signal: make has_pending_signals() return bool
[platform/kernel/linux-rpi.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101
102 #include <trace/events/sched.h>
103
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106
107 /*
108  * Minimum number of threads to boot the kernel
109  */
110 #define MIN_THREADS 20
111
112 /*
113  * Maximum number of threads
114  */
115 #define MAX_THREADS FUTEX_TID_MASK
116
117 /*
118  * Protected counters by write_lock_irq(&tasklist_lock)
119  */
120 unsigned long total_forks;      /* Handle normal Linux uptimes. */
121 int nr_threads;                 /* The idle threads do not count.. */
122
123 int max_threads;                /* tunable limit on nr_threads */
124
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
128
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132         return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136
137 int nr_processes(void)
138 {
139         int cpu;
140         int total = 0;
141
142         for_each_possible_cpu(cpu)
143                 total += per_cpu(process_counts, cpu);
144
145         return total;
146 }
147
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162         kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171
172 /*
173  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174  * kmemcache based allocator.
175  */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177
178 #ifdef CONFIG_VMAP_STACK
179 /*
180  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181  * flush.  Try to minimize the number of calls by caching stacks.
182  */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189         int i;
190
191         for (i = 0; i < NR_CACHED_STACKS; i++) {
192                 struct vm_struct *vm_stack = cached_vm_stacks[i];
193
194                 if (!vm_stack)
195                         continue;
196
197                 vfree(vm_stack->addr);
198                 cached_vm_stacks[i] = NULL;
199         }
200
201         return 0;
202 }
203 #endif
204
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208         void *stack;
209         int i;
210
211         for (i = 0; i < NR_CACHED_STACKS; i++) {
212                 struct vm_struct *s;
213
214                 s = this_cpu_xchg(cached_stacks[i], NULL);
215
216                 if (!s)
217                         continue;
218
219                 /* Clear stale pointers from reused stack. */
220                 memset(s->addr, 0, THREAD_SIZE);
221
222                 tsk->stack_vm_area = s;
223                 return s->addr;
224         }
225
226         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227                                      VMALLOC_START, VMALLOC_END,
228                                      THREADINFO_GFP,
229                                      PAGE_KERNEL,
230                                      0, node, __builtin_return_address(0));
231
232         /*
233          * We can't call find_vm_area() in interrupt context, and
234          * free_thread_stack() can be called in interrupt context,
235          * so cache the vm_struct.
236          */
237         if (stack)
238                 tsk->stack_vm_area = find_vm_area(stack);
239         return stack;
240 #else
241         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242                                              THREAD_SIZE_ORDER);
243
244         return page ? page_address(page) : NULL;
245 #endif
246 }
247
248 static inline void free_thread_stack(struct task_struct *tsk)
249 {
250 #ifdef CONFIG_VMAP_STACK
251         if (task_stack_vm_area(tsk)) {
252                 int i;
253
254                 for (i = 0; i < NR_CACHED_STACKS; i++) {
255                         if (this_cpu_cmpxchg(cached_stacks[i],
256                                         NULL, tsk->stack_vm_area) != NULL)
257                                 continue;
258
259                         return;
260                 }
261
262                 vfree_atomic(tsk->stack);
263                 return;
264         }
265 #endif
266
267         __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271
272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273                                                   int node)
274 {
275         return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277
278 static void free_thread_stack(struct task_struct *tsk)
279 {
280         kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282
283 void thread_stack_cache_init(void)
284 {
285         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
286                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
287                                         THREAD_SIZE, NULL);
288         BUG_ON(thread_stack_cache == NULL);
289 }
290 # endif
291 #endif
292
293 /* SLAB cache for signal_struct structures (tsk->signal) */
294 static struct kmem_cache *signal_cachep;
295
296 /* SLAB cache for sighand_struct structures (tsk->sighand) */
297 struct kmem_cache *sighand_cachep;
298
299 /* SLAB cache for files_struct structures (tsk->files) */
300 struct kmem_cache *files_cachep;
301
302 /* SLAB cache for fs_struct structures (tsk->fs) */
303 struct kmem_cache *fs_cachep;
304
305 /* SLAB cache for vm_area_struct structures */
306 static struct kmem_cache *vm_area_cachep;
307
308 /* SLAB cache for mm_struct structures (tsk->mm) */
309 static struct kmem_cache *mm_cachep;
310
311 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
312 {
313         struct vm_area_struct *vma;
314
315         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
316         if (vma)
317                 vma_init(vma, mm);
318         return vma;
319 }
320
321 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
322 {
323         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
324
325         if (new) {
326                 *new = *orig;
327                 INIT_LIST_HEAD(&new->anon_vma_chain);
328         }
329         return new;
330 }
331
332 void vm_area_free(struct vm_area_struct *vma)
333 {
334         kmem_cache_free(vm_area_cachep, vma);
335 }
336
337 static void account_kernel_stack(struct task_struct *tsk, int account)
338 {
339         void *stack = task_stack_page(tsk);
340         struct vm_struct *vm = task_stack_vm_area(tsk);
341
342         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
343
344         if (vm) {
345                 int i;
346
347                 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
348
349                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
350                         mod_zone_page_state(page_zone(vm->pages[i]),
351                                             NR_KERNEL_STACK_KB,
352                                             PAGE_SIZE / 1024 * account);
353                 }
354
355                 /* All stack pages belong to the same memcg. */
356                 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
357                                      account * (THREAD_SIZE / 1024));
358         } else {
359                 /*
360                  * All stack pages are in the same zone and belong to the
361                  * same memcg.
362                  */
363                 struct page *first_page = virt_to_page(stack);
364
365                 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
366                                     THREAD_SIZE / 1024 * account);
367
368                 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
369                                      account * (THREAD_SIZE / 1024));
370         }
371 }
372
373 static void release_task_stack(struct task_struct *tsk)
374 {
375         if (WARN_ON(tsk->state != TASK_DEAD))
376                 return;  /* Better to leak the stack than to free prematurely */
377
378         account_kernel_stack(tsk, -1);
379         arch_release_thread_stack(tsk->stack);
380         free_thread_stack(tsk);
381         tsk->stack = NULL;
382 #ifdef CONFIG_VMAP_STACK
383         tsk->stack_vm_area = NULL;
384 #endif
385 }
386
387 #ifdef CONFIG_THREAD_INFO_IN_TASK
388 void put_task_stack(struct task_struct *tsk)
389 {
390         if (atomic_dec_and_test(&tsk->stack_refcount))
391                 release_task_stack(tsk);
392 }
393 #endif
394
395 void free_task(struct task_struct *tsk)
396 {
397 #ifndef CONFIG_THREAD_INFO_IN_TASK
398         /*
399          * The task is finally done with both the stack and thread_info,
400          * so free both.
401          */
402         release_task_stack(tsk);
403 #else
404         /*
405          * If the task had a separate stack allocation, it should be gone
406          * by now.
407          */
408         WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
409 #endif
410         rt_mutex_debug_task_free(tsk);
411         ftrace_graph_exit_task(tsk);
412         put_seccomp_filter(tsk);
413         arch_release_task_struct(tsk);
414         if (tsk->flags & PF_KTHREAD)
415                 free_kthread_struct(tsk);
416         free_task_struct(tsk);
417 }
418 EXPORT_SYMBOL(free_task);
419
420 #ifdef CONFIG_MMU
421 static __latent_entropy int dup_mmap(struct mm_struct *mm,
422                                         struct mm_struct *oldmm)
423 {
424         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
425         struct rb_node **rb_link, *rb_parent;
426         int retval;
427         unsigned long charge;
428         LIST_HEAD(uf);
429
430         uprobe_start_dup_mmap();
431         if (down_write_killable(&oldmm->mmap_sem)) {
432                 retval = -EINTR;
433                 goto fail_uprobe_end;
434         }
435         flush_cache_dup_mm(oldmm);
436         uprobe_dup_mmap(oldmm, mm);
437         /*
438          * Not linked in yet - no deadlock potential:
439          */
440         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
441
442         /* No ordering required: file already has been exposed. */
443         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
444
445         mm->total_vm = oldmm->total_vm;
446         mm->data_vm = oldmm->data_vm;
447         mm->exec_vm = oldmm->exec_vm;
448         mm->stack_vm = oldmm->stack_vm;
449
450         rb_link = &mm->mm_rb.rb_node;
451         rb_parent = NULL;
452         pprev = &mm->mmap;
453         retval = ksm_fork(mm, oldmm);
454         if (retval)
455                 goto out;
456         retval = khugepaged_fork(mm, oldmm);
457         if (retval)
458                 goto out;
459
460         prev = NULL;
461         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
462                 struct file *file;
463
464                 if (mpnt->vm_flags & VM_DONTCOPY) {
465                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
466                         continue;
467                 }
468                 charge = 0;
469                 /*
470                  * Don't duplicate many vmas if we've been oom-killed (for
471                  * example)
472                  */
473                 if (fatal_signal_pending(current)) {
474                         retval = -EINTR;
475                         goto out;
476                 }
477                 if (mpnt->vm_flags & VM_ACCOUNT) {
478                         unsigned long len = vma_pages(mpnt);
479
480                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
481                                 goto fail_nomem;
482                         charge = len;
483                 }
484                 tmp = vm_area_dup(mpnt);
485                 if (!tmp)
486                         goto fail_nomem;
487                 retval = vma_dup_policy(mpnt, tmp);
488                 if (retval)
489                         goto fail_nomem_policy;
490                 tmp->vm_mm = mm;
491                 retval = dup_userfaultfd(tmp, &uf);
492                 if (retval)
493                         goto fail_nomem_anon_vma_fork;
494                 if (tmp->vm_flags & VM_WIPEONFORK) {
495                         /* VM_WIPEONFORK gets a clean slate in the child. */
496                         tmp->anon_vma = NULL;
497                         if (anon_vma_prepare(tmp))
498                                 goto fail_nomem_anon_vma_fork;
499                 } else if (anon_vma_fork(tmp, mpnt))
500                         goto fail_nomem_anon_vma_fork;
501                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
502                 tmp->vm_next = tmp->vm_prev = NULL;
503                 file = tmp->vm_file;
504                 if (file) {
505                         struct inode *inode = file_inode(file);
506                         struct address_space *mapping = file->f_mapping;
507
508                         get_file(file);
509                         if (tmp->vm_flags & VM_DENYWRITE)
510                                 atomic_dec(&inode->i_writecount);
511                         i_mmap_lock_write(mapping);
512                         if (tmp->vm_flags & VM_SHARED)
513                                 atomic_inc(&mapping->i_mmap_writable);
514                         flush_dcache_mmap_lock(mapping);
515                         /* insert tmp into the share list, just after mpnt */
516                         vma_interval_tree_insert_after(tmp, mpnt,
517                                         &mapping->i_mmap);
518                         flush_dcache_mmap_unlock(mapping);
519                         i_mmap_unlock_write(mapping);
520                 }
521
522                 /*
523                  * Clear hugetlb-related page reserves for children. This only
524                  * affects MAP_PRIVATE mappings. Faults generated by the child
525                  * are not guaranteed to succeed, even if read-only
526                  */
527                 if (is_vm_hugetlb_page(tmp))
528                         reset_vma_resv_huge_pages(tmp);
529
530                 /*
531                  * Link in the new vma and copy the page table entries.
