4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
87 #include <trace/events/sched.h>
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
93 * Minimum number of threads to boot the kernel
95 #define MIN_THREADS 20
98 * Maximum number of threads
100 #define MAX_THREADS FUTEX_TID_MASK
103 * Protected counters by write_lock_irq(&tasklist_lock)
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
108 int max_threads; /* tunable limit on nr_threads */
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
117 return lockdep_is_held(&tasklist_lock);
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
122 int nr_processes(void)
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
133 void __weak arch_release_task_struct(struct task_struct *tsk)
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
140 static inline struct task_struct *alloc_task_struct_node(int node)
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
145 static inline void free_task_struct(struct task_struct *tsk)
147 kmem_cache_free(task_struct_cachep, tsk);
151 void __weak arch_release_thread_stack(unsigned long *stack)
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
163 #ifdef CONFIG_VMAP_STACK
165 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
166 * flush. Try to minimize the number of calls by caching stacks.
168 #define NR_CACHED_STACKS 2
169 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
172 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
174 #ifdef CONFIG_VMAP_STACK
179 for (i = 0; i < NR_CACHED_STACKS; i++) {
180 struct vm_struct *s = this_cpu_read(cached_stacks[i]);
184 this_cpu_write(cached_stacks[i], NULL);
186 tsk->stack_vm_area = s;
192 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
193 VMALLOC_START, VMALLOC_END,
194 THREADINFO_GFP | __GFP_HIGHMEM,
196 0, node, __builtin_return_address(0));
199 * We can't call find_vm_area() in interrupt context, and
200 * free_thread_stack() can be called in interrupt context,
201 * so cache the vm_struct.
204 tsk->stack_vm_area = find_vm_area(stack);
207 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
210 return page ? page_address(page) : NULL;
214 static inline void free_thread_stack(struct task_struct *tsk)
216 #ifdef CONFIG_VMAP_STACK
217 if (task_stack_vm_area(tsk)) {
221 local_irq_save(flags);
222 for (i = 0; i < NR_CACHED_STACKS; i++) {
223 if (this_cpu_read(cached_stacks[i]))
226 this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
227 local_irq_restore(flags);
230 local_irq_restore(flags);
237 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
240 static struct kmem_cache *thread_stack_cache;
242 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
245 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
248 static void free_thread_stack(struct task_struct *tsk)
250 kmem_cache_free(thread_stack_cache, tsk->stack);
253 void thread_stack_cache_init(void)
255 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
256 THREAD_SIZE, 0, NULL);
257 BUG_ON(thread_stack_cache == NULL);
262 /* SLAB cache for signal_struct structures (tsk->signal) */
263 static struct kmem_cache *signal_cachep;
265 /* SLAB cache for sighand_struct structures (tsk->sighand) */
266 struct kmem_cache *sighand_cachep;
268 /* SLAB cache for files_struct structures (tsk->files) */
269 struct kmem_cache *files_cachep;
271 /* SLAB cache for fs_struct structures (tsk->fs) */
272 struct kmem_cache *fs_cachep;
274 /* SLAB cache for vm_area_struct structures */
275 struct kmem_cache *vm_area_cachep;
277 /* SLAB cache for mm_struct structures (tsk->mm) */
278 static struct kmem_cache *mm_cachep;
280 static void account_kernel_stack(struct task_struct *tsk, int account)
282 void *stack = task_stack_page(tsk);
283 struct vm_struct *vm = task_stack_vm_area(tsk);
285 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
290 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
292 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
293 mod_zone_page_state(page_zone(vm->pages[i]),
295 PAGE_SIZE / 1024 * account);
298 /* All stack pages belong to the same memcg. */
299 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
300 account * (THREAD_SIZE / 1024));
303 * All stack pages are in the same zone and belong to the
306 struct page *first_page = virt_to_page(stack);
308 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
309 THREAD_SIZE / 1024 * account);
311 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
312 account * (THREAD_SIZE / 1024));
316 static void release_task_stack(struct task_struct *tsk)
318 account_kernel_stack(tsk, -1);
319 arch_release_thread_stack(tsk->stack);
320 free_thread_stack(tsk);
322 #ifdef CONFIG_VMAP_STACK
323 tsk->stack_vm_area = NULL;
327 #ifdef CONFIG_THREAD_INFO_IN_TASK
328 void put_task_stack(struct task_struct *tsk)
330 if (atomic_dec_and_test(&tsk->stack_refcount))
331 release_task_stack(tsk);
335 void free_task(struct task_struct *tsk)
337 #ifndef CONFIG_THREAD_INFO_IN_TASK
339 * The task is finally done with both the stack and thread_info,
342 release_task_stack(tsk);
345 * If the task had a separate stack allocation, it should be gone
348 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
350 rt_mutex_debug_task_free(tsk);
351 ftrace_graph_exit_task(tsk);
352 put_seccomp_filter(tsk);
353 arch_release_task_struct(tsk);
354 free_task_struct(tsk);
356 EXPORT_SYMBOL(free_task);
358 static inline void free_signal_struct(struct signal_struct *sig)
360 taskstats_tgid_free(sig);
361 sched_autogroup_exit(sig);
362 kmem_cache_free(signal_cachep, sig);
365 static inline void put_signal_struct(struct signal_struct *sig)
367 if (atomic_dec_and_test(&sig->sigcnt))
368 free_signal_struct(sig);
371 void __put_task_struct(struct task_struct *tsk)
373 WARN_ON(!tsk->exit_state);
374 WARN_ON(atomic_read(&tsk->usage));
375 WARN_ON(tsk == current);
379 security_task_free(tsk);
381 delayacct_tsk_free(tsk);
382 put_signal_struct(tsk->signal);
384 if (!profile_handoff_task(tsk))
387 EXPORT_SYMBOL_GPL(__put_task_struct);
389 void __init __weak arch_task_cache_init(void) { }
394 static void set_max_threads(unsigned int max_threads_suggested)
399 * The number of threads shall be limited such that the thread
400 * structures may only consume a small part of the available memory.
