4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/perf_event.h>
81 #include <linux/posix-timers.h>
82 #include <linux/user-return-notifier.h>
83 #include <linux/oom.h>
84 #include <linux/khugepaged.h>
85 #include <linux/signalfd.h>
86 #include <linux/uprobes.h>
87 #include <linux/aio.h>
88 #include <linux/compiler.h>
89 #include <linux/sysctl.h>
90 #include <linux/kcov.h>
91 #include <linux/livepatch.h>
92 #include <linux/thread_info.h>
94 #include <asm/pgtable.h>
95 #include <asm/pgalloc.h>
96 #include <linux/uaccess.h>
97 #include <asm/mmu_context.h>
98 #include <asm/cacheflush.h>
99 #include <asm/tlbflush.h>
101 #include <trace/events/sched.h>
103 #define CREATE_TRACE_POINTS
104 #include <trace/events/task.h>
107 * Minimum number of threads to boot the kernel
109 #define MIN_THREADS 20
112 * Maximum number of threads
114 #define MAX_THREADS FUTEX_TID_MASK
117 * Protected counters by write_lock_irq(&tasklist_lock)
119 unsigned long total_forks; /* Handle normal Linux uptimes. */
120 int nr_threads; /* The idle threads do not count.. */
122 int max_threads; /* tunable limit on nr_threads */
124 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
128 #ifdef CONFIG_PROVE_RCU
129 int lockdep_tasklist_lock_is_held(void)
131 return lockdep_is_held(&tasklist_lock);
133 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
134 #endif /* #ifdef CONFIG_PROVE_RCU */
136 int nr_processes(void)
141 for_each_possible_cpu(cpu)
142 total += per_cpu(process_counts, cpu);
147 void __weak arch_release_task_struct(struct task_struct *tsk)
151 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
152 static struct kmem_cache *task_struct_cachep;
154 static inline struct task_struct *alloc_task_struct_node(int node)
156 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
159 static inline void free_task_struct(struct task_struct *tsk)
161 kmem_cache_free(task_struct_cachep, tsk);
165 void __weak arch_release_thread_stack(unsigned long *stack)
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173 * kmemcache based allocator.
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 #ifdef CONFIG_VMAP_STACK
179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180 * flush. Try to minimize the number of calls by caching stacks.
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185 static int free_vm_stack_cache(unsigned int cpu)
187 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
190 for (i = 0; i < NR_CACHED_STACKS; i++) {
191 struct vm_struct *vm_stack = cached_vm_stacks[i];
196 vfree(vm_stack->addr);
197 cached_vm_stacks[i] = NULL;
204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 #ifdef CONFIG_VMAP_STACK
210 for (i = 0; i < NR_CACHED_STACKS; i++) {
213 s = this_cpu_xchg(cached_stacks[i], NULL);
218 /* Clear stale pointers from reused stack. */
219 memset(s->addr, 0, THREAD_SIZE);
221 tsk->stack_vm_area = s;
225 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
226 VMALLOC_START, VMALLOC_END,
229 0, node, __builtin_return_address(0));
232 * We can't call find_vm_area() in interrupt context, and
233 * free_thread_stack() can be called in interrupt context,
234 * so cache the vm_struct.
237 tsk->stack_vm_area = find_vm_area(stack);
240 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
243 return page ? page_address(page) : NULL;
247 static inline void free_thread_stack(struct task_struct *tsk)
249 #ifdef CONFIG_VMAP_STACK
250 if (task_stack_vm_area(tsk)) {
253 for (i = 0; i < NR_CACHED_STACKS; i++) {
254 if (this_cpu_cmpxchg(cached_stacks[i],
255 NULL, tsk->stack_vm_area) != NULL)
261 vfree_atomic(tsk->stack);
266 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
269 static struct kmem_cache *thread_stack_cache;
271 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
274 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
277 static void free_thread_stack(struct task_struct *tsk)
279 kmem_cache_free(thread_stack_cache, tsk->stack);
282 void thread_stack_cache_init(void)
284 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
285 THREAD_SIZE, 0, NULL);
286 BUG_ON(thread_stack_cache == NULL);
291 /* SLAB cache for signal_struct structures (tsk->signal) */
292 static struct kmem_cache *signal_cachep;
294 /* SLAB cache for sighand_struct structures (tsk->sighand) */
295 struct kmem_cache *sighand_cachep;
297 /* SLAB cache for files_struct structures (tsk->files) */
298 struct kmem_cache *files_cachep;
300 /* SLAB cache for fs_struct structures (tsk->fs) */
301 struct kmem_cache *fs_cachep;
303 /* SLAB cache for vm_area_struct structures */
304 struct kmem_cache *vm_area_cachep;
306 /* SLAB cache for mm_struct structures (tsk->mm) */
307 static struct kmem_cache *mm_cachep;
309 static void account_kernel_stack(struct task_struct *tsk, int account)
311 void *stack = task_stack_page(tsk);
312 struct vm_struct *vm = task_stack_vm_area(tsk);
314 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
319 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
321 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
322 mod_zone_page_state(page_zone(vm->pages[i]),
324 PAGE_SIZE / 1024 * account);
327 /* All stack pages belong to the same memcg. */
328 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
329 account * (THREAD_SIZE / 1024));
332 * All stack pages are in the same zone and belong to the
335 struct page *first_page = virt_to_page(stack);
337 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
338 THREAD_SIZE / 1024 * account);
340 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
341 account * (THREAD_SIZE / 1024));
345 static void release_task_stack(struct task_struct *tsk)
347 if (WARN_ON(tsk->state != TASK_DEAD))
348 return; /* Better to leak the stack than to free prematurely */
350 account_kernel_stack(tsk, -1);
351 arch_release_thread_stack(tsk->stack);
352 free_thread_stack(tsk);
354 #ifdef CONFIG_VMAP_STACK
355 tsk->stack_vm_area = NULL;
359 #ifdef CONFIG_THREAD_INFO_IN_TASK
360 void put_task_stack(struct task_struct *tsk)
362 if (atomic_dec_and_test(&tsk->stack_refcount))
363 release_task_stack(tsk);
367 void free_task(struct task_struct *tsk)
369 #ifndef CONFIG_THREAD_INFO_IN_TASK
371 * The task is finally done with both the stack and thread_info,
374 release_task_stack(tsk);
377 * If the task had a separate stack allocation, it should be gone
380 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
382 rt_mutex_debug_task_free(tsk);
383 ftrace_graph_exit_task(tsk);
384 put_seccomp_filter(tsk);
385 arch_release_task_struct(tsk);
386 if (tsk->flags & PF_KTHREAD)
387 free_kthread_struct(tsk);
388 free_task_struct(tsk);
390 EXPORT_SYMBOL(free_task);
392 static inline void free_signal_struct(struct signal_struct *sig)
394 taskstats_tgid_free(sig);
395 sched_autogroup_exit(sig);
397 * __mmdrop is not safe to call from softirq context on x86 due to
398 * pgd_dtor so postpone it to the async context
401 mmdrop_async(sig->oom_mm);
402 kmem_cache_free(signal_cachep, sig);
405 static inline void put_signal_struct(struct signal_struct *sig)
407 if (atomic_dec_and_test(&sig->sigcnt))
408 free_signal_struct(sig);
411 void __put_task_struct(struct task_struct *tsk)
413 WARN_ON(!tsk->exit_state);
414 WARN_ON(atomic_read(&tsk->usage));
415 WARN_ON(tsk == current);
419 security_task_free(tsk);
421 delayacct_tsk_free(tsk);
422 put_signal_struct(tsk->signal);
424 if (!profile_handoff_task(tsk))
427 EXPORT_SYMBOL_GPL(__put_task_struct);
429 void __init __weak arch_task_cache_init(void) { }
434 static void set_max_threads(unsigned int max_threads_suggested)
439 * The number of threads shall be limited such that the thread
440 * structures may only consume a small part of the available memory.