532                  */
533                 *pprev = tmp;
534                 pprev = &tmp->vm_next;
535                 tmp->vm_prev = prev;
536                 prev = tmp;
537
538                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
539                 rb_link = &tmp->vm_rb.rb_right;
540                 rb_parent = &tmp->vm_rb;
541
542                 mm->map_count++;
543                 if (!(tmp->vm_flags & VM_WIPEONFORK))
544                         retval = copy_page_range(mm, oldmm, mpnt);
545
546                 if (tmp->vm_ops && tmp->vm_ops->open)
547                         tmp->vm_ops->open(tmp);
548
549                 if (retval)
550                         goto out;
551         }
552         /* a new mm has just been created */
553         arch_dup_mmap(oldmm, mm);
554         retval = 0;
555 out:
556         up_write(&mm->mmap_sem);
557         flush_tlb_mm(oldmm);
558         up_write(&oldmm->mmap_sem);
559         dup_userfaultfd_complete(&uf);
560 fail_uprobe_end:
561         uprobe_end_dup_mmap();
562         return retval;
563 fail_nomem_anon_vma_fork:
564         mpol_put(vma_policy(tmp));
565 fail_nomem_policy:
566         vm_area_free(tmp);
567 fail_nomem:
568         retval = -ENOMEM;
569         vm_unacct_memory(charge);
570         goto out;
571 }
572
573 static inline int mm_alloc_pgd(struct mm_struct *mm)
574 {
575         mm->pgd = pgd_alloc(mm);
576         if (unlikely(!mm->pgd))
577                 return -ENOMEM;
578         return 0;
579 }
580
581 static inline void mm_free_pgd(struct mm_struct *mm)
582 {
583         pgd_free(mm, mm->pgd);
584 }
585 #else
586 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
587 {
588         down_write(&oldmm->mmap_sem);
589         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
590         up_write(&oldmm->mmap_sem);
591         return 0;
592 }
593 #define mm_alloc_pgd(mm)        (0)
594 #define mm_free_pgd(mm)
595 #endif /* CONFIG_MMU */
596
597 static void check_mm(struct mm_struct *mm)
598 {
599         int i;
600
601         for (i = 0; i < NR_MM_COUNTERS; i++) {
602                 long x = atomic_long_read(&mm->rss_stat.count[i]);
603
604                 if (unlikely(x))
605                         printk(KERN_ALERT "BUG: Bad rss-counter state "
606                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
607         }
608
609         if (mm_pgtables_bytes(mm))
610                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
611                                 mm_pgtables_bytes(mm));
612
613 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
614         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
615 #endif
616 }
617
618 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
619 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
620
621 /*
622  * Called when the last reference to the mm
623  * is dropped: either by a lazy thread or by
624  * mmput. Free the page directory and the mm.
625  */
626 void __mmdrop(struct mm_struct *mm)
627 {
628         BUG_ON(mm == &init_mm);
629         WARN_ON_ONCE(mm == current->mm);
630         WARN_ON_ONCE(mm == current->active_mm);
631         mm_free_pgd(mm);
632         destroy_context(mm);
633         hmm_mm_destroy(mm);
634         mmu_notifier_mm_destroy(mm);
635         check_mm(mm);
636         put_user_ns(mm->user_ns);
637         free_mm(mm);
638 }
639 EXPORT_SYMBOL_GPL(__mmdrop);
640
641 static void mmdrop_async_fn(struct work_struct *work)
642 {
643         struct mm_struct *mm;
644
645         mm = container_of(work, struct mm_struct, async_put_work);
646         __mmdrop(mm);
647 }
648
649 static void mmdrop_async(struct mm_struct *mm)
650 {
651         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
652                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
653                 schedule_work(&mm->async_put_work);
654         }
655 }
656
657 static inline void free_signal_struct(struct signal_struct *sig)
658 {
659         taskstats_tgid_free(sig);
660         sched_autogroup_exit(sig);
661         /*
662          * __mmdrop is not safe to call from softirq context on x86 due to
663          * pgd_dtor so postpone it to the async context
664          */
665         if (sig->oom_mm)
666                 mmdrop_async(sig->oom_mm);
667         kmem_cache_free(signal_cachep, sig);
668 }
669
670 static inline void put_signal_struct(struct signal_struct *sig)
671 {
672         if (atomic_dec_and_test(&sig->sigcnt))
673                 free_signal_struct(sig);
674 }
675
676 void __put_task_struct(struct task_struct *tsk)
677 {
678         WARN_ON(!tsk->exit_state);
679         WARN_ON(atomic_read(&tsk->usage));
680         WARN_ON(tsk == current);
681
682         cgroup_free(tsk);
683         task_numa_free(tsk);
684         security_task_free(tsk);
685         exit_creds(tsk);
686         delayacct_tsk_free(tsk);
687         put_signal_struct(tsk->signal);
688
689         if (!profile_handoff_task(tsk))
690                 free_task(tsk);
691 }
692 EXPORT_SYMBOL_GPL(__put_task_struct);
693
694 void __init __weak arch_task_cache_init(void) { }
695
696 /*
697  * set_max_threads
698  */
699 static void set_max_threads(unsigned int max_threads_suggested)
700 {
701         u64 threads;
702
703         /*
704          * The number of threads shall be limited such that the thread
705          * structures may only consume a small part of the available memory.
706          */
707         if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
708                 threads = MAX_THREADS;
709         else
710                 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
711                                     (u64) THREAD_SIZE * 8UL);
712
713         if (threads > max_threads_suggested)
714                 threads = max_threads_suggested;
715
716         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
717 }
718
719 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
720 /* Initialized by the architecture: */
721 int arch_task_struct_size __read_mostly;
722 #endif
723
724 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
725 {
726         /* Fetch thread_struct whitelist for the architecture. */
727         arch_thread_struct_whitelist(offset, size);
728
729         /*
730          * Handle zero-sized whitelist or empty thread_struct, otherwise
731          * adjust offset to position of thread_struct in task_struct.
732          */
733         if (unlikely(*size == 0))
734                 *offset = 0;
735         else
736                 *offset += offsetof(struct task_struct, thread);
737 }
738
739 void __init fork_init(void)
740 {
741         int i;
742 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
743 #ifndef ARCH_MIN_TASKALIGN
744 #define ARCH_MIN_TASKALIGN      0
745 #endif
746         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
747         unsigned long useroffset, usersize;
748
749         /* create a slab on which task_structs can be allocated */
750         task_struct_whitelist(&useroffset, &usersize);
751         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
752                         arch_task_struct_size, align,
753                         SLAB_PANIC|SLAB_ACCOUNT,
754                         useroffset, usersize, NULL);
755 #endif
756
757         /* do the arch specific task caches init */
758         arch_task_cache_init();
759
760         set_max_threads(MAX_THREADS);
761
762         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
763         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
764         init_task.signal->rlim[RLIMIT_SIGPENDING] =
765                 init_task.signal->rlim[RLIMIT_NPROC];
766
767         for (i = 0; i < UCOUNT_COUNTS; i++) {
768                 init_user_ns.ucount_max[i] = max_threads/2;
769         }
770
771 #ifdef CONFIG_VMAP_STACK
772         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
773                           NULL, free_vm_stack_cache);
774 #endif
775
776         lockdep_init_task(&init_task);
777 }
778
779 int __weak arch_dup_task_struct(struct task_struct *dst,
780                                                struct task_struct *src)
781 {
782         *dst = *src;
783         return 0;
784 }
785
786 void set_task_stack_end_magic(struct task_struct *tsk)
787 {
788         unsigned long *stackend;
789
790         stackend = end_of_stack(tsk);
791         *stackend = STACK_END_MAGIC;    /* for overflow detection */
792 }
793
794 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
795 {
796         struct task_struct *tsk;
797         unsigned long *stack;
798         struct vm_struct *stack_vm_area;
799         int err;
800
801         if (node == NUMA_NO_NODE)
802                 node = tsk_fork_get_node(orig);
803         tsk = alloc_task_struct_node(node);
804         if (!tsk)
805                 return NULL;
806
807         stack = alloc_thread_stack_node(tsk, node);
808         if (!stack)
809                 goto free_tsk;
810
811         stack_vm_area = task_stack_vm_area(tsk);
812
813         err = arch_dup_task_struct(tsk, orig);
814
815         /*
816          * arch_dup_task_struct() clobbers the stack-related fields.  Make
817          * sure they're properly initialized before using any stack-related
818          * functions again.
