep_free_task(p);
2560 mpol_put(p->mempolicy);
2562 bad_fork_cleanup_delayacct:
2563 delayacct_tsk_free(p);
2564 bad_fork_cleanup_count:
2565 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2568 WRITE_ONCE(p->__state, TASK_DEAD);
2569 exit_task_stack_account(p);
2571 delayed_free_task(p);
2573 spin_lock_irq(¤t->sighand->siglock);
2574 hlist_del_init(&delayed.node);
2575 spin_unlock_irq(¤t->sighand->siglock);
2576 return ERR_PTR(retval);
2579 static inline void init_idle_pids(struct task_struct *idle)
2583 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2584 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2585 init_task_pid(idle, type, &init_struct_pid);
2589 static int idle_dummy(void *dummy)
2591 /* This function is never called */
2595 struct task_struct * __init fork_idle(int cpu)
2597 struct task_struct *task;
2598 struct kernel_clone_args args = {
2606 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2607 if (!IS_ERR(task)) {
2608 init_idle_pids(task);
2609 init_idle(task, cpu);
2616 * This is like kernel_clone(), but shaved down and tailored to just
2617 * creating io_uring workers. It returns a created task, or an error pointer.
2618 * The returned task is inactive, and the caller must fire it up through
2619 * wake_up_new_task(p). All signals are blocked in the created task.
2621 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2623 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2625 struct kernel_clone_args args = {
2626 .flags = ((lower_32_bits(flags) | CLONE_VM |
2627 CLONE_UNTRACED) & ~CSIGNAL),
2628 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2634 return copy_process(NULL, 0, node, &args);
2638 * Ok, this is the main fork-routine.
2640 * It copies the process, and if successful kick-starts
2641 * it and waits for it to finish using the VM if required.
2643 * args->exit_signal is expected to be checked for sanity by the caller.
2645 pid_t kernel_clone(struct kernel_clone_args *args)
2647 u64 clone_flags = args->flags;
2648 struct completion vfork;
2650 struct task_struct *p;
2655 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2656 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2657 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2658 * field in struct clone_args and it still doesn't make sense to have
2659 * them both point at the same memory location. Performing this check
2660 * here has the advantage that we don't need to have a separate helper
2661 * to check for legacy clone().
2663 if ((args->flags & CLONE_PIDFD) &&
2664 (args->flags & CLONE_PARENT_SETTID) &&
2665 (args->pidfd == args->parent_tid))
2669 * Determine whether and which event to report to ptracer. When
2670 * called from kernel_thread or CLONE_UNTRACED is explicitly
2671 * requested, no event is reported; otherwise, report if the event
2672 * for the type of forking is enabled.
2674 if (!(clone_flags & CLONE_UNTRACED)) {
2675 if (clone_flags & CLONE_VFORK)
2676 trace = PTRACE_EVENT_VFORK;
2677 else if (args->exit_signal != SIGCHLD)
2678 trace = PTRACE_EVENT_CLONE;
2680 trace = PTRACE_EVENT_FORK;
2682 if (likely(!ptrace_event_enabled(current, trace)))
2686 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2687 add_latent_entropy();
2693 * Do this prior waking up the new thread - the thread pointer
2694 * might get invalid after that point, if the thread exits quickly.
2696 trace_sched_process_fork(current, p);
2698 pid = get_task_pid(p, PIDTYPE_PID);
2701 if (clone_flags & CLONE_PARENT_SETTID)
2702 put_user(nr, args->parent_tid);
2704 if (clone_flags & CLONE_VFORK) {
2705 p->vfork_done = &vfork;
2706 init_completion(&vfork);
2710 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2711 /* lock the task to synchronize with memcg migration */
2713 lru_gen_add_mm(p->mm);
2717 wake_up_new_task(p);
2719 /* forking complete and child started to run, tell ptracer */
2720 if (unlikely(trace))
2721 ptrace_event_pid(trace, pid);
2723 if (clone_flags & CLONE_VFORK) {
2724 if (!wait_for_vfork_done(p, &vfork))
2725 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2733 * Create a kernel thread.
