4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
77 #include <trace/events/sched.h>
80 * Protected counters by write_lock_irq(&tasklist_lock)
82 unsigned long total_forks; /* Handle normal Linux uptimes. */
83 int nr_threads; /* The idle threads do not count.. */
85 int max_threads; /* tunable limit on nr_threads */
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
94 return lockdep_is_held(&tasklist_lock);
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
99 int nr_processes(void)
104 for_each_possible_cpu(cpu)
105 total += per_cpu(process_counts, cpu);
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct_node(node) \
112 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
113 # define free_task_struct(tsk) \
114 kmem_cache_free(task_struct_cachep, (tsk))
115 static struct kmem_cache *task_struct_cachep;
118 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
119 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
122 #ifdef CONFIG_DEBUG_STACK_USAGE
123 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
125 gfp_t mask = GFP_KERNEL;
127 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
129 return page ? page_address(page) : NULL;
132 static inline void free_thread_info(struct thread_info *ti)
134 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
138 /* SLAB cache for signal_struct structures (tsk->signal) */
139 static struct kmem_cache *signal_cachep;
141 /* SLAB cache for sighand_struct structures (tsk->sighand) */
142 struct kmem_cache *sighand_cachep;
144 /* SLAB cache for files_struct structures (tsk->files) */
145 struct kmem_cache *files_cachep;
147 /* SLAB cache for fs_struct structures (tsk->fs) */
148 struct kmem_cache *fs_cachep;
150 /* SLAB cache for vm_area_struct structures */
151 struct kmem_cache *vm_area_cachep;
153 /* SLAB cache for mm_struct structures (tsk->mm) */
154 static struct kmem_cache *mm_cachep;
156 static void account_kernel_stack(struct thread_info *ti, int account)
158 struct zone *zone = page_zone(virt_to_page(ti));
160 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
163 void free_task(struct task_struct *tsk)
165 account_kernel_stack(tsk->stack, -1);
166 free_thread_info(tsk->stack);
167 rt_mutex_debug_task_free(tsk);
168 ftrace_graph_exit_task(tsk);
169 free_task_struct(tsk);
171 EXPORT_SYMBOL(free_task);
173 static inline void free_signal_struct(struct signal_struct *sig)
175 taskstats_tgid_free(sig);
176 sched_autogroup_exit(sig);
177 kmem_cache_free(signal_cachep, sig);
180 static inline void put_signal_struct(struct signal_struct *sig)
182 if (atomic_dec_and_test(&sig->sigcnt))
183 free_signal_struct(sig);
186 void __put_task_struct(struct task_struct *tsk)
188 WARN_ON(!tsk->exit_state);
189 WARN_ON(atomic_read(&tsk->usage));
190 WARN_ON(tsk == current);
193 delayacct_tsk_free(tsk);
194 put_signal_struct(tsk->signal);
196 if (!profile_handoff_task(tsk))
199 EXPORT_SYMBOL_GPL(__put_task_struct);
202 * macro override instead of weak attribute alias, to workaround
203 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
205 #ifndef arch_task_cache_init
206 #define arch_task_cache_init()
209 void __init fork_init(unsigned long mempages)
211 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
212 #ifndef ARCH_MIN_TASKALIGN
213 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
215 /* create a slab on which task_structs can be allocated */
217 kmem_cache_create("task_struct", sizeof(struct task_struct),
218 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
221 /* do the arch specific task caches init */
222 arch_task_cache_init();
225 * The default maximum number of threads is set to a safe
226 * value: the thread structures can take up at most half
229 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
232 * we need to allow at least 20 threads to boot a system
234 if (max_threads < 20)
237 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
238 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
239 init_task.signal->rlim[RLIMIT_SIGPENDING] =
240 init_task.signal->rlim[RLIMIT_NPROC];
243 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
244 struct task_struct *src)
250 static struct task_struct *dup_task_struct(struct task_struct *orig)
252 struct task_struct *tsk;
253 struct thread_info *ti;
254 unsigned long *stackend;
255 int node = tsk_fork_get_node(orig);
258 prepare_to_copy(orig);
260 tsk = alloc_task_struct_node(node);
264 ti = alloc_thread_info_node(tsk, node);
266 free_task_struct(tsk);
270 err = arch_dup_task_struct(tsk, orig);
276 setup_thread_stack(tsk, orig);
277 clear_user_return_notifier(tsk);
278 clear_tsk_need_resched(tsk);
