1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
107 #include <trace/events/sched.h>
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
113 * Minimum number of threads to boot the kernel
115 #define MIN_THREADS 20
118 * Maximum number of threads
120 #define MAX_THREADS FUTEX_TID_MASK
123 * Protected counters by write_lock_irq(&tasklist_lock)
125 unsigned long total_forks; /* Handle normal Linux uptimes. */
126 int nr_threads; /* The idle threads do not count.. */
128 static int max_threads; /* tunable limit on nr_threads */
130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
132 static const char * const resident_page_types[] = {
133 NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
146 return lockdep_is_held(&tasklist_lock);
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
151 int nr_processes(void)
156 for_each_possible_cpu(cpu)
157 total += per_cpu(process_counts, cpu);
162 void __weak arch_release_task_struct(struct task_struct *tsk)
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
169 static inline struct task_struct *alloc_task_struct_node(int node)
171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174 static inline void free_task_struct(struct task_struct *tsk)
176 kmem_cache_free(task_struct_cachep, tsk);
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184 * kmemcache based allocator.
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
188 #ifdef CONFIG_VMAP_STACK
190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191 * flush. Try to minimize the number of calls by caching stacks.
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
196 static int free_vm_stack_cache(unsigned int cpu)
198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
201 for (i = 0; i < NR_CACHED_STACKS; i++) {
202 struct vm_struct *vm_stack = cached_vm_stacks[i];
207 vfree(vm_stack->addr);
208 cached_vm_stacks[i] = NULL;
215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
217 #ifdef CONFIG_VMAP_STACK
221 for (i = 0; i < NR_CACHED_STACKS; i++) {
224 s = this_cpu_xchg(cached_stacks[i], NULL);
229 /* Mark stack accessible for KASAN. */
230 kasan_unpoison_range(s->addr, THREAD_SIZE);
232 /* Clear stale pointers from reused stack. */
233 memset(s->addr, 0, THREAD_SIZE);
235 tsk->stack_vm_area = s;
236 tsk->stack = s->addr;
241 * Allocated stacks are cached and later reused by new threads,
242 * so memcg accounting is performed manually on assigning/releasing
243 * stacks to tasks. Drop __GFP_ACCOUNT.
245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
246 VMALLOC_START, VMALLOC_END,
247 THREADINFO_GFP & ~__GFP_ACCOUNT,
249 0, node, __builtin_return_address(0));
252 * We can't call find_vm_area() in interrupt context, and
253 * free_thread_stack() can be called in interrupt context,
254 * so cache the vm_struct.
257 tsk->stack_vm_area = find_vm_area(stack);
262 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
266 tsk->stack = kasan_reset_tag(page_address(page));
273 static inline void free_thread_stack(struct task_struct *tsk)
275 #ifdef CONFIG_VMAP_STACK
276 struct vm_struct *vm = task_stack_vm_area(tsk);
281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
282 memcg_kmem_uncharge_page(vm->pages[i], 0);
284 for (i = 0; i < NR_CACHED_STACKS; i++) {
285 if (this_cpu_cmpxchg(cached_stacks[i],
286 NULL, tsk->stack_vm_area) != NULL)
292 vfree_atomic(tsk->stack);
297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
300 static struct kmem_cache *thread_stack_cache;
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
305 unsigned long *stack;
306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 stack = kasan_reset_tag(stack);
312 static void free_thread_stack(struct task_struct *tsk)
314 kmem_cache_free(thread_stack_cache, tsk->stack);
317 void thread_stack_cache_init(void)
319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
320 THREAD_SIZE, THREAD_SIZE, 0, 0,
322 BUG_ON(thread_stack_cache == NULL);
327 /* SLAB cache for signal_struct structures (tsk->signal) */
328 static struct kmem_cache *signal_cachep;
330 /* SLAB cache for sighand_struct structures (tsk->sighand) */
331 struct kmem_cache *sighand_cachep;
333 /* SLAB cache for files_struct structures (tsk->files) */
334 struct kmem_cache *files_cachep;
336 /* SLAB cache for fs_struct structures (tsk->fs) */
337 struct kmem_cache *fs_cachep;
339 /* SLAB cache for vm_area_struct structures */
340 static struct kmem_cache *vm_area_cachep;
342 /* SLAB cache for mm_struct structures (tsk->mm) */
343 static struct kmem_cache *mm_cachep;
345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
347 struct vm_area_struct *vma;
349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
363 * orig->shared.rb may be modified concurrently, but the clone
364 * will be reinitialized.
366 *new = data_race(*orig);
367 INIT_LIST_HEAD(&new->anon_vma_chain);
368 new->vm_next = new->vm_prev = NULL;
373 void vm_area_free(struct vm_area_struct *vma)
375 kmem_cache_free(vm_area_cachep, vma);
378 static void account_kernel_stack(struct task_struct *tsk, int account)
380 void *stack = task_stack_page(tsk);
381 struct vm_struct *vm = task_stack_vm_area(tsk);
386 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
387 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
388 account * (PAGE_SIZE / 1024));
390 /* All stack pages are in the same node. */
391 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
392 account * (THREAD_SIZE / 1024));
396 static int memcg_charge_kernel_stack(struct task_struct *tsk)
398 #ifdef CONFIG_VMAP_STACK
399 struct vm_struct *vm = task_stack_vm_area(tsk);
402 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
407 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
409 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
411 * If memcg_kmem_charge_page() fails, page's
412 * memory cgroup pointer is NULL, and
413 * memcg_kmem_uncharge_page() in free_thread_stack()
414 * will ignore this page.
