1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
106 #include <trace/events/sched.h>
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
112 * Minimum number of threads to boot the kernel
114 #define MIN_THREADS 20
117 * Maximum number of threads
119 #define MAX_THREADS FUTEX_TID_MASK
122 * Protected counters by write_lock_irq(&tasklist_lock)
124 unsigned long total_forks; /* Handle normal Linux uptimes. */
125 int nr_threads; /* The idle threads do not count.. */
127 static int max_threads; /* tunable limit on nr_threads */
129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
131 static const char * const resident_page_types[] = {
132 NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
142 #ifdef CONFIG_PROVE_RCU
143 int lockdep_tasklist_lock_is_held(void)
145 return lockdep_is_held(&tasklist_lock);
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
150 int nr_processes(void)
155 for_each_possible_cpu(cpu)
156 total += per_cpu(process_counts, cpu);
161 void __weak arch_release_task_struct(struct task_struct *tsk)
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
168 static inline struct task_struct *alloc_task_struct_node(int node)
170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
173 static inline void free_task_struct(struct task_struct *tsk)
175 kmem_cache_free(task_struct_cachep, tsk);
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183 * kmemcache based allocator.
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 #ifdef CONFIG_VMAP_STACK
189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190 * flush. Try to minimize the number of calls by caching stacks.
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 static int free_vm_stack_cache(unsigned int cpu)
197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
200 for (i = 0; i < NR_CACHED_STACKS; i++) {
201 struct vm_struct *vm_stack = cached_vm_stacks[i];
206 vfree(vm_stack->addr);
207 cached_vm_stacks[i] = NULL;
214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
216 #ifdef CONFIG_VMAP_STACK
220 for (i = 0; i < NR_CACHED_STACKS; i++) {
223 s = this_cpu_xchg(cached_stacks[i], NULL);
228 /* Clear the KASAN shadow of the stack. */
229 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
231 /* Clear stale pointers from reused stack. */
232 memset(s->addr, 0, THREAD_SIZE);
234 tsk->stack_vm_area = s;
235 tsk->stack = s->addr;
240 * Allocated stacks are cached and later reused by new threads,
241 * so memcg accounting is performed manually on assigning/releasing
242 * stacks to tasks. Drop __GFP_ACCOUNT.
244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245 VMALLOC_START, VMALLOC_END,
246 THREADINFO_GFP & ~__GFP_ACCOUNT,
248 0, node, __builtin_return_address(0));
251 * We can't call find_vm_area() in interrupt context, and
252 * free_thread_stack() can be called in interrupt context,
253 * so cache the vm_struct.
256 tsk->stack_vm_area = find_vm_area(stack);
261 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
265 tsk->stack = kasan_reset_tag(page_address(page));
272 static inline void free_thread_stack(struct task_struct *tsk)
274 #ifdef CONFIG_VMAP_STACK
275 struct vm_struct *vm = task_stack_vm_area(tsk);
280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
281 memcg_kmem_uncharge_page(vm->pages[i], 0);
283 for (i = 0; i < NR_CACHED_STACKS; i++) {
284 if (this_cpu_cmpxchg(cached_stacks[i],
285 NULL, tsk->stack_vm_area) != NULL)
291 vfree_atomic(tsk->stack);
296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
299 static struct kmem_cache *thread_stack_cache;
301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
304 unsigned long *stack;
305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
306 stack = kasan_reset_tag(stack);
311 static void free_thread_stack(struct task_struct *tsk)
313 kmem_cache_free(thread_stack_cache, tsk->stack);
316 void thread_stack_cache_init(void)
318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 THREAD_SIZE, THREAD_SIZE, 0, 0,
321 BUG_ON(thread_stack_cache == NULL);
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
346 struct vm_area_struct *vma;
348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
362 * orig->shared.rb may be modified concurrently, but the clone
363 * will be reinitialized.
365 *new = data_race(*orig);
366 INIT_LIST_HEAD(&new->anon_vma_chain);
367 new->vm_next = new->vm_prev = NULL;
372 void vm_area_free(struct vm_area_struct *vma)
374 kmem_cache_free(vm_area_cachep, vma);
377 static void account_kernel_stack(struct task_struct *tsk, int account)
379 void *stack = task_stack_page(tsk);
380 struct vm_struct *vm = task_stack_vm_area(tsk);
383 /* All stack pages are in the same node. */
385 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
386 account * (THREAD_SIZE / 1024));
388 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
389 account * (THREAD_SIZE / 1024));
392 static int memcg_charge_kernel_stack(struct task_struct *tsk)
394 #ifdef CONFIG_VMAP_STACK
395 struct vm_struct *vm = task_stack_vm_area(tsk);
398 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
403 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
405 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
407 * If memcg_kmem_charge_page() fails, page->mem_cgroup
408 * pointer is NULL, and memcg_kmem_uncharge_page() in
409 * free_thread_stack() will ignore this page.
411 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
421 static void release_task_stack(struct task_struct *tsk)
423 if (WARN_ON(tsk->state != TASK_DEAD))
424 return; /* Better to leak the stack than to free prematurely */
426 account_kernel_stack(tsk, -1);
427 free_thread_stack(tsk);
429 #ifdef CONFIG_VMAP_STACK
430 tsk->stack_vm_area = NULL;
434 #ifdef CONFIG_THREAD_INFO_IN_TASK
435 void put_task_stack(struct task_struct *tsk)
437 if (refcount_dec_and_test(&tsk->stack_refcount))
438 release_task_stack(tsk);
442 void free_task(struct task_struct *tsk)
446 #ifndef CONFIG_THREAD_INFO_IN_TASK
448 * The task is finally done with both the stack and thread_info,
451 release_task_stack(tsk);
454 * If the task had a separate stack allocation, it should be gone
457 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
459 rt_mutex_debug_task_free(tsk);
460 ftrace_graph_exit_task(tsk);
461 arch_release_task_struct(tsk);
462 if (tsk->flags & PF_KTHREAD)
463 free_kthread_struct(tsk);
464 free_task_struct(tsk);
466 EXPORT_SYMBOL(free_task);
469 static __latent_entropy int dup_mmap(struct mm_struct *mm,
470 struct mm_struct *oldmm)
472 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
473 struct rb_node **rb_link, *rb_parent;
475 unsigned long charge;
478 uprobe_start_dup_mmap();
479 if (mmap_write_lock_killable(oldmm)) {
481 goto fail_uprobe_end;
483 flush_cache_dup_mm(oldmm);
484 uprobe_dup_mmap(oldmm, mm);
486 * Not linked in yet - no deadlock potential:
488 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
490 /* No ordering required: file already has been exposed. */
491 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
493 mm->total_vm = oldmm->total_vm;
494 mm->data_vm = oldmm->data_vm;
495 mm->exec_vm = oldmm->exec_vm;
496 mm->stack_vm = oldmm->stack_vm;
498 rb_link = &mm->mm_rb.rb_node;
501 retval = ksm_fork(mm, oldmm);
504 retval = khugepaged_fork(mm, oldmm);
509 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
512 if (mpnt->vm_flags & VM_DONTCOPY) {
513 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
518 * Don't duplicate many vmas if we've been oom-killed (for
521 if (fatal_signal_pending(current)) {
525 if (mpnt->vm_flags & VM_ACCOUNT) {
526 unsigned long len = vma_pages(mpnt);
528 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
532 tmp = vm_area_dup(mpnt);
535 retval = vma_dup_policy(mpnt, tmp);
537 goto fail_nomem_policy;
539 retval = dup_userfaultfd(tmp, &uf);
541 goto fail_nomem_anon_vma_fork;
542 if (tmp->vm_flags & VM_WIPEONFORK) {
544 * VM_WIPEONFORK gets a clean slate in the child.
545 * Don't prepare anon_vma until fault since we don't
546 * copy page for current vma.
