Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
76
77 #include <trace/events/sched.h>
78
79 /*
80  * Protected counters by write_lock_irq(&tasklist_lock)
81  */
82 unsigned long total_forks;      /* Handle normal Linux uptimes. */
83 int nr_threads;                 /* The idle threads do not count.. */
84
85 int max_threads;                /* tunable limit on nr_threads */
86
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
88
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
90
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
93 {
94         return lockdep_is_held(&tasklist_lock);
95 }
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
98
99 int nr_processes(void)
100 {
101         int cpu;
102         int total = 0;
103
104         for_each_possible_cpu(cpu)
105                 total += per_cpu(process_counts, cpu);
106
107         return total;
108 }
109
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct_node(node)           \
112                 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
113 # define free_task_struct(tsk)                  \
114                 kmem_cache_free(task_struct_cachep, (tsk))
115 static struct kmem_cache *task_struct_cachep;
116 #endif
117
118 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
119 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
120                                                   int node)
121 {
122 #ifdef CONFIG_DEBUG_STACK_USAGE
123         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
124 #else
125         gfp_t mask = GFP_KERNEL;
126 #endif
127         struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
128
129         return page ? page_address(page) : NULL;
130 }
131
132 static inline void free_thread_info(struct thread_info *ti)
133 {
134         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
135 }
136 #endif
137
138 /* SLAB cache for signal_struct structures (tsk->signal) */
139 static struct kmem_cache *signal_cachep;
140
141 /* SLAB cache for sighand_struct structures (tsk->sighand) */
142 struct kmem_cache *sighand_cachep;
143
144 /* SLAB cache for files_struct structures (tsk->files) */
145 struct kmem_cache *files_cachep;
146
147 /* SLAB cache for fs_struct structures (tsk->fs) */
148 struct kmem_cache *fs_cachep;
149
150 /* SLAB cache for vm_area_struct structures */
151 struct kmem_cache *vm_area_cachep;
152
153 /* SLAB cache for mm_struct structures (tsk->mm) */
154 static struct kmem_cache *mm_cachep;
155
156 static void account_kernel_stack(struct thread_info *ti, int account)
157 {
158         struct zone *zone = page_zone(virt_to_page(ti));
159
160         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
161 }
162
163 void free_task(struct task_struct *tsk)
164 {
165         account_kernel_stack(tsk->stack, -1);
166         free_thread_info(tsk->stack);
167         rt_mutex_debug_task_free(tsk);
168         ftrace_graph_exit_task(tsk);
169         free_task_struct(tsk);
170 }
171 EXPORT_SYMBOL(free_task);
172
173 static inline void free_signal_struct(struct signal_struct *sig)
174 {
175         taskstats_tgid_free(sig);
176         sched_autogroup_exit(sig);
177         kmem_cache_free(signal_cachep, sig);
178 }
179
180 static inline void put_signal_struct(struct signal_struct *sig)
181 {
182         if (atomic_dec_and_test(&sig->sigcnt))
183                 free_signal_struct(sig);
184 }
185
186 void __put_task_struct(struct task_struct *tsk)
187 {
188         WARN_ON(!tsk->exit_state);
189         WARN_ON(atomic_read(&tsk->usage));
190         WARN_ON(tsk == current);
191
192         exit_creds(tsk);
193         delayacct_tsk_free(tsk);
194         put_signal_struct(tsk->signal);
195
196         if (!profile_handoff_task(tsk))
197                 free_task(tsk);
198 }
199 EXPORT_SYMBOL_GPL(__put_task_struct);
200
201 /*
202  * macro override instead of weak attribute alias, to workaround
203  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
204  */
205 #ifndef arch_task_cache_init
206 #define arch_task_cache_init()
207 #endif
208
209 void __init fork_init(unsigned long mempages)
210 {
211 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
212 #ifndef ARCH_MIN_TASKALIGN
213 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
214 #endif
215         /* create a slab on which task_structs can be allocated */
216         task_struct_cachep =
217                 kmem_cache_create("task_struct", sizeof(struct task_struct),
218                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
219 #endif
220
221         /* do the arch specific task caches init */
222         arch_task_cache_init();
223
224         /*
225          * The default maximum number of threads is set to a safe
226          * value: the thread structures can take up at most half
227          * of memory.
228          */
229         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
230
231         /*
232          * we need to allow at least 20 threads to boot a system
233          */
234         if (max_threads < 20)
235                 max_threads = 20;
236
237         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
238         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
239         init_task.signal->rlim[RLIMIT_SIGPENDING] =
240                 init_task.signal->rlim[RLIMIT_NPROC];
241 }
242
243 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
244                                                struct task_struct *src)
245 {
246         *dst = *src;
247         return 0;
248 }
249
250 static struct task_struct *dup_task_struct(struct task_struct *orig)
251 {
252         struct task_struct *tsk;
253         struct thread_info *ti;
254         unsigned long *stackend;
255         int node = tsk_fork_get_node(orig);
256         int err;
257
258         prepare_to_copy(orig);
259
260         tsk = alloc_task_struct_node(node);
261         if (!tsk)
262                 return NULL;
263
264         ti = alloc_thread_info_node(tsk, node);
265         if (!ti) {
266                 free_task_struct(tsk);
267                 return NULL;
268         }
269
270         err = arch_dup_task_struct(tsk, orig);
271         if (err)
272                 goto out;
273
274         tsk->stack = ti;
275
276         setup_thread_stack(tsk, orig);
277         clear_user_return_notifier(tsk);
278         clear_tsk_need_resched(tsk);
279         stackend = end_of_stack(tsk);
280         *stackend = STACK_END_MAGIC;    /* for overflow detection */
281
282 #ifdef CONFIG_CC_STACKPROTECTOR
283         tsk->stack_canary = get_random_int();
284 #endif
285
286         /*
287          * One for us, one for whoever does the "release_task()" (usually
288          * parent)
289          */
290         atomic_set(&tsk->usage, 2);
291 #ifdef CONFIG_BLK_DEV_IO_TRACE
292         tsk->btrace_seq = 0;
293 #endif
294         tsk->splice_pipe = NULL;
295
296         account_kernel_stack(ti, 1);
297
298         return tsk;
299
300 out:
301         free_thread_info(ti);
302         free_task_struct(tsk);
303         return NULL;
304 }
305
306 #ifdef CONFIG_MMU
307 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
308 {
309         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
310         struct rb_node **rb_link, *rb_parent;
311         int retval;