819          */
820         tsk->stack = stack;
821 #ifdef CONFIG_VMAP_STACK
822         tsk->stack_vm_area = stack_vm_area;
823 #endif
824 #ifdef CONFIG_THREAD_INFO_IN_TASK
825         atomic_set(&tsk->stack_refcount, 1);
826 #endif
827
828         if (err)
829                 goto free_stack;
830
831 #ifdef CONFIG_SECCOMP
832         /*
833          * We must handle setting up seccomp filters once we're under
834          * the sighand lock in case orig has changed between now and
835          * then. Until then, filter must be NULL to avoid messing up
836          * the usage counts on the error path calling free_task.
837          */
838         tsk->seccomp.filter = NULL;
839 #endif
840
841         setup_thread_stack(tsk, orig);
842         clear_user_return_notifier(tsk);
843         clear_tsk_need_resched(tsk);
844         set_task_stack_end_magic(tsk);
845
846 #ifdef CONFIG_STACKPROTECTOR
847         tsk->stack_canary = get_random_canary();
848 #endif
849
850         /*
851          * One for us, one for whoever does the "release_task()" (usually
852          * parent)
853          */
854         atomic_set(&tsk->usage, 2);
855 #ifdef CONFIG_BLK_DEV_IO_TRACE
856         tsk->btrace_seq = 0;
857 #endif
858         tsk->splice_pipe = NULL;
859         tsk->task_frag.page = NULL;
860         tsk->wake_q.next = NULL;
861
862         account_kernel_stack(tsk, 1);
863
864         kcov_task_init(tsk);
865
866 #ifdef CONFIG_FAULT_INJECTION
867         tsk->fail_nth = 0;
868 #endif
869
870 #ifdef CONFIG_BLK_CGROUP
871         tsk->throttle_queue = NULL;
872         tsk->use_memdelay = 0;
873 #endif
874
875 #ifdef CONFIG_MEMCG
876         tsk->active_memcg = NULL;
877 #endif
878         return tsk;
879
880 free_stack:
881         free_thread_stack(tsk);
882 free_tsk:
883         free_task_struct(tsk);
884         return NULL;
885 }
886
887 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
888
889 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
890
891 static int __init coredump_filter_setup(char *s)
892 {
893         default_dump_filter =
894                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
895                 MMF_DUMP_FILTER_MASK;
896         return 1;
897 }
898
899 __setup("coredump_filter=", coredump_filter_setup);
900
901 #include <linux/init_task.h>
902
903 static void mm_init_aio(struct mm_struct *mm)
904 {
905 #ifdef CONFIG_AIO
906         spin_lock_init(&mm->ioctx_lock);
907         mm->ioctx_table = NULL;
908 #endif
909 }
910
911 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
912 {
913 #ifdef CONFIG_MEMCG
914         mm->owner = p;
915 #endif
916 }
917
918 static void mm_init_uprobes_state(struct mm_struct *mm)
919 {
920 #ifdef CONFIG_UPROBES
921         mm->uprobes_state.xol_area = NULL;
922 #endif
923 }
924
925 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
926         struct user_namespace *user_ns)
927 {
928         mm->mmap = NULL;
929         mm->mm_rb = RB_ROOT;
930         mm->vmacache_seqnum = 0;
931         atomic_set(&mm->mm_users, 1);
932         atomic_set(&mm->mm_count, 1);
933         init_rwsem(&mm->mmap_sem);
934         INIT_LIST_HEAD(&mm->mmlist);
935         mm->core_state = NULL;
936         mm_pgtables_bytes_init(mm);
937         mm->map_count = 0;
938         mm->locked_vm = 0;
939         mm->pinned_vm = 0;
940         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
941         spin_lock_init(&mm->page_table_lock);
942         spin_lock_init(&mm->arg_lock);
943         mm_init_cpumask(mm);
944         mm_init_aio(mm);
945         mm_init_owner(mm, p);
946         RCU_INIT_POINTER(mm->exe_file, NULL);
947         mmu_notifier_mm_init(mm);
948         hmm_mm_init(mm);
949         init_tlb_flush_pending(mm);
950 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
951         mm->pmd_huge_pte = NULL;
952 #endif
953         mm_init_uprobes_state(mm);
954
955         if (current->mm) {
956                 mm->flags = current->mm->flags & MMF_INIT_MASK;
957                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
958         } else {
959                 mm->flags = default_dump_filter;
960                 mm->def_flags = 0;
961         }
962
963         if (mm_alloc_pgd(mm))
964                 goto fail_nopgd;
965
966         if (init_new_context(p, mm))
967                 goto fail_nocontext;
968
969         mm->user_ns = get_user_ns(user_ns);
970         return mm;
971
972 fail_nocontext:
973         mm_free_pgd(mm);
974 fail_nopgd:
975         free_mm(mm);
976         return NULL;
977 }
978
979 /*
980  * Allocate and initialize an mm_struct.
981  */
982 struct mm_struct *mm_alloc(void)
983 {
984         struct mm_struct *mm;
985
986         mm = allocate_mm();
987         if (!mm)
988                 return NULL;
989
990         memset(mm, 0, sizeof(*mm));
991         return mm_init(mm, current, current_user_ns());
992 }
993
994 static inline void __mmput(struct mm_struct *mm)
995 {
996         VM_BUG_ON(atomic_read(&mm->mm_users));
997
998         uprobe_clear_state(mm);
999         exit_aio(mm);
1000         ksm_exit(mm);
1001         khugepaged_exit(mm); /* must run before exit_mmap */
1002         exit_mmap(mm);
1003         mm_put_huge_zero_page(mm);
1004         set_mm_exe_file(mm, NULL);
1005         if (!list_empty(&mm->mmlist)) {
1006                 spin_lock(&mmlist_lock);
1007                 list_del(&mm->mmlist);
1008                 spin_unlock(&mmlist_lock);
1009         }
1010         if (mm->binfmt)
1011                 module_put(mm->binfmt->module);
1012         mmdrop(mm);
1013 }
1014
1015 /*
1016  * Decrement the use count and release all resources for an mm.
1017  */
1018 void mmput(struct mm_struct *mm)
1019 {
1020         might_sleep();
1021
1022         if (atomic_dec_and_test(&mm->mm_users))
1023                 __mmput(mm);
1024 }
1025 EXPORT_SYMBOL_GPL(mmput);
1026
1027 #ifdef CONFIG_MMU
1028 static void mmput_async_fn(struct work_struct *work)
1029 {
1030         struct mm_struct *mm = container_of(work, struct mm_struct,
1031                                             async_put_work);
1032
1033         __mmput(mm);
1034 }
1035
1036 void mmput_async(struct mm_struct *mm)
1037 {
1038         if (atomic_dec_and_test(&mm->mm_users)) {
1039                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1040                 schedule_work(&mm->async_put_work);
1041         }
1042 }
1043 #endif
1044
1045 /**
1046  * set_mm_exe_file - change a reference to the mm's executable file
1047  *
1048  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1049  *
1050  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1051  * invocations: in mmput() nobody alive left, in execve task is single
1052  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1053  * mm->exe_file, but does so without using set_mm_exe_file() in order
1054  * to do avoid the need for any locks.
1055  */
1056 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1057 {
1058         struct file *old_exe_file;
1059
1060         /*
1061          * It is safe to dereference the exe_file without RCU as
1062          * this function is only called if nobody else can access
1063          * this mm -- see comment above for justification.
1064          */
1065         old_exe_file = rcu_dereference_raw(mm->exe_file);
1066
1067         if (new_exe_file)
1068                 get_file(new_exe_file);
1069         rcu_assign_pointer(mm->exe_file, new_exe_file);
1070         if (old_exe_file)
1071                 fput(old_exe_file);
1072 }
1073
1074 /**
1075  * get_mm_exe_file - acquire a reference to the mm's executable file
1076  *
1077  * Returns %NULL if mm has no associated executable file.
1078  * User must release file via fput().
1079  */
1080 struct file *get_mm_exe_file(struct mm_struct *mm)
1081 {
1082         struct file *exe_file;
1083
1084         rcu_read_lock();
1085         exe_file = rcu_dereference(mm->exe_file);
1086         if (exe_file && !get_file_rcu(exe_file))
1087                 exe_file = NULL;
1088         rcu_read_unlock();
1089         return exe_file;
1090 }
1091 EXPORT_SYMBOL(get_mm_exe_file);
1092
1093 /**
1094  * get_task_exe_file - acquire a reference to the task's executable file
1095  *
1096  * Returns %NULL if task's mm (if any) has no associated executable file or
1097  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1098  * User must release file via fput().