416 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
426 static void release_task_stack(struct task_struct *tsk)
428 if (WARN_ON(tsk->state != TASK_DEAD))
429 return; /* Better to leak the stack than to free prematurely */
431 account_kernel_stack(tsk, -1);
432 free_thread_stack(tsk);
434 #ifdef CONFIG_VMAP_STACK
435 tsk->stack_vm_area = NULL;
439 #ifdef CONFIG_THREAD_INFO_IN_TASK
440 void put_task_stack(struct task_struct *tsk)
442 if (refcount_dec_and_test(&tsk->stack_refcount))
443 release_task_stack(tsk);
447 void free_task(struct task_struct *tsk)
451 #ifndef CONFIG_THREAD_INFO_IN_TASK
453 * The task is finally done with both the stack and thread_info,
456 release_task_stack(tsk);
459 * If the task had a separate stack allocation, it should be gone
462 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
464 rt_mutex_debug_task_free(tsk);
465 ftrace_graph_exit_task(tsk);
466 arch_release_task_struct(tsk);
467 if (tsk->flags & PF_KTHREAD)
468 free_kthread_struct(tsk);
469 free_task_struct(tsk);
471 EXPORT_SYMBOL(free_task);
474 static __latent_entropy int dup_mmap(struct mm_struct *mm,
475 struct mm_struct *oldmm)
477 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
478 struct rb_node **rb_link, *rb_parent;
480 unsigned long charge;
483 uprobe_start_dup_mmap();
484 if (mmap_write_lock_killable(oldmm)) {
486 goto fail_uprobe_end;
488 flush_cache_dup_mm(oldmm);
489 uprobe_dup_mmap(oldmm, mm);
491 * Not linked in yet - no deadlock potential:
493 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
495 /* No ordering required: file already has been exposed. */
496 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
498 mm->total_vm = oldmm->total_vm;
499 mm->data_vm = oldmm->data_vm;
500 mm->exec_vm = oldmm->exec_vm;
501 mm->stack_vm = oldmm->stack_vm;
503 rb_link = &mm->mm_rb.rb_node;
506 retval = ksm_fork(mm, oldmm);
509 retval = khugepaged_fork(mm, oldmm);
514 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
517 if (mpnt->vm_flags & VM_DONTCOPY) {
518 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
523 * Don't duplicate many vmas if we've been oom-killed (for
526 if (fatal_signal_pending(current)) {
530 if (mpnt->vm_flags & VM_ACCOUNT) {
531 unsigned long len = vma_pages(mpnt);
533 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
537 tmp = vm_area_dup(mpnt);
540 retval = vma_dup_policy(mpnt, tmp);
542 goto fail_nomem_policy;
544 retval = dup_userfaultfd(tmp, &uf);
546 goto fail_nomem_anon_vma_fork;
547 if (tmp->vm_flags & VM_WIPEONFORK) {
549 * VM_WIPEONFORK gets a clean slate in the child.
550 * Don't prepare anon_vma until fault since we don't
551 * copy page for current vma.
553 tmp->anon_vma = NULL;
554 } else if (anon_vma_fork(tmp, mpnt))
555 goto fail_nomem_anon_vma_fork;
556 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
559 struct inode *inode = file_inode(file);
560 struct address_space *mapping = file->f_mapping;
563 if (tmp->vm_flags & VM_DENYWRITE)
564 put_write_access(inode);
565 i_mmap_lock_write(mapping);
566 if (tmp->vm_flags & VM_SHARED)
567 mapping_allow_writable(mapping);
568 flush_dcache_mmap_lock(mapping);
569 /* insert tmp into the share list, just after mpnt */
570 vma_interval_tree_insert_after(tmp, mpnt,
572 flush_dcache_mmap_unlock(mapping);
573 i_mmap_unlock_write(mapping);
577 * Clear hugetlb-related page reserves for children. This only
578 * affects MAP_PRIVATE mappings. Faults generated by the child
579 * are not guaranteed to succeed, even if read-only
581 if (is_vm_hugetlb_page(tmp))
582 reset_vma_resv_huge_pages(tmp);
585 * Link in the new vma and copy the page table entries.
588 pprev = &tmp->vm_next;
592 __vma_link_rb(mm, tmp, rb_link, rb_parent);
593 rb_link = &tmp->vm_rb.rb_right;
594 rb_parent = &tmp->vm_rb;
597 if (!(tmp->vm_flags & VM_WIPEONFORK))
598 retval = copy_page_range(tmp, mpnt);
600 if (tmp->vm_ops && tmp->vm_ops->open)
601 tmp->vm_ops->open(tmp);
606 /* a new mm has just been created */
607 retval = arch_dup_mmap(oldmm, mm);
609 mmap_write_unlock(mm);
611 mmap_write_unlock(oldmm);
612 dup_userfaultfd_complete(&uf);
614 uprobe_end_dup_mmap();
616 fail_nomem_anon_vma_fork:
617 mpol_put(vma_policy(tmp));
622 vm_unacct_memory(charge);
626 static inline int mm_alloc_pgd(struct mm_struct *mm)
628 mm->pgd = pgd_alloc(mm);
629 if (unlikely(!mm->pgd))
634 static inline void mm_free_pgd(struct mm_struct *mm)
636 pgd_free(mm, mm->pgd);
639 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
641 mmap_write_lock(oldmm);
642 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
643 mmap_write_unlock(oldmm);
646 #define mm_alloc_pgd(mm) (0)
647 #define mm_free_pgd(mm)
648 #endif /* CONFIG_MMU */
650 static void check_mm(struct mm_struct *mm)
654 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
655 "Please make sure 'struct resident_page_types[]' is updated as well");
657 for (i = 0; i < NR_MM_COUNTERS; i++) {
658 long x = atomic_long_read(&mm->rss_stat.count[i]);
661 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
662 mm, resident_page_types[i], x);
665 if (mm_pgtables_bytes(mm))
666 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
667 mm_pgtables_bytes(mm));
669 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
670 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
674 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
675 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
678 * Called when the last reference to the mm
679 * is dropped: either by a lazy thread or by
680 * mmput. Free the page directory and the mm.