2735 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2737 struct kernel_clone_args args = {
2738 .flags = ((lower_32_bits(flags) | CLONE_VM |
2739 CLONE_UNTRACED) & ~CSIGNAL),
2740 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2746 return kernel_clone(&args);
2750 * Create a user mode thread.
2752 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2754 struct kernel_clone_args args = {
2755 .flags = ((lower_32_bits(flags) | CLONE_VM |
2756 CLONE_UNTRACED) & ~CSIGNAL),
2757 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2762 return kernel_clone(&args);
2765 #ifdef __ARCH_WANT_SYS_FORK
2766 SYSCALL_DEFINE0(fork)
2769 struct kernel_clone_args args = {
2770 .exit_signal = SIGCHLD,
2773 return kernel_clone(&args);
2775 /* can not support in nommu mode */
2781 #ifdef __ARCH_WANT_SYS_VFORK
2782 SYSCALL_DEFINE0(vfork)
2784 struct kernel_clone_args args = {
2785 .flags = CLONE_VFORK | CLONE_VM,
2786 .exit_signal = SIGCHLD,
2789 return kernel_clone(&args);
2793 #ifdef __ARCH_WANT_SYS_CLONE
2794 #ifdef CONFIG_CLONE_BACKWARDS
2795 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2796 int __user *, parent_tidptr,
2798 int __user *, child_tidptr)
2799 #elif defined(CONFIG_CLONE_BACKWARDS2)
2800 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2801 int __user *, parent_tidptr,
2802 int __user *, child_tidptr,
2804 #elif defined(CONFIG_CLONE_BACKWARDS3)
2805 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2807 int __user *, parent_tidptr,
2808 int __user *, child_tidptr,
2811 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2812 int __user *, parent_tidptr,
2813 int __user *, child_tidptr,
2817 struct kernel_clone_args args = {
2818 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2819 .pidfd = parent_tidptr,
2820 .child_tid = child_tidptr,
2821 .parent_tid = parent_tidptr,
2822 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2827 return kernel_clone(&args);
2831 #ifdef __ARCH_WANT_SYS_CLONE3
2833 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2834 struct clone_args __user *uargs,
2838 struct clone_args args;
2839 pid_t *kset_tid = kargs->set_tid;
2841 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2842 CLONE_ARGS_SIZE_VER0);
2843 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2844 CLONE_ARGS_SIZE_VER1);
2845 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2846 CLONE_ARGS_SIZE_VER2);
2847 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2849 if (unlikely(usize > PAGE_SIZE))
2851 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2854 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2858 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2861 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2864 if (unlikely(args.set_tid && args.set_tid_size == 0))
2868 * Verify that higher 32bits of exit_signal are unset and that
2869 * it is a valid signal
2871 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2872 !valid_signal(args.exit_signal)))
2875 if ((args.flags & CLONE_INTO_CGROUP) &&
2876 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2879 *kargs = (struct kernel_clone_args){
2880 .flags = args.flags,
2881 .pidfd = u64_to_user_ptr(args.pidfd),
2882 .child_tid = u64_to_user_ptr(args.child_tid),
2883 .parent_tid = u64_to_user_ptr(args.parent_tid),
2884 .exit_signal = args.exit_signal,
2885 .stack = args.stack,
2886 .stack_size = args.stack_size,
2888 .set_tid_size = args.set_tid_size,
2889 .cgroup = args.cgroup,
2893 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2894 (kargs->set_tid_size * sizeof(pid_t))))
2897 kargs->set_tid = kset_tid;
2903 * clone3_stack_valid - check and prepare stack
2904 * @kargs: kernel clone args
2906 * Verify that the stack arguments userspace gave us are sane.