279 stackend = end_of_stack(tsk);
280 *stackend = STACK_END_MAGIC; /* for overflow detection */
282 #ifdef CONFIG_CC_STACKPROTECTOR
283 tsk->stack_canary = get_random_int();
287 * One for us, one for whoever does the "release_task()" (usually
290 atomic_set(&tsk->usage, 2);
291 #ifdef CONFIG_BLK_DEV_IO_TRACE
294 tsk->splice_pipe = NULL;
296 account_kernel_stack(ti, 1);
301 free_thread_info(ti);
302 free_task_struct(tsk);
307 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
309 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
310 struct rb_node **rb_link, *rb_parent;
312 unsigned long charge;
313 struct mempolicy *pol;
315 down_write(&oldmm->mmap_sem);
316 flush_cache_dup_mm(oldmm);
318 * Not linked in yet - no deadlock potential:
320 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
324 mm->mmap_cache = NULL;
325 mm->free_area_cache = oldmm->mmap_base;
326 mm->cached_hole_size = ~0UL;
328 cpumask_clear(mm_cpumask(mm));
330 rb_link = &mm->mm_rb.rb_node;
333 retval = ksm_fork(mm, oldmm);
336 retval = khugepaged_fork(mm, oldmm);
341 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
344 if (mpnt->vm_flags & VM_DONTCOPY) {
345 long pages = vma_pages(mpnt);
346 mm->total_vm -= pages;
347 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
352 if (mpnt->vm_flags & VM_ACCOUNT) {
353 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
354 if (security_vm_enough_memory(len))
358 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
362 INIT_LIST_HEAD(&tmp->anon_vma_chain);
363 pol = mpol_dup(vma_policy(mpnt));
364 retval = PTR_ERR(pol);
366 goto fail_nomem_policy;
367 vma_set_policy(tmp, pol);
369 if (anon_vma_fork(tmp, mpnt))
370 goto fail_nomem_anon_vma_fork;
371 tmp->vm_flags &= ~VM_LOCKED;
372 tmp->vm_next = tmp->vm_prev = NULL;
375 struct inode *inode = file->f_path.dentry->d_inode;
376 struct address_space *mapping = file->f_mapping;
379 if (tmp->vm_flags & VM_DENYWRITE)
380 atomic_dec(&inode->i_writecount);
381 mutex_lock(&mapping->i_mmap_mutex);
382 if (tmp->vm_flags & VM_SHARED)
383 mapping->i_mmap_writable++;
384 flush_dcache_mmap_lock(mapping);
385 /* insert tmp into the share list, just after mpnt */
386 vma_prio_tree_add(tmp, mpnt);
387 flush_dcache_mmap_unlock(mapping);
388 mutex_unlock(&mapping->i_mmap_mutex);
392 * Clear hugetlb-related page reserves for children. This only
393 * affects MAP_PRIVATE mappings. Faults generated by the child
394 * are not guaranteed to succeed, even if read-only
396 if (is_vm_hugetlb_page(tmp))
397 reset_vma_resv_huge_pages(tmp);
400 * Link in the new vma and copy the page table entries.
403 pprev = &tmp->vm_next;
407 __vma_link_rb(mm, tmp, rb_link, rb_parent);
408 rb_link = &tmp->vm_rb.rb_right;
409 rb_parent = &tmp->vm_rb;
412 retval = copy_page_range(mm, oldmm, mpnt);
414 if (tmp->vm_ops && tmp->vm_ops->open)
415 tmp->vm_ops->open(tmp);
420 /* a new mm has just been created */
421 arch_dup_mmap(oldmm, mm);
424 up_write(&mm->mmap_sem);
426 up_write(&oldmm->mmap_sem);
428 fail_nomem_anon_vma_fork:
431 kmem_cache_free(vm_area_cachep, tmp);
434 vm_unacct_memory(charge);
438 static inline int mm_alloc_pgd(struct mm_struct *mm)
440 mm->pgd = pgd_alloc(mm);
441 if (unlikely(!mm->pgd))
446 static inline void mm_free_pgd(struct mm_struct *mm)
448 pgd_free(mm, mm->pgd);
451 #define dup_mmap(mm, oldmm) (0)
452 #define mm_alloc_pgd(mm) (0)
453 #define mm_free_pgd(mm)
454 #endif /* CONFIG_MMU */
456 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
458 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
459 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
461 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
463 static int __init coredump_filter_setup(char *s)
465 default_dump_filter =
466 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
467 MMF_DUMP_FILTER_MASK;
471 __setup("coredump_filter=", coredump_filter_setup);
473 #include <linux/init_task.h>
475 static void mm_init_aio(struct mm_struct *mm)
478 spin_lock_init(&mm->ioctx_lock);
479 INIT_HLIST_HEAD(&mm->ioctx_list);
483 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
485 atomic_set(&mm->mm_users, 1);
486 atomic_set(&mm->mm_count, 1);
487 init_rwsem(&mm->mmap_sem);
488 INIT_LIST_HEAD(&mm->mmlist);
489 mm->flags = (current->mm) ?
490 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
491 mm->core_state = NULL;
493 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
494 spin_lock_init(&mm->page_table_lock);
495 mm->free_area_cache = TASK_UNMAPPED_BASE;
496 mm->cached_hole_size = ~0UL;
498 mm_init_owner(mm, p);
500 if (likely(!mm_alloc_pgd(mm))) {
502 mmu_notifier_mm_init(mm);
511 * Allocate and initialize an mm_struct.