682 void __mmdrop(struct mm_struct *mm)
684 BUG_ON(mm == &init_mm);
685 WARN_ON_ONCE(mm == current->mm);
686 WARN_ON_ONCE(mm == current->active_mm);
689 mmu_notifier_subscriptions_destroy(mm);
691 put_user_ns(mm->user_ns);
694 EXPORT_SYMBOL_GPL(__mmdrop);
696 static void mmdrop_async_fn(struct work_struct *work)
698 struct mm_struct *mm;
700 mm = container_of(work, struct mm_struct, async_put_work);
704 static void mmdrop_async(struct mm_struct *mm)
706 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
707 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
708 schedule_work(&mm->async_put_work);
712 static inline void free_signal_struct(struct signal_struct *sig)
714 taskstats_tgid_free(sig);
715 sched_autogroup_exit(sig);
717 * __mmdrop is not safe to call from softirq context on x86 due to
718 * pgd_dtor so postpone it to the async context
721 mmdrop_async(sig->oom_mm);
722 kmem_cache_free(signal_cachep, sig);
725 static inline void put_signal_struct(struct signal_struct *sig)
727 if (refcount_dec_and_test(&sig->sigcnt))
728 free_signal_struct(sig);
731 void __put_task_struct(struct task_struct *tsk)
733 WARN_ON(!tsk->exit_state);
734 WARN_ON(refcount_read(&tsk->usage));
735 WARN_ON(tsk == current);
739 task_numa_free(tsk, true);
740 security_task_free(tsk);
741 bpf_task_storage_free(tsk);
743 delayacct_tsk_free(tsk);
744 put_signal_struct(tsk->signal);
746 if (!profile_handoff_task(tsk))
749 EXPORT_SYMBOL_GPL(__put_task_struct);
751 void __init __weak arch_task_cache_init(void) { }
756 static void set_max_threads(unsigned int max_threads_suggested)
759 unsigned long nr_pages = totalram_pages();
762 * The number of threads shall be limited such that the thread
763 * structures may only consume a small part of the available memory.
765 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
766 threads = MAX_THREADS;
768 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
769 (u64) THREAD_SIZE * 8UL);
771 if (threads > max_threads_suggested)
772 threads = max_threads_suggested;
774 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
777 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
778 /* Initialized by the architecture: */
779 int arch_task_struct_size __read_mostly;
782 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
783 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
785 /* Fetch thread_struct whitelist for the architecture. */
786 arch_thread_struct_whitelist(offset, size);
789 * Handle zero-sized whitelist or empty thread_struct, otherwise
790 * adjust offset to position of thread_struct in task_struct.
792 if (unlikely(*size == 0))
795 *offset += offsetof(struct task_struct, thread);
797 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
799 void __init fork_init(void)
802 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
803 #ifndef ARCH_MIN_TASKALIGN
804 #define ARCH_MIN_TASKALIGN 0
806 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
807 unsigned long useroffset, usersize;
809 /* create a slab on which task_structs can be allocated */
810 task_struct_whitelist(&useroffset, &usersize);
811 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
812 arch_task_struct_size, align,
813 SLAB_PANIC|SLAB_ACCOUNT,
814 useroffset, usersize, NULL);
817 /* do the arch specific task caches init */
818 arch_task_cache_init();
820 set_max_threads(MAX_THREADS);
822 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
823 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
824 init_task.signal->rlim[RLIMIT_SIGPENDING] =
825 init_task.signal->rlim[RLIMIT_NPROC];
827 for (i = 0; i < UCOUNT_COUNTS; i++)
828 init_user_ns.ucount_max[i] = max_threads/2;
830 #ifdef CONFIG_VMAP_STACK
831 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
832 NULL, free_vm_stack_cache);
837 lockdep_init_task(&init_task);
841 int __weak arch_dup_task_struct(struct task_struct *dst,
842 struct task_struct *src)
848 void set_task_stack_end_magic(struct task_struct *tsk)
850 unsigned long *stackend;
852 stackend = end_of_stack(tsk);
853 *stackend = STACK_END_MAGIC; /* for overflow detection */
856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
858 struct task_struct *tsk;
859 unsigned long *stack;
860 struct vm_struct *stack_vm_area __maybe_unused;
863 if (node == NUMA_NO_NODE)
864 node = tsk_fork_get_node(orig);
865 tsk = alloc_task_struct_node(node);
869 stack = alloc_thread_stack_node(tsk, node);
873 if (memcg_charge_kernel_stack(tsk))
876 stack_vm_area = task_stack_vm_area(tsk);
878 err = arch_dup_task_struct(tsk, orig);
881 * arch_dup_task_struct() clobbers the stack-related fields. Make
882 * sure they're properly initialized before using any stack-related
886 #ifdef CONFIG_VMAP_STACK
887 tsk->stack_vm_area = stack_vm_area;
889 #ifdef CONFIG_THREAD_INFO_IN_TASK
890 refcount_set(&tsk->stack_refcount, 1);
896 err = scs_prepare(tsk, node);
900 #ifdef CONFIG_SECCOMP
902 * We must handle setting up seccomp filters once we're under
903 * the sighand lock in case orig has changed between now and
904 * then. Until then, filter must be NULL to avoid messing up
905 * the usage counts on the error path calling free_task.