442 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
443 threads = MAX_THREADS;
445 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
446 (u64) THREAD_SIZE * 8UL);
448 if (threads > max_threads_suggested)
449 threads = max_threads_suggested;
451 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
454 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
455 /* Initialized by the architecture: */
456 int arch_task_struct_size __read_mostly;
459 void __init fork_init(void)
462 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
463 #ifndef ARCH_MIN_TASKALIGN
464 #define ARCH_MIN_TASKALIGN 0
466 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
468 /* create a slab on which task_structs can be allocated */
469 task_struct_cachep = kmem_cache_create("task_struct",
470 arch_task_struct_size, align,
471 SLAB_PANIC|SLAB_ACCOUNT, NULL);
474 /* do the arch specific task caches init */
475 arch_task_cache_init();
477 set_max_threads(MAX_THREADS);
479 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
480 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
481 init_task.signal->rlim[RLIMIT_SIGPENDING] =
482 init_task.signal->rlim[RLIMIT_NPROC];
484 for (i = 0; i < UCOUNT_COUNTS; i++) {
485 init_user_ns.ucount_max[i] = max_threads/2;
488 #ifdef CONFIG_VMAP_STACK
489 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
490 NULL, free_vm_stack_cache);
493 lockdep_init_task(&init_task);
496 int __weak arch_dup_task_struct(struct task_struct *dst,
497 struct task_struct *src)
503 void set_task_stack_end_magic(struct task_struct *tsk)
505 unsigned long *stackend;
507 stackend = end_of_stack(tsk);
508 *stackend = STACK_END_MAGIC; /* for overflow detection */
511 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
513 struct task_struct *tsk;
514 unsigned long *stack;
515 struct vm_struct *stack_vm_area;
518 if (node == NUMA_NO_NODE)
519 node = tsk_fork_get_node(orig);
520 tsk = alloc_task_struct_node(node);
524 stack = alloc_thread_stack_node(tsk, node);
528 stack_vm_area = task_stack_vm_area(tsk);
530 err = arch_dup_task_struct(tsk, orig);
533 * arch_dup_task_struct() clobbers the stack-related fields. Make
534 * sure they're properly initialized before using any stack-related
538 #ifdef CONFIG_VMAP_STACK
539 tsk->stack_vm_area = stack_vm_area;
541 #ifdef CONFIG_THREAD_INFO_IN_TASK
542 atomic_set(&tsk->stack_refcount, 1);
548 #ifdef CONFIG_SECCOMP
550 * We must handle setting up seccomp filters once we're under
551 * the sighand lock in case orig has changed between now and
552 * then. Until then, filter must be NULL to avoid messing up
553 * the usage counts on the error path calling free_task.
555 tsk->seccomp.filter = NULL;
558 setup_thread_stack(tsk, orig);
559 clear_user_return_notifier(tsk);
560 clear_tsk_need_resched(tsk);
561 set_task_stack_end_magic(tsk);
563 #ifdef CONFIG_CC_STACKPROTECTOR
564 tsk->stack_canary = get_random_canary();
568 * One for us, one for whoever does the "release_task()" (usually
571 atomic_set(&tsk->usage, 2);
572 #ifdef CONFIG_BLK_DEV_IO_TRACE
575 tsk->splice_pipe = NULL;
576 tsk->task_frag.page = NULL;
577 tsk->wake_q.next = NULL;
579 account_kernel_stack(tsk, 1);
583 #ifdef CONFIG_FAULT_INJECTION
590 free_thread_stack(tsk);
592 free_task_struct(tsk);
597 static __latent_entropy int dup_mmap(struct mm_struct *mm,
598 struct mm_struct *oldmm)
600 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
601 struct rb_node **rb_link, *rb_parent;
603 unsigned long charge;
606 uprobe_start_dup_mmap();
607 if (down_write_killable(&oldmm->mmap_sem)) {
609 goto fail_uprobe_end;
611 flush_cache_dup_mm(oldmm);
612 uprobe_dup_mmap(oldmm, mm);
614 * Not linked in yet - no deadlock potential:
616 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
618 /* No ordering required: file already has been exposed. */
619 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
621 mm->total_vm = oldmm->total_vm;
622 mm->data_vm = oldmm->data_vm;
623 mm->exec_vm = oldmm->exec_vm;
624 mm->stack_vm = oldmm->stack_vm;
626 rb_link = &mm->mm_rb.rb_node;
629 retval = ksm_fork(mm, oldmm);
632 retval = khugepaged_fork(mm, oldmm);
637 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
640 if (mpnt->vm_flags & VM_DONTCOPY) {
641 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
645 if (mpnt->vm_flags & VM_ACCOUNT) {
646 unsigned long len = vma_pages(mpnt);
648 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
652 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
656 INIT_LIST_HEAD(&tmp->anon_vma_chain);
657 retval = vma_dup_policy(mpnt, tmp);
659 goto fail_nomem_policy;
661 retval = dup_userfaultfd(tmp, &uf);
663 goto fail_nomem_anon_vma_fork;
664 if (tmp->vm_flags & VM_WIPEONFORK) {
665 /* VM_WIPEONFORK gets a clean slate in the child. */
666 tmp->anon_vma = NULL;
667 if (anon_vma_prepare(tmp))
668 goto fail_nomem_anon_vma_fork;
669 } else if (anon_vma_fork(tmp, mpnt))
670 goto fail_nomem_anon_vma_fork;
671 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
672 tmp->vm_next = tmp->vm_prev = NULL;
675 struct inode *inode = file_inode(file);
676 struct address_space *mapping = file->f_mapping;
679 if (tmp->vm_flags & VM_DENYWRITE)
680 atomic_dec(&inode->i_writecount);
681 i_mmap_lock_write(mapping);
682 if (tmp->vm_flags & VM_SHARED)
683 atomic_inc(&mapping->i_mmap_writable);
684 flush_dcache_mmap_lock(mapping);
685 /* insert tmp into the share list, just after mpnt */
686 vma_interval_tree_insert_after(tmp, mpnt,
688 flush_dcache_mmap_unlock(mapping);
689 i_mmap_unlock_write(mapping);
693 * Clear hugetlb-related page reserves for children. This only
694 * affects MAP_PRIVATE mappings. Faults generated by the child
695 * are not guaranteed to succeed, even if read-only
697 if (is_vm_hugetlb_page(tmp))
698 reset_vma_resv_huge_pages(tmp);
701 * Link in the new vma and copy the page table entries.