513 struct mm_struct *mm_alloc(void)
515 struct mm_struct *mm;
521 memset(mm, 0, sizeof(*mm));
523 return mm_init(mm, current);
527 * Called when the last reference to the mm
528 * is dropped: either by a lazy thread or by
529 * mmput. Free the page directory and the mm.
531 void __mmdrop(struct mm_struct *mm)
533 BUG_ON(mm == &init_mm);
536 mmu_notifier_mm_destroy(mm);
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 VM_BUG_ON(mm->pmd_huge_pte);
542 EXPORT_SYMBOL_GPL(__mmdrop);
545 * Decrement the use count and release all resources for an mm.
547 void mmput(struct mm_struct *mm)
551 if (atomic_dec_and_test(&mm->mm_users)) {
554 khugepaged_exit(mm); /* must run before exit_mmap */
556 set_mm_exe_file(mm, NULL);
557 if (!list_empty(&mm->mmlist)) {
558 spin_lock(&mmlist_lock);
559 list_del(&mm->mmlist);
560 spin_unlock(&mmlist_lock);
564 module_put(mm->binfmt->module);
568 EXPORT_SYMBOL_GPL(mmput);
571 * We added or removed a vma mapping the executable. The vmas are only mapped
572 * during exec and are not mapped with the mmap system call.
573 * Callers must hold down_write() on the mm's mmap_sem for these
575 void added_exe_file_vma(struct mm_struct *mm)
577 mm->num_exe_file_vmas++;
580 void removed_exe_file_vma(struct mm_struct *mm)
582 mm->num_exe_file_vmas--;
583 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
590 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
593 get_file(new_exe_file);
596 mm->exe_file = new_exe_file;
597 mm->num_exe_file_vmas = 0;
600 struct file *get_mm_exe_file(struct mm_struct *mm)
602 struct file *exe_file;
604 /* We need mmap_sem to protect against races with removal of
605 * VM_EXECUTABLE vmas */
606 down_read(&mm->mmap_sem);
607 exe_file = mm->exe_file;
610 up_read(&mm->mmap_sem);
614 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
616 /* It's safe to write the exe_file pointer without exe_file_lock because
617 * this is called during fork when the task is not yet in /proc */
618 newmm->exe_file = get_mm_exe_file(oldmm);
622 * get_task_mm - acquire a reference to the task's mm
624 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
625 * this kernel workthread has transiently adopted a user mm with use_mm,
626 * to do its AIO) is not set and if so returns a reference to it, after
627 * bumping up the use count. User must release the mm via mmput()
628 * after use. Typically used by /proc and ptrace.
630 struct mm_struct *get_task_mm(struct task_struct *task)
632 struct mm_struct *mm;
637 if (task->flags & PF_KTHREAD)
640 atomic_inc(&mm->mm_users);
645 EXPORT_SYMBOL_GPL(get_task_mm);
647 /* Please note the differences between mmput and mm_release.
648 * mmput is called whenever we stop holding onto a mm_struct,
649 * error success whatever.
651 * mm_release is called after a mm_struct has been removed
652 * from the current process.
654 * This difference is important for error handling, when we
655 * only half set up a mm_struct for a new process and need to restore
656 * the old one. Because we mmput the new mm_struct before
657 * restoring the old one. . .
658 * Eric Biederman 10 January 1998
660 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
662 struct completion *vfork_done = tsk->vfork_done;
664 /* Get rid of any futexes when releasing the mm */
666 if (unlikely(tsk->robust_list)) {
667 exit_robust_list(tsk);
668 tsk->robust_list = NULL;
671 if (unlikely(tsk->compat_robust_list)) {
672 compat_exit_robust_list(tsk);
673 tsk->compat_robust_list = NULL;
676 if (unlikely(!list_empty(&tsk->pi_state_list)))
677 exit_pi_state_list(tsk);
680 /* Get rid of any cached register state */
681 deactivate_mm(tsk, mm);
683 /* notify parent sleeping on vfork() */
685 tsk->vfork_done = NULL;
686 complete(vfork_done);
690 * If we're exiting normally, clear a user-space tid field if
691 * requested. We leave this alone when dying by signal, to leave
692 * the value intact in a core dump, and to save the unnecessary
693 * trouble otherwise. Userland only wants this done for a sys_exit.
695 if (tsk->clear_child_tid) {
696 if (!(tsk->flags & PF_SIGNALED) &&
697 atomic_read(&mm->mm_users) > 1) {
699 * We don't check the error code - if userspace has
700 * not set up a proper pointer then tough luck.
702 put_user(0, tsk->clear_child_tid);
703 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
706 tsk->clear_child_tid = NULL;
711 * Allocate a new mm structure and copy contents from the
712 * mm structure of the passed in task structure.