402 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
403 threads = MAX_THREADS;
405 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
406 (u64) THREAD_SIZE * 8UL);
408 if (threads > max_threads_suggested)
409 threads = max_threads_suggested;
411 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
414 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
415 /* Initialized by the architecture: */
416 int arch_task_struct_size __read_mostly;
419 void __init fork_init(void)
421 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
422 #ifndef ARCH_MIN_TASKALIGN
423 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
425 /* create a slab on which task_structs can be allocated */
426 task_struct_cachep = kmem_cache_create("task_struct",
427 arch_task_struct_size, ARCH_MIN_TASKALIGN,
428 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
431 /* do the arch specific task caches init */
432 arch_task_cache_init();
434 set_max_threads(MAX_THREADS);
436 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
437 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
438 init_task.signal->rlim[RLIMIT_SIGPENDING] =
439 init_task.signal->rlim[RLIMIT_NPROC];
442 int __weak arch_dup_task_struct(struct task_struct *dst,
443 struct task_struct *src)
449 void set_task_stack_end_magic(struct task_struct *tsk)
451 unsigned long *stackend;
453 stackend = end_of_stack(tsk);
454 *stackend = STACK_END_MAGIC; /* for overflow detection */
457 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
459 struct task_struct *tsk;
460 unsigned long *stack;
461 struct vm_struct *stack_vm_area;
464 if (node == NUMA_NO_NODE)
465 node = tsk_fork_get_node(orig);
466 tsk = alloc_task_struct_node(node);
470 stack = alloc_thread_stack_node(tsk, node);
474 stack_vm_area = task_stack_vm_area(tsk);
476 err = arch_dup_task_struct(tsk, orig);
479 * arch_dup_task_struct() clobbers the stack-related fields. Make
480 * sure they're properly initialized before using any stack-related
484 #ifdef CONFIG_VMAP_STACK
485 tsk->stack_vm_area = stack_vm_area;
487 #ifdef CONFIG_THREAD_INFO_IN_TASK
488 atomic_set(&tsk->stack_refcount, 1);
494 #ifdef CONFIG_SECCOMP
496 * We must handle setting up seccomp filters once we're under
497 * the sighand lock in case orig has changed between now and
498 * then. Until then, filter must be NULL to avoid messing up
499 * the usage counts on the error path calling free_task.
501 tsk->seccomp.filter = NULL;
504 setup_thread_stack(tsk, orig);
505 clear_user_return_notifier(tsk);
506 clear_tsk_need_resched(tsk);
507 set_task_stack_end_magic(tsk);
509 #ifdef CONFIG_CC_STACKPROTECTOR
510 tsk->stack_canary = get_random_int();
514 * One for us, one for whoever does the "release_task()" (usually
517 atomic_set(&tsk->usage, 2);
518 #ifdef CONFIG_BLK_DEV_IO_TRACE
521 tsk->splice_pipe = NULL;
522 tsk->task_frag.page = NULL;
523 tsk->wake_q.next = NULL;
525 account_kernel_stack(tsk, 1);
532 free_thread_stack(tsk);
534 free_task_struct(tsk);
539 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
541 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
542 struct rb_node **rb_link, *rb_parent;
544 unsigned long charge;
546 uprobe_start_dup_mmap();
547 if (down_write_killable(&oldmm->mmap_sem)) {
549 goto fail_uprobe_end;
551 flush_cache_dup_mm(oldmm);
552 uprobe_dup_mmap(oldmm, mm);
554 * Not linked in yet - no deadlock potential:
556 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
558 /* No ordering required: file already has been exposed. */
559 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
561 mm->total_vm = oldmm->total_vm;
562 mm->data_vm = oldmm->data_vm;
563 mm->exec_vm = oldmm->exec_vm;
564 mm->stack_vm = oldmm->stack_vm;
566 rb_link = &mm->mm_rb.rb_node;
569 retval = ksm_fork(mm, oldmm);
572 retval = khugepaged_fork(mm, oldmm);
577 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
580 if (mpnt->vm_flags & VM_DONTCOPY) {
581 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
585 if (mpnt->vm_flags & VM_ACCOUNT) {
586 unsigned long len = vma_pages(mpnt);
588 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
592 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
596 INIT_LIST_HEAD(&tmp->anon_vma_chain);
597 retval = vma_dup_policy(mpnt, tmp);
599 goto fail_nomem_policy;
601 if (anon_vma_fork(tmp, mpnt))
602 goto fail_nomem_anon_vma_fork;
604 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
605 tmp->vm_next = tmp->vm_prev = NULL;
606 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
609 struct inode *inode = file_inode(file);
610 struct address_space *mapping = file->f_mapping;
613 if (tmp->vm_flags & VM_DENYWRITE)
614 atomic_dec(&inode->i_writecount);
615 i_mmap_lock_write(mapping);
616 if (tmp->vm_flags & VM_SHARED)
617 atomic_inc(&mapping->i_mmap_writable);
618 flush_dcache_mmap_lock(mapping);
619 /* insert tmp into the share list, just after mpnt */
620 vma_interval_tree_insert_after(tmp, mpnt,
622 flush_dcache_mmap_unlock(mapping);
623 i_mmap_unlock_write(mapping);
627 * Clear hugetlb-related page reserves for children. This only
628 * affects MAP_PRIVATE mappings. Faults generated by the child
629 * are not guaranteed to succeed, even if read-only
631 if (is_vm_hugetlb_page(tmp))
632 reset_vma_resv_huge_pages(tmp);
635 * Link in the new vma and copy the page table entries.