907 tsk->seccomp.filter = NULL;
910 setup_thread_stack(tsk, orig);
911 clear_user_return_notifier(tsk);
912 clear_tsk_need_resched(tsk);
913 set_task_stack_end_magic(tsk);
914 clear_syscall_work_syscall_user_dispatch(tsk);
916 #ifdef CONFIG_STACKPROTECTOR
917 tsk->stack_canary = get_random_canary();
919 if (orig->cpus_ptr == &orig->cpus_mask)
920 tsk->cpus_ptr = &tsk->cpus_mask;
923 * One for the user space visible state that goes away when reaped.
924 * One for the scheduler.
926 refcount_set(&tsk->rcu_users, 2);
927 /* One for the rcu users */
928 refcount_set(&tsk->usage, 1);
929 #ifdef CONFIG_BLK_DEV_IO_TRACE
932 tsk->splice_pipe = NULL;
933 tsk->task_frag.page = NULL;
934 tsk->wake_q.next = NULL;
935 tsk->pf_io_worker = NULL;
937 account_kernel_stack(tsk, 1);
940 kmap_local_fork(tsk);
942 #ifdef CONFIG_FAULT_INJECTION
946 #ifdef CONFIG_BLK_CGROUP
947 tsk->throttle_queue = NULL;
948 tsk->use_memdelay = 0;
952 tsk->active_memcg = NULL;
957 free_thread_stack(tsk);
959 free_task_struct(tsk);
963 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
965 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
967 static int __init coredump_filter_setup(char *s)
969 default_dump_filter =
970 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
971 MMF_DUMP_FILTER_MASK;
975 __setup("coredump_filter=", coredump_filter_setup);
977 #include <linux/init_task.h>
979 static void mm_init_aio(struct mm_struct *mm)
982 spin_lock_init(&mm->ioctx_lock);
983 mm->ioctx_table = NULL;
987 static __always_inline void mm_clear_owner(struct mm_struct *mm,
988 struct task_struct *p)
992 WRITE_ONCE(mm->owner, NULL);
996 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1003 static void mm_init_pasid(struct mm_struct *mm)
1005 #ifdef CONFIG_IOMMU_SUPPORT
1006 mm->pasid = INIT_PASID;
1010 static void mm_init_uprobes_state(struct mm_struct *mm)
1012 #ifdef CONFIG_UPROBES
1013 mm->uprobes_state.xol_area = NULL;
1017 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1018 struct user_namespace *user_ns)
1021 mm->mm_rb = RB_ROOT;
1022 mm->vmacache_seqnum = 0;
1023 atomic_set(&mm->mm_users, 1);
1024 atomic_set(&mm->mm_count, 1);
1025 seqcount_init(&mm->write_protect_seq);
1027 INIT_LIST_HEAD(&mm->mmlist);
1028 mm->core_state = NULL;
1029 mm_pgtables_bytes_init(mm);
1032 atomic_set(&mm->has_pinned, 0);
1033 atomic64_set(&mm->pinned_vm, 0);
1034 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1035 spin_lock_init(&mm->page_table_lock);
1036 spin_lock_init(&mm->arg_lock);
1037 mm_init_cpumask(mm);
1039 mm_init_owner(mm, p);
1041 RCU_INIT_POINTER(mm->exe_file, NULL);
1042 mmu_notifier_subscriptions_init(mm);
1043 init_tlb_flush_pending(mm);
1044 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1045 mm->pmd_huge_pte = NULL;
1047 mm_init_uprobes_state(mm);
1050 mm->flags = current->mm->flags & MMF_INIT_MASK;
1051 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1053 mm->flags = default_dump_filter;
1057 if (mm_alloc_pgd(mm))
1060 if (init_new_context(p, mm))
1061 goto fail_nocontext;
1063 mm->user_ns = get_user_ns(user_ns);
1074 * Allocate and initialize an mm_struct.
1076 struct mm_struct *mm_alloc(void)
1078 struct mm_struct *mm;
1084 memset(mm, 0, sizeof(*mm));
1085 return mm_init(mm, current, current_user_ns());
1088 static inline void __mmput(struct mm_struct *mm)
1090 VM_BUG_ON(atomic_read(&mm->mm_users));
1092 uprobe_clear_state(mm);
1095 khugepaged_exit(mm); /* must run before exit_mmap */
1097 mm_put_huge_zero_page(mm);
1098 set_mm_exe_file(mm, NULL);
1099 if (!list_empty(&mm->mmlist)) {
1100 spin_lock(&mmlist_lock);
1101 list_del(&mm->mmlist);
1102 spin_unlock(&mmlist_lock);
1105 module_put(mm->binfmt->module);
1110 * Decrement the use count and release all resources for an mm.
1112 void mmput(struct mm_struct *mm)
1116 if (atomic_dec_and_test(&mm->mm_users))
1119 EXPORT_SYMBOL_GPL(mmput);
1122 static void mmput_async_fn(struct work_struct *work)
1124 struct mm_struct *mm = container_of(work, struct mm_struct,
1130 void mmput_async(struct mm_struct *mm)
1132 if (atomic_dec_and_test(&mm->mm_users)) {
1133 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1134 schedule_work(&mm->async_put_work);
1140 * set_mm_exe_file - change a reference to the mm's executable file
1142 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1144 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1145 * invocations: in mmput() nobody alive left, in execve task is single
1146 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1147 * mm->exe_file, but does so without using set_mm_exe_file() in order
1148 * to do avoid the need for any locks.
1150 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1152 struct file *old_exe_file;
1155 * It is safe to dereference the exe_file without RCU as
1156 * this function is only called if nobody else can access
1157 * this mm -- see comment above for justification.