704 pprev = &tmp->vm_next;
708 __vma_link_rb(mm, tmp, rb_link, rb_parent);
709 rb_link = &tmp->vm_rb.rb_right;
710 rb_parent = &tmp->vm_rb;
713 if (!(tmp->vm_flags & VM_WIPEONFORK))
714 retval = copy_page_range(mm, oldmm, mpnt);
716 if (tmp->vm_ops && tmp->vm_ops->open)
717 tmp->vm_ops->open(tmp);
722 /* a new mm has just been created */
723 retval = arch_dup_mmap(oldmm, mm);
725 up_write(&mm->mmap_sem);
727 up_write(&oldmm->mmap_sem);
728 dup_userfaultfd_complete(&uf);
730 uprobe_end_dup_mmap();
732 fail_nomem_anon_vma_fork:
733 mpol_put(vma_policy(tmp));
735 kmem_cache_free(vm_area_cachep, tmp);
738 vm_unacct_memory(charge);
742 static inline int mm_alloc_pgd(struct mm_struct *mm)
744 mm->pgd = pgd_alloc(mm);
745 if (unlikely(!mm->pgd))
750 static inline void mm_free_pgd(struct mm_struct *mm)
752 pgd_free(mm, mm->pgd);
755 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
757 down_write(&oldmm->mmap_sem);
758 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
759 up_write(&oldmm->mmap_sem);
762 #define mm_alloc_pgd(mm) (0)
763 #define mm_free_pgd(mm)
764 #endif /* CONFIG_MMU */
766 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
768 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
769 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
771 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
773 static int __init coredump_filter_setup(char *s)
775 default_dump_filter =
776 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
777 MMF_DUMP_FILTER_MASK;
781 __setup("coredump_filter=", coredump_filter_setup);
783 #include <linux/init_task.h>
785 static void mm_init_aio(struct mm_struct *mm)
788 spin_lock_init(&mm->ioctx_lock);
789 mm->ioctx_table = NULL;
793 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
800 static void mm_init_uprobes_state(struct mm_struct *mm)
802 #ifdef CONFIG_UPROBES
803 mm->uprobes_state.xol_area = NULL;
807 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
808 struct user_namespace *user_ns)
812 mm->vmacache_seqnum = 0;
813 atomic_set(&mm->mm_users, 1);
814 atomic_set(&mm->mm_count, 1);
815 init_rwsem(&mm->mmap_sem);
816 INIT_LIST_HEAD(&mm->mmlist);
817 mm->core_state = NULL;
818 atomic_long_set(&mm->nr_ptes, 0);
823 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
824 spin_lock_init(&mm->page_table_lock);
827 mm_init_owner(mm, p);
828 RCU_INIT_POINTER(mm->exe_file, NULL);
829 mmu_notifier_mm_init(mm);
831 init_tlb_flush_pending(mm);
832 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
833 mm->pmd_huge_pte = NULL;
835 mm_init_uprobes_state(mm);
838 mm->flags = current->mm->flags & MMF_INIT_MASK;
839 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
841 mm->flags = default_dump_filter;
845 if (mm_alloc_pgd(mm))
848 if (init_new_context(p, mm))
851 mm->user_ns = get_user_ns(user_ns);
861 static void check_mm(struct mm_struct *mm)
865 for (i = 0; i < NR_MM_COUNTERS; i++) {
866 long x = atomic_long_read(&mm->rss_stat.count[i]);
869 printk(KERN_ALERT "BUG: Bad rss-counter state "
870 "mm:%p idx:%d val:%ld\n", mm, i, x);
873 if (atomic_long_read(&mm->nr_ptes))
874 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
875 atomic_long_read(&mm->nr_ptes));
877 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
880 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
881 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
886 * Allocate and initialize an mm_struct.
888 struct mm_struct *mm_alloc(void)
890 struct mm_struct *mm;
896 memset(mm, 0, sizeof(*mm));
897 return mm_init(mm, current, current_user_ns());
901 * Called when the last reference to the mm
902 * is dropped: either by a lazy thread or by
903 * mmput. Free the page directory and the mm.
905 void __mmdrop(struct mm_struct *mm)
907 BUG_ON(mm == &init_mm);
911 mmu_notifier_mm_destroy(mm);
913 put_user_ns(mm->user_ns);
916 EXPORT_SYMBOL_GPL(__mmdrop);
918 static inline void __mmput(struct mm_struct *mm)
920 VM_BUG_ON(atomic_read(&mm->mm_users));
922 uprobe_clear_state(mm);
925 khugepaged_exit(mm); /* must run before exit_mmap */
927 mm_put_huge_zero_page(mm);
928 set_mm_exe_file(mm, NULL);
929 if (!list_empty(&mm->mmlist)) {
930 spin_lock(&mmlist_lock);
931 list_del(&mm->mmlist);
932 spin_unlock(&mmlist_lock);
935 module_put(mm->binfmt->module);
940 * Decrement the use count and release all resources for an mm.
942 void mmput(struct mm_struct *mm)
946 if (atomic_dec_and_test(&mm->mm_users))
949 EXPORT_SYMBOL_GPL(mmput);
952 static void mmput_async_fn(struct work_struct *work)
954 struct mm_struct *mm = container_of(work, struct mm_struct,
960 void mmput_async(struct mm_struct *mm)
962 if (atomic_dec_and_test(&mm->mm_users)) {
963 INIT_WORK(&mm->async_put_work, mmput_async_fn);
964 schedule_work(&mm->async_put_work);
970 * set_mm_exe_file - change a reference to the mm's executable file
972 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
974 * Main users are mmput() and sys_execve(). Callers prevent concurrent
975 * invocations: in mmput() nobody alive left, in execve task is single
976 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
977 * mm->exe_file, but does so without using set_mm_exe_file() in order
978 * to do avoid the need for any locks.
980 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
982 struct file *old_exe_file;
985 * It is safe to dereference the exe_file without RCU as
986 * this function is only called if nobody else can access
987 * this mm -- see comment above for justification.
989 old_exe_file = rcu_dereference_raw(mm->exe_file);
992 get_file(new_exe_file);
993 rcu_assign_pointer(mm->exe_file, new_exe_file);
999 * get_mm_exe_file - acquire a reference to the mm's executable file
1001 * Returns %NULL if mm has no associated executable file.