638 pprev = &tmp->vm_next;
642 __vma_link_rb(mm, tmp, rb_link, rb_parent);
643 rb_link = &tmp->vm_rb.rb_right;
644 rb_parent = &tmp->vm_rb;
647 retval = copy_page_range(mm, oldmm, mpnt);
649 if (tmp->vm_ops && tmp->vm_ops->open)
650 tmp->vm_ops->open(tmp);
655 /* a new mm has just been created */
656 arch_dup_mmap(oldmm, mm);
659 up_write(&mm->mmap_sem);
661 up_write(&oldmm->mmap_sem);
663 uprobe_end_dup_mmap();
665 fail_nomem_anon_vma_fork:
666 mpol_put(vma_policy(tmp));
668 kmem_cache_free(vm_area_cachep, tmp);
671 vm_unacct_memory(charge);
675 static inline int mm_alloc_pgd(struct mm_struct *mm)
677 mm->pgd = pgd_alloc(mm);
678 if (unlikely(!mm->pgd))
683 static inline void mm_free_pgd(struct mm_struct *mm)
685 pgd_free(mm, mm->pgd);
688 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
690 down_write(&oldmm->mmap_sem);
691 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
692 up_write(&oldmm->mmap_sem);
695 #define mm_alloc_pgd(mm) (0)
696 #define mm_free_pgd(mm)
697 #endif /* CONFIG_MMU */
699 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
701 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
702 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
704 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
706 static int __init coredump_filter_setup(char *s)
708 default_dump_filter =
709 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
710 MMF_DUMP_FILTER_MASK;
714 __setup("coredump_filter=", coredump_filter_setup);
716 #include <linux/init_task.h>
718 static void mm_init_aio(struct mm_struct *mm)
721 spin_lock_init(&mm->ioctx_lock);
722 mm->ioctx_table = NULL;
726 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
733 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
737 mm->vmacache_seqnum = 0;
738 atomic_set(&mm->mm_users, 1);
739 atomic_set(&mm->mm_count, 1);
740 init_rwsem(&mm->mmap_sem);
741 INIT_LIST_HEAD(&mm->mmlist);
742 mm->core_state = NULL;
743 atomic_long_set(&mm->nr_ptes, 0);
748 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
749 spin_lock_init(&mm->page_table_lock);
752 mm_init_owner(mm, p);
753 mmu_notifier_mm_init(mm);
754 clear_tlb_flush_pending(mm);
755 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
756 mm->pmd_huge_pte = NULL;
760 mm->flags = current->mm->flags & MMF_INIT_MASK;
761 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
763 mm->flags = default_dump_filter;
767 if (mm_alloc_pgd(mm))
770 if (init_new_context(p, mm))
782 static void check_mm(struct mm_struct *mm)
786 for (i = 0; i < NR_MM_COUNTERS; i++) {
787 long x = atomic_long_read(&mm->rss_stat.count[i]);
790 printk(KERN_ALERT "BUG: Bad rss-counter state "
791 "mm:%p idx:%d val:%ld\n", mm, i, x);
794 if (atomic_long_read(&mm->nr_ptes))
795 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
796 atomic_long_read(&mm->nr_ptes));
798 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
801 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
802 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
807 * Allocate and initialize an mm_struct.
809 struct mm_struct *mm_alloc(void)
811 struct mm_struct *mm;
817 memset(mm, 0, sizeof(*mm));
818 return mm_init(mm, current);
822 * Called when the last reference to the mm
823 * is dropped: either by a lazy thread or by
824 * mmput. Free the page directory and the mm.
826 void __mmdrop(struct mm_struct *mm)
828 BUG_ON(mm == &init_mm);
831 mmu_notifier_mm_destroy(mm);
835 EXPORT_SYMBOL_GPL(__mmdrop);
837 static inline void __mmput(struct mm_struct *mm)
839 VM_BUG_ON(atomic_read(&mm->mm_users));
841 uprobe_clear_state(mm);
844 khugepaged_exit(mm); /* must run before exit_mmap */
846 set_mm_exe_file(mm, NULL);
847 if (!list_empty(&mm->mmlist)) {
848 spin_lock(&mmlist_lock);
849 list_del(&mm->mmlist);
850 spin_unlock(&mmlist_lock);
853 module_put(mm->binfmt->module);
858 * Decrement the use count and release all resources for an mm.
860 void mmput(struct mm_struct *mm)
864 if (atomic_dec_and_test(&mm->mm_users))
867 EXPORT_SYMBOL_GPL(mmput);
870 static void mmput_async_fn(struct work_struct *work)
872 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
876 void mmput_async(struct mm_struct *mm)
878 if (atomic_dec_and_test(&mm->mm_users)) {
879 INIT_WORK(&mm->async_put_work, mmput_async_fn);
880 schedule_work(&mm->async_put_work);
886 * set_mm_exe_file - change a reference to the mm's executable file
888 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
890 * Main users are mmput() and sys_execve(). Callers prevent concurrent
891 * invocations: in mmput() nobody alive left, in execve task is single
892 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
893 * mm->exe_file, but does so without using set_mm_exe_file() in order
894 * to do avoid the need for any locks.
896 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
898 struct file *old_exe_file;
901 * It is safe to dereference the exe_file without RCU as
902 * this function is only called if nobody else can access
903 * this mm -- see comment above for justification.
905 old_exe_file = rcu_dereference_raw(mm->exe_file);
908 get_file(new_exe_file);
909 rcu_assign_pointer(mm->exe_file, new_exe_file);
915 * get_mm_exe_file - acquire a reference to the mm's executable file
917 * Returns %NULL if mm has no associated executable file.
918 * User must release file via fput().
920 struct file *get_mm_exe_file(struct mm_struct *mm)
922 struct file *exe_file;
925 exe_file = rcu_dereference(mm->exe_file);
926 if (exe_file && !get_file_rcu(exe_file))
931 EXPORT_SYMBOL(get_mm_exe_file);
934 * get_task_exe_file - acquire a reference to the task's executable file
936 * Returns %NULL if task's mm (if any) has no associated executable file or
937 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
938 * User must release file via fput().
940 struct file *get_task_exe_file(struct task_struct *task)
942 struct file *exe_file = NULL;
943 struct mm_struct *mm;
948 if (!(task->flags & PF_KTHREAD))
949 exe_file = get_mm_exe_file(mm);
954 EXPORT_SYMBOL(get_task_exe_file);
957 * get_task_mm - acquire a reference to the task's mm
959 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
960 * this kernel workthread has transiently adopted a user mm with use_mm,
961 * to do its AIO) is not set and if so returns a reference to it, after
962 * bumping up the use count. User must release the mm via mmput()
963 * after use. Typically used by /proc and ptrace.