1159 old_exe_file = rcu_dereference_raw(mm->exe_file);
1162 get_file(new_exe_file);
1163 rcu_assign_pointer(mm->exe_file, new_exe_file);
1169 * get_mm_exe_file - acquire a reference to the mm's executable file
1171 * Returns %NULL if mm has no associated executable file.
1172 * User must release file via fput().
1174 struct file *get_mm_exe_file(struct mm_struct *mm)
1176 struct file *exe_file;
1179 exe_file = rcu_dereference(mm->exe_file);
1180 if (exe_file && !get_file_rcu(exe_file))
1185 EXPORT_SYMBOL(get_mm_exe_file);
1188 * get_task_exe_file - acquire a reference to the task's executable file
1190 * Returns %NULL if task's mm (if any) has no associated executable file or
1191 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1192 * User must release file via fput().
1194 struct file *get_task_exe_file(struct task_struct *task)
1196 struct file *exe_file = NULL;
1197 struct mm_struct *mm;
1202 if (!(task->flags & PF_KTHREAD))
1203 exe_file = get_mm_exe_file(mm);
1208 EXPORT_SYMBOL(get_task_exe_file);
1211 * get_task_mm - acquire a reference to the task's mm
1213 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1214 * this kernel workthread has transiently adopted a user mm with use_mm,
1215 * to do its AIO) is not set and if so returns a reference to it, after
1216 * bumping up the use count. User must release the mm via mmput()
1217 * after use. Typically used by /proc and ptrace.
1219 struct mm_struct *get_task_mm(struct task_struct *task)
1221 struct mm_struct *mm;
1226 if (task->flags & PF_KTHREAD)
1234 EXPORT_SYMBOL_GPL(get_task_mm);
1236 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1238 struct mm_struct *mm;
1241 err = down_read_killable(&task->signal->exec_update_lock);
1243 return ERR_PTR(err);
1245 mm = get_task_mm(task);
1246 if (mm && mm != current->mm &&
1247 !ptrace_may_access(task, mode)) {
1249 mm = ERR_PTR(-EACCES);
1251 up_read(&task->signal->exec_update_lock);
1256 static void complete_vfork_done(struct task_struct *tsk)
1258 struct completion *vfork;
1261 vfork = tsk->vfork_done;
1262 if (likely(vfork)) {
1263 tsk->vfork_done = NULL;
1269 static int wait_for_vfork_done(struct task_struct *child,
1270 struct completion *vfork)
1274 freezer_do_not_count();
1275 cgroup_enter_frozen();
1276 killed = wait_for_completion_killable(vfork);
1277 cgroup_leave_frozen(false);
1282 child->vfork_done = NULL;
1286 put_task_struct(child);
1290 /* Please note the differences between mmput and mm_release.
1291 * mmput is called whenever we stop holding onto a mm_struct,
1292 * error success whatever.
1294 * mm_release is called after a mm_struct has been removed
1295 * from the current process.
1297 * This difference is important for error handling, when we
1298 * only half set up a mm_struct for a new process and need to restore
1299 * the old one. Because we mmput the new mm_struct before
1300 * restoring the old one. . .
1301 * Eric Biederman 10 January 1998
1303 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1305 uprobe_free_utask(tsk);
1307 /* Get rid of any cached register state */
1308 deactivate_mm(tsk, mm);
1311 * Signal userspace if we're not exiting with a core dump
1312 * because we want to leave the value intact for debugging
1315 if (tsk->clear_child_tid) {
1316 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1317 atomic_read(&mm->mm_users) > 1) {
1319 * We don't check the error code - if userspace has
1320 * not set up a proper pointer then tough luck.
1322 put_user(0, tsk->clear_child_tid);
1323 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1324 1, NULL, NULL, 0, 0);
1326 tsk->clear_child_tid = NULL;
1330 * All done, finally we can wake up parent and return this mm to him.
1331 * Also kthread_stop() uses this completion for synchronization.
1333 if (tsk->vfork_done)
1334 complete_vfork_done(tsk);
1337 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1339 futex_exit_release(tsk);
1340 mm_release(tsk, mm);
1343 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1345 futex_exec_release(tsk);
1346 mm_release(tsk, mm);
1350 * dup_mm() - duplicates an existing mm structure
1351 * @tsk: the task_struct with which the new mm will be associated.
1352 * @oldmm: the mm to duplicate.
1354 * Allocates a new mm structure and duplicates the provided @oldmm structure
1357 * Return: the duplicated mm or NULL on failure.
1359 static struct mm_struct *dup_mm(struct task_struct *tsk,
1360 struct mm_struct *oldmm)
1362 struct mm_struct *mm;
1369 memcpy(mm, oldmm, sizeof(*mm));
1371 if (!mm_init(mm, tsk, mm->user_ns))
1374 err = dup_mmap(mm, oldmm);
1378 mm->hiwater_rss = get_mm_rss(mm);
1379 mm->hiwater_vm = mm->total_vm;
1381 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1387 /* don't put binfmt in mmput, we haven't got module yet */
1389 mm_init_owner(mm, NULL);
1396 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1398 struct mm_struct *mm, *oldmm;
1401 tsk->min_flt = tsk->maj_flt = 0;
1402 tsk->nvcsw = tsk->nivcsw = 0;
1403 #ifdef CONFIG_DETECT_HUNG_TASK
1404 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1405 tsk->last_switch_time = 0;
1409 tsk->active_mm = NULL;
1412 * Are we cloning a kernel thread?
1414 * We need to steal a active VM for that..