548 tmp->anon_vma = NULL;
549 } else if (anon_vma_fork(tmp, mpnt))
550 goto fail_nomem_anon_vma_fork;
551 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
554 struct inode *inode = file_inode(file);
555 struct address_space *mapping = file->f_mapping;
558 if (tmp->vm_flags & VM_DENYWRITE)
559 put_write_access(inode);
560 i_mmap_lock_write(mapping);
561 if (tmp->vm_flags & VM_SHARED)
562 mapping_allow_writable(mapping);
563 flush_dcache_mmap_lock(mapping);
564 /* insert tmp into the share list, just after mpnt */
565 vma_interval_tree_insert_after(tmp, mpnt,
567 flush_dcache_mmap_unlock(mapping);
568 i_mmap_unlock_write(mapping);
572 * Clear hugetlb-related page reserves for children. This only
573 * affects MAP_PRIVATE mappings. Faults generated by the child
574 * are not guaranteed to succeed, even if read-only
576 if (is_vm_hugetlb_page(tmp))
577 reset_vma_resv_huge_pages(tmp);
580 * Link in the new vma and copy the page table entries.
583 pprev = &tmp->vm_next;
587 __vma_link_rb(mm, tmp, rb_link, rb_parent);
588 rb_link = &tmp->vm_rb.rb_right;
589 rb_parent = &tmp->vm_rb;
592 if (!(tmp->vm_flags & VM_WIPEONFORK))
593 retval = copy_page_range(tmp, mpnt);
595 if (tmp->vm_ops && tmp->vm_ops->open)
596 tmp->vm_ops->open(tmp);
601 /* a new mm has just been created */
602 retval = arch_dup_mmap(oldmm, mm);
604 mmap_write_unlock(mm);
606 mmap_write_unlock(oldmm);
607 dup_userfaultfd_complete(&uf);
609 uprobe_end_dup_mmap();
611 fail_nomem_anon_vma_fork:
612 mpol_put(vma_policy(tmp));
617 vm_unacct_memory(charge);
621 static inline int mm_alloc_pgd(struct mm_struct *mm)
623 mm->pgd = pgd_alloc(mm);
624 if (unlikely(!mm->pgd))
629 static inline void mm_free_pgd(struct mm_struct *mm)
631 pgd_free(mm, mm->pgd);
634 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
636 mmap_write_lock(oldmm);
637 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
638 mmap_write_unlock(oldmm);
641 #define mm_alloc_pgd(mm) (0)
642 #define mm_free_pgd(mm)
643 #endif /* CONFIG_MMU */
645 static void check_mm(struct mm_struct *mm)
649 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
650 "Please make sure 'struct resident_page_types[]' is updated as well");
652 for (i = 0; i < NR_MM_COUNTERS; i++) {
653 long x = atomic_long_read(&mm->rss_stat.count[i]);
656 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
657 mm, resident_page_types[i], x);
660 if (mm_pgtables_bytes(mm))
661 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
662 mm_pgtables_bytes(mm));
664 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
665 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
669 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
670 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
673 * Called when the last reference to the mm
674 * is dropped: either by a lazy thread or by
675 * mmput. Free the page directory and the mm.
677 void __mmdrop(struct mm_struct *mm)
679 BUG_ON(mm == &init_mm);
680 WARN_ON_ONCE(mm == current->mm);
681 WARN_ON_ONCE(mm == current->active_mm);
684 mmu_notifier_subscriptions_destroy(mm);
686 put_user_ns(mm->user_ns);
689 EXPORT_SYMBOL_GPL(__mmdrop);
691 static void mmdrop_async_fn(struct work_struct *work)
693 struct mm_struct *mm;
695 mm = container_of(work, struct mm_struct, async_put_work);
699 static void mmdrop_async(struct mm_struct *mm)
701 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
702 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
703 schedule_work(&mm->async_put_work);
707 static inline void free_signal_struct(struct signal_struct *sig)
709 taskstats_tgid_free(sig);
710 sched_autogroup_exit(sig);
712 * __mmdrop is not safe to call from softirq context on x86 due to
713 * pgd_dtor so postpone it to the async context
716 mmdrop_async(sig->oom_mm);
717 kmem_cache_free(signal_cachep, sig);
720 static inline void put_signal_struct(struct signal_struct *sig)
722 if (refcount_dec_and_test(&sig->sigcnt))
723 free_signal_struct(sig);
726 void __put_task_struct(struct task_struct *tsk)
728 WARN_ON(!tsk->exit_state);
729 WARN_ON(refcount_read(&tsk->usage));
730 WARN_ON(tsk == current);
734 task_numa_free(tsk, true);
735 security_task_free(tsk);
737 delayacct_tsk_free(tsk);
738 put_signal_struct(tsk->signal);
740 if (!profile_handoff_task(tsk))
743 EXPORT_SYMBOL_GPL(__put_task_struct);
745 void __init __weak arch_task_cache_init(void) { }
750 static void set_max_threads(unsigned int max_threads_suggested)
753 unsigned long nr_pages = totalram_pages();
756 * The number of threads shall be limited such that the thread
757 * structures may only consume a small part of the available memory.
759 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
760 threads = MAX_THREADS;
762 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
763 (u64) THREAD_SIZE * 8UL);
765 if (threads > max_threads_suggested)
766 threads = max_threads_suggested;
768 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
771 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
772 /* Initialized by the architecture: */
773 int arch_task_struct_size __read_mostly;
776 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
777 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
779 /* Fetch thread_struct whitelist for the architecture. */
780 arch_thread_struct_whitelist(offset, size);
783 * Handle zero-sized whitelist or empty thread_struct, otherwise
784 * adjust offset to position of thread_struct in task_struct.
786 if (unlikely(*size == 0))
789 *offset += offsetof(struct task_struct, thread);
791 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
793 void __init fork_init(void)
796 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
797 #ifndef ARCH_MIN_TASKALIGN
798 #define ARCH_MIN_TASKALIGN 0
800 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
801 unsigned long useroffset, usersize;
803 /* create a slab on which task_structs can be allocated */
804 task_struct_whitelist(&useroffset, &usersize);
805 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
806 arch_task_struct_size, align,
807 SLAB_PANIC|SLAB_ACCOUNT,
808 useroffset, usersize, NULL);
811 /* do the arch specific task caches init */
812 arch_task_cache_init();
814 set_max_threads(MAX_THREADS);
816 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
817 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
818 init_task.signal->rlim[RLIMIT_SIGPENDING] =
819 init_task.signal->rlim[RLIMIT_NPROC];
821 for (i = 0; i < UCOUNT_COUNTS; i++) {
822 init_user_ns.ucount_max[i] = max_threads/2;
825 #ifdef CONFIG_VMAP_STACK
826 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
827 NULL, free_vm_stack_cache);
832 lockdep_init_task(&init_task);
836 int __weak arch_dup_task_struct(struct task_struct *dst,
837 struct task_struct *src)
843 void set_task_stack_end_magic(struct task_struct *tsk)
845 unsigned long *stackend;
847 stackend = end_of_stack(tsk);
848 *stackend = STACK_END_MAGIC; /* for overflow detection */
851 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
853 struct task_struct *tsk;
854 unsigned long *stack;
855 struct vm_struct *stack_vm_area __maybe_unused;
858 if (node == NUMA_NO_NODE)
859 node = tsk_fork_get_node(orig);
860 tsk = alloc_task_struct_node(node);
864 stack = alloc_thread_stack_node(tsk, node);
868 if (memcg_charge_kernel_stack(tsk))
871 stack_vm_area = task_stack_vm_area(tsk);
873 err = arch_dup_task_struct(tsk, orig);
876 * arch_dup_task_struct() clobbers the stack-related fields. Make
877 * sure they're properly initialized before using any stack-related
881 #ifdef CONFIG_VMAP_STACK
882 tsk->stack_vm_area = stack_vm_area;
884 #ifdef CONFIG_THREAD_INFO_IN_TASK
885 refcount_set(&tsk->stack_refcount, 1);
891 err = scs_prepare(tsk, node);
895 #ifdef CONFIG_SECCOMP
897 * We must handle setting up seccomp filters once we're under
898 * the sighand lock in case orig has changed between now and
899 * then. Until then, filter must be NULL to avoid messing up
900 * the usage counts on the error path calling free_task.
902 tsk->seccomp.filter = NULL;
905 setup_thread_stack(tsk, orig);
906 clear_user_return_notifier(tsk);
907 clear_tsk_need_resched(tsk);
908 set_task_stack_end_magic(tsk);
910 #ifdef CONFIG_STACKPROTECTOR
911 tsk->stack_canary = get_random_canary();
913 if (orig->cpus_ptr == &orig->cpus_mask)
914 tsk->cpus_ptr = &tsk->cpus_mask;
917 * One for the user space visible state that goes away when reaped.