965 struct mm_struct *get_task_mm(struct task_struct *task)
967 struct mm_struct *mm;
972 if (task->flags & PF_KTHREAD)
975 atomic_inc(&mm->mm_users);
980 EXPORT_SYMBOL_GPL(get_task_mm);
982 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
984 struct mm_struct *mm;
987 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
991 mm = get_task_mm(task);
992 if (mm && mm != current->mm &&
993 !ptrace_may_access(task, mode)) {
995 mm = ERR_PTR(-EACCES);
997 mutex_unlock(&task->signal->cred_guard_mutex);
1002 static void complete_vfork_done(struct task_struct *tsk)
1004 struct completion *vfork;
1007 vfork = tsk->vfork_done;
1008 if (likely(vfork)) {
1009 tsk->vfork_done = NULL;
1015 static int wait_for_vfork_done(struct task_struct *child,
1016 struct completion *vfork)
1020 freezer_do_not_count();
1021 killed = wait_for_completion_killable(vfork);
1026 child->vfork_done = NULL;
1030 put_task_struct(child);
1034 /* Please note the differences between mmput and mm_release.
1035 * mmput is called whenever we stop holding onto a mm_struct,
1036 * error success whatever.
1038 * mm_release is called after a mm_struct has been removed
1039 * from the current process.
1041 * This difference is important for error handling, when we
1042 * only half set up a mm_struct for a new process and need to restore
1043 * the old one. Because we mmput the new mm_struct before
1044 * restoring the old one. . .
1045 * Eric Biederman 10 January 1998
1047 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1049 /* Get rid of any futexes when releasing the mm */
1051 if (unlikely(tsk->robust_list)) {
1052 exit_robust_list(tsk);
1053 tsk->robust_list = NULL;
1055 #ifdef CONFIG_COMPAT
1056 if (unlikely(tsk->compat_robust_list)) {
1057 compat_exit_robust_list(tsk);
1058 tsk->compat_robust_list = NULL;
1061 if (unlikely(!list_empty(&tsk->pi_state_list)))
1062 exit_pi_state_list(tsk);
1065 uprobe_free_utask(tsk);
1067 /* Get rid of any cached register state */
1068 deactivate_mm(tsk, mm);
1071 * Signal userspace if we're not exiting with a core dump
1072 * because we want to leave the value intact for debugging
1075 if (tsk->clear_child_tid) {
1076 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1077 atomic_read(&mm->mm_users) > 1) {
1079 * We don't check the error code - if userspace has
1080 * not set up a proper pointer then tough luck.
1082 put_user(0, tsk->clear_child_tid);
1083 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1086 tsk->clear_child_tid = NULL;
1090 * All done, finally we can wake up parent and return this mm to him.
1091 * Also kthread_stop() uses this completion for synchronization.
1093 if (tsk->vfork_done)
1094 complete_vfork_done(tsk);
1098 * Allocate a new mm structure and copy contents from the
1099 * mm structure of the passed in task structure.
1101 static struct mm_struct *dup_mm(struct task_struct *tsk)
1103 struct mm_struct *mm, *oldmm = current->mm;
1110 memcpy(mm, oldmm, sizeof(*mm));
1112 if (!mm_init(mm, tsk))
1115 err = dup_mmap(mm, oldmm);
1119 mm->hiwater_rss = get_mm_rss(mm);
1120 mm->hiwater_vm = mm->total_vm;
1122 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1128 /* don't put binfmt in mmput, we haven't got module yet */
1136 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1138 struct mm_struct *mm, *oldmm;
1141 tsk->min_flt = tsk->maj_flt = 0;
1142 tsk->nvcsw = tsk->nivcsw = 0;
1143 #ifdef CONFIG_DETECT_HUNG_TASK
1144 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1148 tsk->active_mm = NULL;
1151 * Are we cloning a kernel thread?
1153 * We need to steal a active VM for that..
1155 oldmm = current->mm;
1159 /* initialize the new vmacache entries */
1160 vmacache_flush(tsk);
1162 if (clone_flags & CLONE_VM) {
1163 atomic_inc(&oldmm->mm_users);
1175 tsk->active_mm = mm;
1182 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1184 struct fs_struct *fs = current->fs;
1185 if (clone_flags & CLONE_FS) {
1186 /* tsk->fs is already what we want */
1187 spin_lock(&fs->lock);
1189 spin_unlock(&fs->lock);
1193 spin_unlock(&fs->lock);
1196 tsk->fs = copy_fs_struct(fs);
1202 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1204 struct files_struct *oldf, *newf;
1208 * A background process may not have any files ...
1210 oldf = current->files;
1214 if (clone_flags & CLONE_FILES) {
1215 atomic_inc(&oldf->count);
1219 newf = dup_fd(oldf, &error);
1229 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1232 struct io_context *ioc = current->io_context;
1233 struct io_context *new_ioc;
1238 * Share io context with parent, if CLONE_IO is set
1240 if (clone_flags & CLONE_IO) {
1242 tsk->io_context = ioc;
1243 } else if (ioprio_valid(ioc->ioprio)) {
1244 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1245 if (unlikely(!new_ioc))
1248 new_ioc->ioprio = ioc->ioprio;
1249 put_io_context(new_ioc);
1255 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1257 struct sighand_struct *sig;
1259 if (clone_flags & CLONE_SIGHAND) {
1260 atomic_inc(¤t->sighand->count);
1263 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1264 rcu_assign_pointer(tsk->sighand, sig);
1268 atomic_set(&sig->count, 1);
1269 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1273 void __cleanup_sighand(struct sighand_struct *sighand)
1275 if (atomic_dec_and_test(&sighand->count)) {
1276 signalfd_cleanup(sighand);
1278 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1279 * without an RCU grace period, see __lock_task_sighand().
1281 kmem_cache_free(sighand_cachep, sighand);
1286 * Initialize POSIX timer handling for a thread group.