1002 * User must release file via fput().
1004 struct file *get_mm_exe_file(struct mm_struct *mm)
1006 struct file *exe_file;
1009 exe_file = rcu_dereference(mm->exe_file);
1010 if (exe_file && !get_file_rcu(exe_file))
1015 EXPORT_SYMBOL(get_mm_exe_file);
1018 * get_task_exe_file - acquire a reference to the task's executable file
1020 * Returns %NULL if task's mm (if any) has no associated executable file or
1021 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1022 * User must release file via fput().
1024 struct file *get_task_exe_file(struct task_struct *task)
1026 struct file *exe_file = NULL;
1027 struct mm_struct *mm;
1032 if (!(task->flags & PF_KTHREAD))
1033 exe_file = get_mm_exe_file(mm);
1038 EXPORT_SYMBOL(get_task_exe_file);
1041 * get_task_mm - acquire a reference to the task's mm
1043 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1044 * this kernel workthread has transiently adopted a user mm with use_mm,
1045 * to do its AIO) is not set and if so returns a reference to it, after
1046 * bumping up the use count. User must release the mm via mmput()
1047 * after use. Typically used by /proc and ptrace.
1049 struct mm_struct *get_task_mm(struct task_struct *task)
1051 struct mm_struct *mm;
1056 if (task->flags & PF_KTHREAD)
1064 EXPORT_SYMBOL_GPL(get_task_mm);
1066 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1068 struct mm_struct *mm;
1071 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1073 return ERR_PTR(err);
1075 mm = get_task_mm(task);
1076 if (mm && mm != current->mm &&
1077 !ptrace_may_access(task, mode)) {
1079 mm = ERR_PTR(-EACCES);
1081 mutex_unlock(&task->signal->cred_guard_mutex);
1086 static void complete_vfork_done(struct task_struct *tsk)
1088 struct completion *vfork;
1091 vfork = tsk->vfork_done;
1092 if (likely(vfork)) {
1093 tsk->vfork_done = NULL;
1099 static int wait_for_vfork_done(struct task_struct *child,
1100 struct completion *vfork)
1104 freezer_do_not_count();
1105 killed = wait_for_completion_killable(vfork);
1110 child->vfork_done = NULL;
1114 put_task_struct(child);
1118 /* Please note the differences between mmput and mm_release.
1119 * mmput is called whenever we stop holding onto a mm_struct,
1120 * error success whatever.
1122 * mm_release is called after a mm_struct has been removed
1123 * from the current process.
1125 * This difference is important for error handling, when we
1126 * only half set up a mm_struct for a new process and need to restore
1127 * the old one. Because we mmput the new mm_struct before
1128 * restoring the old one. . .
1129 * Eric Biederman 10 January 1998
1131 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1133 /* Get rid of any futexes when releasing the mm */
1135 if (unlikely(tsk->robust_list)) {
1136 exit_robust_list(tsk);
1137 tsk->robust_list = NULL;
1139 #ifdef CONFIG_COMPAT
1140 if (unlikely(tsk->compat_robust_list)) {
1141 compat_exit_robust_list(tsk);
1142 tsk->compat_robust_list = NULL;
1145 if (unlikely(!list_empty(&tsk->pi_state_list)))
1146 exit_pi_state_list(tsk);
1149 uprobe_free_utask(tsk);
1151 /* Get rid of any cached register state */
1152 deactivate_mm(tsk, mm);
1155 * Signal userspace if we're not exiting with a core dump
1156 * because we want to leave the value intact for debugging
1159 if (tsk->clear_child_tid) {
1160 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1161 atomic_read(&mm->mm_users) > 1) {
1163 * We don't check the error code - if userspace has
1164 * not set up a proper pointer then tough luck.
1166 put_user(0, tsk->clear_child_tid);
1167 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1170 tsk->clear_child_tid = NULL;
1174 * All done, finally we can wake up parent and return this mm to him.
1175 * Also kthread_stop() uses this completion for synchronization.
1177 if (tsk->vfork_done)
1178 complete_vfork_done(tsk);
1182 * Allocate a new mm structure and copy contents from the
1183 * mm structure of the passed in task structure.
1185 static struct mm_struct *dup_mm(struct task_struct *tsk)
1187 struct mm_struct *mm, *oldmm = current->mm;
1194 memcpy(mm, oldmm, sizeof(*mm));
1196 if (!mm_init(mm, tsk, mm->user_ns))
1199 err = dup_mmap(mm, oldmm);
1203 mm->hiwater_rss = get_mm_rss(mm);
1204 mm->hiwater_vm = mm->total_vm;
1206 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1212 /* don't put binfmt in mmput, we haven't got module yet */
1220 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1222 struct mm_struct *mm, *oldmm;
1225 tsk->min_flt = tsk->maj_flt = 0;
1226 tsk->nvcsw = tsk->nivcsw = 0;
1227 #ifdef CONFIG_DETECT_HUNG_TASK
1228 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1232 tsk->active_mm = NULL;
1235 * Are we cloning a kernel thread?
1237 * We need to steal a active VM for that..
1239 oldmm = current->mm;
1243 /* initialize the new vmacache entries */
1244 vmacache_flush(tsk);
1246 if (clone_flags & CLONE_VM) {
1259 tsk->active_mm = mm;
1266 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1268 struct fs_struct *fs = current->fs;
1269 if (clone_flags & CLONE_FS) {
1270 /* tsk->fs is already what we want */
1271 spin_lock(&fs->lock);
1273 spin_unlock(&fs->lock);
1277 spin_unlock(&fs->lock);
1280 tsk->fs = copy_fs_struct(fs);
1286 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1288 struct files_struct *oldf, *newf;
1292 * A background process may not have any files ...
1294 oldf = current->files;
1298 if (clone_flags & CLONE_FILES) {
1299 atomic_inc(&oldf->count);
1303 newf = dup_fd(oldf, &error);
1313 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1316 struct io_context *ioc = current->io_context;
1317 struct io_context *new_ioc;
1322 * Share io context with parent, if CLONE_IO is set
1324 if (clone_flags & CLONE_IO) {
1326 tsk->io_context = ioc;
1327 } else if (ioprio_valid(ioc->ioprio)) {
1328 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1329 if (unlikely(!new_ioc))
1332 new_ioc->ioprio = ioc->ioprio;
1333 put_io_context(new_ioc);
1339 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1341 struct sighand_struct *sig;
1343 if (clone_flags & CLONE_SIGHAND) {
1344 atomic_inc(¤t->sighand->count);
1347 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1348 rcu_assign_pointer(tsk->sighand, sig);
1352 atomic_set(&sig->count, 1);
1353 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1357 void __cleanup_sighand(struct sighand_struct *sighand)
1359 if (atomic_dec_and_test(&sighand->count)) {
1360 signalfd_cleanup(sighand);
1362 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1363 * without an RCU grace period, see __lock_task_sighand().