918 * One for the scheduler.
920 refcount_set(&tsk->rcu_users, 2);
921 /* One for the rcu users */
922 refcount_set(&tsk->usage, 1);
923 #ifdef CONFIG_BLK_DEV_IO_TRACE
926 tsk->splice_pipe = NULL;
927 tsk->task_frag.page = NULL;
928 tsk->wake_q.next = NULL;
930 account_kernel_stack(tsk, 1);
934 #ifdef CONFIG_FAULT_INJECTION
938 #ifdef CONFIG_BLK_CGROUP
939 tsk->throttle_queue = NULL;
940 tsk->use_memdelay = 0;
944 tsk->active_memcg = NULL;
949 free_thread_stack(tsk);
951 free_task_struct(tsk);
955 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
957 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
959 static int __init coredump_filter_setup(char *s)
961 default_dump_filter =
962 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
963 MMF_DUMP_FILTER_MASK;
967 __setup("coredump_filter=", coredump_filter_setup);
969 #include <linux/init_task.h>
971 static void mm_init_aio(struct mm_struct *mm)
974 spin_lock_init(&mm->ioctx_lock);
975 mm->ioctx_table = NULL;
979 static __always_inline void mm_clear_owner(struct mm_struct *mm,
980 struct task_struct *p)
984 WRITE_ONCE(mm->owner, NULL);
988 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
995 static void mm_init_pasid(struct mm_struct *mm)
997 #ifdef CONFIG_IOMMU_SUPPORT
998 mm->pasid = INIT_PASID;
1002 static void mm_init_uprobes_state(struct mm_struct *mm)
1004 #ifdef CONFIG_UPROBES
1005 mm->uprobes_state.xol_area = NULL;
1009 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1010 struct user_namespace *user_ns)
1013 mm->mm_rb = RB_ROOT;
1014 mm->vmacache_seqnum = 0;
1015 atomic_set(&mm->mm_users, 1);
1016 atomic_set(&mm->mm_count, 1);
1017 seqcount_init(&mm->write_protect_seq);
1019 INIT_LIST_HEAD(&mm->mmlist);
1020 mm->core_state = NULL;
1021 mm_pgtables_bytes_init(mm);
1024 atomic_set(&mm->has_pinned, 0);
1025 atomic64_set(&mm->pinned_vm, 0);
1026 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1027 spin_lock_init(&mm->page_table_lock);
1028 spin_lock_init(&mm->arg_lock);
1029 mm_init_cpumask(mm);
1031 mm_init_owner(mm, p);
1033 RCU_INIT_POINTER(mm->exe_file, NULL);
1034 mmu_notifier_subscriptions_init(mm);
1035 init_tlb_flush_pending(mm);
1036 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1037 mm->pmd_huge_pte = NULL;
1039 mm_init_uprobes_state(mm);
1040 hugetlb_count_init(mm);
1043 mm->flags = current->mm->flags & MMF_INIT_MASK;
1044 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1046 mm->flags = default_dump_filter;
1050 if (mm_alloc_pgd(mm))
1053 if (init_new_context(p, mm))
1054 goto fail_nocontext;
1056 mm->user_ns = get_user_ns(user_ns);
1067 * Allocate and initialize an mm_struct.
1069 struct mm_struct *mm_alloc(void)
1071 struct mm_struct *mm;
1077 memset(mm, 0, sizeof(*mm));
1078 return mm_init(mm, current, current_user_ns());
1081 static inline void __mmput(struct mm_struct *mm)
1083 VM_BUG_ON(atomic_read(&mm->mm_users));
1085 uprobe_clear_state(mm);
1088 khugepaged_exit(mm); /* must run before exit_mmap */
1090 mm_put_huge_zero_page(mm);
1091 set_mm_exe_file(mm, NULL);
1092 if (!list_empty(&mm->mmlist)) {
1093 spin_lock(&mmlist_lock);
1094 list_del(&mm->mmlist);
1095 spin_unlock(&mmlist_lock);
1098 module_put(mm->binfmt->module);
1103 * Decrement the use count and release all resources for an mm.
1105 void mmput(struct mm_struct *mm)
1109 if (atomic_dec_and_test(&mm->mm_users))
1112 EXPORT_SYMBOL_GPL(mmput);
1115 static void mmput_async_fn(struct work_struct *work)
1117 struct mm_struct *mm = container_of(work, struct mm_struct,
1123 void mmput_async(struct mm_struct *mm)
1125 if (atomic_dec_and_test(&mm->mm_users)) {
1126 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1127 schedule_work(&mm->async_put_work);
1133 * set_mm_exe_file - change a reference to the mm's executable file
1135 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1137 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1138 * invocations: in mmput() nobody alive left, in execve task is single
1139 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1140 * mm->exe_file, but does so without using set_mm_exe_file() in order
1141 * to do avoid the need for any locks.
1143 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1145 struct file *old_exe_file;
1148 * It is safe to dereference the exe_file without RCU as
1149 * this function is only called if nobody else can access
1150 * this mm -- see comment above for justification.
1152 old_exe_file = rcu_dereference_raw(mm->exe_file);
1155 get_file(new_exe_file);
1156 rcu_assign_pointer(mm->exe_file, new_exe_file);
1162 * get_mm_exe_file - acquire a reference to the mm's executable file
1164 * Returns %NULL if mm has no associated executable file.
1165 * User must release file via fput().
1167 struct file *get_mm_exe_file(struct mm_struct *mm)
1169 struct file *exe_file;
1172 exe_file = rcu_dereference(mm->exe_file);
1173 if (exe_file && !get_file_rcu(exe_file))
1178 EXPORT_SYMBOL(get_mm_exe_file);
1181 * get_task_exe_file - acquire a reference to the task's executable file
1183 * Returns %NULL if task's mm (if any) has no associated executable file or
1184 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1185 * User must release file via fput().
1187 struct file *get_task_exe_file(struct task_struct *task)
1189 struct file *exe_file = NULL;
1190 struct mm_struct *mm;
1195 if (!(task->flags & PF_KTHREAD))
1196 exe_file = get_mm_exe_file(mm);
1201 EXPORT_SYMBOL(get_task_exe_file);
1204 * get_task_mm - acquire a reference to the task's mm
1206 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1207 * this kernel workthread has transiently adopted a user mm with use_mm,
1208 * to do its AIO) is not set and if so returns a reference to it, after
1209 * bumping up the use count. User must release the mm via mmput()
1210 * after use. Typically used by /proc and ptrace.
1212 struct mm_struct *get_task_mm(struct task_struct *task)
1214 struct mm_struct *mm;
1219 if (task->flags & PF_KTHREAD)
1227 EXPORT_SYMBOL_GPL(get_task_mm);
1229 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1231 struct mm_struct *mm;
1234 err = down_read_killable(&task->signal->exec_update_lock);
1236 return ERR_PTR(err);
1238 mm = get_task_mm(task);
1239 if (mm && mm != current->mm &&
1240 !ptrace_may_access(task, mode)) {
1242 mm = ERR_PTR(-EACCES);
1244 up_read(&task->signal->exec_update_lock);
1249 static void complete_vfork_done(struct task_struct *tsk)
1251 struct completion *vfork;
1254 vfork = tsk->vfork_done;
1255 if (likely(vfork)) {
1256 tsk->vfork_done = NULL;
1262 static int wait_for_vfork_done(struct task_struct *child,
1263 struct completion *vfork)
1267 freezer_do_not_count();
1268 cgroup_enter_frozen();
1269 killed = wait_for_completion_killable(vfork);
1270 cgroup_leave_frozen(false);
1275 child->vfork_done = NULL;
1279 put_task_struct(child);
1283 /* Please note the differences between mmput and mm_release.
1284 * mmput is called whenever we stop holding onto a mm_struct,
1285 * error success whatever.
1287 * mm_release is called after a mm_struct has been removed
1288 * from the current process.
1290 * This difference is important for error handling, when we
1291 * only half set up a mm_struct for a new process and need to restore
1292 * the old one. Because we mmput the new mm_struct before
1293 * restoring the old one. . .