1099  */
1100 struct file *get_task_exe_file(struct task_struct *task)
1101 {
1102         struct file *exe_file = NULL;
1103         struct mm_struct *mm;
1104
1105         task_lock(task);
1106         mm = task->mm;
1107         if (mm) {
1108                 if (!(task->flags & PF_KTHREAD))
1109                         exe_file = get_mm_exe_file(mm);
1110         }
1111         task_unlock(task);
1112         return exe_file;
1113 }
1114 EXPORT_SYMBOL(get_task_exe_file);
1115
1116 /**
1117  * get_task_mm - acquire a reference to the task's mm
1118  *
1119  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1120  * this kernel workthread has transiently adopted a user mm with use_mm,
1121  * to do its AIO) is not set and if so returns a reference to it, after
1122  * bumping up the use count.  User must release the mm via mmput()
1123  * after use.  Typically used by /proc and ptrace.
1124  */
1125 struct mm_struct *get_task_mm(struct task_struct *task)
1126 {
1127         struct mm_struct *mm;
1128
1129         task_lock(task);
1130         mm = task->mm;
1131         if (mm) {
1132                 if (task->flags & PF_KTHREAD)
1133                         mm = NULL;
1134                 else
1135                         mmget(mm);
1136         }
1137         task_unlock(task);
1138         return mm;
1139 }
1140 EXPORT_SYMBOL_GPL(get_task_mm);
1141
1142 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1143 {
1144         struct mm_struct *mm;
1145         int err;
1146
1147         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1148         if (err)
1149                 return ERR_PTR(err);
1150
1151         mm = get_task_mm(task);
1152         if (mm && mm != current->mm &&
1153                         !ptrace_may_access(task, mode)) {
1154                 mmput(mm);
1155                 mm = ERR_PTR(-EACCES);
1156         }
1157         mutex_unlock(&task->signal->cred_guard_mutex);
1158
1159         return mm;
1160 }
1161
1162 static void complete_vfork_done(struct task_struct *tsk)
1163 {
1164         struct completion *vfork;
1165
1166         task_lock(tsk);
1167         vfork = tsk->vfork_done;
1168         if (likely(vfork)) {
1169                 tsk->vfork_done = NULL;
1170                 complete(vfork);
1171         }
1172         task_unlock(tsk);
1173 }
1174
1175 static int wait_for_vfork_done(struct task_struct *child,
1176                                 struct completion *vfork)
1177 {
1178         int killed;
1179
1180         freezer_do_not_count();
1181         killed = wait_for_completion_killable(vfork);
1182         freezer_count();
1183
1184         if (killed) {
1185                 task_lock(child);
1186                 child->vfork_done = NULL;
1187                 task_unlock(child);
1188         }
1189
1190         put_task_struct(child);
1191         return killed;
1192 }
1193
1194 /* Please note the differences between mmput and mm_release.
1195  * mmput is called whenever we stop holding onto a mm_struct,
1196  * error success whatever.
1197  *
1198  * mm_release is called after a mm_struct has been removed
1199  * from the current process.
1200  *
1201  * This difference is important for error handling, when we
1202  * only half set up a mm_struct for a new process and need to restore
1203  * the old one.  Because we mmput the new mm_struct before
1204  * restoring the old one. . .
1205  * Eric Biederman 10 January 1998
1206  */
1207 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1208 {
1209         /* Get rid of any futexes when releasing the mm */
1210 #ifdef CONFIG_FUTEX
1211         if (unlikely(tsk->robust_list)) {
1212                 exit_robust_list(tsk);
1213                 tsk->robust_list = NULL;
1214         }
1215 #ifdef CONFIG_COMPAT
1216         if (unlikely(tsk->compat_robust_list)) {
1217                 compat_exit_robust_list(tsk);
1218                 tsk->compat_robust_list = NULL;
1219         }
1220 #endif
1221         if (unlikely(!list_empty(&tsk->pi_state_list)))
1222                 exit_pi_state_list(tsk);
1223 #endif
1224
1225         uprobe_free_utask(tsk);
1226
1227         /* Get rid of any cached register state */
1228         deactivate_mm(tsk, mm);
1229
1230         /*
1231          * Signal userspace if we're not exiting with a core dump
1232          * because we want to leave the value intact for debugging
1233          * purposes.
1234          */
1235         if (tsk->clear_child_tid) {
1236                 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1237                     atomic_read(&mm->mm_users) > 1) {
1238                         /*
1239                          * We don't check the error code - if userspace has
1240                          * not set up a proper pointer then tough luck.
1241                          */
1242                         put_user(0, tsk->clear_child_tid);
1243                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1244                                         1, NULL, NULL, 0, 0);
1245                 }
1246                 tsk->clear_child_tid = NULL;
1247         }
1248
1249         /*
1250          * All done, finally we can wake up parent and return this mm to him.
1251          * Also kthread_stop() uses this completion for synchronization.
1252          */
1253         if (tsk->vfork_done)
1254                 complete_vfork_done(tsk);
1255 }
1256
1257 /*
1258  * Allocate a new mm structure and copy contents from the
1259  * mm structure of the passed in task structure.
1260  */
1261 static struct mm_struct *dup_mm(struct task_struct *tsk)
1262 {
1263         struct mm_struct *mm, *oldmm = current->mm;
1264         int err;
1265
1266         mm = allocate_mm();
1267         if (!mm)
1268                 goto fail_nomem;
1269
1270         memcpy(mm, oldmm, sizeof(*mm));
1271
1272         if (!mm_init(mm, tsk, mm->user_ns))
1273                 goto fail_nomem;
1274
1275         err = dup_mmap(mm, oldmm);
1276         if (err)
1277                 goto free_pt;
1278
1279         mm->hiwater_rss = get_mm_rss(mm);
1280         mm->hiwater_vm = mm->total_vm;
1281
1282         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1283                 goto free_pt;
1284
1285         return mm;
1286
1287 free_pt:
1288         /* don't put binfmt in mmput, we haven't got module yet */
1289         mm->binfmt = NULL;
1290         mmput(mm);
1291
1292 fail_nomem:
1293         return NULL;
1294 }
1295
1296 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1297 {
1298         struct mm_struct *mm, *oldmm;
1299         int retval;
1300
1301         tsk->min_flt = tsk->maj_flt = 0;
1302         tsk->nvcsw = tsk->nivcsw = 0;
1303 #ifdef CONFIG_DETECT_HUNG_TASK
1304         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1305         tsk->last_switch_time = 0;
1306 #endif
1307
1308         tsk->mm = NULL;
1309         tsk->active_mm = NULL;
1310
1311         /*
1312          * Are we cloning a kernel thread?
1313          *
1314          * We need to steal a active VM for that..
1315          */
1316         oldmm = current->mm;
1317         if (!oldmm)
1318                 return 0;
1319
1320         /* initialize the new vmacache entries */
1321         vmacache_flush(tsk);
1322
1323         if (clone_flags & CLONE_VM) {
1324                 mmget(oldmm);
1325                 mm = oldmm;
1326                 goto good_mm;
1327         }
1328
1329         retval = -ENOMEM;
1330         mm = dup_mm(tsk);
1331         if (!mm)
1332                 goto fail_nomem;
1333
1334 good_mm:
1335         tsk->mm = mm;
1336         tsk->active_mm = mm;
1337         return 0;
1338
1339 fail_nomem:
1340         return retval;
1341 }
1342
1343 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1344 {
1345         struct fs_struct *fs = current->fs;
1346         if (clone_flags & CLONE_FS) {
1347                 /* tsk->fs is already what we want */
1348                 spin_lock(&fs->lock);
1349                 if (fs->in_exec) {
1350                         spin_unlock(&fs->lock);
1351                         return -EAGAIN;
1352                 }
1353                 fs->users++;
1354                 spin_unlock(&fs->lock);
1355                 return 0;
1356         }
1357         tsk->fs = copy_fs_struct(fs);
1358         if (!tsk->fs)
1359                 return -ENOMEM;
1360         return 0;
1361 }
1362
1363 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1364 {
1365         struct files_struct *oldf, *newf;
1366         int error = 0;
1367
1368         /*
1369          * A background process may not have any files ...
1370          */
1371         oldf = current->files;
1372         if (!oldf)
1373                 goto out;
1374
1375         if (clone_flags & CLONE_FILES) {
1376                 atomic_inc(&oldf->count);
1377                 goto out;
1378         }
1379
1380         newf = dup_fd(oldf, &error);
1381         if (!newf)
1382                 goto out;
1383
1384         tsk->files = newf;
1385         error = 0;
1386 out:
1387         return error;
1388 }
1389
1390 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1391 {
1392 #ifdef CONFIG_BLOCK
1393         struct io_context *ioc = current->io_context;
1394         struct io_context *new_ioc;
1395
1396         if (!ioc)
1397                 return 0;
1398         /*
1399          * Share io context with parent, if CLONE_IO is set
1400          */
1401         if (clone_flags & CLONE_IO) {
1402                 ioc_task_link(ioc);
1403                 tsk->io_context = ioc;
1404         } else if (ioprio_valid(ioc->ioprio)) {
1405                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1406                 if (unlikely(!new_ioc))
1407                         return -ENOMEM;
1408
1409                 new_ioc->ioprio = ioc->ioprio;
1410                 put_io_context(new_ioc);
1411         }
1412 #endif
1413         return 0;
1414 }
1415
1416 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1417 {
1418         struct sighand_struct *sig;
1419
1420         if (clone_flags & CLONE_SIGHAND) {
1421                 atomic_inc(&current->sighand->count);
1422                 return 0;
1423         }
1424         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1425         rcu_assign_pointer(tsk->sighand, sig);
1426         if (!sig)
1427                 return -ENOMEM;
1428
1429         atomic_set(&sig->count, 1);
1430         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1431         return 0;
1432 }
1433
1434 void __cleanup_sighand(struct sighand_struct *sighand)
1435 {
1436         if (atomic_dec_and_test(&sighand->count)) {
1437                 signalfd_cleanup(sighand);
1438                 /*
1439                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1440                  * without an RCU grace period, see __lock_task_sighand().