1365 kmem_cache_free(sighand_cachep, sighand);
1369 #ifdef CONFIG_POSIX_TIMERS
1371 * Initialize POSIX timer handling for a thread group.
1373 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1375 unsigned long cpu_limit;
1377 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1378 if (cpu_limit != RLIM_INFINITY) {
1379 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1380 sig->cputimer.running = true;
1383 /* The timer lists. */
1384 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1385 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1386 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1389 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1392 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1394 struct signal_struct *sig;
1396 if (clone_flags & CLONE_THREAD)
1399 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1404 sig->nr_threads = 1;
1405 atomic_set(&sig->live, 1);
1406 atomic_set(&sig->sigcnt, 1);
1408 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1409 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1410 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1412 init_waitqueue_head(&sig->wait_chldexit);
1413 sig->curr_target = tsk;
1414 init_sigpending(&sig->shared_pending);
1415 seqlock_init(&sig->stats_lock);
1416 prev_cputime_init(&sig->prev_cputime);
1418 #ifdef CONFIG_POSIX_TIMERS
1419 INIT_LIST_HEAD(&sig->posix_timers);
1420 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1421 sig->real_timer.function = it_real_fn;
1424 task_lock(current->group_leader);
1425 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1426 task_unlock(current->group_leader);
1428 posix_cpu_timers_init_group(sig);
1430 tty_audit_fork(sig);
1431 sched_autogroup_fork(sig);
1433 sig->oom_score_adj = current->signal->oom_score_adj;
1434 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1436 mutex_init(&sig->cred_guard_mutex);
1441 static void copy_seccomp(struct task_struct *p)
1443 #ifdef CONFIG_SECCOMP
1445 * Must be called with sighand->lock held, which is common to
1446 * all threads in the group. Holding cred_guard_mutex is not
1447 * needed because this new task is not yet running and cannot
1450 assert_spin_locked(¤t->sighand->siglock);
1452 /* Ref-count the new filter user, and assign it. */
1453 get_seccomp_filter(current);
1454 p->seccomp = current->seccomp;
1457 * Explicitly enable no_new_privs here in case it got set
1458 * between the task_struct being duplicated and holding the
1459 * sighand lock. The seccomp state and nnp must be in sync.
1461 if (task_no_new_privs(current))
1462 task_set_no_new_privs(p);
1465 * If the parent gained a seccomp mode after copying thread
1466 * flags and between before we held the sighand lock, we have
1467 * to manually enable the seccomp thread flag here.
1469 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1470 set_tsk_thread_flag(p, TIF_SECCOMP);
1474 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1476 current->clear_child_tid = tidptr;
1478 return task_pid_vnr(current);
1481 static void rt_mutex_init_task(struct task_struct *p)
1483 raw_spin_lock_init(&p->pi_lock);
1484 #ifdef CONFIG_RT_MUTEXES
1485 p->pi_waiters = RB_ROOT_CACHED;
1486 p->pi_top_task = NULL;
1487 p->pi_blocked_on = NULL;
1491 #ifdef CONFIG_POSIX_TIMERS
1493 * Initialize POSIX timer handling for a single task.
1495 static void posix_cpu_timers_init(struct task_struct *tsk)
1497 tsk->cputime_expires.prof_exp = 0;
1498 tsk->cputime_expires.virt_exp = 0;
1499 tsk->cputime_expires.sched_exp = 0;
1500 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1501 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1502 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1505 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1509 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1511 task->pids[type].pid = pid;
1514 static inline void rcu_copy_process(struct task_struct *p)
1516 #ifdef CONFIG_PREEMPT_RCU
1517 p->rcu_read_lock_nesting = 0;
1518 p->rcu_read_unlock_special.s = 0;
1519 p->rcu_blocked_node = NULL;
1520 INIT_LIST_HEAD(&p->rcu_node_entry);
1521 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1522 #ifdef CONFIG_TASKS_RCU
1523 p->rcu_tasks_holdout = false;
1524 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1525 p->rcu_tasks_idle_cpu = -1;
1526 #endif /* #ifdef CONFIG_TASKS_RCU */
1530 * This creates a new process as a copy of the old one,
1531 * but does not actually start it yet.
1533 * It copies the registers, and all the appropriate
1534 * parts of the process environment (as per the clone
1535 * flags). The actual kick-off is left to the caller.
1537 static __latent_entropy struct task_struct *copy_process(
1538 unsigned long clone_flags,
1539 unsigned long stack_start,
1540 unsigned long stack_size,
1541 int __user *child_tidptr,
1548 struct task_struct *p;
1550 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1551 return ERR_PTR(-EINVAL);
1553 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1554 return ERR_PTR(-EINVAL);
1557 * Thread groups must share signals as well, and detached threads
1558 * can only be started up within the thread group.
1560 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1561 return ERR_PTR(-EINVAL);
1564 * Shared signal handlers imply shared VM. By way of the above,
1565 * thread groups also imply shared VM. Blocking this case allows
1566 * for various simplifications in other code.
1568 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1569 return ERR_PTR(-EINVAL);
1572 * Siblings of global init remain as zombies on exit since they are
1573 * not reaped by their parent (swapper). To solve this and to avoid
1574 * multi-rooted process trees, prevent global and container-inits
1575 * from creating siblings.
1577 if ((clone_flags & CLONE_PARENT) &&
1578 current->signal->flags & SIGNAL_UNKILLABLE)
1579 return ERR_PTR(-EINVAL);
1582 * If the new process will be in a different pid or user namespace
1583 * do not allow it to share a thread group with the forking task.
1585 if (clone_flags & CLONE_THREAD) {
1586 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1587 (task_active_pid_ns(current) !=
1588 current->nsproxy->pid_ns_for_children))
1589 return ERR_PTR(-EINVAL);
1593 p = dup_task_struct(current, node);
1598 * This _must_ happen before we call free_task(), i.e. before we jump
1599 * to any of the bad_fork_* labels. This is to avoid freeing
1600 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1601 * kernel threads (PF_KTHREAD).
1603 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1605 * Clear TID on mm_release()?
1607 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1609 ftrace_graph_init_task(p);
1611 rt_mutex_init_task(p);
1613 #ifdef CONFIG_PROVE_LOCKING
1614 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1615 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1618 if (atomic_read(&p->real_cred->user->processes) >=
1619 task_rlimit(p, RLIMIT_NPROC)) {
1620 if (p->real_cred->user != INIT_USER &&
1621 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1624 current->flags &= ~PF_NPROC_EXCEEDED;
1626 retval = copy_creds(p, clone_flags);
1631 * If multiple threads are within copy_process(), then this check
1632 * triggers too late. This doesn't hurt, the check is only there
1633 * to stop root fork bombs.