312         unsigned long charge;
313         struct mempolicy *pol;
314
315         down_write(&oldmm->mmap_sem);
316         flush_cache_dup_mm(oldmm);
317         /*
318          * Not linked in yet - no deadlock potential:
319          */
320         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
321
322         mm->locked_vm = 0;
323         mm->mmap = NULL;
324         mm->mmap_cache = NULL;
325         mm->free_area_cache = oldmm->mmap_base;
326         mm->cached_hole_size = ~0UL;
327         mm->map_count = 0;
328         cpumask_clear(mm_cpumask(mm));
329         mm->mm_rb = RB_ROOT;
330         rb_link = &mm->mm_rb.rb_node;
331         rb_parent = NULL;
332         pprev = &mm->mmap;
333         retval = ksm_fork(mm, oldmm);
334         if (retval)
335                 goto out;
336         retval = khugepaged_fork(mm, oldmm);
337         if (retval)
338                 goto out;
339
340         prev = NULL;
341         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
342                 struct file *file;
343
344                 if (mpnt->vm_flags & VM_DONTCOPY) {
345                         long pages = vma_pages(mpnt);
346                         mm->total_vm -= pages;
347                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
348                                                                 -pages);
349                         continue;
350                 }
351                 charge = 0;
352                 if (mpnt->vm_flags & VM_ACCOUNT) {
353                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
354                         if (security_vm_enough_memory(len))
355                                 goto fail_nomem;
356                         charge = len;
357                 }
358                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
359                 if (!tmp)
360                         goto fail_nomem;
361                 *tmp = *mpnt;
362                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
363                 pol = mpol_dup(vma_policy(mpnt));
364                 retval = PTR_ERR(pol);
365                 if (IS_ERR(pol))
366                         goto fail_nomem_policy;
367                 vma_set_policy(tmp, pol);
368                 tmp->vm_mm = mm;
369                 if (anon_vma_fork(tmp, mpnt))
370                         goto fail_nomem_anon_vma_fork;
371                 tmp->vm_flags &= ~VM_LOCKED;
372                 tmp->vm_next = tmp->vm_prev = NULL;
373                 file = tmp->vm_file;
374                 if (file) {
375                         struct inode *inode = file->f_path.dentry->d_inode;
376                         struct address_space *mapping = file->f_mapping;
377
378                         get_file(file);
379                         if (tmp->vm_flags & VM_DENYWRITE)
380                                 atomic_dec(&inode->i_writecount);
381                         mutex_lock(&mapping->i_mmap_mutex);
382                         if (tmp->vm_flags & VM_SHARED)
383                                 mapping->i_mmap_writable++;
384                         flush_dcache_mmap_lock(mapping);
385                         /* insert tmp into the share list, just after mpnt */
386                         vma_prio_tree_add(tmp, mpnt);
387                         flush_dcache_mmap_unlock(mapping);
388                         mutex_unlock(&mapping->i_mmap_mutex);
389                 }
390
391                 /*
392                  * Clear hugetlb-related page reserves for children. This only
393                  * affects MAP_PRIVATE mappings. Faults generated by the child
394                  * are not guaranteed to succeed, even if read-only
395                  */
396                 if (is_vm_hugetlb_page(tmp))
397                         reset_vma_resv_huge_pages(tmp);
398
399                 /*
400                  * Link in the new vma and copy the page table entries.
401                  */
402                 *pprev = tmp;
403                 pprev = &tmp->vm_next;
404                 tmp->vm_prev = prev;
405                 prev = tmp;
406
407                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
408                 rb_link = &tmp->vm_rb.rb_right;
409                 rb_parent = &tmp->vm_rb;
410
411                 mm->map_count++;
412                 retval = copy_page_range(mm, oldmm, mpnt);
413
414                 if (tmp->vm_ops && tmp->vm_ops->open)
415                         tmp->vm_ops->open(tmp);
416
417                 if (retval)
418                         goto out;
419         }
420         /* a new mm has just been created */
421         arch_dup_mmap(oldmm, mm);
422         retval = 0;
423 out:
424         up_write(&mm->mmap_sem);
425         flush_tlb_mm(oldmm);
426         up_write(&oldmm->mmap_sem);
427         return retval;
428 fail_nomem_anon_vma_fork:
429         mpol_put(pol);
430 fail_nomem_policy:
431         kmem_cache_free(vm_area_cachep, tmp);
432 fail_nomem:
433         retval = -ENOMEM;
434         vm_unacct_memory(charge);
435         goto out;
436 }
437
438 static inline int mm_alloc_pgd(struct mm_struct *mm)
439 {
440         mm->pgd = pgd_alloc(mm);
441         if (unlikely(!mm->pgd))
442                 return -ENOMEM;
443         return 0;
444 }
445
446 static inline void mm_free_pgd(struct mm_struct *mm)
447 {
448         pgd_free(mm, mm->pgd);
449 }
450 #else
451 #define dup_mmap(mm, oldmm)     (0)
452 #define mm_alloc_pgd(mm)        (0)
453 #define mm_free_pgd(mm)
454 #endif /* CONFIG_MMU */
455
456 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
457
458 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
459 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
460
461 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
462
463 static int __init coredump_filter_setup(char *s)
464 {
465         default_dump_filter =
466                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
467                 MMF_DUMP_FILTER_MASK;
468         return 1;
469 }
470
471 __setup("coredump_filter=", coredump_filter_setup);
472
473 #include <linux/init_task.h>
474
475 static void mm_init_aio(struct mm_struct *mm)
476 {
477 #ifdef CONFIG_AIO
478         spin_lock_init(&mm->ioctx_lock);
479         INIT_HLIST_HEAD(&mm->ioctx_list);
480 #endif
481 }
482
483 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
484 {
485         atomic_set(&mm->mm_users, 1);
486         atomic_set(&mm->mm_count, 1);
487         init_rwsem(&mm->mmap_sem);
488         INIT_LIST_HEAD(&mm->mmlist);
489         mm->flags = (current->mm) ?
490                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
491         mm->core_state = NULL;
492         mm->nr_ptes = 0;
493         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
494         spin_lock_init(&mm->page_table_lock);
495         mm->free_area_cache = TASK_UNMAPPED_BASE;
496         mm->cached_hole_size = ~0UL;
497         mm_init_aio(mm);
498         mm_init_owner(mm, p);
499
500         if (likely(!mm_alloc_pgd(mm))) {
501                 mm->def_flags = 0;
502                 mmu_notifier_mm_init(mm);
503                 return mm;
504         }
505
506         free_mm(mm);
507         return NULL;
508 }
509
510 /*
511  * Allocate and initialize an mm_struct.