2907 * In addition, set the stack direction for userspace since it's easy for us to
2910 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2912 if (kargs->stack == 0) {
2913 if (kargs->stack_size > 0)
2916 if (kargs->stack_size == 0)
2919 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2922 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2923 kargs->stack += kargs->stack_size;
2930 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2932 /* Verify that no unknown flags are passed along. */
2934 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2938 * - make the CLONE_DETACHED bit reusable for clone3
2939 * - make the CSIGNAL bits reusable for clone3
2941 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2944 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2945 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2948 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2952 if (!clone3_stack_valid(kargs))
2959 * clone3 - create a new process with specific properties
2960 * @uargs: argument structure
2961 * @size: size of @uargs
2963 * clone3() is the extensible successor to clone()/clone2().
2964 * It takes a struct as argument that is versioned by its size.
2966 * Return: On success, a positive PID for the child process.
2967 * On error, a negative errno number.
2969 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2973 struct kernel_clone_args kargs;
2974 pid_t set_tid[MAX_PID_NS_LEVEL];
2976 kargs.set_tid = set_tid;
2978 err = copy_clone_args_from_user(&kargs, uargs, size);
2982 if (!clone3_args_valid(&kargs))
2985 return kernel_clone(&kargs);
2989 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2991 struct task_struct *leader, *parent, *child;
2994 read_lock(&tasklist_lock);
2995 leader = top = top->group_leader;
2997 for_each_thread(leader, parent) {
2998 list_for_each_entry(child, &parent->children, sibling) {
2999 res = visitor(child, data);
3011 if (leader != top) {
3013 parent = child->real_parent;
3014 leader = parent->group_leader;
3018 read_unlock(&tasklist_lock);
3021 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3022 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3025 static void sighand_ctor(void *data)
3027 struct sighand_struct *sighand = data;
3029 spin_lock_init(&sighand->siglock);
3030 init_waitqueue_head(&sighand->signalfd_wqh);
3033 void __init mm_cache_init(void)
3035 unsigned int mm_size;
3038 * The mm_cpumask is located at the end of mm_struct, and is
3039 * dynamically sized based on the maximum CPU number this system
3040 * can have, taking hotplug into account (nr_cpu_ids).
3042 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3044 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3045 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3046 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3047 offsetof(struct mm_struct, saved_auxv),
3048 sizeof_field(struct mm_struct, saved_auxv),
3052 void __init proc_caches_init(void)
3054 sighand_cachep = kmem_cache_create("sighand_cache",
3055 sizeof(struct sighand_struct), 0,
3056 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3057 SLAB_ACCOUNT, sighand_ctor);
3058 signal_cachep = kmem_cache_create("signal_cache",
3059 sizeof(struct signal_struct), 0,
3060 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3062 files_cachep = kmem_cache_create("files_cache",
3063 sizeof(struct files_struct), 0,
3064 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3066 fs_cachep = kmem_cache_create("fs_cache",
3067 sizeof(struct fs_struct), 0,
3068 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3071 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3073 nsproxy_cache_init();
3077 * Check constraints on flags passed to the unshare system call.