1288 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1290 unsigned long cpu_limit;
1292 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1293 if (cpu_limit != RLIM_INFINITY) {
1294 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1295 sig->cputimer.running = true;
1298 /* The timer lists. */
1299 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1300 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1301 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1304 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1306 struct signal_struct *sig;
1308 if (clone_flags & CLONE_THREAD)
1311 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1316 sig->nr_threads = 1;
1317 atomic_set(&sig->live, 1);
1318 atomic_set(&sig->sigcnt, 1);
1320 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1321 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1322 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1324 init_waitqueue_head(&sig->wait_chldexit);
1325 sig->curr_target = tsk;
1326 init_sigpending(&sig->shared_pending);
1327 INIT_LIST_HEAD(&sig->posix_timers);
1328 seqlock_init(&sig->stats_lock);
1329 prev_cputime_init(&sig->prev_cputime);
1331 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1332 sig->real_timer.function = it_real_fn;
1334 task_lock(current->group_leader);
1335 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1336 task_unlock(current->group_leader);
1338 posix_cpu_timers_init_group(sig);
1340 tty_audit_fork(sig);
1341 sched_autogroup_fork(sig);
1343 sig->oom_score_adj = current->signal->oom_score_adj;
1344 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1346 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1347 current->signal->is_child_subreaper;
1349 mutex_init(&sig->cred_guard_mutex);
1354 static void copy_seccomp(struct task_struct *p)
1356 #ifdef CONFIG_SECCOMP
1358 * Must be called with sighand->lock held, which is common to
1359 * all threads in the group. Holding cred_guard_mutex is not
1360 * needed because this new task is not yet running and cannot
1363 assert_spin_locked(¤t->sighand->siglock);
1365 /* Ref-count the new filter user, and assign it. */
1366 get_seccomp_filter(current);
1367 p->seccomp = current->seccomp;
1370 * Explicitly enable no_new_privs here in case it got set
1371 * between the task_struct being duplicated and holding the
1372 * sighand lock. The seccomp state and nnp must be in sync.
1374 if (task_no_new_privs(current))
1375 task_set_no_new_privs(p);
1378 * If the parent gained a seccomp mode after copying thread
1379 * flags and between before we held the sighand lock, we have
1380 * to manually enable the seccomp thread flag here.
1382 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1383 set_tsk_thread_flag(p, TIF_SECCOMP);
1387 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1389 current->clear_child_tid = tidptr;
1391 return task_pid_vnr(current);
1394 static void rt_mutex_init_task(struct task_struct *p)
1396 raw_spin_lock_init(&p->pi_lock);
1397 #ifdef CONFIG_RT_MUTEXES
1398 p->pi_waiters = RB_ROOT;
1399 p->pi_waiters_leftmost = NULL;
1400 p->pi_blocked_on = NULL;
1405 * Initialize POSIX timer handling for a single task.
1407 static void posix_cpu_timers_init(struct task_struct *tsk)
1409 tsk->cputime_expires.prof_exp = 0;
1410 tsk->cputime_expires.virt_exp = 0;
1411 tsk->cputime_expires.sched_exp = 0;
1412 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1413 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1414 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1418 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1420 task->pids[type].pid = pid;
1424 * This creates a new process as a copy of the old one,
1425 * but does not actually start it yet.
1427 * It copies the registers, and all the appropriate
1428 * parts of the process environment (as per the clone
1429 * flags). The actual kick-off is left to the caller.
1431 static struct task_struct *copy_process(unsigned long clone_flags,
1432 unsigned long stack_start,
1433 unsigned long stack_size,
1434 int __user *child_tidptr,
1441 struct task_struct *p;
1443 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1444 return ERR_PTR(-EINVAL);
1446 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1447 return ERR_PTR(-EINVAL);
1450 * Thread groups must share signals as well, and detached threads
1451 * can only be started up within the thread group.
1453 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1454 return ERR_PTR(-EINVAL);
1457 * Shared signal handlers imply shared VM. By way of the above,
1458 * thread groups also imply shared VM. Blocking this case allows
1459 * for various simplifications in other code.
1461 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1462 return ERR_PTR(-EINVAL);
1465 * Siblings of global init remain as zombies on exit since they are
1466 * not reaped by their parent (swapper). To solve this and to avoid
1467 * multi-rooted process trees, prevent global and container-inits
1468 * from creating siblings.
1470 if ((clone_flags & CLONE_PARENT) &&
1471 current->signal->flags & SIGNAL_UNKILLABLE)
1472 return ERR_PTR(-EINVAL);
1475 * If the new process will be in a different pid or user namespace
1476 * do not allow it to share a thread group with the forking task.
1478 if (clone_flags & CLONE_THREAD) {
1479 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1480 (task_active_pid_ns(current) !=
1481 current->nsproxy->pid_ns_for_children))
1482 return ERR_PTR(-EINVAL);
1485 retval = security_task_create(clone_flags);
1490 p = dup_task_struct(current, node);
1494 ftrace_graph_init_task(p);
1496 rt_mutex_init_task(p);
1498 #ifdef CONFIG_PROVE_LOCKING
1499 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1500 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1503 if (atomic_read(&p->real_cred->user->processes) >=
1504 task_rlimit(p, RLIMIT_NPROC)) {
1505 if (p->real_cred->user != INIT_USER &&
1506 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1509 current->flags &= ~PF_NPROC_EXCEEDED;
1511 retval = copy_creds(p, clone_flags);
1516 * If multiple threads are within copy_process(), then this check
1517 * triggers too late. This doesn't hurt, the check is only there
1518 * to stop root fork bombs.