1416 oldmm = current->mm;
1420 /* initialize the new vmacache entries */
1421 vmacache_flush(tsk);
1423 if (clone_flags & CLONE_VM) {
1430 mm = dup_mm(tsk, current->mm);
1436 tsk->active_mm = mm;
1443 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1445 struct fs_struct *fs = current->fs;
1446 if (clone_flags & CLONE_FS) {
1447 /* tsk->fs is already what we want */
1448 spin_lock(&fs->lock);
1450 spin_unlock(&fs->lock);
1454 spin_unlock(&fs->lock);
1457 tsk->fs = copy_fs_struct(fs);
1463 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1465 struct files_struct *oldf, *newf;
1469 * A background process may not have any files ...
1471 oldf = current->files;
1475 if (clone_flags & CLONE_FILES) {
1476 atomic_inc(&oldf->count);
1480 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1490 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1493 struct io_context *ioc = current->io_context;
1494 struct io_context *new_ioc;
1499 * Share io context with parent, if CLONE_IO is set
1501 if (clone_flags & CLONE_IO) {
1503 tsk->io_context = ioc;
1504 } else if (ioprio_valid(ioc->ioprio)) {
1505 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1506 if (unlikely(!new_ioc))
1509 new_ioc->ioprio = ioc->ioprio;
1510 put_io_context(new_ioc);
1516 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1518 struct sighand_struct *sig;
1520 if (clone_flags & CLONE_SIGHAND) {
1521 refcount_inc(¤t->sighand->count);
1524 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1525 RCU_INIT_POINTER(tsk->sighand, sig);
1529 refcount_set(&sig->count, 1);
1530 spin_lock_irq(¤t->sighand->siglock);
1531 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1532 spin_unlock_irq(¤t->sighand->siglock);
1534 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1535 if (clone_flags & CLONE_CLEAR_SIGHAND)
1536 flush_signal_handlers(tsk, 0);
1541 void __cleanup_sighand(struct sighand_struct *sighand)
1543 if (refcount_dec_and_test(&sighand->count)) {
1544 signalfd_cleanup(sighand);
1546 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1547 * without an RCU grace period, see __lock_task_sighand().
1549 kmem_cache_free(sighand_cachep, sighand);
1554 * Initialize POSIX timer handling for a thread group.
1556 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1558 struct posix_cputimers *pct = &sig->posix_cputimers;
1559 unsigned long cpu_limit;
1561 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1562 posix_cputimers_group_init(pct, cpu_limit);
1565 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1567 struct signal_struct *sig;
1569 if (clone_flags & CLONE_THREAD)
1572 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1577 sig->nr_threads = 1;
1578 atomic_set(&sig->live, 1);
1579 refcount_set(&sig->sigcnt, 1);
1581 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1582 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1583 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1585 init_waitqueue_head(&sig->wait_chldexit);
1586 sig->curr_target = tsk;
1587 init_sigpending(&sig->shared_pending);
1588 INIT_HLIST_HEAD(&sig->multiprocess);
1589 seqlock_init(&sig->stats_lock);
1590 prev_cputime_init(&sig->prev_cputime);
1592 #ifdef CONFIG_POSIX_TIMERS
1593 INIT_LIST_HEAD(&sig->posix_timers);
1594 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1595 sig->real_timer.function = it_real_fn;
1598 task_lock(current->group_leader);
1599 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1600 task_unlock(current->group_leader);
1602 posix_cpu_timers_init_group(sig);
1604 tty_audit_fork(sig);
1605 sched_autogroup_fork(sig);
1607 sig->oom_score_adj = current->signal->oom_score_adj;
1608 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1610 mutex_init(&sig->cred_guard_mutex);
1611 init_rwsem(&sig->exec_update_lock);
1616 static void copy_seccomp(struct task_struct *p)
1618 #ifdef CONFIG_SECCOMP
1620 * Must be called with sighand->lock held, which is common to
1621 * all threads in the group. Holding cred_guard_mutex is not
1622 * needed because this new task is not yet running and cannot
1625 assert_spin_locked(¤t->sighand->siglock);
1627 /* Ref-count the new filter user, and assign it. */
1628 get_seccomp_filter(current);
1629 p->seccomp = current->seccomp;
1632 * Explicitly enable no_new_privs here in case it got set
1633 * between the task_struct being duplicated and holding the
1634 * sighand lock. The seccomp state and nnp must be in sync.
1636 if (task_no_new_privs(current))
1637 task_set_no_new_privs(p);
1640 * If the parent gained a seccomp mode after copying thread
1641 * flags and between before we held the sighand lock, we have
1642 * to manually enable the seccomp thread flag here.
1644 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1645 set_task_syscall_work(p, SECCOMP);
1649 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1651 current->clear_child_tid = tidptr;
1653 return task_pid_vnr(current);
1656 static void rt_mutex_init_task(struct task_struct *p)
1658 raw_spin_lock_init(&p->pi_lock);
1659 #ifdef CONFIG_RT_MUTEXES
1660 p->pi_waiters = RB_ROOT_CACHED;
1661 p->pi_top_task = NULL;
1662 p->pi_blocked_on = NULL;
1666 static inline void init_task_pid_links(struct task_struct *task)
1670 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1671 INIT_HLIST_NODE(&task->pid_links[type]);
1675 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1677 if (type == PIDTYPE_PID)
1678 task->thread_pid = pid;
1680 task->signal->pids[type] = pid;
1683 static inline void rcu_copy_process(struct task_struct *p)
1685 #ifdef CONFIG_PREEMPT_RCU
1686 p->rcu_read_lock_nesting = 0;
1687 p->rcu_read_unlock_special.s = 0;
1688 p->rcu_blocked_node = NULL;
1689 INIT_LIST_HEAD(&p->rcu_node_entry);
1690 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1691 #ifdef CONFIG_TASKS_RCU
1692 p->rcu_tasks_holdout = false;
1693 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1694 p->rcu_tasks_idle_cpu = -1;
1695 #endif /* #ifdef CONFIG_TASKS_RCU */
1696 #ifdef CONFIG_TASKS_TRACE_RCU
1697 p->trc_reader_nesting = 0;
1698 p->trc_reader_special.s = 0;
1699 INIT_LIST_HEAD(&p->trc_holdout_list);
1700 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1703 struct pid *pidfd_pid(const struct file *file)
1705 if (file->f_op == &pidfd_fops)
1706 return file->private_data;
1708 return ERR_PTR(-EBADF);
1711 static int pidfd_release(struct inode *inode, struct file *file)
1713 struct pid *pid = file->private_data;
1715 file->private_data = NULL;
1720 #ifdef CONFIG_PROC_FS
1722 * pidfd_show_fdinfo - print information about a pidfd
1723 * @m: proc fdinfo file
1724 * @f: file referencing a pidfd
1727 * This function will print the pid that a given pidfd refers to in the
1728 * pid namespace of the procfs instance.