1636 if (nr_threads >= max_threads)
1637 goto bad_fork_cleanup_count;
1639 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1640 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1641 p->flags |= PF_FORKNOEXEC;
1642 INIT_LIST_HEAD(&p->children);
1643 INIT_LIST_HEAD(&p->sibling);
1644 rcu_copy_process(p);
1645 p->vfork_done = NULL;
1646 spin_lock_init(&p->alloc_lock);
1648 init_sigpending(&p->pending);
1650 p->utime = p->stime = p->gtime = 0;
1651 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1652 p->utimescaled = p->stimescaled = 0;
1654 prev_cputime_init(&p->prev_cputime);
1656 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1657 seqcount_init(&p->vtime.seqcount);
1658 p->vtime.starttime = 0;
1659 p->vtime.state = VTIME_INACTIVE;
1662 #if defined(SPLIT_RSS_COUNTING)
1663 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1666 p->default_timer_slack_ns = current->timer_slack_ns;
1668 task_io_accounting_init(&p->ioac);
1669 acct_clear_integrals(p);
1671 posix_cpu_timers_init(p);
1673 p->start_time = ktime_get_ns();
1674 p->real_start_time = ktime_get_boot_ns();
1675 p->io_context = NULL;
1676 p->audit_context = NULL;
1679 p->mempolicy = mpol_dup(p->mempolicy);
1680 if (IS_ERR(p->mempolicy)) {
1681 retval = PTR_ERR(p->mempolicy);
1682 p->mempolicy = NULL;
1683 goto bad_fork_cleanup_threadgroup_lock;
1686 #ifdef CONFIG_CPUSETS
1687 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1688 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1689 seqcount_init(&p->mems_allowed_seq);
1691 #ifdef CONFIG_TRACE_IRQFLAGS
1693 p->hardirqs_enabled = 0;
1694 p->hardirq_enable_ip = 0;
1695 p->hardirq_enable_event = 0;
1696 p->hardirq_disable_ip = _THIS_IP_;
1697 p->hardirq_disable_event = 0;
1698 p->softirqs_enabled = 1;
1699 p->softirq_enable_ip = _THIS_IP_;
1700 p->softirq_enable_event = 0;
1701 p->softirq_disable_ip = 0;
1702 p->softirq_disable_event = 0;
1703 p->hardirq_context = 0;
1704 p->softirq_context = 0;
1707 p->pagefault_disabled = 0;
1709 #ifdef CONFIG_LOCKDEP
1710 p->lockdep_depth = 0; /* no locks held yet */
1711 p->curr_chain_key = 0;
1712 p->lockdep_recursion = 0;
1713 lockdep_init_task(p);
1716 #ifdef CONFIG_DEBUG_MUTEXES
1717 p->blocked_on = NULL; /* not blocked yet */
1719 #ifdef CONFIG_BCACHE
1720 p->sequential_io = 0;
1721 p->sequential_io_avg = 0;
1724 /* Perform scheduler related setup. Assign this task to a CPU. */
1725 retval = sched_fork(clone_flags, p);
1727 goto bad_fork_cleanup_policy;
1729 retval = perf_event_init_task(p);
1731 goto bad_fork_cleanup_policy;
1732 retval = audit_alloc(p);
1734 goto bad_fork_cleanup_perf;
1735 /* copy all the process information */
1737 retval = security_task_alloc(p, clone_flags);
1739 goto bad_fork_cleanup_audit;
1740 retval = copy_semundo(clone_flags, p);
1742 goto bad_fork_cleanup_security;
1743 retval = copy_files(clone_flags, p);
1745 goto bad_fork_cleanup_semundo;
1746 retval = copy_fs(clone_flags, p);
1748 goto bad_fork_cleanup_files;
1749 retval = copy_sighand(clone_flags, p);
1751 goto bad_fork_cleanup_fs;
1752 retval = copy_signal(clone_flags, p);
1754 goto bad_fork_cleanup_sighand;
1755 retval = copy_mm(clone_flags, p);
1757 goto bad_fork_cleanup_signal;
1758 retval = copy_namespaces(clone_flags, p);
1760 goto bad_fork_cleanup_mm;
1761 retval = copy_io(clone_flags, p);
1763 goto bad_fork_cleanup_namespaces;
1764 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1766 goto bad_fork_cleanup_io;
1768 if (pid != &init_struct_pid) {
1769 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1771 retval = PTR_ERR(pid);
1772 goto bad_fork_cleanup_thread;
1780 p->robust_list = NULL;
1781 #ifdef CONFIG_COMPAT
1782 p->compat_robust_list = NULL;
1784 INIT_LIST_HEAD(&p->pi_state_list);
1785 p->pi_state_cache = NULL;
1788 * sigaltstack should be cleared when sharing the same VM
1790 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1794 * Syscall tracing and stepping should be turned off in the
1795 * child regardless of CLONE_PTRACE.
1797 user_disable_single_step(p);
1798 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1799 #ifdef TIF_SYSCALL_EMU
1800 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1802 clear_all_latency_tracing(p);
1804 /* ok, now we should be set up.. */
1805 p->pid = pid_nr(pid);
1806 if (clone_flags & CLONE_THREAD) {
1807 p->exit_signal = -1;
1808 p->group_leader = current->group_leader;
1809 p->tgid = current->tgid;
1811 if (clone_flags & CLONE_PARENT)
1812 p->exit_signal = current->group_leader->exit_signal;
1814 p->exit_signal = (clone_flags & CSIGNAL);
1815 p->group_leader = p;
1820 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1821 p->dirty_paused_when = 0;
1823 p->pdeath_signal = 0;
1824 INIT_LIST_HEAD(&p->thread_group);
1825 p->task_works = NULL;
1827 cgroup_threadgroup_change_begin(current);
1829 * Ensure that the cgroup subsystem policies allow the new process to be
1830 * forked. It should be noted the the new process's css_set can be changed
1831 * between here and cgroup_post_fork() if an organisation operation is in
1834 retval = cgroup_can_fork(p);
1836 goto bad_fork_free_pid;
1839 * Make it visible to the rest of the system, but dont wake it up yet.
1840 * Need tasklist lock for parent etc handling!
1842 write_lock_irq(&tasklist_lock);
1844 /* CLONE_PARENT re-uses the old parent */
1845 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1846 p->real_parent = current->real_parent;
1847 p->parent_exec_id = current->parent_exec_id;
1849 p->real_parent = current;
1850 p->parent_exec_id = current->self_exec_id;
1853 klp_copy_process(p);
1855 spin_lock(¤t->sighand->siglock);
1858 * Copy seccomp details explicitly here, in case they were changed
1859 * before holding sighand lock.
1864 * Process group and session signals need to be delivered to just the
1865 * parent before the fork or both the parent and the child after the
1866 * fork. Restart if a signal comes in before we add the new process to
1867 * it's process group.
1868 * A fatal signal pending means that current will exit, so the new
1869 * thread can't slip out of an OOM kill (or normal SIGKILL).