512  */
513 struct mm_struct *mm_alloc(void)
514 {
515         struct mm_struct *mm;
516
517         mm = allocate_mm();
518         if (!mm)
519                 return NULL;
520
521         memset(mm, 0, sizeof(*mm));
522         mm_init_cpumask(mm);
523         return mm_init(mm, current);
524 }
525
526 /*
527  * Called when the last reference to the mm
528  * is dropped: either by a lazy thread or by
529  * mmput. Free the page directory and the mm.
530  */
531 void __mmdrop(struct mm_struct *mm)
532 {
533         BUG_ON(mm == &init_mm);
534         mm_free_pgd(mm);
535         destroy_context(mm);
536         mmu_notifier_mm_destroy(mm);
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538         VM_BUG_ON(mm->pmd_huge_pte);
539 #endif
540         free_mm(mm);
541 }
542 EXPORT_SYMBOL_GPL(__mmdrop);
543
544 /*
545  * Decrement the use count and release all resources for an mm.
546  */
547 void mmput(struct mm_struct *mm)
548 {
549         might_sleep();
550
551         if (atomic_dec_and_test(&mm->mm_users)) {
552                 exit_aio(mm);
553                 ksm_exit(mm);
554                 khugepaged_exit(mm); /* must run before exit_mmap */
555                 exit_mmap(mm);
556                 set_mm_exe_file(mm, NULL);
557                 if (!list_empty(&mm->mmlist)) {
558                         spin_lock(&mmlist_lock);
559                         list_del(&mm->mmlist);
560                         spin_unlock(&mmlist_lock);
561                 }
562                 put_swap_token(mm);
563                 if (mm->binfmt)
564                         module_put(mm->binfmt->module);
565                 mmdrop(mm);
566         }
567 }
568 EXPORT_SYMBOL_GPL(mmput);
569
570 /*
571  * We added or removed a vma mapping the executable. The vmas are only mapped
572  * during exec and are not mapped with the mmap system call.
573  * Callers must hold down_write() on the mm's mmap_sem for these
574  */
575 void added_exe_file_vma(struct mm_struct *mm)
576 {
577         mm->num_exe_file_vmas++;
578 }
579
580 void removed_exe_file_vma(struct mm_struct *mm)
581 {
582         mm->num_exe_file_vmas--;
583         if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
584                 fput(mm->exe_file);
585                 mm->exe_file = NULL;
586         }
587
588 }
589
590 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
591 {
592         if (new_exe_file)
593                 get_file(new_exe_file);
594         if (mm->exe_file)
595                 fput(mm->exe_file);
596         mm->exe_file = new_exe_file;
597         mm->num_exe_file_vmas = 0;
598 }
599
600 struct file *get_mm_exe_file(struct mm_struct *mm)
601 {
602         struct file *exe_file;
603
604         /* We need mmap_sem to protect against races with removal of
605          * VM_EXECUTABLE vmas */
606         down_read(&mm->mmap_sem);
607         exe_file = mm->exe_file;
608         if (exe_file)
609                 get_file(exe_file);
610         up_read(&mm->mmap_sem);
611         return exe_file;
612 }
613
614 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
615 {
616         /* It's safe to write the exe_file pointer without exe_file_lock because
617          * this is called during fork when the task is not yet in /proc */
618         newmm->exe_file = get_mm_exe_file(oldmm);
619 }
620
621 /**
622  * get_task_mm - acquire a reference to the task's mm
623  *
624  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
625  * this kernel workthread has transiently adopted a user mm with use_mm,
626  * to do its AIO) is not set and if so returns a reference to it, after
627  * bumping up the use count.  User must release the mm via mmput()
628  * after use.  Typically used by /proc and ptrace.
629  */
630 struct mm_struct *get_task_mm(struct task_struct *task)
631 {
632         struct mm_struct *mm;
633
634         task_lock(task);
635         mm = task->mm;
636         if (mm) {
637                 if (task->flags & PF_KTHREAD)
638                         mm = NULL;
639                 else
640                         atomic_inc(&mm->mm_users);
641         }
642         task_unlock(task);
643         return mm;
644 }
645 EXPORT_SYMBOL_GPL(get_task_mm);
646
647 /* Please note the differences between mmput and mm_release.
648  * mmput is called whenever we stop holding onto a mm_struct,
649  * error success whatever.
650  *
651  * mm_release is called after a mm_struct has been removed
652  * from the current process.
653  *
654  * This difference is important for error handling, when we
655  * only half set up a mm_struct for a new process and need to restore
656  * the old one.  Because we mmput the new mm_struct before
657  * restoring the old one. . .
658  * Eric Biederman 10 January 1998
659  */
660 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
661 {
662         struct completion *vfork_done = tsk->vfork_done;
663
664         /* Get rid of any futexes when releasing the mm */
665 #ifdef CONFIG_FUTEX
666         if (unlikely(tsk->robust_list)) {
667                 exit_robust_list(tsk);
668                 tsk->robust_list = NULL;
669         }
670 #ifdef CONFIG_COMPAT
671         if (unlikely(tsk->compat_robust_list)) {
672                 compat_exit_robust_list(tsk);
673                 tsk->compat_robust_list = NULL;
674         }
675 #endif
676         if (unlikely(!list_empty(&tsk->pi_state_list)))
677                 exit_pi_state_list(tsk);
678 #endif
679
680         /* Get rid of any cached register state */
681         deactivate_mm(tsk, mm);
682
683         /* notify parent sleeping on vfork() */
684         if (vfork_done) {
685                 tsk->vfork_done = NULL;
686                 complete(vfork_done);
687         }
688
689         /*
690          * If we're exiting normally, clear a user-space tid field if
691          * requested.  We leave this alone when dying by signal, to leave
692          * the value intact in a core dump, and to save the unnecessary
693          * trouble otherwise.  Userland only wants this done for a sys_exit.
694          */
695         if (tsk->clear_child_tid) {
696                 if (!(tsk->flags & PF_SIGNALED) &&
697                     atomic_read(&mm->mm_users) > 1) {
698                         /*
699                          * We don't check the error code - if userspace has
700                          * not set up a proper pointer then tough luck.
701                          */
702                         put_user(0, tsk->clear_child_tid);
703                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
704                                         1, NULL, NULL, 0);
705                 }
706                 tsk->clear_child_tid = NULL;
707         }
708 }
709
710 /*
711  * Allocate a new mm structure and copy contents from the
712  * mm structure of the passed in task structure.