1441                  */
1442                 kmem_cache_free(sighand_cachep, sighand);
1443         }
1444 }
1445
1446 #ifdef CONFIG_POSIX_TIMERS
1447 /*
1448  * Initialize POSIX timer handling for a thread group.
1449  */
1450 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1451 {
1452         unsigned long cpu_limit;
1453
1454         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1455         if (cpu_limit != RLIM_INFINITY) {
1456                 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1457                 sig->cputimer.running = true;
1458         }
1459
1460         /* The timer lists. */
1461         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1462         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1463         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1464 }
1465 #else
1466 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1467 #endif
1468
1469 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1470 {
1471         struct signal_struct *sig;
1472
1473         if (clone_flags & CLONE_THREAD)
1474                 return 0;
1475
1476         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1477         tsk->signal = sig;
1478         if (!sig)
1479                 return -ENOMEM;
1480
1481         sig->nr_threads = 1;
1482         atomic_set(&sig->live, 1);
1483         atomic_set(&sig->sigcnt, 1);
1484
1485         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1486         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1487         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1488
1489         init_waitqueue_head(&sig->wait_chldexit);
1490         sig->curr_target = tsk;
1491         init_sigpending(&sig->shared_pending);
1492         seqlock_init(&sig->stats_lock);
1493         prev_cputime_init(&sig->prev_cputime);
1494
1495 #ifdef CONFIG_POSIX_TIMERS
1496         INIT_LIST_HEAD(&sig->posix_timers);
1497         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1498         sig->real_timer.function = it_real_fn;
1499 #endif
1500
1501         task_lock(current->group_leader);
1502         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1503         task_unlock(current->group_leader);
1504
1505         posix_cpu_timers_init_group(sig);
1506
1507         tty_audit_fork(sig);
1508         sched_autogroup_fork(sig);
1509
1510         sig->oom_score_adj = current->signal->oom_score_adj;
1511         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1512
1513         mutex_init(&sig->cred_guard_mutex);
1514
1515         return 0;
1516 }
1517
1518 static void copy_seccomp(struct task_struct *p)
1519 {
1520 #ifdef CONFIG_SECCOMP
1521         /*
1522          * Must be called with sighand->lock held, which is common to
1523          * all threads in the group. Holding cred_guard_mutex is not
1524          * needed because this new task is not yet running and cannot
1525          * be racing exec.
1526          */
1527         assert_spin_locked(&current->sighand->siglock);
1528
1529         /* Ref-count the new filter user, and assign it. */
1530         get_seccomp_filter(current);
1531         p->seccomp = current->seccomp;
1532
1533         /*
1534          * Explicitly enable no_new_privs here in case it got set
1535          * between the task_struct being duplicated and holding the
1536          * sighand lock. The seccomp state and nnp must be in sync.
1537          */
1538         if (task_no_new_privs(current))
1539                 task_set_no_new_privs(p);
1540
1541         /*
1542          * If the parent gained a seccomp mode after copying thread
1543          * flags and between before we held the sighand lock, we have
1544          * to manually enable the seccomp thread flag here.
1545          */
1546         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1547                 set_tsk_thread_flag(p, TIF_SECCOMP);
1548 #endif
1549 }
1550
1551 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1552 {
1553         current->clear_child_tid = tidptr;
1554
1555         return task_pid_vnr(current);
1556 }
1557
1558 static void rt_mutex_init_task(struct task_struct *p)
1559 {
1560         raw_spin_lock_init(&p->pi_lock);
1561 #ifdef CONFIG_RT_MUTEXES
1562         p->pi_waiters = RB_ROOT_CACHED;
1563         p->pi_top_task = NULL;
1564         p->pi_blocked_on = NULL;
1565 #endif
1566 }
1567
1568 #ifdef CONFIG_POSIX_TIMERS
1569 /*
1570  * Initialize POSIX timer handling for a single task.
1571  */
1572 static void posix_cpu_timers_init(struct task_struct *tsk)
1573 {
1574         tsk->cputime_expires.prof_exp = 0;
1575         tsk->cputime_expires.virt_exp = 0;
1576         tsk->cputime_expires.sched_exp = 0;
1577         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1578         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1579         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1580 }
1581 #else
1582 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1583 #endif
1584
1585 static inline void
1586 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1587 {
1588          task->pids[type].pid = pid;
1589 }
1590
1591 static inline void rcu_copy_process(struct task_struct *p)
1592 {
1593 #ifdef CONFIG_PREEMPT_RCU
1594         p->rcu_read_lock_nesting = 0;
1595         p->rcu_read_unlock_special.s = 0;
1596         p->rcu_blocked_node = NULL;
1597         INIT_LIST_HEAD(&p->rcu_node_entry);
1598 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1599 #ifdef CONFIG_TASKS_RCU
1600         p->rcu_tasks_holdout = false;
1601         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1602         p->rcu_tasks_idle_cpu = -1;
1603 #endif /* #ifdef CONFIG_TASKS_RCU */
1604 }
1605
1606 /*
1607  * This creates a new process as a copy of the old one,
1608  * but does not actually start it yet.
1609  *
1610  * It copies the registers, and all the appropriate
1611  * parts of the process environment (as per the clone
1612  * flags). The actual kick-off is left to the caller.
1613  */
1614 static __latent_entropy struct task_struct *copy_process(
1615                                         unsigned long clone_flags,
1616                                         unsigned long stack_start,
1617                                         unsigned long stack_size,
1618                                         int __user *child_tidptr,
1619                                         struct pid *pid,
1620                                         int trace,
1621                                         unsigned long tls,
1622                                         int node)
1623 {
1624         int retval;
1625         struct task_struct *p;
1626
1627         /*
1628          * Don't allow sharing the root directory with processes in a different
1629          * namespace
1630          */
1631         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1632                 return ERR_PTR(-EINVAL);
1633
1634         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1635                 return ERR_PTR(-EINVAL);
1636
1637         /*
1638          * Thread groups must share signals as well, and detached threads
1639          * can only be started up within the thread group.
1640          */
1641         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1642                 return ERR_PTR(-EINVAL);
1643
1644         /*
1645          * Shared signal handlers imply shared VM. By way of the above,
1646          * thread groups also imply shared VM. Blocking this case allows
1647          * for various simplifications in other code.
1648          */
1649         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1650                 return ERR_PTR(-EINVAL);
1651
1652         /*
1653          * Siblings of global init remain as zombies on exit since they are
1654          * not reaped by their parent (swapper). To solve this and to avoid
1655          * multi-rooted process trees, prevent global and container-inits
1656          * from creating siblings.
1657          */
1658         if ((clone_flags & CLONE_PARENT) &&
1659                                 current->signal->flags & SIGNAL_UNKILLABLE)
1660                 return ERR_PTR(-EINVAL);
1661
1662         /*
1663          * If the new process will be in a different pid or user namespace
1664          * do not allow it to share a thread group with the forking task.
1665          */
1666         if (clone_flags & CLONE_THREAD) {
1667                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1668                     (task_active_pid_ns(current) !=
1669                                 current->nsproxy->pid_ns_for_children))
1670                         return ERR_PTR(-EINVAL);
1671         }
1672
1673         retval = -ENOMEM;
1674         p = dup_task_struct(current, node);
1675         if (!p)
1676                 goto fork_out;
1677
1678         /*
1679          * This _must_ happen before we call free_task(), i.e. before we jump
1680          * to any of the bad_fork_* labels. This is to avoid freeing
1681          * p->set_child_tid which is (ab)used as a kthread's data pointer for
1682          * kernel threads (PF_KTHREAD).
1683          */
1684         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1685         /*
1686          * Clear TID on mm_release()?
1687          */
1688         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1689
1690         ftrace_graph_init_task(p);
1691
1692         rt_mutex_init_task(p);
1693
1694 #ifdef CONFIG_PROVE_LOCKING
1695         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1696         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1697 #endif
1698         retval = -EAGAIN;
1699         if (atomic_read(&p->real_cred->user->processes) >=
1700                         task_rlimit(p, RLIMIT_NPROC)) {
1701                 if (p->real_cred->user != INIT_USER &&
1702                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1703                         goto bad_fork_free;
1704         }
1705         current->flags &= ~PF_NPROC_EXCEEDED;
1706
1707         retval = copy_creds(p, clone_flags);
1708         if (retval < 0)
1709                 goto bad_fork_free;
1710
1711         /*
1712          * If multiple threads are within copy_process(), then this check
1713          * triggers too late. This doesn't hurt, the check is only there
1714          * to stop root fork bombs.