3079 static int check_unshare_flags(unsigned long unshare_flags)
3081 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3082 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3083 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3084 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3088 * Not implemented, but pretend it works if there is nothing
3089 * to unshare. Note that unsharing the address space or the
3090 * signal handlers also need to unshare the signal queues (aka
3093 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3094 if (!thread_group_empty(current))
3097 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3098 if (refcount_read(¤t->sighand->count) > 1)
3101 if (unshare_flags & CLONE_VM) {
3102 if (!current_is_single_threaded())
3110 * Unshare the filesystem structure if it is being shared
3112 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3114 struct fs_struct *fs = current->fs;
3116 if (!(unshare_flags & CLONE_FS) || !fs)
3119 /* don't need lock here; in the worst case we'll do useless copy */
3123 *new_fsp = copy_fs_struct(fs);
3131 * Unshare file descriptor table if it is being shared
3133 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3134 struct files_struct **new_fdp)
3136 struct files_struct *fd = current->files;
3139 if ((unshare_flags & CLONE_FILES) &&
3140 (fd && atomic_read(&fd->count) > 1)) {
3141 *new_fdp = dup_fd(fd, max_fds, &error);
3150 * unshare allows a process to 'unshare' part of the process
3151 * context which was originally shared using clone. copy_*
3152 * functions used by kernel_clone() cannot be used here directly
3153 * because they modify an inactive task_struct that is being
3154 * constructed. Here we are modifying the current, active,
3157 int ksys_unshare(unsigned long unshare_flags)
3159 struct fs_struct *fs, *new_fs = NULL;
3160 struct files_struct *new_fd = NULL;
3161 struct cred *new_cred = NULL;
3162 struct nsproxy *new_nsproxy = NULL;
3167 * If unsharing a user namespace must also unshare the thread group
3168 * and unshare the filesystem root and working directories.
3170 if (unshare_flags & CLONE_NEWUSER)
3171 unshare_flags |= CLONE_THREAD | CLONE_FS;
3173 * If unsharing vm, must also unshare signal handlers.
3175 if (unshare_flags & CLONE_VM)
3176 unshare_flags |= CLONE_SIGHAND;
3178 * If unsharing a signal handlers, must also unshare the signal queues.
3180 if (unshare_flags & CLONE_SIGHAND)
3181 unshare_flags |= CLONE_THREAD;
3183 * If unsharing namespace, must also unshare filesystem information.
3185 if (unshare_flags & CLONE_NEWNS)
3186 unshare_flags |= CLONE_FS;
3188 err = check_unshare_flags(unshare_flags);
3190 goto bad_unshare_out;
3192 * CLONE_NEWIPC must also detach from the undolist: after switching
3193 * to a new ipc namespace, the semaphore arrays from the old
3194 * namespace are unreachable.
3196 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3198 err = unshare_fs(unshare_flags, &new_fs);
3200 goto bad_unshare_out;
3201 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3203 goto bad_unshare_cleanup_fs;
3204 err = unshare_userns(unshare_flags, &new_cred);
3206 goto bad_unshare_cleanup_fd;
3207 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3210 goto bad_unshare_cleanup_cred;
3213 err = set_cred_ucounts(new_cred);
3215 goto bad_unshare_cleanup_cred;
3218 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3221 * CLONE_SYSVSEM is equivalent to sys_exit().
3225 if (unshare_flags & CLONE_NEWIPC) {
3226 /* Orphan segments in old ns (see sem above). */
3228 shm_init_task(current);
3232 switch_task_namespaces(current, new_nsproxy);
3238 spin_lock(&fs->lock);
3239 current->fs = new_fs;
3244 spin_unlock(&fs->lock);
3248 swap(current->files, new_fd);
3250 task_unlock(current);
3253 /* Install the new user namespace */
3254 commit_creds(new_cred);
3259 perf_event_namespaces(current);
3261 bad_unshare_cleanup_cred:
3264 bad_unshare_cleanup_fd:
3266 put_files_struct(new_fd);
3268 bad_unshare_cleanup_fs:
3270 free_fs_struct(new_fs);
3276 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3278 return ksys_unshare(unshare_flags);
3282 * Helper to unshare the files of the current task.
3283 * We don't want to expose copy_files internals to
3284 * the exec layer of the kernel.
3287 int unshare_files(void)
3289 struct task_struct *task = current;
3290 struct files_struct *old, *copy = NULL;
3293 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3301 put_files_struct(old);
3305 int sysctl_max_threads(struct ctl_table *table, int write,
3306 void *buffer, size_t *lenp, loff_t *ppos)
3310 int threads = max_threads;
3312 int max = MAX_THREADS;
3319 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3323 max_threads = threads;