714 struct mm_struct *dup_mm(struct task_struct *tsk)
716 struct mm_struct *mm, *oldmm = current->mm;
726 memcpy(mm, oldmm, sizeof(*mm));
729 /* Initializing for Swap token stuff */
730 mm->token_priority = 0;
731 mm->last_interval = 0;
733 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
734 mm->pmd_huge_pte = NULL;
737 if (!mm_init(mm, tsk))
740 if (init_new_context(tsk, mm))
743 dup_mm_exe_file(oldmm, mm);
745 err = dup_mmap(mm, oldmm);
749 mm->hiwater_rss = get_mm_rss(mm);
750 mm->hiwater_vm = mm->total_vm;
752 if (mm->binfmt && !try_module_get(mm->binfmt->module))
758 /* don't put binfmt in mmput, we haven't got module yet */
767 * If init_new_context() failed, we cannot use mmput() to free the mm
768 * because it calls destroy_context()
775 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
777 struct mm_struct *mm, *oldmm;
780 tsk->min_flt = tsk->maj_flt = 0;
781 tsk->nvcsw = tsk->nivcsw = 0;
782 #ifdef CONFIG_DETECT_HUNG_TASK
783 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
787 tsk->active_mm = NULL;
790 * Are we cloning a kernel thread?
792 * We need to steal a active VM for that..
798 if (clone_flags & CLONE_VM) {
799 atomic_inc(&oldmm->mm_users);
810 /* Initializing for Swap token stuff */
811 mm->token_priority = 0;
812 mm->last_interval = 0;
822 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
824 struct fs_struct *fs = current->fs;
825 if (clone_flags & CLONE_FS) {
826 /* tsk->fs is already what we want */
827 spin_lock(&fs->lock);
829 spin_unlock(&fs->lock);
833 spin_unlock(&fs->lock);
836 tsk->fs = copy_fs_struct(fs);
842 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
844 struct files_struct *oldf, *newf;
848 * A background process may not have any files ...
850 oldf = current->files;
854 if (clone_flags & CLONE_FILES) {
855 atomic_inc(&oldf->count);
859 newf = dup_fd(oldf, &error);
869 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
872 struct io_context *ioc = current->io_context;
877 * Share io context with parent, if CLONE_IO is set
879 if (clone_flags & CLONE_IO) {
880 tsk->io_context = ioc_task_link(ioc);
881 if (unlikely(!tsk->io_context))
883 } else if (ioprio_valid(ioc->ioprio)) {
884 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
885 if (unlikely(!tsk->io_context))
888 tsk->io_context->ioprio = ioc->ioprio;
894 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
896 struct sighand_struct *sig;
898 if (clone_flags & CLONE_SIGHAND) {
899 atomic_inc(¤t->sighand->count);
902 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
903 rcu_assign_pointer(tsk->sighand, sig);
906 atomic_set(&sig->count, 1);
907 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
911 void __cleanup_sighand(struct sighand_struct *sighand)
913 if (atomic_dec_and_test(&sighand->count))
914 kmem_cache_free(sighand_cachep, sighand);
919 * Initialize POSIX timer handling for a thread group.
921 static void posix_cpu_timers_init_group(struct signal_struct *sig)
923 unsigned long cpu_limit;
925 /* Thread group counters. */
926 thread_group_cputime_init(sig);
928 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
929 if (cpu_limit != RLIM_INFINITY) {
930 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
931 sig->cputimer.running = 1;
934 /* The timer lists. */
935 INIT_LIST_HEAD(&sig->cpu_timers[0]);
936 INIT_LIST_HEAD(&sig->cpu_timers[1]);
937 INIT_LIST_HEAD(&sig->cpu_timers[2]);
940 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
942 struct signal_struct *sig;
944 if (clone_flags & CLONE_THREAD)
947 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
953 atomic_set(&sig->live, 1);
954 atomic_set(&sig->sigcnt, 1);
955 init_waitqueue_head(&sig->wait_chldexit);
956 if (clone_flags & CLONE_NEWPID)
957 sig->flags |= SIGNAL_UNKILLABLE;
958 sig->curr_target = tsk;
959 init_sigpending(&sig->shared_pending);
960 INIT_LIST_HEAD(&sig->posix_timers);
962 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
963 sig->real_timer.function = it_real_fn;
965 task_lock(current->group_leader);
966 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
967 task_unlock(current->group_leader);
969 posix_cpu_timers_init_group(sig);
972 sched_autogroup_fork(sig);
974 #ifdef CONFIG_CGROUPS
975 init_rwsem(&sig->threadgroup_fork_lock);
978 sig->oom_adj = current->signal->oom_adj;
979 sig->oom_score_adj = current->signal->oom_score_adj;
980 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
982 mutex_init(&sig->cred_guard_mutex);
987 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
989 unsigned long new_flags = p->flags;
991 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
992 new_flags |= PF_FORKNOEXEC;
993 new_flags |= PF_STARTING;
994 p->flags = new_flags;
995 clear_freeze_flag(p);
998 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1000 current->clear_child_tid = tidptr;
1002 return task_pid_vnr(current);
1005 static void rt_mutex_init_task(struct task_struct *p)
1007 raw_spin_lock_init(&p->pi_lock);
1008 #ifdef CONFIG_RT_MUTEXES
1009 plist_head_init(&p->pi_waiters);
1010 p->pi_blocked_on = NULL;
1014 #ifdef CONFIG_MM_OWNER
1015 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1019 #endif /* CONFIG_MM_OWNER */
1022 * Initialize POSIX timer handling for a single task.