1871 recalc_sigpending();
1872 if (signal_pending(current)) {
1873 retval = -ERESTARTNOINTR;
1874 goto bad_fork_cancel_cgroup;
1876 if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1878 goto bad_fork_cancel_cgroup;
1881 if (likely(p->pid)) {
1882 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1884 init_task_pid(p, PIDTYPE_PID, pid);
1885 if (thread_group_leader(p)) {
1886 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1887 init_task_pid(p, PIDTYPE_SID, task_session(current));
1889 if (is_child_reaper(pid)) {
1890 ns_of_pid(pid)->child_reaper = p;
1891 p->signal->flags |= SIGNAL_UNKILLABLE;
1894 p->signal->leader_pid = pid;
1895 p->signal->tty = tty_kref_get(current->signal->tty);
1897 * Inherit has_child_subreaper flag under the same
1898 * tasklist_lock with adding child to the process tree
1899 * for propagate_has_child_subreaper optimization.
1901 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1902 p->real_parent->signal->is_child_subreaper;
1903 list_add_tail(&p->sibling, &p->real_parent->children);
1904 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1905 attach_pid(p, PIDTYPE_PGID);
1906 attach_pid(p, PIDTYPE_SID);
1907 __this_cpu_inc(process_counts);
1909 current->signal->nr_threads++;
1910 atomic_inc(¤t->signal->live);
1911 atomic_inc(¤t->signal->sigcnt);
1912 list_add_tail_rcu(&p->thread_group,
1913 &p->group_leader->thread_group);
1914 list_add_tail_rcu(&p->thread_node,
1915 &p->signal->thread_head);
1917 attach_pid(p, PIDTYPE_PID);
1922 spin_unlock(¤t->sighand->siglock);
1923 syscall_tracepoint_update(p);
1924 write_unlock_irq(&tasklist_lock);
1926 proc_fork_connector(p);
1927 cgroup_post_fork(p);
1928 cgroup_threadgroup_change_end(current);
1931 trace_task_newtask(p, clone_flags);
1932 uprobe_copy_process(p, clone_flags);
1936 bad_fork_cancel_cgroup:
1937 spin_unlock(¤t->sighand->siglock);
1938 write_unlock_irq(&tasklist_lock);
1939 cgroup_cancel_fork(p);
1941 cgroup_threadgroup_change_end(current);
1942 if (pid != &init_struct_pid)
1944 bad_fork_cleanup_thread:
1946 bad_fork_cleanup_io:
1949 bad_fork_cleanup_namespaces:
1950 exit_task_namespaces(p);
1951 bad_fork_cleanup_mm:
1954 bad_fork_cleanup_signal:
1955 if (!(clone_flags & CLONE_THREAD))
1956 free_signal_struct(p->signal);
1957 bad_fork_cleanup_sighand:
1958 __cleanup_sighand(p->sighand);
1959 bad_fork_cleanup_fs:
1960 exit_fs(p); /* blocking */
1961 bad_fork_cleanup_files:
1962 exit_files(p); /* blocking */
1963 bad_fork_cleanup_semundo:
1965 bad_fork_cleanup_security:
1966 security_task_free(p);
1967 bad_fork_cleanup_audit:
1969 bad_fork_cleanup_perf:
1970 perf_event_free_task(p);
1971 bad_fork_cleanup_policy:
1972 lockdep_free_task(p);
1974 mpol_put(p->mempolicy);
1975 bad_fork_cleanup_threadgroup_lock:
1977 delayacct_tsk_free(p);
1978 bad_fork_cleanup_count:
1979 atomic_dec(&p->cred->user->processes);
1982 p->state = TASK_DEAD;
1986 return ERR_PTR(retval);
1989 static inline void init_idle_pids(struct pid_link *links)
1993 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1994 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1995 links[type].pid = &init_struct_pid;
1999 struct task_struct *fork_idle(int cpu)
2001 struct task_struct *task;
2002 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2004 if (!IS_ERR(task)) {
2005 init_idle_pids(task->pids);
2006 init_idle(task, cpu);
2013 * Ok, this is the main fork-routine.
2015 * It copies the process, and if successful kick-starts
2016 * it and waits for it to finish using the VM if required.
2018 long _do_fork(unsigned long clone_flags,
2019 unsigned long stack_start,
2020 unsigned long stack_size,
2021 int __user *parent_tidptr,
2022 int __user *child_tidptr,
2025 struct task_struct *p;
2030 * Determine whether and which event to report to ptracer. When
2031 * called from kernel_thread or CLONE_UNTRACED is explicitly
2032 * requested, no event is reported; otherwise, report if the event
2033 * for the type of forking is enabled.
2035 if (!(clone_flags & CLONE_UNTRACED)) {
2036 if (clone_flags & CLONE_VFORK)
2037 trace = PTRACE_EVENT_VFORK;
2038 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2039 trace = PTRACE_EVENT_CLONE;
2041 trace = PTRACE_EVENT_FORK;
2043 if (likely(!ptrace_event_enabled(current, trace)))
2047 p = copy_process(clone_flags, stack_start, stack_size,
2048 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2049 add_latent_entropy();
2051 * Do this prior waking up the new thread - the thread pointer
2052 * might get invalid after that point, if the thread exits quickly.
2055 struct completion vfork;
2058 trace_sched_process_fork(current, p);
2060 pid = get_task_pid(p, PIDTYPE_PID);
2063 if (clone_flags & CLONE_PARENT_SETTID)
2064 put_user(nr, parent_tidptr);
2066 if (clone_flags & CLONE_VFORK) {
2067 p->vfork_done = &vfork;
2068 init_completion(&vfork);
2072 wake_up_new_task(p);
2074 /* forking complete and child started to run, tell ptracer */
2075 if (unlikely(trace))
2076 ptrace_event_pid(trace, pid);
2078 if (clone_flags & CLONE_VFORK) {
2079 if (!wait_for_vfork_done(p, &vfork))
2080 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2090 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2091 /* For compatibility with architectures that call do_fork directly rather than
2092 * using the syscall entry points below. */
2093 long do_fork(unsigned long clone_flags,
2094 unsigned long stack_start,
2095 unsigned long stack_size,
2096 int __user *parent_tidptr,
2097 int __user *child_tidptr)
2099 return _do_fork(clone_flags, stack_start, stack_size,
2100 parent_tidptr, child_tidptr, 0);
2105 * Create a kernel thread.