713  */
714 struct mm_struct *dup_mm(struct task_struct *tsk)
715 {
716         struct mm_struct *mm, *oldmm = current->mm;
717         int err;
718
719         if (!oldmm)
720                 return NULL;
721
722         mm = allocate_mm();
723         if (!mm)
724                 goto fail_nomem;
725
726         memcpy(mm, oldmm, sizeof(*mm));
727         mm_init_cpumask(mm);
728
729         /* Initializing for Swap token stuff */
730         mm->token_priority = 0;
731         mm->last_interval = 0;
732
733 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
734         mm->pmd_huge_pte = NULL;
735 #endif
736
737         if (!mm_init(mm, tsk))
738                 goto fail_nomem;
739
740         if (init_new_context(tsk, mm))
741                 goto fail_nocontext;
742
743         dup_mm_exe_file(oldmm, mm);
744
745         err = dup_mmap(mm, oldmm);
746         if (err)
747                 goto free_pt;
748
749         mm->hiwater_rss = get_mm_rss(mm);
750         mm->hiwater_vm = mm->total_vm;
751
752         if (mm->binfmt && !try_module_get(mm->binfmt->module))
753                 goto free_pt;
754
755         return mm;
756
757 free_pt:
758         /* don't put binfmt in mmput, we haven't got module yet */
759         mm->binfmt = NULL;
760         mmput(mm);
761
762 fail_nomem:
763         return NULL;
764
765 fail_nocontext:
766         /*
767          * If init_new_context() failed, we cannot use mmput() to free the mm
768          * because it calls destroy_context()
769          */
770         mm_free_pgd(mm);
771         free_mm(mm);
772         return NULL;
773 }
774
775 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
776 {
777         struct mm_struct *mm, *oldmm;
778         int retval;
779
780         tsk->min_flt = tsk->maj_flt = 0;
781         tsk->nvcsw = tsk->nivcsw = 0;
782 #ifdef CONFIG_DETECT_HUNG_TASK
783         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
784 #endif
785
786         tsk->mm = NULL;
787         tsk->active_mm = NULL;
788
789         /*
790          * Are we cloning a kernel thread?
791          *
792          * We need to steal a active VM for that..
793          */
794         oldmm = current->mm;
795         if (!oldmm)
796                 return 0;
797
798         if (clone_flags & CLONE_VM) {
799                 atomic_inc(&oldmm->mm_users);
800                 mm = oldmm;
801                 goto good_mm;
802         }
803
804         retval = -ENOMEM;
805         mm = dup_mm(tsk);
806         if (!mm)
807                 goto fail_nomem;
808
809 good_mm:
810         /* Initializing for Swap token stuff */
811         mm->token_priority = 0;
812         mm->last_interval = 0;
813
814         tsk->mm = mm;
815         tsk->active_mm = mm;
816         return 0;
817
818 fail_nomem:
819         return retval;
820 }
821
822 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
823 {
824         struct fs_struct *fs = current->fs;
825         if (clone_flags & CLONE_FS) {
826                 /* tsk->fs is already what we want */
827                 spin_lock(&fs->lock);
828                 if (fs->in_exec) {
829                         spin_unlock(&fs->lock);
830                         return -EAGAIN;
831                 }
832                 fs->users++;
833                 spin_unlock(&fs->lock);
834                 return 0;
835         }
836         tsk->fs = copy_fs_struct(fs);
837         if (!tsk->fs)
838                 return -ENOMEM;
839         return 0;
840 }
841
842 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
843 {
844         struct files_struct *oldf, *newf;
845         int error = 0;
846
847         /*
848          * A background process may not have any files ...
849          */
850         oldf = current->files;
851         if (!oldf)
852                 goto out;
853
854         if (clone_flags & CLONE_FILES) {
855                 atomic_inc(&oldf->count);
856                 goto out;
857         }
858
859         newf = dup_fd(oldf, &error);
860         if (!newf)
861                 goto out;
862
863         tsk->files = newf;
864         error = 0;
865 out:
866         return error;
867 }
868
869 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
870 {
871 #ifdef CONFIG_BLOCK
872         struct io_context *ioc = current->io_context;
873
874         if (!ioc)
875                 return 0;
876         /*
877          * Share io context with parent, if CLONE_IO is set
878          */
879         if (clone_flags & CLONE_IO) {
880                 tsk->io_context = ioc_task_link(ioc);
881                 if (unlikely(!tsk->io_context))
882                         return -ENOMEM;
883         } else if (ioprio_valid(ioc->ioprio)) {
884                 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
885                 if (unlikely(!tsk->io_context))
886                         return -ENOMEM;
887
888                 tsk->io_context->ioprio = ioc->ioprio;
889         }
890 #endif
891         return 0;
892 }
893
894 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
895 {
896         struct sighand_struct *sig;
897
898         if (clone_flags & CLONE_SIGHAND) {
899                 atomic_inc(&current->sighand->count);
900                 return 0;
901         }
902         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
903         rcu_assign_pointer(tsk->sighand, sig);
904         if (!sig)
905                 return -ENOMEM;
906         atomic_set(&sig->count, 1);
907         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
908         return 0;
909 }
910
911 void __cleanup_sighand(struct sighand_struct *sighand)
912 {
913         if (atomic_dec_and_test(&sighand->count))
914                 kmem_cache_free(sighand_cachep, sighand);
915 }
916
917
918 /*
919  * Initialize POSIX timer handling for a thread group.
920  */
921 static void posix_cpu_timers_init_group(struct signal_struct *sig)
922 {
923         unsigned long cpu_limit;
924
925         /* Thread group counters. */
926         thread_group_cputime_init(sig);
927
928         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
929         if (cpu_limit != RLIM_INFINITY) {
930                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
931                 sig->cputimer.running = 1;
932         }
933
934         /* The timer lists. */
935         INIT_LIST_HEAD(&sig->cpu_timers[0]);
936         INIT_LIST_HEAD(&sig->cpu_timers[1]);
937         INIT_LIST_HEAD(&sig->cpu_timers[2]);
938 }
939
940 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
941 {
942         struct signal_struct *sig;
943
944         if (clone_flags & CLONE_THREAD)
945                 return 0;
946
947         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
948         tsk->signal = sig;
949         if (!sig)
950                 return -ENOMEM;
951
952         sig->nr_threads = 1;
953         atomic_set(&sig->live, 1);
954         atomic_set(&sig->sigcnt, 1);
955         init_waitqueue_head(&sig->wait_chldexit);
956         if (clone_flags & CLONE_NEWPID)
957                 sig->flags |= SIGNAL_UNKILLABLE;
958         sig->curr_target = tsk;
959         init_sigpending(&sig->shared_pending);
960         INIT_LIST_HEAD(&sig->posix_timers);
961
962         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
963         sig->real_timer.function = it_real_fn;
964
965         task_lock(current->group_leader);
966         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
967         task_unlock(current->group_leader);
968
969         posix_cpu_timers_init_group(sig);
970
971         tty_audit_fork(sig);
972         sched_autogroup_fork(sig);
973
974 #ifdef CONFIG_CGROUPS
975         init_rwsem(&sig->threadgroup_fork_lock);
976 #endif
977
978         sig->oom_adj = current->signal->oom_adj;
979         sig->oom_score_adj = current->signal->oom_score_adj;
980         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
981
982         mutex_init(&sig->cred_guard_mutex);
983
984         return 0;
985 }
986
987 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
988 {
989         unsigned long new_flags = p->flags;
990
991         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
992         new_flags |= PF_FORKNOEXEC;
993         new_flags |= PF_STARTING;
994         p->flags = new_flags;
995         clear_freeze_flag(p);
996 }
997
998 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
999 {
1000         current->clear_child_tid = tidptr;
1001
1002         return task_pid_vnr(current);
1003 }
1004
1005 static void rt_mutex_init_task(struct task_struct *p)
1006 {
1007         raw_spin_lock_init(&p->pi_lock);
1008 #ifdef CONFIG_RT_MUTEXES
1009         plist_head_init(&p->pi_waiters);
1010         p->pi_blocked_on = NULL;
1011 #endif
1012 }
1013
1014 #ifdef CONFIG_MM_OWNER
1015 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1016 {
1017         mm->owner = p;
1018 }
1019 #endif /* CONFIG_MM_OWNER */
1020
1021 /*
1022  * Initialize POSIX timer handling for a single task.