1294 * Eric Biederman 10 January 1998
1296 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1298 uprobe_free_utask(tsk);
1300 /* Get rid of any cached register state */
1301 deactivate_mm(tsk, mm);
1304 * Signal userspace if we're not exiting with a core dump
1305 * because we want to leave the value intact for debugging
1308 if (tsk->clear_child_tid) {
1309 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1310 atomic_read(&mm->mm_users) > 1) {
1312 * We don't check the error code - if userspace has
1313 * not set up a proper pointer then tough luck.
1315 put_user(0, tsk->clear_child_tid);
1316 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1317 1, NULL, NULL, 0, 0);
1319 tsk->clear_child_tid = NULL;
1323 * All done, finally we can wake up parent and return this mm to him.
1324 * Also kthread_stop() uses this completion for synchronization.
1326 if (tsk->vfork_done)
1327 complete_vfork_done(tsk);
1330 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1332 futex_exit_release(tsk);
1333 mm_release(tsk, mm);
1336 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1338 futex_exec_release(tsk);
1339 mm_release(tsk, mm);
1343 * dup_mm() - duplicates an existing mm structure
1344 * @tsk: the task_struct with which the new mm will be associated.
1345 * @oldmm: the mm to duplicate.
1347 * Allocates a new mm structure and duplicates the provided @oldmm structure
1350 * Return: the duplicated mm or NULL on failure.
1352 static struct mm_struct *dup_mm(struct task_struct *tsk,
1353 struct mm_struct *oldmm)
1355 struct mm_struct *mm;
1362 memcpy(mm, oldmm, sizeof(*mm));
1364 if (!mm_init(mm, tsk, mm->user_ns))
1367 err = dup_mmap(mm, oldmm);
1371 mm->hiwater_rss = get_mm_rss(mm);
1372 mm->hiwater_vm = mm->total_vm;
1374 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1380 /* don't put binfmt in mmput, we haven't got module yet */
1382 mm_init_owner(mm, NULL);
1389 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1391 struct mm_struct *mm, *oldmm;
1394 tsk->min_flt = tsk->maj_flt = 0;
1395 tsk->nvcsw = tsk->nivcsw = 0;
1396 #ifdef CONFIG_DETECT_HUNG_TASK
1397 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1398 tsk->last_switch_time = 0;
1402 tsk->active_mm = NULL;
1405 * Are we cloning a kernel thread?
1407 * We need to steal a active VM for that..
1409 oldmm = current->mm;
1413 /* initialize the new vmacache entries */
1414 vmacache_flush(tsk);
1416 if (clone_flags & CLONE_VM) {
1423 mm = dup_mm(tsk, current->mm);
1429 tsk->active_mm = mm;
1436 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1438 struct fs_struct *fs = current->fs;
1439 if (clone_flags & CLONE_FS) {
1440 /* tsk->fs is already what we want */
1441 spin_lock(&fs->lock);
1443 spin_unlock(&fs->lock);
1447 spin_unlock(&fs->lock);
1450 tsk->fs = copy_fs_struct(fs);
1456 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1458 struct files_struct *oldf, *newf;
1462 * A background process may not have any files ...
1464 oldf = current->files;
1468 if (clone_flags & CLONE_FILES) {
1469 atomic_inc(&oldf->count);
1473 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1483 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1486 struct io_context *ioc = current->io_context;
1487 struct io_context *new_ioc;
1492 * Share io context with parent, if CLONE_IO is set
1494 if (clone_flags & CLONE_IO) {
1496 tsk->io_context = ioc;
1497 } else if (ioprio_valid(ioc->ioprio)) {
1498 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1499 if (unlikely(!new_ioc))
1502 new_ioc->ioprio = ioc->ioprio;
1503 put_io_context(new_ioc);
1509 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1511 struct sighand_struct *sig;
1513 if (clone_flags & CLONE_SIGHAND) {
1514 refcount_inc(¤t->sighand->count);
1517 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1518 RCU_INIT_POINTER(tsk->sighand, sig);
1522 refcount_set(&sig->count, 1);
1523 spin_lock_irq(¤t->sighand->siglock);
1524 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1525 spin_unlock_irq(¤t->sighand->siglock);
1527 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1528 if (clone_flags & CLONE_CLEAR_SIGHAND)
1529 flush_signal_handlers(tsk, 0);
1534 void __cleanup_sighand(struct sighand_struct *sighand)
1536 if (refcount_dec_and_test(&sighand->count)) {
1537 signalfd_cleanup(sighand);
1539 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1540 * without an RCU grace period, see __lock_task_sighand().
1542 kmem_cache_free(sighand_cachep, sighand);
1547 * Initialize POSIX timer handling for a thread group.
1549 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1551 struct posix_cputimers *pct = &sig->posix_cputimers;
1552 unsigned long cpu_limit;
1554 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1555 posix_cputimers_group_init(pct, cpu_limit);
1558 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1560 struct signal_struct *sig;
1562 if (clone_flags & CLONE_THREAD)
1565 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1570 sig->nr_threads = 1;
1571 atomic_set(&sig->live, 1);
1572 refcount_set(&sig->sigcnt, 1);
1574 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1575 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1576 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1578 init_waitqueue_head(&sig->wait_chldexit);
1579 sig->curr_target = tsk;
1580 init_sigpending(&sig->shared_pending);
1581 INIT_HLIST_HEAD(&sig->multiprocess);
1582 seqlock_init(&sig->stats_lock);
1583 prev_cputime_init(&sig->prev_cputime);
1585 #ifdef CONFIG_POSIX_TIMERS
1586 INIT_LIST_HEAD(&sig->posix_timers);
1587 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1588 sig->real_timer.function = it_real_fn;
1591 task_lock(current->group_leader);
1592 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1593 task_unlock(current->group_leader);
1595 posix_cpu_timers_init_group(sig);
1597 tty_audit_fork(sig);
1598 sched_autogroup_fork(sig);
1600 sig->oom_score_adj = current->signal->oom_score_adj;
1601 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1603 mutex_init(&sig->cred_guard_mutex);
1604 init_rwsem(&sig->exec_update_lock);
1609 static void copy_seccomp(struct task_struct *p)
1611 #ifdef CONFIG_SECCOMP
1613 * Must be called with sighand->lock held, which is common to
1614 * all threads in the group. Holding cred_guard_mutex is not
1615 * needed because this new task is not yet running and cannot
1618 assert_spin_locked(¤t->sighand->siglock);
1620 /* Ref-count the new filter user, and assign it. */
1621 get_seccomp_filter(current);
1622 p->seccomp = current->seccomp;
1625 * Explicitly enable no_new_privs here in case it got set
1626 * between the task_struct being duplicated and holding the
1627 * sighand lock. The seccomp state and nnp must be in sync.
1629 if (task_no_new_privs(current))
1630 task_set_no_new_privs(p);
1633 * If the parent gained a seccomp mode after copying thread
1634 * flags and between before we held the sighand lock, we have
1635 * to manually enable the seccomp thread flag here.
1637 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1638 set_tsk_thread_flag(p, TIF_SECCOMP);
1642 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1644 current->clear_child_tid = tidptr;
1646 return task_pid_vnr(current);
1649 static void rt_mutex_init_task(struct task_struct *p)
1651 raw_spin_lock_init(&p->pi_lock);
1652 #ifdef CONFIG_RT_MUTEXES
1653 p->pi_waiters = RB_ROOT_CACHED;
1654 p->pi_top_task = NULL;
1655 p->pi_blocked_on = NULL;
1659 static inline void init_task_pid_links(struct task_struct *task)
1663 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1664 INIT_HLIST_NODE(&task->pid_links[type]);
1669 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1671 if (type == PIDTYPE_PID)
1672 task->thread_pid = pid;
1674 task->signal->pids[type] = pid;
1677 static inline void rcu_copy_process(struct task_struct *p)
1679 #ifdef CONFIG_PREEMPT_RCU
1680 p->rcu_read_lock_nesting = 0;
1681 p->rcu_read_unlock_special.s = 0;
1682 p->rcu_blocked_node = NULL;
1683 INIT_LIST_HEAD(&p->rcu_node_entry);
1684 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1685 #ifdef CONFIG_TASKS_RCU
1686 p->rcu_tasks_holdout = false;
1687 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1688 p->rcu_tasks_idle_cpu = -1;
1689 #endif /* #ifdef CONFIG_TASKS_RCU */
1690 #ifdef CONFIG_TASKS_TRACE_RCU
1691 p->trc_reader_nesting = 0;
1692 p->trc_reader_special.s = 0;
1693 INIT_LIST_HEAD(&p->trc_holdout_list);
1694 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1697 struct pid *pidfd_pid(const struct file *file)
1699 if (file->f_op == &pidfd_fops)
1700 return file->private_data;
1702 return ERR_PTR(-EBADF);
1705 static int pidfd_release(struct inode *inode, struct file *file)
1707 struct pid *pid = file->private_data;
1709 file->private_data = NULL;
1714 #ifdef CONFIG_PROC_FS
1716 * pidfd_show_fdinfo - print information about a pidfd
1717 * @m: proc fdinfo file
1718 * @f: file referencing a pidfd
1721 * This function will print the pid that a given pidfd refers to in the
1722 * pid namespace of the procfs instance.