1729 * If the pid namespace of the process is not a descendant of the pid
1730 * namespace of the procfs instance 0 will be shown as its pid. This is
1731 * similar to calling getppid() on a process whose parent is outside of
1732 * its pid namespace.
1735 * If pid namespaces are supported then this function will also print
1736 * the pid of a given pidfd refers to for all descendant pid namespaces
1737 * starting from the current pid namespace of the instance, i.e. the
1738 * Pid field and the first entry in the NSpid field will be identical.
1739 * If the pid namespace of the process is not a descendant of the pid
1740 * namespace of the procfs instance 0 will be shown as its first NSpid
1741 * entry and no others will be shown.
1742 * Note that this differs from the Pid and NSpid fields in
1743 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1744 * the pid namespace of the procfs instance. The difference becomes
1745 * obvious when sending around a pidfd between pid namespaces from a
1746 * different branch of the tree, i.e. where no ancestoral relation is
1747 * present between the pid namespaces:
1748 * - create two new pid namespaces ns1 and ns2 in the initial pid
1749 * namespace (also take care to create new mount namespaces in the
1750 * new pid namespace and mount procfs)
1751 * - create a process with a pidfd in ns1
1752 * - send pidfd from ns1 to ns2
1753 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1754 * have exactly one entry, which is 0
1756 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1758 struct pid *pid = f->private_data;
1759 struct pid_namespace *ns;
1762 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1763 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1764 nr = pid_nr_ns(pid, ns);
1767 seq_put_decimal_ll(m, "Pid:\t", nr);
1769 #ifdef CONFIG_PID_NS
1770 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1774 /* If nr is non-zero it means that 'pid' is valid and that
1775 * ns, i.e. the pid namespace associated with the procfs
1776 * instance, is in the pid namespace hierarchy of pid.
1777 * Start at one below the already printed level.
1779 for (i = ns->level + 1; i <= pid->level; i++)
1780 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1788 * Poll support for process exit notification.
1790 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1792 struct pid *pid = file->private_data;
1793 __poll_t poll_flags = 0;
1795 poll_wait(file, &pid->wait_pidfd, pts);
1798 * Inform pollers only when the whole thread group exits.
1799 * If the thread group leader exits before all other threads in the
1800 * group, then poll(2) should block, similar to the wait(2) family.
1802 if (thread_group_exited(pid))
1803 poll_flags = EPOLLIN | EPOLLRDNORM;
1808 const struct file_operations pidfd_fops = {
1809 .release = pidfd_release,
1811 #ifdef CONFIG_PROC_FS
1812 .show_fdinfo = pidfd_show_fdinfo,
1816 static void __delayed_free_task(struct rcu_head *rhp)
1818 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1823 static __always_inline void delayed_free_task(struct task_struct *tsk)
1825 if (IS_ENABLED(CONFIG_MEMCG))
1826 call_rcu(&tsk->rcu, __delayed_free_task);
1831 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1833 /* Skip if kernel thread */
1837 /* Skip if spawning a thread or using vfork */
1838 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1841 /* We need to synchronize with __set_oom_adj */
1842 mutex_lock(&oom_adj_mutex);
1843 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1844 /* Update the values in case they were changed after copy_signal */
1845 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1846 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1847 mutex_unlock(&oom_adj_mutex);
1851 * This creates a new process as a copy of the old one,
1852 * but does not actually start it yet.
1854 * It copies the registers, and all the appropriate
1855 * parts of the process environment (as per the clone
1856 * flags). The actual kick-off is left to the caller.
1858 static __latent_entropy struct task_struct *copy_process(
1862 struct kernel_clone_args *args)
1864 int pidfd = -1, retval;
1865 struct task_struct *p;
1866 struct multiprocess_signals delayed;
1867 struct file *pidfile = NULL;
1868 u64 clone_flags = args->flags;
1869 struct nsproxy *nsp = current->nsproxy;
1872 * Don't allow sharing the root directory with processes in a different
1875 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1876 return ERR_PTR(-EINVAL);
1878 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1879 return ERR_PTR(-EINVAL);
1882 * Thread groups must share signals as well, and detached threads
1883 * can only be started up within the thread group.
1885 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1886 return ERR_PTR(-EINVAL);
1889 * Shared signal handlers imply shared VM. By way of the above,
1890 * thread groups also imply shared VM. Blocking this case allows
1891 * for various simplifications in other code.
1893 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1894 return ERR_PTR(-EINVAL);
1897 * Siblings of global init remain as zombies on exit since they are
1898 * not reaped by their parent (swapper). To solve this and to avoid
1899 * multi-rooted process trees, prevent global and container-inits
1900 * from creating siblings.