1024 static void posix_cpu_timers_init(struct task_struct *tsk)
1026 tsk->cputime_expires.prof_exp = cputime_zero;
1027 tsk->cputime_expires.virt_exp = cputime_zero;
1028 tsk->cputime_expires.sched_exp = 0;
1029 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1030 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1031 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1035 * This creates a new process as a copy of the old one,
1036 * but does not actually start it yet.
1038 * It copies the registers, and all the appropriate
1039 * parts of the process environment (as per the clone
1040 * flags). The actual kick-off is left to the caller.
1042 static struct task_struct *copy_process(unsigned long clone_flags,
1043 unsigned long stack_start,
1044 struct pt_regs *regs,
1045 unsigned long stack_size,
1046 int __user *child_tidptr,
1051 struct task_struct *p;
1052 int cgroup_callbacks_done = 0;
1054 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1055 return ERR_PTR(-EINVAL);
1058 * Thread groups must share signals as well, and detached threads
1059 * can only be started up within the thread group.
1061 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1062 return ERR_PTR(-EINVAL);
1065 * Shared signal handlers imply shared VM. By way of the above,
1066 * thread groups also imply shared VM. Blocking this case allows
1067 * for various simplifications in other code.
1069 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1070 return ERR_PTR(-EINVAL);
1073 * Siblings of global init remain as zombies on exit since they are
1074 * not reaped by their parent (swapper). To solve this and to avoid
1075 * multi-rooted process trees, prevent global and container-inits
1076 * from creating siblings.
1078 if ((clone_flags & CLONE_PARENT) &&
1079 current->signal->flags & SIGNAL_UNKILLABLE)
1080 return ERR_PTR(-EINVAL);
1082 retval = security_task_create(clone_flags);
1087 p = dup_task_struct(current);
1091 ftrace_graph_init_task(p);
1093 rt_mutex_init_task(p);
1095 #ifdef CONFIG_PROVE_LOCKING
1096 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1097 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1100 if (atomic_read(&p->real_cred->user->processes) >=
1101 task_rlimit(p, RLIMIT_NPROC)) {
1102 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1103 p->real_cred->user != INIT_USER)
1106 current->flags &= ~PF_NPROC_EXCEEDED;
1108 retval = copy_creds(p, clone_flags);
1113 * If multiple threads are within copy_process(), then this check
1114 * triggers too late. This doesn't hurt, the check is only there
1115 * to stop root fork bombs.
1118 if (nr_threads >= max_threads)
1119 goto bad_fork_cleanup_count;
1121 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1122 goto bad_fork_cleanup_count;
1125 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1126 copy_flags(clone_flags, p);
1127 INIT_LIST_HEAD(&p->children);
1128 INIT_LIST_HEAD(&p->sibling);
1129 rcu_copy_process(p);
1130 p->vfork_done = NULL;
1131 spin_lock_init(&p->alloc_lock);
1133 init_sigpending(&p->pending);
1135 p->utime = cputime_zero;
1136 p->stime = cputime_zero;
1137 p->gtime = cputime_zero;
1138 p->utimescaled = cputime_zero;
1139 p->stimescaled = cputime_zero;
1140 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1141 p->prev_utime = cputime_zero;
1142 p->prev_stime = cputime_zero;
1144 #if defined(SPLIT_RSS_COUNTING)
1145 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1148 p->default_timer_slack_ns = current->timer_slack_ns;
1150 task_io_accounting_init(&p->ioac);
1151 acct_clear_integrals(p);
1153 posix_cpu_timers_init(p);
1155 do_posix_clock_monotonic_gettime(&p->start_time);
1156 p->real_start_time = p->start_time;
1157 monotonic_to_bootbased(&p->real_start_time);
1158 p->io_context = NULL;
1159 p->audit_context = NULL;
1160 if (clone_flags & CLONE_THREAD)
1161 threadgroup_fork_read_lock(current);
1164 p->mempolicy = mpol_dup(p->mempolicy);
1165 if (IS_ERR(p->mempolicy)) {
1166 retval = PTR_ERR(p->mempolicy);
1167 p->mempolicy = NULL;
1168 goto bad_fork_cleanup_cgroup;
1170 mpol_fix_fork_child_flag(p);
1172 #ifdef CONFIG_CPUSETS
1173 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1174 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1176 #ifdef CONFIG_TRACE_IRQFLAGS