1723 * If the pid namespace of the process is not a descendant of the pid
1724 * namespace of the procfs instance 0 will be shown as its pid. This is
1725 * similar to calling getppid() on a process whose parent is outside of
1726 * its pid namespace.
1729 * If pid namespaces are supported then this function will also print
1730 * the pid of a given pidfd refers to for all descendant pid namespaces
1731 * starting from the current pid namespace of the instance, i.e. the
1732 * Pid field and the first entry in the NSpid field will be identical.
1733 * If the pid namespace of the process is not a descendant of the pid
1734 * namespace of the procfs instance 0 will be shown as its first NSpid
1735 * entry and no others will be shown.
1736 * Note that this differs from the Pid and NSpid fields in
1737 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1738 * the pid namespace of the procfs instance. The difference becomes
1739 * obvious when sending around a pidfd between pid namespaces from a
1740 * different branch of the tree, i.e. where no ancestoral relation is
1741 * present between the pid namespaces:
1742 * - create two new pid namespaces ns1 and ns2 in the initial pid
1743 * namespace (also take care to create new mount namespaces in the
1744 * new pid namespace and mount procfs)
1745 * - create a process with a pidfd in ns1
1746 * - send pidfd from ns1 to ns2
1747 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1748 * have exactly one entry, which is 0
1750 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1752 struct pid *pid = f->private_data;
1753 struct pid_namespace *ns;
1756 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1757 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1758 nr = pid_nr_ns(pid, ns);
1761 seq_put_decimal_ll(m, "Pid:\t", nr);
1763 #ifdef CONFIG_PID_NS
1764 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1768 /* If nr is non-zero it means that 'pid' is valid and that
1769 * ns, i.e. the pid namespace associated with the procfs
1770 * instance, is in the pid namespace hierarchy of pid.
1771 * Start at one below the already printed level.
1773 for (i = ns->level + 1; i <= pid->level; i++)
1774 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1782 * Poll support for process exit notification.
1784 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1786 struct pid *pid = file->private_data;
1787 __poll_t poll_flags = 0;
1789 poll_wait(file, &pid->wait_pidfd, pts);
1792 * Inform pollers only when the whole thread group exits.
1793 * If the thread group leader exits before all other threads in the
1794 * group, then poll(2) should block, similar to the wait(2) family.
1796 if (thread_group_exited(pid))
1797 poll_flags = EPOLLIN | EPOLLRDNORM;
1802 const struct file_operations pidfd_fops = {
1803 .release = pidfd_release,
1805 #ifdef CONFIG_PROC_FS
1806 .show_fdinfo = pidfd_show_fdinfo,
1810 static void __delayed_free_task(struct rcu_head *rhp)
1812 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1817 static __always_inline void delayed_free_task(struct task_struct *tsk)
1819 if (IS_ENABLED(CONFIG_MEMCG))
1820 call_rcu(&tsk->rcu, __delayed_free_task);
1825 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1827 /* Skip if kernel thread */
1831 /* Skip if spawning a thread or using vfork */
1832 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1835 /* We need to synchronize with __set_oom_adj */
1836 mutex_lock(&oom_adj_mutex);
1837 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1838 /* Update the values in case they were changed after copy_signal */
1839 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1840 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1841 mutex_unlock(&oom_adj_mutex);
1845 * This creates a new process as a copy of the old one,
1846 * but does not actually start it yet.
1848 * It copies the registers, and all the appropriate
1849 * parts of the process environment (as per the clone
1850 * flags). The actual kick-off is left to the caller.
1852 static __latent_entropy struct task_struct *copy_process(
1856 struct kernel_clone_args *args)
1858 int pidfd = -1, retval;
1859 struct task_struct *p;
1860 struct multiprocess_signals delayed;
1861 struct file *pidfile = NULL;
1862 u64 clone_flags = args->flags;
1863 struct nsproxy *nsp = current->nsproxy;
1866 * Don't allow sharing the root directory with processes in a different
1869 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1870 return ERR_PTR(-EINVAL);
1872 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1873 return ERR_PTR(-EINVAL);
1876 * Thread groups must share signals as well, and detached threads
1877 * can only be started up within the thread group.
1879 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1880 return ERR_PTR(-EINVAL);
1883 * Shared signal handlers imply shared VM. By way of the above,
1884 * thread groups also imply shared VM. Blocking this case allows
1885 * for various simplifications in other code.
1887 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1888 return ERR_PTR(-EINVAL);
1891 * Siblings of global init remain as zombies on exit since they are
1892 * not reaped by their parent (swapper). To solve this and to avoid
1893 * multi-rooted process trees, prevent global and container-inits
1894 * from creating siblings.
1896 if ((clone_flags & CLONE_PARENT) &&
1897 current->signal->flags & SIGNAL_UNKILLABLE)
1898 return ERR_PTR(-EINVAL);
1901 * If the new process will be in a different pid or user namespace
1902 * do not allow it to share a thread group with the forking task.
1904 if (clone_flags & CLONE_THREAD) {
1905 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1906 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1907 return ERR_PTR(-EINVAL);
1911 * If the new process will be in a different time namespace
1912 * do not allow it to share VM or a thread group with the forking task.
1914 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1915 if (nsp->time_ns != nsp->time_ns_for_children)
1916 return ERR_PTR(-EINVAL);
1919 if (clone_flags & CLONE_PIDFD) {
1921 * - CLONE_DETACHED is blocked so that we can potentially
1922 * reuse it later for CLONE_PIDFD.
1923 * - CLONE_THREAD is blocked until someone really needs it.
1925 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1926 return ERR_PTR(-EINVAL);
1930 * Force any signals received before this point to be delivered
1931 * before the fork happens. Collect up signals sent to multiple
1932 * processes that happen during the fork and delay them so that
1933 * they appear to happen after the fork.
1935 sigemptyset(&delayed.signal);
1936 INIT_HLIST_NODE(&delayed.node);
1938 spin_lock_irq(¤t->sighand->siglock);
1939 if (!(clone_flags & CLONE_THREAD))
1940 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1941 recalc_sigpending();
1942 spin_unlock_irq(¤t->sighand->siglock);
1943 retval = -ERESTARTNOINTR;
1944 if (signal_pending(current))
1948 p = dup_task_struct(current, node);
1953 * This _must_ happen before we call free_task(), i.e. before we jump
1954 * to any of the bad_fork_* labels. This is to avoid freeing
1955 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1956 * kernel threads (PF_KTHREAD).
1958 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1960 * Clear TID on mm_release()?
1962 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1964 ftrace_graph_init_task(p);
1966 rt_mutex_init_task(p);
1968 lockdep_assert_irqs_enabled();
1969 #ifdef CONFIG_PROVE_LOCKING
1970 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1973 if (atomic_read(&p->real_cred->user->processes) >=
1974 task_rlimit(p, RLIMIT_NPROC)) {
1975 if (p->real_cred->user != INIT_USER &&
1976 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1979 current->flags &= ~PF_NPROC_EXCEEDED;
1981 retval = copy_creds(p, clone_flags);
1986 * If multiple threads are within copy_process(), then this check
1987 * triggers too late. This doesn't hurt, the check is only there
1988 * to stop root fork bombs.