1715          */
1716         retval = -EAGAIN;
1717         if (nr_threads >= max_threads)
1718                 goto bad_fork_cleanup_count;
1719
1720         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1721         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1722         p->flags |= PF_FORKNOEXEC;
1723         INIT_LIST_HEAD(&p->children);
1724         INIT_LIST_HEAD(&p->sibling);
1725         rcu_copy_process(p);
1726         p->vfork_done = NULL;
1727         spin_lock_init(&p->alloc_lock);
1728
1729         init_sigpending(&p->pending);
1730
1731         p->utime = p->stime = p->gtime = 0;
1732 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1733         p->utimescaled = p->stimescaled = 0;
1734 #endif
1735         prev_cputime_init(&p->prev_cputime);
1736
1737 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1738         seqcount_init(&p->vtime.seqcount);
1739         p->vtime.starttime = 0;
1740         p->vtime.state = VTIME_INACTIVE;
1741 #endif
1742
1743 #if defined(SPLIT_RSS_COUNTING)
1744         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1745 #endif
1746
1747         p->default_timer_slack_ns = current->timer_slack_ns;
1748
1749         task_io_accounting_init(&p->ioac);
1750         acct_clear_integrals(p);
1751
1752         posix_cpu_timers_init(p);
1753
1754         p->start_time = ktime_get_ns();
1755         p->real_start_time = ktime_get_boot_ns();
1756         p->io_context = NULL;
1757         audit_set_context(p, NULL);
1758         cgroup_fork(p);
1759 #ifdef CONFIG_NUMA
1760         p->mempolicy = mpol_dup(p->mempolicy);
1761         if (IS_ERR(p->mempolicy)) {
1762                 retval = PTR_ERR(p->mempolicy);
1763                 p->mempolicy = NULL;
1764                 goto bad_fork_cleanup_threadgroup_lock;
1765         }
1766 #endif
1767 #ifdef CONFIG_CPUSETS
1768         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1769         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1770         seqcount_init(&p->mems_allowed_seq);
1771 #endif
1772 #ifdef CONFIG_TRACE_IRQFLAGS
1773         p->irq_events = 0;
1774         p->hardirqs_enabled = 0;
1775         p->hardirq_enable_ip = 0;
1776         p->hardirq_enable_event = 0;
1777         p->hardirq_disable_ip = _THIS_IP_;
1778         p->hardirq_disable_event = 0;
1779         p->softirqs_enabled = 1;
1780         p->softirq_enable_ip = _THIS_IP_;
1781         p->softirq_enable_event = 0;
1782         p->softirq_disable_ip = 0;
1783         p->softirq_disable_event = 0;
1784         p->hardirq_context = 0;
1785         p->softirq_context = 0;
1786 #endif
1787
1788         p->pagefault_disabled = 0;
1789
1790 #ifdef CONFIG_LOCKDEP
1791         p->lockdep_depth = 0; /* no locks held yet */
1792         p->curr_chain_key = 0;
1793         p->lockdep_recursion = 0;
1794         lockdep_init_task(p);
1795 #endif
1796
1797 #ifdef CONFIG_DEBUG_MUTEXES
1798         p->blocked_on = NULL; /* not blocked yet */
1799 #endif
1800 #ifdef CONFIG_BCACHE
1801         p->sequential_io        = 0;
1802         p->sequential_io_avg    = 0;
1803 #endif
1804
1805         /* Perform scheduler related setup. Assign this task to a CPU. */
1806         retval = sched_fork(clone_flags, p);
1807         if (retval)
1808                 goto bad_fork_cleanup_policy;
1809
1810         retval = perf_event_init_task(p);
1811         if (retval)
1812                 goto bad_fork_cleanup_policy;
1813         retval = audit_alloc(p);
1814         if (retval)
1815                 goto bad_fork_cleanup_perf;
1816         /* copy all the process information */
1817         shm_init_task(p);
1818         retval = security_task_alloc(p, clone_flags);
1819         if (retval)
1820                 goto bad_fork_cleanup_audit;
1821         retval = copy_semundo(clone_flags, p);
1822         if (retval)
1823                 goto bad_fork_cleanup_security;
1824         retval = copy_files(clone_flags, p);
1825         if (retval)
1826                 goto bad_fork_cleanup_semundo;
1827         retval = copy_fs(clone_flags, p);
1828         if (retval)
1829                 goto bad_fork_cleanup_files;
1830         retval = copy_sighand(clone_flags, p);
1831         if (retval)
1832                 goto bad_fork_cleanup_fs;
1833         retval = copy_signal(clone_flags, p);
1834         if (retval)
1835                 goto bad_fork_cleanup_sighand;
1836         retval = copy_mm(clone_flags, p);
1837         if (retval)
1838                 goto bad_fork_cleanup_signal;
1839         retval = copy_namespaces(clone_flags, p);
1840         if (retval)
1841                 goto bad_fork_cleanup_mm;
1842         retval = copy_io(clone_flags, p);
1843         if (retval)
1844                 goto bad_fork_cleanup_namespaces;
1845         retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1846         if (retval)
1847                 goto bad_fork_cleanup_io;
1848
1849         if (pid != &init_struct_pid) {
1850                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1851                 if (IS_ERR(pid)) {
1852                         retval = PTR_ERR(pid);
1853                         goto bad_fork_cleanup_thread;
1854                 }
1855         }
1856
1857 #ifdef CONFIG_BLOCK
1858         p->plug = NULL;
1859 #endif
1860 #ifdef CONFIG_FUTEX
1861         p->robust_list = NULL;
1862 #ifdef CONFIG_COMPAT
1863         p->compat_robust_list = NULL;
1864 #endif
1865         INIT_LIST_HEAD(&p->pi_state_list);
1866         p->pi_state_cache = NULL;
1867 #endif
1868         /*
1869          * sigaltstack should be cleared when sharing the same VM
1870          */
1871         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1872                 sas_ss_reset(p);
1873
1874         /*
1875          * Syscall tracing and stepping should be turned off in the
1876          * child regardless of CLONE_PTRACE.
1877          */
1878         user_disable_single_step(p);
1879         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1880 #ifdef TIF_SYSCALL_EMU
1881         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1882 #endif
1883         clear_all_latency_tracing(p);
1884
1885         /* ok, now we should be set up.. */
1886         p->pid = pid_nr(pid);
1887         if (clone_flags & CLONE_THREAD) {
1888                 p->exit_signal = -1;
1889                 p->group_leader = current->group_leader;
1890                 p->tgid = current->tgid;
1891         } else {
1892                 if (clone_flags & CLONE_PARENT)
1893                         p->exit_signal = current->group_leader->exit_signal;
1894                 else
1895                         p->exit_signal = (clone_flags & CSIGNAL);
1896                 p->group_leader = p;
1897                 p->tgid = p->pid;
1898         }
1899
1900         p->nr_dirtied = 0;
1901         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1902         p->dirty_paused_when = 0;
1903
1904         p->pdeath_signal = 0;
1905         INIT_LIST_HEAD(&p->thread_group);
1906         p->task_works = NULL;
1907
1908         cgroup_threadgroup_change_begin(current);
1909         /*
1910          * Ensure that the cgroup subsystem policies allow the new process to be
1911          * forked. It should be noted the the new process's css_set can be changed
1912          * between here and cgroup_post_fork() if an organisation operation is in
1913          * progress.
1914          */
1915         retval = cgroup_can_fork(p);
1916         if (retval)
1917                 goto bad_fork_free_pid;
1918
1919         /*
1920          * Make it visible to the rest of the system, but dont wake it up yet.
1921          * Need tasklist lock for parent etc handling!
1922          */
1923         write_lock_irq(&tasklist_lock);
1924
1925         /* CLONE_PARENT re-uses the old parent */
1926         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1927                 p->real_parent = current->real_parent;
1928                 p->parent_exec_id = current->parent_exec_id;
1929         } else {
1930                 p->real_parent = current;
1931                 p->parent_exec_id = current->self_exec_id;
1932         }
1933
1934         klp_copy_process(p);
1935
1936         spin_lock(&current->sighand->siglock);
1937
1938         /*
1939          * Copy seccomp details explicitly here, in case they were changed
1940          * before holding sighand lock.
1941          */
1942         copy_seccomp(p);
1943
1944         rseq_fork(p, clone_flags);
1945
1946         /*
1947          * Process group and session signals need to be delivered to just the
1948          * parent before the fork or both the parent and the child after the
1949          * fork. Restart if a signal comes in before we add the new process to
1950          * it's process group.
1951          * A fatal signal pending means that current will exit, so the new
1952          * thread can't slip out of an OOM kill (or normal SIGKILL).
1953         */
1954         recalc_sigpending();
1955         if (signal_pending(current)) {
1956                 retval = -ERESTARTNOINTR;
1957                 goto bad_fork_cancel_cgroup;
1958         }
1959         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1960                 retval = -ENOMEM;
1961                 goto bad_fork_cancel_cgroup;
1962         }
1963
1964         if (likely(p->pid)) {
1965                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1966
1967                 init_task_pid(p, PIDTYPE_PID, pid);
1968                 if (thread_group_leader(p)) {
1969                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1970                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1971
1972                         if (is_child_reaper(pid)) {
1973                                 ns_of_pid(pid)->child_reaper = p;
1974                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1975                         }
1976
1977                         p->signal->leader_pid = pid;
1978                         p->signal->tty = tty_kref_get(current->signal->tty);
1979                         /*
1980                          * Inherit has_child_subreaper flag under the same
1981                          * tasklist_lock with adding child to the process tree
1982                          * for propagate_has_child_subreaper optimization.