1521 if (nr_threads >= max_threads)
1522 goto bad_fork_cleanup_count;
1524 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1525 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1526 p->flags |= PF_FORKNOEXEC;
1527 INIT_LIST_HEAD(&p->children);
1528 INIT_LIST_HEAD(&p->sibling);
1529 rcu_copy_process(p);
1530 p->vfork_done = NULL;
1531 spin_lock_init(&p->alloc_lock);
1533 init_sigpending(&p->pending);
1535 p->utime = p->stime = p->gtime = 0;
1536 p->utimescaled = p->stimescaled = 0;
1537 prev_cputime_init(&p->prev_cputime);
1539 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1540 seqcount_init(&p->vtime_seqcount);
1542 p->vtime_snap_whence = VTIME_INACTIVE;
1545 #if defined(SPLIT_RSS_COUNTING)
1546 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1549 p->default_timer_slack_ns = current->timer_slack_ns;
1551 task_io_accounting_init(&p->ioac);
1552 acct_clear_integrals(p);
1554 posix_cpu_timers_init(p);
1556 p->start_time = ktime_get_ns();
1557 p->real_start_time = ktime_get_boot_ns();
1558 p->io_context = NULL;
1559 p->audit_context = NULL;
1562 p->mempolicy = mpol_dup(p->mempolicy);
1563 if (IS_ERR(p->mempolicy)) {
1564 retval = PTR_ERR(p->mempolicy);
1565 p->mempolicy = NULL;
1566 goto bad_fork_cleanup_threadgroup_lock;
1569 #ifdef CONFIG_CPUSETS
1570 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1571 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1572 seqcount_init(&p->mems_allowed_seq);
1574 #ifdef CONFIG_TRACE_IRQFLAGS
1576 p->hardirqs_enabled = 0;
1577 p->hardirq_enable_ip = 0;
1578 p->hardirq_enable_event = 0;
1579 p->hardirq_disable_ip = _THIS_IP_;
1580 p->hardirq_disable_event = 0;
1581 p->softirqs_enabled = 1;
1582 p->softirq_enable_ip = _THIS_IP_;
1583 p->softirq_enable_event = 0;
1584 p->softirq_disable_ip = 0;
1585 p->softirq_disable_event = 0;
1586 p->hardirq_context = 0;
1587 p->softirq_context = 0;
1590 p->pagefault_disabled = 0;
1592 #ifdef CONFIG_LOCKDEP
1593 p->lockdep_depth = 0; /* no locks held yet */
1594 p->curr_chain_key = 0;
1595 p->lockdep_recursion = 0;
1598 #ifdef CONFIG_DEBUG_MUTEXES
1599 p->blocked_on = NULL; /* not blocked yet */
1601 #ifdef CONFIG_BCACHE
1602 p->sequential_io = 0;
1603 p->sequential_io_avg = 0;
1606 /* Perform scheduler related setup. Assign this task to a CPU. */
1607 retval = sched_fork(clone_flags, p);
1609 goto bad_fork_cleanup_policy;
1611 retval = perf_event_init_task(p);
1613 goto bad_fork_cleanup_policy;
1614 retval = audit_alloc(p);
1616 goto bad_fork_cleanup_perf;
1617 /* copy all the process information */
1619 retval = copy_semundo(clone_flags, p);
1621 goto bad_fork_cleanup_audit;
1622 retval = copy_files(clone_flags, p);
1624 goto bad_fork_cleanup_semundo;
1625 retval = copy_fs(clone_flags, p);
1627 goto bad_fork_cleanup_files;
1628 retval = copy_sighand(clone_flags, p);
1630 goto bad_fork_cleanup_fs;
1631 retval = copy_signal(clone_flags, p);
1633 goto bad_fork_cleanup_sighand;
1634 retval = copy_mm(clone_flags, p);
1636 goto bad_fork_cleanup_signal;
1637 retval = copy_namespaces(clone_flags, p);
1639 goto bad_fork_cleanup_mm;
1640 retval = copy_io(clone_flags, p);
1642 goto bad_fork_cleanup_namespaces;
1643 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1645 goto bad_fork_cleanup_io;
1647 if (pid != &init_struct_pid) {
1648 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1650 retval = PTR_ERR(pid);
1651 goto bad_fork_cleanup_thread;
1655 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1657 * Clear TID on mm_release()?
1659 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1664 p->robust_list = NULL;
1665 #ifdef CONFIG_COMPAT
1666 p->compat_robust_list = NULL;
1668 INIT_LIST_HEAD(&p->pi_state_list);
1669 p->pi_state_cache = NULL;
1672 * sigaltstack should be cleared when sharing the same VM
1674 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1678 * Syscall tracing and stepping should be turned off in the
1679 * child regardless of CLONE_PTRACE.
1681 user_disable_single_step(p);
1682 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1683 #ifdef TIF_SYSCALL_EMU
1684 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1686 clear_all_latency_tracing(p);
1688 /* ok, now we should be set up.. */
1689 p->pid = pid_nr(pid);
1690 if (clone_flags & CLONE_THREAD) {
1691 p->exit_signal = -1;
1692 p->group_leader = current->group_leader;
1693 p->tgid = current->tgid;
1695 if (clone_flags & CLONE_PARENT)
1696 p->exit_signal = current->group_leader->exit_signal;
1698 p->exit_signal = (clone_flags & CSIGNAL);
1699 p->group_leader = p;
1704 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1705 p->dirty_paused_when = 0;
1707 p->pdeath_signal = 0;
1708 INIT_LIST_HEAD(&p->thread_group);
1709 p->task_works = NULL;
1711 threadgroup_change_begin(current);
1713 * Ensure that the cgroup subsystem policies allow the new process to be
1714 * forked. It should be noted the the new process's css_set can be changed
1715 * between here and cgroup_post_fork() if an organisation operation is in
1718 retval = cgroup_can_fork(p);
1720 goto bad_fork_free_pid;
1723 * Make it visible to the rest of the system, but dont wake it up yet.
1724 * Need tasklist lock for parent etc handling!
1726 write_lock_irq(&tasklist_lock);
1728 /* CLONE_PARENT re-uses the old parent */
1729 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1730 p->real_parent = current->real_parent;
1731 p->parent_exec_id = current->parent_exec_id;
1733 p->real_parent = current;
1734 p->parent_exec_id = current->self_exec_id;
1737 spin_lock(¤t->sighand->siglock);
1740 * Copy seccomp details explicitly here, in case they were changed
1741 * before holding sighand lock.
1746 * Process group and session signals need to be delivered to just the
1747 * parent before the fork or both the parent and the child after the
1748 * fork. Restart if a signal comes in before we add the new process to
1749 * it's process group.
1750 * A fatal signal pending means that current will exit, so the new
1751 * thread can't slip out of an OOM kill (or normal SIGKILL).