1023  */
1024 static void posix_cpu_timers_init(struct task_struct *tsk)
1025 {
1026         tsk->cputime_expires.prof_exp = cputime_zero;
1027         tsk->cputime_expires.virt_exp = cputime_zero;
1028         tsk->cputime_expires.sched_exp = 0;
1029         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1030         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1031         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1032 }
1033
1034 /*
1035  * This creates a new process as a copy of the old one,
1036  * but does not actually start it yet.
1037  *
1038  * It copies the registers, and all the appropriate
1039  * parts of the process environment (as per the clone
1040  * flags). The actual kick-off is left to the caller.
1041  */
1042 static struct task_struct *copy_process(unsigned long clone_flags,
1043                                         unsigned long stack_start,
1044                                         struct pt_regs *regs,
1045                                         unsigned long stack_size,
1046                                         int __user *child_tidptr,
1047                                         struct pid *pid,
1048                                         int trace)
1049 {
1050         int retval;
1051         struct task_struct *p;
1052         int cgroup_callbacks_done = 0;
1053
1054         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1055                 return ERR_PTR(-EINVAL);
1056
1057         /*
1058          * Thread groups must share signals as well, and detached threads
1059          * can only be started up within the thread group.
1060          */
1061         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1062                 return ERR_PTR(-EINVAL);
1063
1064         /*
1065          * Shared signal handlers imply shared VM. By way of the above,
1066          * thread groups also imply shared VM. Blocking this case allows
1067          * for various simplifications in other code.
1068          */
1069         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1070                 return ERR_PTR(-EINVAL);
1071
1072         /*
1073          * Siblings of global init remain as zombies on exit since they are
1074          * not reaped by their parent (swapper). To solve this and to avoid
1075          * multi-rooted process trees, prevent global and container-inits
1076          * from creating siblings.
1077          */
1078         if ((clone_flags & CLONE_PARENT) &&
1079                                 current->signal->flags & SIGNAL_UNKILLABLE)
1080                 return ERR_PTR(-EINVAL);
1081
1082         retval = security_task_create(clone_flags);
1083         if (retval)
1084                 goto fork_out;
1085
1086         retval = -ENOMEM;
1087         p = dup_task_struct(current);
1088         if (!p)
1089                 goto fork_out;
1090
1091         ftrace_graph_init_task(p);
1092
1093         rt_mutex_init_task(p);
1094
1095 #ifdef CONFIG_PROVE_LOCKING
1096         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1097         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1098 #endif
1099         retval = -EAGAIN;
1100         if (atomic_read(&p->real_cred->user->processes) >=
1101                         task_rlimit(p, RLIMIT_NPROC)) {
1102                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1103                     p->real_cred->user != INIT_USER)
1104                         goto bad_fork_free;
1105         }
1106         current->flags &= ~PF_NPROC_EXCEEDED;
1107
1108         retval = copy_creds(p, clone_flags);
1109         if (retval < 0)
1110                 goto bad_fork_free;
1111
1112         /*
1113          * If multiple threads are within copy_process(), then this check
1114          * triggers too late. This doesn't hurt, the check is only there
1115          * to stop root fork bombs.
1116          */
1117         retval = -EAGAIN;
1118         if (nr_threads >= max_threads)
1119                 goto bad_fork_cleanup_count;
1120
1121         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1122                 goto bad_fork_cleanup_count;
1123
1124         p->did_exec = 0;
1125         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1126         copy_flags(clone_flags, p);
1127         INIT_LIST_HEAD(&p->children);
1128         INIT_LIST_HEAD(&p->sibling);
1129         rcu_copy_process(p);
1130         p->vfork_done = NULL;
1131         spin_lock_init(&p->alloc_lock);
1132
1133         init_sigpending(&p->pending);
1134
1135         p->utime = cputime_zero;
1136         p->stime = cputime_zero;
1137         p->gtime = cputime_zero;
1138         p->utimescaled = cputime_zero;
1139         p->stimescaled = cputime_zero;
1140 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1141         p->prev_utime = cputime_zero;
1142         p->prev_stime = cputime_zero;
1143 #endif
1144 #if defined(SPLIT_RSS_COUNTING)
1145         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1146 #endif
1147
1148         p->default_timer_slack_ns = current->timer_slack_ns;
1149
1150         task_io_accounting_init(&p->ioac);
1151         acct_clear_integrals(p);
1152
1153         posix_cpu_timers_init(p);
1154
1155         do_posix_clock_monotonic_gettime(&p->start_time);
1156         p->real_start_time = p->start_time;
1157         monotonic_to_bootbased(&p->real_start_time);
1158         p->io_context = NULL;
1159         p->audit_context = NULL;
1160         if (clone_flags & CLONE_THREAD)
1161                 threadgroup_fork_read_lock(current);
1162         cgroup_fork(p);
1163 #ifdef CONFIG_NUMA
1164         p->mempolicy = mpol_dup(p->mempolicy);
1165         if (IS_ERR(p->mempolicy)) {
1166                 retval = PTR_ERR(p->mempolicy);
1167                 p->mempolicy = NULL;
1168                 goto bad_fork_cleanup_cgroup;
1169         }
1170         mpol_fix_fork_child_flag(p);
1171 #endif
1172 #ifdef CONFIG_CPUSETS
1173         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1174         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1175 #endif