1983                          */
1984                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1985                                                          p->real_parent->signal->is_child_subreaper;
1986                         list_add_tail(&p->sibling, &p->real_parent->children);
1987                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1988                         attach_pid(p, PIDTYPE_PGID);
1989                         attach_pid(p, PIDTYPE_SID);
1990                         __this_cpu_inc(process_counts);
1991                 } else {
1992                         current->signal->nr_threads++;
1993                         atomic_inc(&current->signal->live);
1994                         atomic_inc(&current->signal->sigcnt);
1995                         list_add_tail_rcu(&p->thread_group,
1996                                           &p->group_leader->thread_group);
1997                         list_add_tail_rcu(&p->thread_node,
1998                                           &p->signal->thread_head);
1999                 }
2000                 attach_pid(p, PIDTYPE_PID);
2001                 nr_threads++;
2002         }
2003
2004         total_forks++;
2005         spin_unlock(&current->sighand->siglock);
2006         syscall_tracepoint_update(p);
2007         write_unlock_irq(&tasklist_lock);
2008
2009         proc_fork_connector(p);
2010         cgroup_post_fork(p);
2011         cgroup_threadgroup_change_end(current);
2012         perf_event_fork(p);
2013
2014         trace_task_newtask(p, clone_flags);
2015         uprobe_copy_process(p, clone_flags);
2016
2017         return p;
2018
2019 bad_fork_cancel_cgroup:
2020         spin_unlock(&current->sighand->siglock);
2021         write_unlock_irq(&tasklist_lock);
2022         cgroup_cancel_fork(p);
2023 bad_fork_free_pid:
2024         cgroup_threadgroup_change_end(current);
2025         if (pid != &init_struct_pid)
2026                 free_pid(pid);
2027 bad_fork_cleanup_thread:
2028         exit_thread(p);
2029 bad_fork_cleanup_io:
2030         if (p->io_context)
2031                 exit_io_context(p);
2032 bad_fork_cleanup_namespaces:
2033         exit_task_namespaces(p);
2034 bad_fork_cleanup_mm:
2035         if (p->mm)
2036                 mmput(p->mm);
2037 bad_fork_cleanup_signal:
2038         if (!(clone_flags & CLONE_THREAD))
2039                 free_signal_struct(p->signal);
2040 bad_fork_cleanup_sighand:
2041         __cleanup_sighand(p->sighand);
2042 bad_fork_cleanup_fs:
2043         exit_fs(p); /* blocking */
2044 bad_fork_cleanup_files:
2045         exit_files(p); /* blocking */
2046 bad_fork_cleanup_semundo:
2047         exit_sem(p);
2048 bad_fork_cleanup_security:
2049         security_task_free(p);
2050 bad_fork_cleanup_audit:
2051         audit_free(p);
2052 bad_fork_cleanup_perf:
2053         perf_event_free_task(p);
2054 bad_fork_cleanup_policy:
2055         lockdep_free_task(p);
2056 #ifdef CONFIG_NUMA
2057         mpol_put(p->mempolicy);
2058 bad_fork_cleanup_threadgroup_lock:
2059 #endif
2060         delayacct_tsk_free(p);
2061 bad_fork_cleanup_count:
2062         atomic_dec(&p->cred->user->processes);
2063         exit_creds(p);
2064 bad_fork_free:
2065         p->state = TASK_DEAD;
2066         put_task_stack(p);
2067         free_task(p);
2068 fork_out:
2069         return ERR_PTR(retval);
2070 }
2071
2072 static inline void init_idle_pids(struct pid_link *links)
2073 {
2074         enum pid_type type;
2075
2076         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2077                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
2078                 links[type].pid = &init_struct_pid;
2079         }
2080 }
2081
2082 struct task_struct *fork_idle(int cpu)
2083 {
2084         struct task_struct *task;
2085         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2086                             cpu_to_node(cpu));
2087         if (!IS_ERR(task)) {
2088                 init_idle_pids(task->pids);
2089                 init_idle(task, cpu);
2090         }
2091
2092         return task;
2093 }
2094
2095 /*
2096  *  Ok, this is the main fork-routine.
2097  *
2098  * It copies the process, and if successful kick-starts
2099  * it and waits for it to finish using the VM if required.
2100  */
2101 long _do_fork(unsigned long clone_flags,
2102               unsigned long stack_start,
2103               unsigned long stack_size,
2104               int __user *parent_tidptr,
2105               int __user *child_tidptr,
2106               unsigned long tls)
2107 {
2108         struct completion vfork;
2109         struct pid *pid;
2110         struct task_struct *p;
2111         int trace = 0;
2112         long nr;
2113
2114         /*
2115          * Determine whether and which event to report to ptracer.  When
2116          * called from kernel_thread or CLONE_UNTRACED is explicitly
2117          * requested, no event is reported; otherwise, report if the event
2118          * for the type of forking is enabled.
2119          */
2120         if (!(clone_flags & CLONE_UNTRACED)) {
2121                 if (clone_flags & CLONE_VFORK)
2122                         trace = PTRACE_EVENT_VFORK;
2123                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2124                         trace = PTRACE_EVENT_CLONE;
2125                 else
2126                         trace = PTRACE_EVENT_FORK;
2127
2128                 if (likely(!ptrace_event_enabled(current, trace)))
2129                         trace = 0;
2130         }
2131
2132         p = copy_process(clone_flags, stack_start, stack_size,
2133                          child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2134         add_latent_entropy();
2135
2136         if (IS_ERR(p))
2137                 return PTR_ERR(p);
2138
2139         /*
2140          * Do this prior waking up the new thread - the thread pointer
2141          * might get invalid after that point, if the thread exits quickly.
2142          */
2143         trace_sched_process_fork(current, p);
2144
2145         pid = get_task_pid(p, PIDTYPE_PID);
2146         nr = pid_vnr(pid);
2147
2148         if (clone_flags & CLONE_PARENT_SETTID)
2149                 put_user(nr, parent_tidptr);
2150
2151         if (clone_flags & CLONE_VFORK) {
2152                 p->vfork_done = &vfork;
2153                 init_completion(&vfork);
2154                 get_task_struct(p);
2155         }
2156
2157         wake_up_new_task(p);
2158
2159         /* forking complete and child started to run, tell ptracer */
2160         if (unlikely(trace))
2161                 ptrace_event_pid(trace, pid);
2162
2163         if (clone_flags & CLONE_VFORK) {
2164                 if (!wait_for_vfork_done(p, &vfork))
2165                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2166         }
2167
2168         put_pid(pid);
2169         return nr;
2170 }
2171
2172 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2173 /* For compatibility with architectures that call do_fork directly rather than
2174  * using the syscall entry points below. */
2175 long do_fork(unsigned long clone_flags,
2176               unsigned long stack_start,
2177               unsigned long stack_size,
2178               int __user *parent_tidptr,
2179               int __user *child_tidptr)
2180 {
2181         return _do_fork(clone_flags, stack_start, stack_size,
2182                         parent_tidptr, child_tidptr, 0);
2183 }
2184 #endif
2185
2186 /*
2187  * Create a kernel thread.
2188  */
2189 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2190 {
2191         return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2192                 (unsigned long)arg, NULL, NULL, 0);
2193 }
2194
2195 #ifdef __ARCH_WANT_SYS_FORK
2196 SYSCALL_DEFINE0(fork)
2197 {
2198 #ifdef CONFIG_MMU
2199         return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2200 #else
2201         /* can not support in nommu mode */
2202         return -EINVAL;
2203 #endif
2204 }
2205 #endif
2206
2207 #ifdef __ARCH_WANT_SYS_VFORK
2208 SYSCALL_DEFINE0(vfork)
2209 {
2210         return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2211                         0, NULL, NULL, 0);
2212 }
2213 #endif
2214
2215 #ifdef __ARCH_WANT_SYS_CLONE
2216 #ifdef CONFIG_CLONE_BACKWARDS
2217 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2218                  int __user *, parent_tidptr,
2219                  unsigned long, tls,
2220                  int __user *, child_tidptr)
2221 #elif defined(CONFIG_CLONE_BACKWARDS2)
2222 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2223                  int __user *, parent_tidptr,
2224                  int __user *, child_tidptr,
2225                  unsigned long, tls)
2226 #elif defined(CONFIG_CLONE_BACKWARDS3)
2227 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2228                 int, stack_size,
2229                 int __user *, parent_tidptr,
2230                 int __user *, child_tidptr,
2231                 unsigned long, tls)
2232 #else
2233 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2234                  int __user *, parent_tidptr,
2235                  int __user *, child_tidptr,
2236                  unsigned long, tls)
2237 #endif
2238 {
2239         return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2240 }
2241 #endif
2242
2243 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2244 {
2245         struct task_struct *leader, *parent, *child;
2246         int res;
2247
2248         read_lock(&tasklist_lock);
2249         leader = top = top->group_leader;
2250 down:
2251         for_each_thread(leader, parent) {
2252                 list_for_each_entry(child, &parent->children, sibling) {
2253                         res = visitor(child, data);
2254                         if (res) {
2255                                 if (res < 0)
2256                                         goto out;
2257                                 leader = child;
2258                                 goto down;
2259                         }
2260 up:
2261                         ;
2262                 }
2263         }
2264
2265         if (leader != top) {
2266                 child = leader;
2267                 parent = child->real_parent;
2268                 leader = parent->group_leader;
2269                 goto up;
2270         }
2271 out:
2272         read_unlock(&tasklist_lock);
2273 }
2274
2275 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2276 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2277 #endif
2278
2279 static void sighand_ctor(void *data)
2280 {
2281         struct sighand_struct *sighand = data;
2282
2283         spin_lock_init(&sighand->siglock);
2284         init_waitqueue_head(&sighand->signalfd_wqh);
2285 }
2286
2287 void __init proc_caches_init(void)
2288 {
2289         unsigned int mm_size;
2290
2291         sighand_cachep = kmem_cache_create("sighand_cache",
2292                         sizeof(struct sighand_struct), 0,
2293                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2294                         SLAB_ACCOUNT, sighand_ctor);
2295         signal_cachep = kmem_cache_create("signal_cache",
2296                         sizeof(struct signal_struct), 0,
2297                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2298                         NULL);
2299         files_cachep = kmem_cache_create("files_cache",
2300                         sizeof(struct files_struct), 0,
2301                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2302                         NULL);
2303         fs_cachep = kmem_cache_create("fs_cache",
2304                         sizeof(struct fs_struct), 0,
2305                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2306                         NULL);
2307
2308         /*
2309          * The mm_cpumask is located at the end of mm_struct, and is
2310          * dynamically sized based on the maximum CPU number this system
2311          * can have, taking hotplug into account (nr_cpu_ids).