1178 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1179 p->hardirqs_enabled = 1;
1181 p->hardirqs_enabled = 0;
1183 p->hardirq_enable_ip = 0;
1184 p->hardirq_enable_event = 0;
1185 p->hardirq_disable_ip = _THIS_IP_;
1186 p->hardirq_disable_event = 0;
1187 p->softirqs_enabled = 1;
1188 p->softirq_enable_ip = _THIS_IP_;
1189 p->softirq_enable_event = 0;
1190 p->softirq_disable_ip = 0;
1191 p->softirq_disable_event = 0;
1192 p->hardirq_context = 0;
1193 p->softirq_context = 0;
1195 #ifdef CONFIG_LOCKDEP
1196 p->lockdep_depth = 0; /* no locks held yet */
1197 p->curr_chain_key = 0;
1198 p->lockdep_recursion = 0;
1201 #ifdef CONFIG_DEBUG_MUTEXES
1202 p->blocked_on = NULL; /* not blocked yet */
1204 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1205 p->memcg_batch.do_batch = 0;
1206 p->memcg_batch.memcg = NULL;
1209 /* Perform scheduler related setup. Assign this task to a CPU. */
1212 retval = perf_event_init_task(p);
1214 goto bad_fork_cleanup_policy;
1215 retval = audit_alloc(p);
1217 goto bad_fork_cleanup_policy;
1218 /* copy all the process information */
1219 retval = copy_semundo(clone_flags, p);
1221 goto bad_fork_cleanup_audit;
1222 retval = copy_files(clone_flags, p);
1224 goto bad_fork_cleanup_semundo;
1225 retval = copy_fs(clone_flags, p);
1227 goto bad_fork_cleanup_files;
1228 retval = copy_sighand(clone_flags, p);
1230 goto bad_fork_cleanup_fs;
1231 retval = copy_signal(clone_flags, p);
1233 goto bad_fork_cleanup_sighand;
1234 retval = copy_mm(clone_flags, p);
1236 goto bad_fork_cleanup_signal;
1237 retval = copy_namespaces(clone_flags, p);
1239 goto bad_fork_cleanup_mm;
1240 retval = copy_io(clone_flags, p);
1242 goto bad_fork_cleanup_namespaces;
1243 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1245 goto bad_fork_cleanup_io;
1247 if (pid != &init_struct_pid) {
1249 pid = alloc_pid(p->nsproxy->pid_ns);
1251 goto bad_fork_cleanup_io;
1254 p->pid = pid_nr(pid);
1256 if (clone_flags & CLONE_THREAD)
1257 p->tgid = current->tgid;
1259 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1261 * Clear TID on mm_release()?
1263 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1268 p->robust_list = NULL;
1269 #ifdef CONFIG_COMPAT
1270 p->compat_robust_list = NULL;
1272 INIT_LIST_HEAD(&p->pi_state_list);
1273 p->pi_state_cache = NULL;
1276 * sigaltstack should be cleared when sharing the same VM
1278 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1279 p->sas_ss_sp = p->sas_ss_size = 0;
1282 * Syscall tracing and stepping should be turned off in the
1283 * child regardless of CLONE_PTRACE.
1285 user_disable_single_step(p);
1286 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1287 #ifdef TIF_SYSCALL_EMU
1288 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1290 clear_all_latency_tracing(p);
1292 /* ok, now we should be set up.. */
1293 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1294 p->pdeath_signal = 0;
1298 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1301 * Ok, make it visible to the rest of the system.
1302 * We dont wake it up yet.
1304 p->group_leader = p;
1305 INIT_LIST_HEAD(&p->thread_group);
1307 /* Now that the task is set up, run cgroup callbacks if
1308 * necessary. We need to run them before the task is visible
1309 * on the tasklist. */
1310 cgroup_fork_callbacks(p);
1311 cgroup_callbacks_done = 1;
1313 /* Need tasklist lock for parent etc handling! */
1314 write_lock_irq(&tasklist_lock);
1316 /* CLONE_PARENT re-uses the old parent */
1317 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1318 p->real_parent = current->real_parent;
1319 p->parent_exec_id = current->parent_exec_id;
1321 p->real_parent = current;
1322 p->parent_exec_id = current->self_exec_id;
1325 spin_lock(¤t->sighand->siglock);
1328 * Process group and session signals need to be delivered to just the
1329 * parent before the fork or both the parent and the child after the
1330 * fork. Restart if a signal comes in before we add the new process to
1331 * it's process group.
1332 * A fatal signal pending means that current will exit, so the new
1333 * thread can't slip out of an OOM kill (or normal SIGKILL).