1753 recalc_sigpending();
1754 if (signal_pending(current)) {
1755 spin_unlock(¤t->sighand->siglock);
1756 write_unlock_irq(&tasklist_lock);
1757 retval = -ERESTARTNOINTR;
1758 goto bad_fork_cancel_cgroup;
1761 if (likely(p->pid)) {
1762 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1764 init_task_pid(p, PIDTYPE_PID, pid);
1765 if (thread_group_leader(p)) {
1766 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1767 init_task_pid(p, PIDTYPE_SID, task_session(current));
1769 if (is_child_reaper(pid)) {
1770 ns_of_pid(pid)->child_reaper = p;
1771 p->signal->flags |= SIGNAL_UNKILLABLE;
1774 p->signal->leader_pid = pid;
1775 p->signal->tty = tty_kref_get(current->signal->tty);
1776 list_add_tail(&p->sibling, &p->real_parent->children);
1777 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1778 attach_pid(p, PIDTYPE_PGID);
1779 attach_pid(p, PIDTYPE_SID);
1780 __this_cpu_inc(process_counts);
1782 current->signal->nr_threads++;
1783 atomic_inc(¤t->signal->live);
1784 atomic_inc(¤t->signal->sigcnt);
1785 list_add_tail_rcu(&p->thread_group,
1786 &p->group_leader->thread_group);
1787 list_add_tail_rcu(&p->thread_node,
1788 &p->signal->thread_head);
1790 attach_pid(p, PIDTYPE_PID);
1795 spin_unlock(¤t->sighand->siglock);
1796 syscall_tracepoint_update(p);
1797 write_unlock_irq(&tasklist_lock);
1799 proc_fork_connector(p);
1800 cgroup_post_fork(p);
1801 threadgroup_change_end(current);
1804 trace_task_newtask(p, clone_flags);
1805 uprobe_copy_process(p, clone_flags);
1809 bad_fork_cancel_cgroup:
1810 cgroup_cancel_fork(p);
1812 threadgroup_change_end(current);
1813 if (pid != &init_struct_pid)
1815 bad_fork_cleanup_thread:
1817 bad_fork_cleanup_io:
1820 bad_fork_cleanup_namespaces:
1821 exit_task_namespaces(p);
1822 bad_fork_cleanup_mm:
1825 bad_fork_cleanup_signal:
1826 if (!(clone_flags & CLONE_THREAD))
1827 free_signal_struct(p->signal);
1828 bad_fork_cleanup_sighand:
1829 __cleanup_sighand(p->sighand);
1830 bad_fork_cleanup_fs:
1831 exit_fs(p); /* blocking */
1832 bad_fork_cleanup_files:
1833 exit_files(p); /* blocking */
1834 bad_fork_cleanup_semundo:
1836 bad_fork_cleanup_audit:
1838 bad_fork_cleanup_perf:
1839 perf_event_free_task(p);
1840 bad_fork_cleanup_policy:
1842 mpol_put(p->mempolicy);
1843 bad_fork_cleanup_threadgroup_lock:
1845 delayacct_tsk_free(p);
1846 bad_fork_cleanup_count:
1847 atomic_dec(&p->cred->user->processes);
1853 return ERR_PTR(retval);
1856 static inline void init_idle_pids(struct pid_link *links)
1860 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1861 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1862 links[type].pid = &init_struct_pid;
1866 struct task_struct *fork_idle(int cpu)
1868 struct task_struct *task;
1869 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1871 if (!IS_ERR(task)) {
1872 init_idle_pids(task->pids);
1873 init_idle(task, cpu);
1880 * Ok, this is the main fork-routine.
1882 * It copies the process, and if successful kick-starts
1883 * it and waits for it to finish using the VM if required.
1885 long _do_fork(unsigned long clone_flags,
1886 unsigned long stack_start,
1887 unsigned long stack_size,
1888 int __user *parent_tidptr,
1889 int __user *child_tidptr,
1892 struct task_struct *p;
1897 * Determine whether and which event to report to ptracer. When
1898 * called from kernel_thread or CLONE_UNTRACED is explicitly
1899 * requested, no event is reported; otherwise, report if the event
1900 * for the type of forking is enabled.
1902 if (!(clone_flags & CLONE_UNTRACED)) {
1903 if (clone_flags & CLONE_VFORK)
1904 trace = PTRACE_EVENT_VFORK;
1905 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1906 trace = PTRACE_EVENT_CLONE;
1908 trace = PTRACE_EVENT_FORK;
1910 if (likely(!ptrace_event_enabled(current, trace)))
1914 p = copy_process(clone_flags, stack_start, stack_size,
1915 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1917 * Do this prior waking up the new thread - the thread pointer
1918 * might get invalid after that point, if the thread exits quickly.
1921 struct completion vfork;
1924 trace_sched_process_fork(current, p);
1926 pid = get_task_pid(p, PIDTYPE_PID);
1929 if (clone_flags & CLONE_PARENT_SETTID)
1930 put_user(nr, parent_tidptr);
1932 if (clone_flags & CLONE_VFORK) {
1933 p->vfork_done = &vfork;
1934 init_completion(&vfork);
1938 wake_up_new_task(p);
1940 /* forking complete and child started to run, tell ptracer */
1941 if (unlikely(trace))
1942 ptrace_event_pid(trace, pid);
1944 if (clone_flags & CLONE_VFORK) {
1945 if (!wait_for_vfork_done(p, &vfork))
1946 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1956 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1957 /* For compatibility with architectures that call do_fork directly rather than
1958 * using the syscall entry points below. */
1959 long do_fork(unsigned long clone_flags,
1960 unsigned long stack_start,
1961 unsigned long stack_size,
1962 int __user *parent_tidptr,
1963 int __user *child_tidptr)
1965 return _do_fork(clone_flags, stack_start, stack_size,
1966 parent_tidptr, child_tidptr, 0);
1971 * Create a kernel thread.