1176 #ifdef CONFIG_TRACE_IRQFLAGS
1177         p->irq_events = 0;
1178 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1179         p->hardirqs_enabled = 1;
1180 #else
1181         p->hardirqs_enabled = 0;
1182 #endif
1183         p->hardirq_enable_ip = 0;
1184         p->hardirq_enable_event = 0;
1185         p->hardirq_disable_ip = _THIS_IP_;
1186         p->hardirq_disable_event = 0;
1187         p->softirqs_enabled = 1;
1188         p->softirq_enable_ip = _THIS_IP_;
1189         p->softirq_enable_event = 0;
1190         p->softirq_disable_ip = 0;
1191         p->softirq_disable_event = 0;
1192         p->hardirq_context = 0;
1193         p->softirq_context = 0;
1194 #endif
1195 #ifdef CONFIG_LOCKDEP
1196         p->lockdep_depth = 0; /* no locks held yet */
1197         p->curr_chain_key = 0;
1198         p->lockdep_recursion = 0;
1199 #endif
1200
1201 #ifdef CONFIG_DEBUG_MUTEXES
1202         p->blocked_on = NULL; /* not blocked yet */
1203 #endif
1204 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1205         p->memcg_batch.do_batch = 0;
1206         p->memcg_batch.memcg = NULL;
1207 #endif
1208
1209         /* Perform scheduler related setup. Assign this task to a CPU. */
1210         sched_fork(p);
1211
1212         retval = perf_event_init_task(p);
1213         if (retval)
1214                 goto bad_fork_cleanup_policy;
1215         retval = audit_alloc(p);
1216         if (retval)
1217                 goto bad_fork_cleanup_policy;
1218         /* copy all the process information */
1219         retval = copy_semundo(clone_flags, p);
1220         if (retval)
1221                 goto bad_fork_cleanup_audit;
1222         retval = copy_files(clone_flags, p);
1223         if (retval)
1224                 goto bad_fork_cleanup_semundo;
1225         retval = copy_fs(clone_flags, p);
1226         if (retval)
1227                 goto bad_fork_cleanup_files;
1228         retval = copy_sighand(clone_flags, p);
1229         if (retval)
1230                 goto bad_fork_cleanup_fs;
1231         retval = copy_signal(clone_flags, p);
1232         if (retval)
1233                 goto bad_fork_cleanup_sighand;
1234         retval = copy_mm(clone_flags, p);
1235         if (retval)
1236                 goto bad_fork_cleanup_signal;
1237         retval = copy_namespaces(clone_flags, p);
1238         if (retval)
1239                 goto bad_fork_cleanup_mm;
1240         retval = copy_io(clone_flags, p);
1241         if (retval)
1242                 goto bad_fork_cleanup_namespaces;
1243         retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1244         if (retval)
1245                 goto bad_fork_cleanup_io;
1246
1247         if (pid != &init_struct_pid) {
1248                 retval = -ENOMEM;
1249                 pid = alloc_pid(p->nsproxy->pid_ns);
1250                 if (!pid)
1251                         goto bad_fork_cleanup_io;
1252         }
1253
1254         p->pid = pid_nr(pid);
1255         p->tgid = p->pid;
1256         if (clone_flags & CLONE_THREAD)
1257                 p->tgid = current->tgid;
1258
1259         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1260         /*
1261          * Clear TID on mm_release()?
1262          */
1263         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1264 #ifdef CONFIG_BLOCK
1265         p->plug = NULL;
1266 #endif
1267 #ifdef CONFIG_FUTEX
1268         p->robust_list = NULL;
1269 #ifdef CONFIG_COMPAT
1270         p->compat_robust_list = NULL;
1271 #endif
1272         INIT_LIST_HEAD(&p->pi_state_list);
1273         p->pi_state_cache = NULL;
1274 #endif
1275         /*
1276          * sigaltstack should be cleared when sharing the same VM
1277          */
1278         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1279                 p->sas_ss_sp = p->sas_ss_size = 0;
1280
1281         /*
1282          * Syscall tracing and stepping should be turned off in the
1283          * child regardless of CLONE_PTRACE.
1284          */
1285         user_disable_single_step(p);
1286         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1287 #ifdef TIF_SYSCALL_EMU
1288         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1289 #endif
1290         clear_all_latency_tracing(p);
1291
1292         /* ok, now we should be set up.. */
1293         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1294         p->pdeath_signal = 0;
1295         p->exit_state = 0;
1296
1297         p->nr_dirtied = 0;
1298         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1299
1300         /*
1301          * Ok, make it visible to the rest of the system.
1302          * We dont wake it up yet.
1303          */
1304         p->group_leader = p;
1305         INIT_LIST_HEAD(&p->thread_group);
1306
1307         /* Now that the task is set up, run cgroup callbacks if
1308          * necessary. We need to run them before the task is visible
1309          * on the tasklist. */
1310         cgroup_fork_callbacks(p);
1311         cgroup_callbacks_done = 1;
1312
1313         /* Need tasklist lock for parent etc handling! */
1314         write_lock_irq(&tasklist_lock);
1315
1316         /* CLONE_PARENT re-uses the old parent */
1317         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1318                 p->real_parent = current->real_parent;
1319                 p->parent_exec_id = current->parent_exec_id;
1320         } else {
1321                 p->real_parent = current;
1322                 p->parent_exec_id = current->self_exec_id;
1323         }
1324
1325         spin_lock(&current->sighand->siglock);
1326
1327         /*
1328          * Process group and session signals need to be delivered to just the
1329          * parent before the fork or both the parent and the child after the
1330          * fork. Restart if a signal comes in before we add the new process to
1331          * it's process group.
1332          * A fatal signal pending means that current will exit, so the new
1333          * thread can't slip out of an OOM kill (or normal SIGKILL).