1335 recalc_sigpending();
1336 if (signal_pending(current)) {
1337 spin_unlock(¤t->sighand->siglock);
1338 write_unlock_irq(&tasklist_lock);
1339 retval = -ERESTARTNOINTR;
1340 goto bad_fork_free_pid;
1343 if (clone_flags & CLONE_THREAD) {
1344 current->signal->nr_threads++;
1345 atomic_inc(¤t->signal->live);
1346 atomic_inc(¤t->signal->sigcnt);
1347 p->group_leader = current->group_leader;
1348 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1351 if (likely(p->pid)) {
1352 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1354 if (thread_group_leader(p)) {
1355 if (is_child_reaper(pid))
1356 p->nsproxy->pid_ns->child_reaper = p;
1358 p->signal->leader_pid = pid;
1359 p->signal->tty = tty_kref_get(current->signal->tty);
1360 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1361 attach_pid(p, PIDTYPE_SID, task_session(current));
1362 list_add_tail(&p->sibling, &p->real_parent->children);
1363 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1364 __this_cpu_inc(process_counts);
1366 attach_pid(p, PIDTYPE_PID, pid);
1371 spin_unlock(¤t->sighand->siglock);
1372 write_unlock_irq(&tasklist_lock);
1373 proc_fork_connector(p);
1374 cgroup_post_fork(p);
1375 if (clone_flags & CLONE_THREAD)
1376 threadgroup_fork_read_unlock(current);
1381 if (pid != &init_struct_pid)
1383 bad_fork_cleanup_io:
1386 bad_fork_cleanup_namespaces:
1387 exit_task_namespaces(p);
1388 bad_fork_cleanup_mm:
1391 bad_fork_cleanup_signal:
1392 if (!(clone_flags & CLONE_THREAD))
1393 free_signal_struct(p->signal);
1394 bad_fork_cleanup_sighand:
1395 __cleanup_sighand(p->sighand);
1396 bad_fork_cleanup_fs:
1397 exit_fs(p); /* blocking */
1398 bad_fork_cleanup_files:
1399 exit_files(p); /* blocking */
1400 bad_fork_cleanup_semundo:
1402 bad_fork_cleanup_audit:
1404 bad_fork_cleanup_policy:
1405 perf_event_free_task(p);
1407 mpol_put(p->mempolicy);
1408 bad_fork_cleanup_cgroup:
1410 if (clone_flags & CLONE_THREAD)
1411 threadgroup_fork_read_unlock(current);
1412 cgroup_exit(p, cgroup_callbacks_done);
1413 delayacct_tsk_free(p);
1414 module_put(task_thread_info(p)->exec_domain->module);
1415 bad_fork_cleanup_count:
1416 atomic_dec(&p->cred->user->processes);
1421 return ERR_PTR(retval);
1424 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1426 memset(regs, 0, sizeof(struct pt_regs));
1430 static inline void init_idle_pids(struct pid_link *links)
1434 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1435 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1436 links[type].pid = &init_struct_pid;
1440 struct task_struct * __cpuinit fork_idle(int cpu)
1442 struct task_struct *task;
1443 struct pt_regs regs;
1445 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL,
1446 &init_struct_pid, 0);
1447 if (!IS_ERR(task)) {
1448 init_idle_pids(task->pids);
1449 init_idle(task, cpu);
1456 * Ok, this is the main fork-routine.
1458 * It copies the process, and if successful kick-starts
1459 * it and waits for it to finish using the VM if required.
1461 long do_fork(unsigned long clone_flags,
1462 unsigned long stack_start,
1463 struct pt_regs *regs,
1464 unsigned long stack_size,
1465 int __user *parent_tidptr,
1466 int __user *child_tidptr)
1468 struct task_struct *p;
1473 * Do some preliminary argument and permissions checking before we
1474 * actually start allocating stuff
1476 if (clone_flags & CLONE_NEWUSER) {
1477 if (clone_flags & CLONE_THREAD)
1479 /* hopefully this check will go away when userns support is
1482 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1483 !capable(CAP_SETGID))
1488 * Determine whether and which event to report to ptracer. When
1489 * called from kernel_thread or CLONE_UNTRACED is explicitly
1490 * requested, no event is reported; otherwise, report if the event
1491 * for the type of forking is enabled.
1493 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1494 if (clone_flags & CLONE_VFORK)
1495 trace = PTRACE_EVENT_VFORK;
1496 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1497 trace = PTRACE_EVENT_CLONE;
1499 trace = PTRACE_EVENT_FORK;
1501 if (likely(!ptrace_event_enabled(current, trace)))
1505 p = copy_process(clone_flags, stack_start, regs, stack_size,
1506 child_tidptr, NULL, trace);
1508 * Do this prior waking up the new thread - the thread pointer
1509 * might get invalid after that point, if the thread exits quickly.
1512 struct completion vfork;
1514 trace_sched_process_fork(current, p);
1516 nr = task_pid_vnr(p);
1518 if (clone_flags & CLONE_PARENT_SETTID)
1519 put_user(nr, parent_tidptr);
1521 if (clone_flags & CLONE_VFORK) {
1522 p->vfork_done = &vfork;
1523 init_completion(&vfork);
1526 audit_finish_fork(p);
1529 * We set PF_STARTING at creation in case tracing wants to
1530 * use this to distinguish a fully live task from one that
1531 * hasn't finished SIGSTOP raising yet. Now we clear it
1532 * and set the child going.