1973 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1975 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1976 (unsigned long)arg, NULL, NULL, 0);
1979 #ifdef __ARCH_WANT_SYS_FORK
1980 SYSCALL_DEFINE0(fork)
1983 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1985 /* can not support in nommu mode */
1991 #ifdef __ARCH_WANT_SYS_VFORK
1992 SYSCALL_DEFINE0(vfork)
1994 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1999 #ifdef __ARCH_WANT_SYS_CLONE
2000 #ifdef CONFIG_CLONE_BACKWARDS
2001 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2002 int __user *, parent_tidptr,
2004 int __user *, child_tidptr)
2005 #elif defined(CONFIG_CLONE_BACKWARDS2)
2006 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2007 int __user *, parent_tidptr,
2008 int __user *, child_tidptr,
2010 #elif defined(CONFIG_CLONE_BACKWARDS3)
2011 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2013 int __user *, parent_tidptr,
2014 int __user *, child_tidptr,
2017 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2018 int __user *, parent_tidptr,
2019 int __user *, child_tidptr,
2023 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2027 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2028 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2031 static void sighand_ctor(void *data)
2033 struct sighand_struct *sighand = data;
2035 spin_lock_init(&sighand->siglock);
2036 init_waitqueue_head(&sighand->signalfd_wqh);
2039 void __init proc_caches_init(void)
2041 sighand_cachep = kmem_cache_create("sighand_cache",
2042 sizeof(struct sighand_struct), 0,
2043 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2044 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2045 signal_cachep = kmem_cache_create("signal_cache",
2046 sizeof(struct signal_struct), 0,
2047 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2049 files_cachep = kmem_cache_create("files_cache",
2050 sizeof(struct files_struct), 0,
2051 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2053 fs_cachep = kmem_cache_create("fs_cache",
2054 sizeof(struct fs_struct), 0,
2055 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2058 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2059 * whole struct cpumask for the OFFSTACK case. We could change
2060 * this to *only* allocate as much of it as required by the
2061 * maximum number of CPU's we can ever have. The cpumask_allocation
2062 * is at the end of the structure, exactly for that reason.
2064 mm_cachep = kmem_cache_create("mm_struct",
2065 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2066 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2068 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2070 nsproxy_cache_init();
2074 * Check constraints on flags passed to the unshare system call.
2076 static int check_unshare_flags(unsigned long unshare_flags)
2078 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2079 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2080 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2081 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2084 * Not implemented, but pretend it works if there is nothing
2085 * to unshare. Note that unsharing the address space or the
2086 * signal handlers also need to unshare the signal queues (aka
2089 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2090 if (!thread_group_empty(current))
2093 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2094 if (atomic_read(¤t->sighand->count) > 1)
2097 if (unshare_flags & CLONE_VM) {
2098 if (!current_is_single_threaded())
2106 * Unshare the filesystem structure if it is being shared
2108 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2110 struct fs_struct *fs = current->fs;
2112 if (!(unshare_flags & CLONE_FS) || !fs)
2115 /* don't need lock here; in the worst case we'll do useless copy */
2119 *new_fsp = copy_fs_struct(fs);
2127 * Unshare file descriptor table if it is being shared
2129 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2131 struct files_struct *fd = current->files;
2134 if ((unshare_flags & CLONE_FILES) &&
2135 (fd && atomic_read(&fd->count) > 1)) {
2136 *new_fdp = dup_fd(fd, &error);
2145 * unshare allows a process to 'unshare' part of the process
2146 * context which was originally shared using clone. copy_*
2147 * functions used by do_fork() cannot be used here directly
2148 * because they modify an inactive task_struct that is being
2149 * constructed. Here we are modifying the current, active,
2152 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2154 struct fs_struct *fs, *new_fs = NULL;
2155 struct files_struct *fd, *new_fd = NULL;
2156 struct cred *new_cred = NULL;
2157 struct nsproxy *new_nsproxy = NULL;
2162 * If unsharing a user namespace must also unshare the thread group
2163 * and unshare the filesystem root and working directories.
2165 if (unshare_flags & CLONE_NEWUSER)
2166 unshare_flags |= CLONE_THREAD | CLONE_FS;
2168 * If unsharing vm, must also unshare signal handlers.
2170 if (unshare_flags & CLONE_VM)
2171 unshare_flags |= CLONE_SIGHAND;
2173 * If unsharing a signal handlers, must also unshare the signal queues.
2175 if (unshare_flags & CLONE_SIGHAND)
2176 unshare_flags |= CLONE_THREAD;
2178 * If unsharing namespace, must also unshare filesystem information.
2180 if (unshare_flags & CLONE_NEWNS)
2181 unshare_flags |= CLONE_FS;
2183 err = check_unshare_flags(unshare_flags);
2185 goto bad_unshare_out;
2187 * CLONE_NEWIPC must also detach from the undolist: after switching
2188 * to a new ipc namespace, the semaphore arrays from the old
2189 * namespace are unreachable.
2191 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2193 err = unshare_fs(unshare_flags, &new_fs);
2195 goto bad_unshare_out;
2196 err = unshare_fd(unshare_flags, &new_fd);
2198 goto bad_unshare_cleanup_fs;
2199 err = unshare_userns(unshare_flags, &new_cred);
2201 goto bad_unshare_cleanup_fd;
2202 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2205 goto bad_unshare_cleanup_cred;
2207 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2210 * CLONE_SYSVSEM is equivalent to sys_exit().
2214 if (unshare_flags & CLONE_NEWIPC) {
2215 /* Orphan segments in old ns (see sem above). */
2217 shm_init_task(current);
2221 switch_task_namespaces(current, new_nsproxy);
2227 spin_lock(&fs->lock);
2228 current->fs = new_fs;
2233 spin_unlock(&fs->lock);
2237 fd = current->files;
2238 current->files = new_fd;
2242 task_unlock(current);
2245 /* Install the new user namespace */
2246 commit_creds(new_cred);
2251 bad_unshare_cleanup_cred:
2254 bad_unshare_cleanup_fd:
2256 put_files_struct(new_fd);
2258 bad_unshare_cleanup_fs:
2260 free_fs_struct(new_fs);
2267 * Helper to unshare the files of the current task.
2268 * We don't want to expose copy_files internals to
2269 * the exec layer of the kernel.
2272 int unshare_files(struct files_struct **displaced)
2274 struct task_struct *task = current;
2275 struct files_struct *copy = NULL;
2278 error = unshare_fd(CLONE_FILES, ©);
2279 if (error || !copy) {
2283 *displaced = task->files;
2290 int sysctl_max_threads(struct ctl_table *table, int write,
2291 void __user *buffer, size_t *lenp, loff_t *ppos)
2295 int threads = max_threads;
2296 int min = MIN_THREADS;
2297 int max = MAX_THREADS;
2304 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2308 set_max_threads(threads);