1334         */
1335         recalc_sigpending();
1336         if (signal_pending(current)) {
1337                 spin_unlock(&current->sighand->siglock);
1338                 write_unlock_irq(&tasklist_lock);
1339                 retval = -ERESTARTNOINTR;
1340                 goto bad_fork_free_pid;
1341         }
1342
1343         if (clone_flags & CLONE_THREAD) {
1344                 current->signal->nr_threads++;
1345                 atomic_inc(&current->signal->live);
1346                 atomic_inc(&current->signal->sigcnt);
1347                 p->group_leader = current->group_leader;
1348                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1349         }
1350
1351         if (likely(p->pid)) {
1352                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1353
1354                 if (thread_group_leader(p)) {
1355                         if (is_child_reaper(pid))
1356                                 p->nsproxy->pid_ns->child_reaper = p;
1357
1358                         p->signal->leader_pid = pid;
1359                         p->signal->tty = tty_kref_get(current->signal->tty);
1360                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1361                         attach_pid(p, PIDTYPE_SID, task_session(current));
1362                         list_add_tail(&p->sibling, &p->real_parent->children);
1363                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1364                         __this_cpu_inc(process_counts);
1365                 }
1366                 attach_pid(p, PIDTYPE_PID, pid);
1367                 nr_threads++;
1368         }
1369
1370         total_forks++;
1371         spin_unlock(&current->sighand->siglock);
1372         write_unlock_irq(&tasklist_lock);
1373         proc_fork_connector(p);
1374         cgroup_post_fork(p);
1375         if (clone_flags & CLONE_THREAD)
1376                 threadgroup_fork_read_unlock(current);
1377         perf_event_fork(p);
1378         return p;
1379
1380 bad_fork_free_pid:
1381         if (pid != &init_struct_pid)
1382                 free_pid(pid);
1383 bad_fork_cleanup_io:
1384         if (p->io_context)
1385                 exit_io_context(p);
1386 bad_fork_cleanup_namespaces:
1387         exit_task_namespaces(p);
1388 bad_fork_cleanup_mm:
1389         if (p->mm)
1390                 mmput(p->mm);
1391 bad_fork_cleanup_signal:
1392         if (!(clone_flags & CLONE_THREAD))
1393                 free_signal_struct(p->signal);
1394 bad_fork_cleanup_sighand:
1395         __cleanup_sighand(p->sighand);
1396 bad_fork_cleanup_fs:
1397         exit_fs(p); /* blocking */
1398 bad_fork_cleanup_files:
1399         exit_files(p); /* blocking */
1400 bad_fork_cleanup_semundo:
1401         exit_sem(p);
1402 bad_fork_cleanup_audit:
1403         audit_free(p);
1404 bad_fork_cleanup_policy:
1405         perf_event_free_task(p);
1406 #ifdef CONFIG_NUMA
1407         mpol_put(p->mempolicy);
1408 bad_fork_cleanup_cgroup:
1409 #endif
1410         if (clone_flags & CLONE_THREAD)
1411                 threadgroup_fork_read_unlock(current);
1412         cgroup_exit(p, cgroup_callbacks_done);
1413         delayacct_tsk_free(p);
1414         module_put(task_thread_info(p)->exec_domain->module);
1415 bad_fork_cleanup_count:
1416         atomic_dec(&p->cred->user->processes);
1417         exit_creds(p);
1418 bad_fork_free:
1419         free_task(p);
1420 fork_out:
1421         return ERR_PTR(retval);
1422 }
1423
1424 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1425 {
1426         memset(regs, 0, sizeof(struct pt_regs));
1427         return regs;
1428 }
1429
1430 static inline void init_idle_pids(struct pid_link *links)
1431 {
1432         enum pid_type type;
1433
1434         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1435                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1436                 links[type].pid = &init_struct_pid;
1437         }
1438 }
1439
1440 struct task_struct * __cpuinit fork_idle(int cpu)
1441 {
1442         struct task_struct *task;
1443         struct pt_regs regs;
1444
1445         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1446                             &init_struct_pid, 0);
1447         if (!IS_ERR(task)) {
1448                 init_idle_pids(task->pids);
1449                 init_idle(task, cpu);
1450         }
1451
1452         return task;
1453 }
1454
1455 /*
1456  *  Ok, this is the main fork-routine.
1457  *
1458  * It copies the process, and if successful kick-starts
1459  * it and waits for it to finish using the VM if required.
1460  */
1461 long do_fork(unsigned long clone_flags,
1462               unsigned long stack_start,
1463               struct pt_regs *regs,
1464               unsigned long stack_size,
1465               int __user *parent_tidptr,
1466               int __user *child_tidptr)
1467 {
1468         struct task_struct *p;
1469         int trace = 0;
1470         long nr;
1471
1472         /*
1473          * Do some preliminary argument and permissions checking before we
1474          * actually start allocating stuff
1475          */
1476         if (clone_flags & CLONE_NEWUSER) {
1477                 if (clone_flags & CLONE_THREAD)
1478                         return -EINVAL;
1479                 /* hopefully this check will go away when userns support is
1480                  * complete
1481                  */
1482                 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1483                                 !capable(CAP_SETGID))
1484                         return -EPERM;
1485         }
1486
1487         /*
1488          * Determine whether and which event to report to ptracer.  When
1489          * called from kernel_thread or CLONE_UNTRACED is explicitly
1490          * requested, no event is reported; otherwise, report if the event
1491          * for the type of forking is enabled.
1492          */
1493         if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1494                 if (clone_flags & CLONE_VFORK)
1495                         trace = PTRACE_EVENT_VFORK;
1496                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1497                         trace = PTRACE_EVENT_CLONE;
1498                 else
1499                         trace = PTRACE_EVENT_FORK;
1500
1501                 if (likely(!ptrace_event_enabled(current, trace)))
1502                         trace = 0;
1503         }
1504
1505         p = copy_process(clone_flags, stack_start, regs, stack_size,
1506                          child_tidptr, NULL, trace);
1507         /*
1508          * Do this prior waking up the new thread - the thread pointer
1509          * might get invalid after that point, if the thread exits quickly.
1510          */
1511         if (!IS_ERR(p)) {
1512                 struct completion vfork;
1513
1514                 trace_sched_process_fork(current, p);
1515
1516                 nr = task_pid_vnr(p);
1517
1518                 if (clone_flags & CLONE_PARENT_SETTID)
1519                         put_user(nr, parent_tidptr);
1520
1521                 if (clone_flags & CLONE_VFORK) {
1522                         p->vfork_done = &vfork;
1523                         init_completion(&vfork);
1524                 }
1525
1526                 audit_finish_fork(p);
1527
1528                 /*
1529                  * We set PF_STARTING at creation in case tracing wants to
1530                  * use this to distinguish a fully live task from one that
1531                  * hasn't finished SIGSTOP raising yet.  Now we clear it
1532                  * and set the child going.