1534 p->flags &= ~PF_STARTING;
1536 wake_up_new_task(p);
1538 /* forking complete and child started to run, tell ptracer */
1539 if (unlikely(trace))
1540 ptrace_event(trace, nr);
1542 if (clone_flags & CLONE_VFORK) {
1543 freezer_do_not_count();
1544 wait_for_completion(&vfork);
1546 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1554 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1555 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1558 static void sighand_ctor(void *data)
1560 struct sighand_struct *sighand = data;
1562 spin_lock_init(&sighand->siglock);
1563 init_waitqueue_head(&sighand->signalfd_wqh);
1566 void __init proc_caches_init(void)
1568 sighand_cachep = kmem_cache_create("sighand_cache",
1569 sizeof(struct sighand_struct), 0,
1570 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1571 SLAB_NOTRACK, sighand_ctor);
1572 signal_cachep = kmem_cache_create("signal_cache",
1573 sizeof(struct signal_struct), 0,
1574 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1575 files_cachep = kmem_cache_create("files_cache",
1576 sizeof(struct files_struct), 0,
1577 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1578 fs_cachep = kmem_cache_create("fs_cache",
1579 sizeof(struct fs_struct), 0,
1580 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1582 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1583 * whole struct cpumask for the OFFSTACK case. We could change
1584 * this to *only* allocate as much of it as required by the
1585 * maximum number of CPU's we can ever have. The cpumask_allocation
1586 * is at the end of the structure, exactly for that reason.
1588 mm_cachep = kmem_cache_create("mm_struct",
1589 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1590 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1591 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1593 nsproxy_cache_init();
1597 * Check constraints on flags passed to the unshare system call.
1599 static int check_unshare_flags(unsigned long unshare_flags)
1601 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1602 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1603 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1606 * Not implemented, but pretend it works if there is nothing to
1607 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1608 * needs to unshare vm.
1610 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1611 /* FIXME: get_task_mm() increments ->mm_users */
1612 if (atomic_read(¤t->mm->mm_users) > 1)
1620 * Unshare the filesystem structure if it is being shared
1622 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1624 struct fs_struct *fs = current->fs;
1626 if (!(unshare_flags & CLONE_FS) || !fs)
1629 /* don't need lock here; in the worst case we'll do useless copy */
1633 *new_fsp = copy_fs_struct(fs);
1641 * Unshare file descriptor table if it is being shared
1643 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1645 struct files_struct *fd = current->files;
1648 if ((unshare_flags & CLONE_FILES) &&
1649 (fd && atomic_read(&fd->count) > 1)) {
1650 *new_fdp = dup_fd(fd, &error);
1659 * unshare allows a process to 'unshare' part of the process
1660 * context which was originally shared using clone. copy_*
1661 * functions used by do_fork() cannot be used here directly
1662 * because they modify an inactive task_struct that is being
1663 * constructed. Here we are modifying the current, active,
1666 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1668 struct fs_struct *fs, *new_fs = NULL;
1669 struct files_struct *fd, *new_fd = NULL;
1670 struct nsproxy *new_nsproxy = NULL;
1674 err = check_unshare_flags(unshare_flags);
1676 goto bad_unshare_out;
1679 * If unsharing namespace, must also unshare filesystem information.
1681 if (unshare_flags & CLONE_NEWNS)
1682 unshare_flags |= CLONE_FS;
1684 * CLONE_NEWIPC must also detach from the undolist: after switching
1685 * to a new ipc namespace, the semaphore arrays from the old
1686 * namespace are unreachable.
1688 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1690 err = unshare_fs(unshare_flags, &new_fs);
1692 goto bad_unshare_out;
1693 err = unshare_fd(unshare_flags, &new_fd);
1695 goto bad_unshare_cleanup_fs;
1696 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1698 goto bad_unshare_cleanup_fd;
1700 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1703 * CLONE_SYSVSEM is equivalent to sys_exit().
1709 switch_task_namespaces(current, new_nsproxy);
1717 spin_lock(&fs->lock);
1718 current->fs = new_fs;
1723 spin_unlock(&fs->lock);
1727 fd = current->files;
1728 current->files = new_fd;
1732 task_unlock(current);
1736 put_nsproxy(new_nsproxy);
1738 bad_unshare_cleanup_fd:
1740 put_files_struct(new_fd);
1742 bad_unshare_cleanup_fs:
1744 free_fs_struct(new_fs);
1751 * Helper to unshare the files of the current task.
1752 * We don't want to expose copy_files internals to
1753 * the exec layer of the kernel.
1756 int unshare_files(struct files_struct **displaced)
1758 struct task_struct *task = current;
1759 struct files_struct *copy = NULL;
1762 error = unshare_fd(CLONE_FILES, ©);
1763 if (error || !copy) {
1767 *displaced = task->files;