1991 if (data_race(nr_threads >= max_threads))
1992 goto bad_fork_cleanup_count;
1994 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1995 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1996 p->flags |= PF_FORKNOEXEC;
1997 INIT_LIST_HEAD(&p->children);
1998 INIT_LIST_HEAD(&p->sibling);
1999 rcu_copy_process(p);
2000 p->vfork_done = NULL;
2001 spin_lock_init(&p->alloc_lock);
2003 init_sigpending(&p->pending);
2005 p->utime = p->stime = p->gtime = 0;
2006 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2007 p->utimescaled = p->stimescaled = 0;
2009 prev_cputime_init(&p->prev_cputime);
2011 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2012 seqcount_init(&p->vtime.seqcount);
2013 p->vtime.starttime = 0;
2014 p->vtime.state = VTIME_INACTIVE;
2017 #ifdef CONFIG_IO_URING
2021 #if defined(SPLIT_RSS_COUNTING)
2022 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2025 p->default_timer_slack_ns = current->timer_slack_ns;
2031 task_io_accounting_init(&p->ioac);
2032 acct_clear_integrals(p);
2034 posix_cputimers_init(&p->posix_cputimers);
2036 p->io_context = NULL;
2037 audit_set_context(p, NULL);
2040 p->mempolicy = mpol_dup(p->mempolicy);
2041 if (IS_ERR(p->mempolicy)) {
2042 retval = PTR_ERR(p->mempolicy);
2043 p->mempolicy = NULL;
2044 goto bad_fork_cleanup_threadgroup_lock;
2047 #ifdef CONFIG_CPUSETS
2048 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2049 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2050 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2052 #ifdef CONFIG_TRACE_IRQFLAGS
2053 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2054 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2055 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2056 p->softirqs_enabled = 1;
2057 p->softirq_context = 0;
2060 p->pagefault_disabled = 0;
2062 #ifdef CONFIG_LOCKDEP
2063 lockdep_init_task(p);
2066 #ifdef CONFIG_DEBUG_MUTEXES
2067 p->blocked_on = NULL; /* not blocked yet */
2069 #ifdef CONFIG_BCACHE
2070 p->sequential_io = 0;
2071 p->sequential_io_avg = 0;
2074 /* Perform scheduler related setup. Assign this task to a CPU. */
2075 retval = sched_fork(clone_flags, p);
2077 goto bad_fork_cleanup_policy;
2079 retval = perf_event_init_task(p);
2081 goto bad_fork_cleanup_policy;
2082 retval = audit_alloc(p);
2084 goto bad_fork_cleanup_perf;
2085 /* copy all the process information */
2087 retval = security_task_alloc(p, clone_flags);
2089 goto bad_fork_cleanup_audit;
2090 retval = copy_semundo(clone_flags, p);
2092 goto bad_fork_cleanup_security;
2093 retval = copy_files(clone_flags, p);
2095 goto bad_fork_cleanup_semundo;
2096 retval = copy_fs(clone_flags, p);
2098 goto bad_fork_cleanup_files;
2099 retval = copy_sighand(clone_flags, p);
2101 goto bad_fork_cleanup_fs;
2102 retval = copy_signal(clone_flags, p);
2104 goto bad_fork_cleanup_sighand;
2105 retval = copy_mm(clone_flags, p);
2107 goto bad_fork_cleanup_signal;
2108 retval = copy_namespaces(clone_flags, p);
2110 goto bad_fork_cleanup_mm;
2111 retval = copy_io(clone_flags, p);
2113 goto bad_fork_cleanup_namespaces;
2114 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2116 goto bad_fork_cleanup_io;
2118 stackleak_task_init(p);
2120 if (pid != &init_struct_pid) {
2121 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2122 args->set_tid_size);
2124 retval = PTR_ERR(pid);
2125 goto bad_fork_cleanup_thread;
2130 * This has to happen after we've potentially unshared the file
2131 * descriptor table (so that the pidfd doesn't leak into the child
2132 * if the fd table isn't shared).
2134 if (clone_flags & CLONE_PIDFD) {
2135 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2137 goto bad_fork_free_pid;
2141 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2142 O_RDWR | O_CLOEXEC);
2143 if (IS_ERR(pidfile)) {
2144 put_unused_fd(pidfd);
2145 retval = PTR_ERR(pidfile);
2146 goto bad_fork_free_pid;
2148 get_pid(pid); /* held by pidfile now */
2150 retval = put_user(pidfd, args->pidfd);
2152 goto bad_fork_put_pidfd;
2161 * sigaltstack should be cleared when sharing the same VM
2163 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2167 * Syscall tracing and stepping should be turned off in the
2168 * child regardless of CLONE_PTRACE.
2170 user_disable_single_step(p);
2171 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2172 #ifdef TIF_SYSCALL_EMU
2173 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2175 clear_tsk_latency_tracing(p);
2177 /* ok, now we should be set up.. */
2178 p->pid = pid_nr(pid);
2179 if (clone_flags & CLONE_THREAD) {
2180 p->group_leader = current->group_leader;
2181 p->tgid = current->tgid;
2183 p->group_leader = p;
2188 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2189 p->dirty_paused_when = 0;
2191 p->pdeath_signal = 0;
2192 INIT_LIST_HEAD(&p->thread_group);
2193 p->task_works = NULL;
2194 clear_posix_cputimers_work(p);
2197 * Ensure that the cgroup subsystem policies allow the new process to be
2198 * forked. It should be noted that the new process's css_set can be changed
2199 * between here and cgroup_post_fork() if an organisation operation is in
2202 retval = cgroup_can_fork(p, args);
2204 goto bad_fork_put_pidfd;
2207 * From this point on we must avoid any synchronous user-space
2208 * communication until we take the tasklist-lock. In particular, we do
2209 * not want user-space to be able to predict the process start-time by
2210 * stalling fork(2) after we recorded the start_time but before it is
2211 * visible to the system.
2214 p->start_time = ktime_get_ns();
2215 p->start_boottime = ktime_get_boottime_ns();
2218 * Make it visible to the rest of the system, but dont wake it up yet.
2219 * Need tasklist lock for parent etc handling!
2221 write_lock_irq(&tasklist_lock);
2223 /* CLONE_PARENT re-uses the old parent */
2224 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2225 p->real_parent = current->real_parent;
2226 p->parent_exec_id = current->parent_exec_id;
2227 if (clone_flags & CLONE_THREAD)
2228 p->exit_signal = -1;
2230 p->exit_signal = current->group_leader->exit_signal;
2232 p->real_parent = current;
2233 p->parent_exec_id = current->self_exec_id;
2234 p->exit_signal = args->exit_signal;
2237 klp_copy_process(p);
2239 spin_lock(¤t->sighand->siglock);
2242 * Copy seccomp details explicitly here, in case they were changed
2243 * before holding sighand lock.
2247 rseq_fork(p, clone_flags);
2249 /* Don't start children in a dying pid namespace */
2250 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2252 goto bad_fork_cancel_cgroup;
2255 /* Let kill terminate clone/fork in the middle */
2256 if (fatal_signal_pending(current)) {
2258 goto bad_fork_cancel_cgroup;
2261 /* past the last point of failure */
2263 fd_install(pidfd, pidfile);
2265 init_task_pid_links(p);
2266 if (likely(p->pid)) {
2267 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2269 init_task_pid(p, PIDTYPE_PID, pid);
2270 if (thread_group_leader(p)) {
2271 init_task_pid(p, PIDTYPE_TGID, pid);
2272 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2273 init_task_pid(p, PIDTYPE_SID, task_session(current));
2275 if (is_child_reaper(pid)) {
2276 ns_of_pid(pid)->child_reaper = p;
2277 p->signal->flags |= SIGNAL_UNKILLABLE;
2279 p->signal->shared_pending.signal = delayed.signal;
2280 p->signal->tty = tty_kref_get(current->signal->tty);
2282 * Inherit has_child_subreaper flag under the same
2283 * tasklist_lock with adding child to the process tree
2284 * for propagate_has_child_subreaper optimization.