2312          */
2313         mm_size = sizeof(struct mm_struct) + cpumask_size();
2314
2315         mm_cachep = kmem_cache_create_usercopy("mm_struct",
2316                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2317                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2318                         offsetof(struct mm_struct, saved_auxv),
2319                         sizeof_field(struct mm_struct, saved_auxv),
2320                         NULL);
2321         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2322         mmap_init();
2323         nsproxy_cache_init();
2324 }
2325
2326 /*
2327  * Check constraints on flags passed to the unshare system call.
2328  */
2329 static int check_unshare_flags(unsigned long unshare_flags)
2330 {
2331         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2332                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2333                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2334                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2335                 return -EINVAL;
2336         /*
2337          * Not implemented, but pretend it works if there is nothing
2338          * to unshare.  Note that unsharing the address space or the
2339          * signal handlers also need to unshare the signal queues (aka
2340          * CLONE_THREAD).
2341          */
2342         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2343                 if (!thread_group_empty(current))
2344                         return -EINVAL;
2345         }
2346         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2347                 if (atomic_read(&current->sighand->count) > 1)
2348                         return -EINVAL;
2349         }
2350         if (unshare_flags & CLONE_VM) {
2351                 if (!current_is_single_threaded())
2352                         return -EINVAL;
2353         }
2354
2355         return 0;
2356 }
2357
2358 /*
2359  * Unshare the filesystem structure if it is being shared
2360  */
2361 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2362 {
2363         struct fs_struct *fs = current->fs;
2364
2365         if (!(unshare_flags & CLONE_FS) || !fs)
2366                 return 0;
2367
2368         /* don't need lock here; in the worst case we'll do useless copy */
2369         if (fs->users == 1)
2370                 return 0;
2371
2372         *new_fsp = copy_fs_struct(fs);
2373         if (!*new_fsp)
2374                 return -ENOMEM;
2375
2376         return 0;
2377 }
2378
2379 /*
2380  * Unshare file descriptor table if it is being shared
2381  */
2382 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2383 {
2384         struct files_struct *fd = current->files;
2385         int error = 0;
2386
2387         if ((unshare_flags & CLONE_FILES) &&
2388             (fd && atomic_read(&fd->count) > 1)) {
2389                 *new_fdp = dup_fd(fd, &error);
2390                 if (!*new_fdp)
2391                         return error;
2392         }
2393
2394         return 0;
2395 }
2396
2397 /*
2398  * unshare allows a process to 'unshare' part of the process
2399  * context which was originally shared using clone.  copy_*
2400  * functions used by do_fork() cannot be used here directly
2401  * because they modify an inactive task_struct that is being
2402  * constructed. Here we are modifying the current, active,
2403  * task_struct.
2404  */
2405 int ksys_unshare(unsigned long unshare_flags)
2406 {
2407         struct fs_struct *fs, *new_fs = NULL;
2408         struct files_struct *fd, *new_fd = NULL;
2409         struct cred *new_cred = NULL;
2410         struct nsproxy *new_nsproxy = NULL;
2411         int do_sysvsem = 0;
2412         int err;
2413
2414         /*
2415          * If unsharing a user namespace must also unshare the thread group
2416          * and unshare the filesystem root and working directories.
2417          */
2418         if (unshare_flags & CLONE_NEWUSER)
2419                 unshare_flags |= CLONE_THREAD | CLONE_FS;
2420         /*
2421          * If unsharing vm, must also unshare signal handlers.
2422          */
2423         if (unshare_flags & CLONE_VM)
2424                 unshare_flags |= CLONE_SIGHAND;
2425         /*
2426          * If unsharing a signal handlers, must also unshare the signal queues.
2427          */
2428         if (unshare_flags & CLONE_SIGHAND)
2429                 unshare_flags |= CLONE_THREAD;
2430         /*
2431          * If unsharing namespace, must also unshare filesystem information.
2432          */
2433         if (unshare_flags & CLONE_NEWNS)
2434                 unshare_flags |= CLONE_FS;
2435
2436         err = check_unshare_flags(unshare_flags);
2437         if (err)
2438                 goto bad_unshare_out;
2439         /*
2440          * CLONE_NEWIPC must also detach from the undolist: after switching
2441          * to a new ipc namespace, the semaphore arrays from the old
2442          * namespace are unreachable.
2443          */
2444         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2445                 do_sysvsem = 1;
2446         err = unshare_fs(unshare_flags, &new_fs);
2447         if (err)
2448                 goto bad_unshare_out;
2449         err = unshare_fd(unshare_flags, &new_fd);
2450         if (err)
2451                 goto bad_unshare_cleanup_fs;
2452         err = unshare_userns(unshare_flags, &new_cred);
2453         if (err)
2454                 goto bad_unshare_cleanup_fd;
2455         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2456                                          new_cred, new_fs);
2457         if (err)
2458                 goto bad_unshare_cleanup_cred;
2459
2460         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2461                 if (do_sysvsem) {
2462                         /*
2463                          * CLONE_SYSVSEM is equivalent to sys_exit().
2464                          */
2465                         exit_sem(current);
2466                 }
2467                 if (unshare_flags & CLONE_NEWIPC) {
2468                         /* Orphan segments in old ns (see sem above). */
2469                         exit_shm(current);
2470                         shm_init_task(current);
2471                 }
2472
2473                 if (new_nsproxy)
2474                         switch_task_namespaces(current, new_nsproxy);
2475
2476                 task_lock(current);
2477
2478                 if (new_fs) {
2479                         fs = current->fs;
2480                         spin_lock(&fs->lock);
2481                         current->fs = new_fs;
2482                         if (--fs->users)
2483                                 new_fs = NULL;
2484                         else
2485                                 new_fs = fs;
2486                         spin_unlock(&fs->lock);
2487                 }
2488
2489                 if (new_fd) {
2490                         fd = current->files;
2491                         current->files = new_fd;
2492                         new_fd = fd;
2493                 }
2494
2495                 task_unlock(current);
2496
2497                 if (new_cred) {
2498                         /* Install the new user namespace */
2499                         commit_creds(new_cred);
2500                         new_cred = NULL;
2501                 }
2502         }
2503
2504         perf_event_namespaces(current);
2505
2506 bad_unshare_cleanup_cred:
2507         if (new_cred)
2508                 put_cred(new_cred);
2509 bad_unshare_cleanup_fd:
2510         if (new_fd)
2511                 put_files_struct(new_fd);
2512
2513 bad_unshare_cleanup_fs:
2514         if (new_fs)
2515                 free_fs_struct(new_fs);
2516
2517 bad_unshare_out:
2518         return err;
2519 }
2520
2521 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2522 {
2523         return ksys_unshare(unshare_flags);
2524 }
2525
2526 /*
2527  *      Helper to unshare the files of the current task.
2528  *      We don't want to expose copy_files internals to
2529  *      the exec layer of the kernel.
2530  */
2531
2532 int unshare_files(struct files_struct **displaced)
2533 {
2534         struct task_struct *task = current;
2535         struct files_struct *copy = NULL;
2536         int error;
2537
2538         error = unshare_fd(CLONE_FILES, &copy);
2539         if (error || !copy) {
2540                 *displaced = NULL;
2541                 return error;
2542         }
2543         *displaced = task->files;
2544         task_lock(task);
2545         task->files = copy;
2546         task_unlock(task);
2547         return 0;
2548 }
2549
2550 int sysctl_max_threads(struct ctl_table *table, int write,
2551                        void __user *buffer, size_t *lenp, loff_t *ppos)
2552 {
2553         struct ctl_table t;
2554         int ret;
2555         int threads = max_threads;
2556         int min = MIN_THREADS;
2557         int max = MAX_THREADS;
2558
2559         t = *table;
2560         t.data = &threads;
2561         t.extra1 = &min;
2562         t.extra2 = &max;
2563
2564         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2565         if (ret || !write)
2566                 return ret;
2567
2568         set_max_threads(threads);
2569
2570         return 0;
2571 }