2107 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2109 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2110 (unsigned long)arg, NULL, NULL, 0);
2113 #ifdef __ARCH_WANT_SYS_FORK
2114 SYSCALL_DEFINE0(fork)
2117 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2119 /* can not support in nommu mode */
2125 #ifdef __ARCH_WANT_SYS_VFORK
2126 SYSCALL_DEFINE0(vfork)
2128 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2133 #ifdef __ARCH_WANT_SYS_CLONE
2134 #ifdef CONFIG_CLONE_BACKWARDS
2135 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2136 int __user *, parent_tidptr,
2138 int __user *, child_tidptr)
2139 #elif defined(CONFIG_CLONE_BACKWARDS2)
2140 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2141 int __user *, parent_tidptr,
2142 int __user *, child_tidptr,
2144 #elif defined(CONFIG_CLONE_BACKWARDS3)
2145 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2147 int __user *, parent_tidptr,
2148 int __user *, child_tidptr,
2151 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2152 int __user *, parent_tidptr,
2153 int __user *, child_tidptr,
2157 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2161 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2163 struct task_struct *leader, *parent, *child;
2166 read_lock(&tasklist_lock);
2167 leader = top = top->group_leader;
2169 for_each_thread(leader, parent) {
2170 list_for_each_entry(child, &parent->children, sibling) {
2171 res = visitor(child, data);
2183 if (leader != top) {
2185 parent = child->real_parent;
2186 leader = parent->group_leader;
2190 read_unlock(&tasklist_lock);
2193 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2194 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2197 static void sighand_ctor(void *data)
2199 struct sighand_struct *sighand = data;
2201 spin_lock_init(&sighand->siglock);
2202 init_waitqueue_head(&sighand->signalfd_wqh);
2205 void __init proc_caches_init(void)
2207 sighand_cachep = kmem_cache_create("sighand_cache",
2208 sizeof(struct sighand_struct), 0,
2209 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2210 SLAB_ACCOUNT, sighand_ctor);
2211 signal_cachep = kmem_cache_create("signal_cache",
2212 sizeof(struct signal_struct), 0,
2213 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2215 files_cachep = kmem_cache_create("files_cache",
2216 sizeof(struct files_struct), 0,
2217 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2219 fs_cachep = kmem_cache_create("fs_cache",
2220 sizeof(struct fs_struct), 0,
2221 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2224 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2225 * whole struct cpumask for the OFFSTACK case. We could change
2226 * this to *only* allocate as much of it as required by the
2227 * maximum number of CPU's we can ever have. The cpumask_allocation
2228 * is at the end of the structure, exactly for that reason.
2230 mm_cachep = kmem_cache_create("mm_struct",
2231 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2232 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2234 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2236 nsproxy_cache_init();
2240 * Check constraints on flags passed to the unshare system call.
2242 static int check_unshare_flags(unsigned long unshare_flags)
2244 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2245 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2246 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2247 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2250 * Not implemented, but pretend it works if there is nothing
2251 * to unshare. Note that unsharing the address space or the
2252 * signal handlers also need to unshare the signal queues (aka
2255 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2256 if (!thread_group_empty(current))
2259 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2260 if (atomic_read(¤t->sighand->count) > 1)
2263 if (unshare_flags & CLONE_VM) {
2264 if (!current_is_single_threaded())
2272 * Unshare the filesystem structure if it is being shared
2274 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2276 struct fs_struct *fs = current->fs;
2278 if (!(unshare_flags & CLONE_FS) || !fs)
2281 /* don't need lock here; in the worst case we'll do useless copy */
2285 *new_fsp = copy_fs_struct(fs);
2293 * Unshare file descriptor table if it is being shared
2295 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2297 struct files_struct *fd = current->files;
2300 if ((unshare_flags & CLONE_FILES) &&
2301 (fd && atomic_read(&fd->count) > 1)) {
2302 *new_fdp = dup_fd(fd, &error);
2311 * unshare allows a process to 'unshare' part of the process
2312 * context which was originally shared using clone. copy_*
2313 * functions used by do_fork() cannot be used here directly
2314 * because they modify an inactive task_struct that is being
2315 * constructed. Here we are modifying the current, active,
2318 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2320 struct fs_struct *fs, *new_fs = NULL;
2321 struct files_struct *fd, *new_fd = NULL;
2322 struct cred *new_cred = NULL;
2323 struct nsproxy *new_nsproxy = NULL;
2328 * If unsharing a user namespace must also unshare the thread group
2329 * and unshare the filesystem root and working directories.
2331 if (unshare_flags & CLONE_NEWUSER)
2332 unshare_flags |= CLONE_THREAD | CLONE_FS;
2334 * If unsharing vm, must also unshare signal handlers.
2336 if (unshare_flags & CLONE_VM)
2337 unshare_flags |= CLONE_SIGHAND;
2339 * If unsharing a signal handlers, must also unshare the signal queues.
2341 if (unshare_flags & CLONE_SIGHAND)
2342 unshare_flags |= CLONE_THREAD;
2344 * If unsharing namespace, must also unshare filesystem information.
2346 if (unshare_flags & CLONE_NEWNS)
2347 unshare_flags |= CLONE_FS;
2349 err = check_unshare_flags(unshare_flags);
2351 goto bad_unshare_out;
2353 * CLONE_NEWIPC must also detach from the undolist: after switching
2354 * to a new ipc namespace, the semaphore arrays from the old
2355 * namespace are unreachable.
2357 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2359 err = unshare_fs(unshare_flags, &new_fs);
2361 goto bad_unshare_out;
2362 err = unshare_fd(unshare_flags, &new_fd);
2364 goto bad_unshare_cleanup_fs;
2365 err = unshare_userns(unshare_flags, &new_cred);
2367 goto bad_unshare_cleanup_fd;
2368 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2371 goto bad_unshare_cleanup_cred;
2373 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2376 * CLONE_SYSVSEM is equivalent to sys_exit().
2380 if (unshare_flags & CLONE_NEWIPC) {
2381 /* Orphan segments in old ns (see sem above). */
2383 shm_init_task(current);
2387 switch_task_namespaces(current, new_nsproxy);
2393 spin_lock(&fs->lock);
2394 current->fs = new_fs;
2399 spin_unlock(&fs->lock);
2403 fd = current->files;
2404 current->files = new_fd;
2408 task_unlock(current);
2411 /* Install the new user namespace */
2412 commit_creds(new_cred);
2417 perf_event_namespaces(current);
2419 bad_unshare_cleanup_cred:
2422 bad_unshare_cleanup_fd:
2424 put_files_struct(new_fd);
2426 bad_unshare_cleanup_fs:
2428 free_fs_struct(new_fs);
2435 * Helper to unshare the files of the current task.
2436 * We don't want to expose copy_files internals to
2437 * the exec layer of the kernel.
2440 int unshare_files(struct files_struct **displaced)
2442 struct task_struct *task = current;
2443 struct files_struct *copy = NULL;
2446 error = unshare_fd(CLONE_FILES, ©);
2447 if (error || !copy) {
2451 *displaced = task->files;
2458 int sysctl_max_threads(struct ctl_table *table, int write,
2459 void __user *buffer, size_t *lenp, loff_t *ppos)
2463 int threads = max_threads;
2464 int min = MIN_THREADS;
2465 int max = MAX_THREADS;
2472 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2476 set_max_threads(threads);