2286 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2287 p->real_parent->signal->is_child_subreaper;
2288 list_add_tail(&p->sibling, &p->real_parent->children);
2289 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2290 attach_pid(p, PIDTYPE_TGID);
2291 attach_pid(p, PIDTYPE_PGID);
2292 attach_pid(p, PIDTYPE_SID);
2293 __this_cpu_inc(process_counts);
2295 current->signal->nr_threads++;
2296 atomic_inc(¤t->signal->live);
2297 refcount_inc(¤t->signal->sigcnt);
2298 task_join_group_stop(p);
2299 list_add_tail_rcu(&p->thread_group,
2300 &p->group_leader->thread_group);
2301 list_add_tail_rcu(&p->thread_node,
2302 &p->signal->thread_head);
2304 attach_pid(p, PIDTYPE_PID);
2308 hlist_del_init(&delayed.node);
2309 spin_unlock(¤t->sighand->siglock);
2310 syscall_tracepoint_update(p);
2311 write_unlock_irq(&tasklist_lock);
2313 proc_fork_connector(p);
2314 sched_post_fork(p, args);
2315 cgroup_post_fork(p, args);
2318 trace_task_newtask(p, clone_flags);
2319 uprobe_copy_process(p, clone_flags);
2321 copy_oom_score_adj(clone_flags, p);
2325 bad_fork_cancel_cgroup:
2326 spin_unlock(¤t->sighand->siglock);
2327 write_unlock_irq(&tasklist_lock);
2328 cgroup_cancel_fork(p, args);
2330 if (clone_flags & CLONE_PIDFD) {
2332 put_unused_fd(pidfd);
2335 if (pid != &init_struct_pid)
2337 bad_fork_cleanup_thread:
2339 bad_fork_cleanup_io:
2342 bad_fork_cleanup_namespaces:
2343 exit_task_namespaces(p);
2344 bad_fork_cleanup_mm:
2346 mm_clear_owner(p->mm, p);
2349 bad_fork_cleanup_signal:
2350 if (!(clone_flags & CLONE_THREAD))
2351 free_signal_struct(p->signal);
2352 bad_fork_cleanup_sighand:
2353 __cleanup_sighand(p->sighand);
2354 bad_fork_cleanup_fs:
2355 exit_fs(p); /* blocking */
2356 bad_fork_cleanup_files:
2357 exit_files(p); /* blocking */
2358 bad_fork_cleanup_semundo:
2360 bad_fork_cleanup_security:
2361 security_task_free(p);
2362 bad_fork_cleanup_audit:
2364 bad_fork_cleanup_perf:
2365 perf_event_free_task(p);
2366 bad_fork_cleanup_policy:
2367 lockdep_free_task(p);
2369 mpol_put(p->mempolicy);
2370 bad_fork_cleanup_threadgroup_lock:
2372 delayacct_tsk_free(p);
2373 bad_fork_cleanup_count:
2374 atomic_dec(&p->cred->user->processes);
2377 p->state = TASK_DEAD;
2379 delayed_free_task(p);
2381 spin_lock_irq(¤t->sighand->siglock);
2382 hlist_del_init(&delayed.node);
2383 spin_unlock_irq(¤t->sighand->siglock);
2384 return ERR_PTR(retval);
2387 static inline void init_idle_pids(struct task_struct *idle)
2391 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2392 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2393 init_task_pid(idle, type, &init_struct_pid);
2397 struct task_struct * __init fork_idle(int cpu)
2399 struct task_struct *task;
2400 struct kernel_clone_args args = {
2404 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2405 if (!IS_ERR(task)) {
2406 init_idle_pids(task);
2407 init_idle(task, cpu);
2413 struct mm_struct *copy_init_mm(void)
2415 return dup_mm(NULL, &init_mm);
2419 * Ok, this is the main fork-routine.
2421 * It copies the process, and if successful kick-starts
2422 * it and waits for it to finish using the VM if required.
2424 * args->exit_signal is expected to be checked for sanity by the caller.
2426 pid_t kernel_clone(struct kernel_clone_args *args)
2428 u64 clone_flags = args->flags;
2429 struct completion vfork;
2431 struct task_struct *p;
2436 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2437 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2438 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2439 * field in struct clone_args and it still doesn't make sense to have
2440 * them both point at the same memory location. Performing this check
2441 * here has the advantage that we don't need to have a separate helper
2442 * to check for legacy clone().
2444 if ((args->flags & CLONE_PIDFD) &&
2445 (args->flags & CLONE_PARENT_SETTID) &&
2446 (args->pidfd == args->parent_tid))
2450 * Determine whether and which event to report to ptracer. When
2451 * called from kernel_thread or CLONE_UNTRACED is explicitly
2452 * requested, no event is reported; otherwise, report if the event
2453 * for the type of forking is enabled.
2455 if (!(clone_flags & CLONE_UNTRACED)) {
2456 if (clone_flags & CLONE_VFORK)
2457 trace = PTRACE_EVENT_VFORK;
2458 else if (args->exit_signal != SIGCHLD)
2459 trace = PTRACE_EVENT_CLONE;
2461 trace = PTRACE_EVENT_FORK;
2463 if (likely(!ptrace_event_enabled(current, trace)))
2467 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2468 add_latent_entropy();
2474 * Do this prior waking up the new thread - the thread pointer
2475 * might get invalid after that point, if the thread exits quickly.
2477 trace_sched_process_fork(current, p);
2479 pid = get_task_pid(p, PIDTYPE_PID);
2482 if (clone_flags & CLONE_PARENT_SETTID)
2483 put_user(nr, args->parent_tid);
2485 if (clone_flags & CLONE_VFORK) {
2486 p->vfork_done = &vfork;
2487 init_completion(&vfork);
2491 wake_up_new_task(p);
2493 /* forking complete and child started to run, tell ptracer */
2494 if (unlikely(trace))
2495 ptrace_event_pid(trace, pid);
2497 if (clone_flags & CLONE_VFORK) {
2498 if (!wait_for_vfork_done(p, &vfork))
2499 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2507 * Create a kernel thread.
2509 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2511 struct kernel_clone_args args = {
2512 .flags = ((lower_32_bits(flags) | CLONE_VM |
2513 CLONE_UNTRACED) & ~CSIGNAL),
2514 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2515 .stack = (unsigned long)fn,
2516 .stack_size = (unsigned long)arg,
2519 return kernel_clone(&args);
2522 #ifdef __ARCH_WANT_SYS_FORK
2523 SYSCALL_DEFINE0(fork)
2526 struct kernel_clone_args args = {
2527 .exit_signal = SIGCHLD,
2530 return kernel_clone(&args);
2532 /* can not support in nommu mode */
2538 #ifdef __ARCH_WANT_SYS_VFORK
2539 SYSCALL_DEFINE0(vfork)
2541 struct kernel_clone_args args = {
2542 .flags = CLONE_VFORK | CLONE_VM,
2543 .exit_signal = SIGCHLD,
2546 return kernel_clone(&args);
2550 #ifdef __ARCH_WANT_SYS_CLONE
2551 #ifdef CONFIG_CLONE_BACKWARDS
2552 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2553 int __user *, parent_tidptr,
2555 int __user *, child_tidptr)
2556 #elif defined(CONFIG_CLONE_BACKWARDS2)
2557 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2558 int __user *, parent_tidptr,
2559 int __user *, child_tidptr,
2561 #elif defined(CONFIG_CLONE_BACKWARDS3)
2562 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2564 int __user *, parent_tidptr,
2565 int __user *, child_tidptr,
2568 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2569 int __user *, parent_tidptr,
2570 int __user *, child_tidptr,
2574 struct kernel_clone_args args = {
2575 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2576 .pidfd = parent_tidptr,
2577 .child_tid = child_tidptr,
2578 .parent_tid = parent_tidptr,
2579 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2584 return kernel_clone(&args);
2588 #ifdef __ARCH_WANT_SYS_CLONE3
2590 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2591 struct clone_args __user *uargs,
2595 struct clone_args args;
2596 pid_t *kset_tid = kargs->set_tid;
2598 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2599 CLONE_ARGS_SIZE_VER0);
2600 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2601 CLONE_ARGS_SIZE_VER1);
2602 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2603 CLONE_ARGS_SIZE_VER2);
2604 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2606 if (unlikely(usize > PAGE_SIZE))
2608 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2611 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2615 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2618 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2621 if (unlikely(args.set_tid && args.set_tid_size == 0))
2625 * Verify that higher 32bits of exit_signal are unset and that
2626 * it is a valid signal
2628 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2629 !valid_signal(args.exit_signal)))
2632 if ((args.flags & CLONE_INTO_CGROUP) &&
2633 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2636 *kargs = (struct kernel_clone_args){
2637 .flags = args.flags,
2638 .pidfd = u64_to_user_ptr(args.pidfd),
2639 .child_tid = u64_to_user_ptr(args.child_tid),
2640 .parent_tid = u64_to_user_ptr(args.parent_tid),
2641 .exit_signal = args.exit_signal,
2642 .stack = args.stack,
2643 .stack_size = args.stack_size,
2645 .set_tid_size = args.set_tid_size,
2646 .cgroup = args.cgroup,
2650 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2651 (kargs->set_tid_size * sizeof(pid_t))))
2654 kargs->set_tid = kset_tid;
2660 * clone3_stack_valid - check and prepare stack
2661 * @kargs: kernel clone args
2663 * Verify that the stack arguments userspace gave us are sane.