1533                  */
1534                 p->flags &= ~PF_STARTING;
1535
1536                 wake_up_new_task(p);
1537
1538                 /* forking complete and child started to run, tell ptracer */
1539                 if (unlikely(trace))
1540                         ptrace_event(trace, nr);
1541
1542                 if (clone_flags & CLONE_VFORK) {
1543                         freezer_do_not_count();
1544                         wait_for_completion(&vfork);
1545                         freezer_count();
1546                         ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1547                 }
1548         } else {
1549                 nr = PTR_ERR(p);
1550         }
1551         return nr;
1552 }
1553
1554 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1555 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1556 #endif
1557
1558 static void sighand_ctor(void *data)
1559 {
1560         struct sighand_struct *sighand = data;
1561
1562         spin_lock_init(&sighand->siglock);
1563         init_waitqueue_head(&sighand->signalfd_wqh);
1564 }
1565
1566 void __init proc_caches_init(void)
1567 {
1568         sighand_cachep = kmem_cache_create("sighand_cache",
1569                         sizeof(struct sighand_struct), 0,
1570                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1571                         SLAB_NOTRACK, sighand_ctor);
1572         signal_cachep = kmem_cache_create("signal_cache",
1573                         sizeof(struct signal_struct), 0,
1574                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1575         files_cachep = kmem_cache_create("files_cache",
1576                         sizeof(struct files_struct), 0,
1577                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1578         fs_cachep = kmem_cache_create("fs_cache",
1579                         sizeof(struct fs_struct), 0,
1580                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1581         /*
1582          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1583          * whole struct cpumask for the OFFSTACK case. We could change
1584          * this to *only* allocate as much of it as required by the
1585          * maximum number of CPU's we can ever have.  The cpumask_allocation
1586          * is at the end of the structure, exactly for that reason.
1587          */
1588         mm_cachep = kmem_cache_create("mm_struct",
1589                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1590                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1591         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1592         mmap_init();
1593         nsproxy_cache_init();
1594 }
1595
1596 /*
1597  * Check constraints on flags passed to the unshare system call.
1598  */
1599 static int check_unshare_flags(unsigned long unshare_flags)
1600 {
1601         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1602                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1603                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1604                 return -EINVAL;
1605         /*
1606          * Not implemented, but pretend it works if there is nothing to
1607          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1608          * needs to unshare vm.
1609          */
1610         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1611                 /* FIXME: get_task_mm() increments ->mm_users */
1612                 if (atomic_read(&current->mm->mm_users) > 1)
1613                         return -EINVAL;
1614         }
1615
1616         return 0;
1617 }
1618
1619 /*
1620  * Unshare the filesystem structure if it is being shared
1621  */
1622 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1623 {
1624         struct fs_struct *fs = current->fs;
1625
1626         if (!(unshare_flags & CLONE_FS) || !fs)
1627                 return 0;
1628
1629         /* don't need lock here; in the worst case we'll do useless copy */
1630         if (fs->users == 1)
1631                 return 0;
1632
1633         *new_fsp = copy_fs_struct(fs);
1634         if (!*new_fsp)
1635                 return -ENOMEM;
1636
1637         return 0;
1638 }
1639
1640 /*
1641  * Unshare file descriptor table if it is being shared
1642  */
1643 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1644 {
1645         struct files_struct *fd = current->files;
1646         int error = 0;
1647
1648         if ((unshare_flags & CLONE_FILES) &&
1649             (fd && atomic_read(&fd->count) > 1)) {
1650                 *new_fdp = dup_fd(fd, &error);
1651                 if (!*new_fdp)
1652                         return error;
1653         }
1654
1655         return 0;
1656 }
1657
1658 /*
1659  * unshare allows a process to 'unshare' part of the process
1660  * context which was originally shared using clone.  copy_*
1661  * functions used by do_fork() cannot be used here directly
1662  * because they modify an inactive task_struct that is being
1663  * constructed. Here we are modifying the current, active,
1664  * task_struct.
1665  */
1666 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1667 {
1668         struct fs_struct *fs, *new_fs = NULL;
1669         struct files_struct *fd, *new_fd = NULL;
1670         struct nsproxy *new_nsproxy = NULL;
1671         int do_sysvsem = 0;
1672         int err;
1673
1674         err = check_unshare_flags(unshare_flags);
1675         if (err)
1676                 goto bad_unshare_out;
1677
1678         /*
1679          * If unsharing namespace, must also unshare filesystem information.
1680          */
1681         if (unshare_flags & CLONE_NEWNS)
1682                 unshare_flags |= CLONE_FS;
1683         /*
1684          * CLONE_NEWIPC must also detach from the undolist: after switching
1685          * to a new ipc namespace, the semaphore arrays from the old
1686          * namespace are unreachable.
1687          */
1688         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1689                 do_sysvsem = 1;
1690         err = unshare_fs(unshare_flags, &new_fs);
1691         if (err)
1692                 goto bad_unshare_out;
1693         err = unshare_fd(unshare_flags, &new_fd);
1694         if (err)
1695                 goto bad_unshare_cleanup_fs;
1696         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1697         if (err)
1698                 goto bad_unshare_cleanup_fd;
1699
1700         if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1701                 if (do_sysvsem) {
1702                         /*
1703                          * CLONE_SYSVSEM is equivalent to sys_exit().
1704                          */
1705                         exit_sem(current);
1706                 }
1707
1708                 if (new_nsproxy) {
1709                         switch_task_namespaces(current, new_nsproxy);
1710                         new_nsproxy = NULL;
1711                 }
1712
1713                 task_lock(current);
1714
1715                 if (new_fs) {
1716                         fs = current->fs;
1717                         spin_lock(&fs->lock);
1718                         current->fs = new_fs;
1719                         if (--fs->users)
1720                                 new_fs = NULL;
1721                         else
1722                                 new_fs = fs;
1723                         spin_unlock(&fs->lock);
1724                 }
1725
1726                 if (new_fd) {
1727                         fd = current->files;
1728                         current->files = new_fd;
1729                         new_fd = fd;
1730                 }
1731
1732                 task_unlock(current);
1733         }
1734
1735         if (new_nsproxy)
1736                 put_nsproxy(new_nsproxy);
1737
1738 bad_unshare_cleanup_fd:
1739         if (new_fd)
1740                 put_files_struct(new_fd);
1741
1742 bad_unshare_cleanup_fs:
1743         if (new_fs)
1744                 free_fs_struct(new_fs);
1745
1746 bad_unshare_out:
1747         return err;
1748 }
1749
1750 /*
1751  *      Helper to unshare the files of the current task.
1752  *      We don't want to expose copy_files internals to
1753  *      the exec layer of the kernel.
1754  */
1755
1756 int unshare_files(struct files_struct **displaced)
1757 {
1758         struct task_struct *task = current;
1759         struct files_struct *copy = NULL;
1760         int error;
1761
1762         error = unshare_fd(CLONE_FILES, &copy);
1763         if (error || !copy) {
1764                 *displaced = NULL;
1765                 return error;
1766         }
1767         *displaced = task->files;
1768         task_lock(task);
1769         task->files = copy;
1770         task_unlock(task);
1771         return 0;
1772 }