2664 * In addition, set the stack direction for userspace since it's easy for us to
2667 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2669 if (kargs->stack == 0) {
2670 if (kargs->stack_size > 0)
2673 if (kargs->stack_size == 0)
2676 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2679 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2680 kargs->stack += kargs->stack_size;
2687 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2689 /* Verify that no unknown flags are passed along. */
2691 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2695 * - make the CLONE_DETACHED bit reuseable for clone3
2696 * - make the CSIGNAL bits reuseable for clone3
2698 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2701 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2702 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2705 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2709 if (!clone3_stack_valid(kargs))
2716 * clone3 - create a new process with specific properties
2717 * @uargs: argument structure
2718 * @size: size of @uargs
2720 * clone3() is the extensible successor to clone()/clone2().
2721 * It takes a struct as argument that is versioned by its size.
2723 * Return: On success, a positive PID for the child process.
2724 * On error, a negative errno number.
2726 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2730 struct kernel_clone_args kargs;
2731 pid_t set_tid[MAX_PID_NS_LEVEL];
2733 kargs.set_tid = set_tid;
2735 err = copy_clone_args_from_user(&kargs, uargs, size);
2739 if (!clone3_args_valid(&kargs))
2742 return kernel_clone(&kargs);
2746 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2748 struct task_struct *leader, *parent, *child;
2751 read_lock(&tasklist_lock);
2752 leader = top = top->group_leader;
2754 for_each_thread(leader, parent) {
2755 list_for_each_entry(child, &parent->children, sibling) {
2756 res = visitor(child, data);
2768 if (leader != top) {
2770 parent = child->real_parent;
2771 leader = parent->group_leader;
2775 read_unlock(&tasklist_lock);
2778 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2779 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2782 static void sighand_ctor(void *data)
2784 struct sighand_struct *sighand = data;
2786 spin_lock_init(&sighand->siglock);
2787 init_waitqueue_head(&sighand->signalfd_wqh);
2790 void __init proc_caches_init(void)
2792 unsigned int mm_size;
2794 sighand_cachep = kmem_cache_create("sighand_cache",
2795 sizeof(struct sighand_struct), 0,
2796 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2797 SLAB_ACCOUNT, sighand_ctor);
2798 signal_cachep = kmem_cache_create("signal_cache",
2799 sizeof(struct signal_struct), 0,
2800 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2802 files_cachep = kmem_cache_create("files_cache",
2803 sizeof(struct files_struct), 0,
2804 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2806 fs_cachep = kmem_cache_create("fs_cache",
2807 sizeof(struct fs_struct), 0,
2808 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2812 * The mm_cpumask is located at the end of mm_struct, and is
2813 * dynamically sized based on the maximum CPU number this system
2814 * can have, taking hotplug into account (nr_cpu_ids).
2816 mm_size = sizeof(struct mm_struct) + cpumask_size();
2818 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2819 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2820 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2821 offsetof(struct mm_struct, saved_auxv),
2822 sizeof_field(struct mm_struct, saved_auxv),
2824 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2826 nsproxy_cache_init();
2830 * Check constraints on flags passed to the unshare system call.
2832 static int check_unshare_flags(unsigned long unshare_flags)
2834 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2835 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2836 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2837 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2841 * Not implemented, but pretend it works if there is nothing
2842 * to unshare. Note that unsharing the address space or the
2843 * signal handlers also need to unshare the signal queues (aka
2846 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2847 if (!thread_group_empty(current))
2850 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2851 if (refcount_read(¤t->sighand->count) > 1)
2854 if (unshare_flags & CLONE_VM) {
2855 if (!current_is_single_threaded())
2863 * Unshare the filesystem structure if it is being shared
2865 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2867 struct fs_struct *fs = current->fs;
2869 if (!(unshare_flags & CLONE_FS) || !fs)
2872 /* don't need lock here; in the worst case we'll do useless copy */
2876 *new_fsp = copy_fs_struct(fs);
2884 * Unshare file descriptor table if it is being shared
2886 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2887 struct files_struct **new_fdp)
2889 struct files_struct *fd = current->files;
2892 if ((unshare_flags & CLONE_FILES) &&
2893 (fd && atomic_read(&fd->count) > 1)) {
2894 *new_fdp = dup_fd(fd, max_fds, &error);
2903 * unshare allows a process to 'unshare' part of the process
2904 * context which was originally shared using clone. copy_*
2905 * functions used by kernel_clone() cannot be used here directly
2906 * because they modify an inactive task_struct that is being
2907 * constructed. Here we are modifying the current, active,
2910 int ksys_unshare(unsigned long unshare_flags)
2912 struct fs_struct *fs, *new_fs = NULL;
2913 struct files_struct *fd, *new_fd = NULL;
2914 struct cred *new_cred = NULL;
2915 struct nsproxy *new_nsproxy = NULL;
2920 * If unsharing a user namespace must also unshare the thread group
2921 * and unshare the filesystem root and working directories.
2923 if (unshare_flags & CLONE_NEWUSER)
2924 unshare_flags |= CLONE_THREAD | CLONE_FS;
2926 * If unsharing vm, must also unshare signal handlers.
2928 if (unshare_flags & CLONE_VM)
2929 unshare_flags |= CLONE_SIGHAND;
2931 * If unsharing a signal handlers, must also unshare the signal queues.
2933 if (unshare_flags & CLONE_SIGHAND)
2934 unshare_flags |= CLONE_THREAD;
2936 * If unsharing namespace, must also unshare filesystem information.
2938 if (unshare_flags & CLONE_NEWNS)
2939 unshare_flags |= CLONE_FS;
2941 err = check_unshare_flags(unshare_flags);
2943 goto bad_unshare_out;
2945 * CLONE_NEWIPC must also detach from the undolist: after switching
2946 * to a new ipc namespace, the semaphore arrays from the old
2947 * namespace are unreachable.
2949 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2951 err = unshare_fs(unshare_flags, &new_fs);
2953 goto bad_unshare_out;
2954 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2956 goto bad_unshare_cleanup_fs;
2957 err = unshare_userns(unshare_flags, &new_cred);
2959 goto bad_unshare_cleanup_fd;
2960 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2963 goto bad_unshare_cleanup_cred;
2965 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2968 * CLONE_SYSVSEM is equivalent to sys_exit().
2972 if (unshare_flags & CLONE_NEWIPC) {
2973 /* Orphan segments in old ns (see sem above). */
2975 shm_init_task(current);
2979 switch_task_namespaces(current, new_nsproxy);
2985 spin_lock(&fs->lock);
2986 current->fs = new_fs;
2991 spin_unlock(&fs->lock);
2995 fd = current->files;
2996 current->files = new_fd;
3000 task_unlock(current);
3003 /* Install the new user namespace */
3004 commit_creds(new_cred);
3009 perf_event_namespaces(current);
3011 bad_unshare_cleanup_cred:
3014 bad_unshare_cleanup_fd:
3016 put_files_struct(new_fd);
3018 bad_unshare_cleanup_fs:
3020 free_fs_struct(new_fs);
3026 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3028 return ksys_unshare(unshare_flags);
3032 * Helper to unshare the files of the current task.
3033 * We don't want to expose copy_files internals to
3034 * the exec layer of the kernel.
3037 int unshare_files(struct files_struct **displaced)
3039 struct task_struct *task = current;
3040 struct files_struct *copy = NULL;
3043 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3044 if (error || !copy) {
3048 *displaced = task->files;
3055 int sysctl_max_threads(struct ctl_table *table, int write,
3056 void *buffer, size_t *lenp, loff_t *ppos)
3060 int threads = max_threads;
3062 int max = MAX_THREADS;
3069 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3073 max_threads = threads;