1902 if ((clone_flags & CLONE_PARENT) &&
1903 current->signal->flags & SIGNAL_UNKILLABLE)
1904 return ERR_PTR(-EINVAL);
1907 * If the new process will be in a different pid or user namespace
1908 * do not allow it to share a thread group with the forking task.
1910 if (clone_flags & CLONE_THREAD) {
1911 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1912 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1913 return ERR_PTR(-EINVAL);
1917 * If the new process will be in a different time namespace
1918 * do not allow it to share VM or a thread group with the forking task.
1920 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1921 if (nsp->time_ns != nsp->time_ns_for_children)
1922 return ERR_PTR(-EINVAL);
1925 if (clone_flags & CLONE_PIDFD) {
1927 * - CLONE_DETACHED is blocked so that we can potentially
1928 * reuse it later for CLONE_PIDFD.
1929 * - CLONE_THREAD is blocked until someone really needs it.
1931 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1932 return ERR_PTR(-EINVAL);
1936 * Force any signals received before this point to be delivered
1937 * before the fork happens. Collect up signals sent to multiple
1938 * processes that happen during the fork and delay them so that
1939 * they appear to happen after the fork.
1941 sigemptyset(&delayed.signal);
1942 INIT_HLIST_NODE(&delayed.node);
1944 spin_lock_irq(¤t->sighand->siglock);
1945 if (!(clone_flags & CLONE_THREAD))
1946 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1947 recalc_sigpending();
1948 spin_unlock_irq(¤t->sighand->siglock);
1949 retval = -ERESTARTNOINTR;
1950 if (task_sigpending(current))
1954 p = dup_task_struct(current, node);
1957 if (args->io_thread) {
1959 * Mark us an IO worker, and block any signal that isn't
1962 p->flags |= PF_IO_WORKER;
1963 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1967 * This _must_ happen before we call free_task(), i.e. before we jump
1968 * to any of the bad_fork_* labels. This is to avoid freeing
1969 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1970 * kernel threads (PF_KTHREAD).
1972 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1974 * Clear TID on mm_release()?
1976 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1978 ftrace_graph_init_task(p);
1980 rt_mutex_init_task(p);
1982 lockdep_assert_irqs_enabled();
1983 #ifdef CONFIG_PROVE_LOCKING
1984 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1987 if (atomic_read(&p->real_cred->user->processes) >=
1988 task_rlimit(p, RLIMIT_NPROC)) {
1989 if (p->real_cred->user != INIT_USER &&
1990 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1993 current->flags &= ~PF_NPROC_EXCEEDED;
1995 retval = copy_creds(p, clone_flags);
2000 * If multiple threads are within copy_process(), then this check
2001 * triggers too late. This doesn't hurt, the check is only there
2002 * to stop root fork bombs.
2005 if (data_race(nr_threads >= max_threads))
2006 goto bad_fork_cleanup_count;
2008 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2009 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2010 p->flags |= PF_FORKNOEXEC;
2011 INIT_LIST_HEAD(&p->children);
2012 INIT_LIST_HEAD(&p->sibling);
2013 rcu_copy_process(p);
2014 p->vfork_done = NULL;
2015 spin_lock_init(&p->alloc_lock);
2017 init_sigpending(&p->pending);
2018 p->sigqueue_cache = NULL;
2020 p->utime = p->stime = p->gtime = 0;
2021 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2022 p->utimescaled = p->stimescaled = 0;
2024 prev_cputime_init(&p->prev_cputime);
2026 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2027 seqcount_init(&p->vtime.seqcount);
2028 p->vtime.starttime = 0;
2029 p->vtime.state = VTIME_INACTIVE;
2032 #ifdef CONFIG_IO_URING
2036 #if defined(SPLIT_RSS_COUNTING)
2037 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2040 p->default_timer_slack_ns = current->timer_slack_ns;
2046 task_io_accounting_init(&p->ioac);
2047 acct_clear_integrals(p);
2049 posix_cputimers_init(&p->posix_cputimers);
2051 p->io_context = NULL;
2052 audit_set_context(p, NULL);
2055 p->mempolicy = mpol_dup(p->mempolicy);
2056 if (IS_ERR(p->mempolicy)) {
2057 retval = PTR_ERR(p->mempolicy);
2058 p->mempolicy = NULL;
2059 goto bad_fork_cleanup_threadgroup_lock;
2062 #ifdef CONFIG_CPUSETS
2063 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2064 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2065 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2067 #ifdef CONFIG_TRACE_IRQFLAGS
2068 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2069 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2070 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2071 p->softirqs_enabled = 1;
2072 p->softirq_context = 0;
2075 p->pagefault_disabled = 0;
2077 #ifdef CONFIG_LOCKDEP
2078 lockdep_init_task(p);
2081 #ifdef CONFIG_DEBUG_MUTEXES
2082 p->blocked_on = NULL; /* not blocked yet */
2084 #ifdef CONFIG_BCACHE
2085 p->sequential_io = 0;
2086 p->sequential_io_avg = 0;
2088 #ifdef CONFIG_BPF_SYSCALL
2089 RCU_INIT_POINTER(p->bpf_storage, NULL);
2092 /* Perform scheduler related setup. Assign this task to a CPU. */
2093 retval = sched_fork(clone_flags, p);
2095 goto bad_fork_cleanup_policy;
2097 retval = perf_event_init_task(p, clone_flags);
2099 goto bad_fork_cleanup_policy;
2100 retval = audit_alloc(p);
2102 goto bad_fork_cleanup_perf;
2103 /* copy all the process information */
2105 retval = security_task_alloc(p, clone_flags);
2107 goto bad_fork_cleanup_audit;
2108 retval = copy_semundo(clone_flags, p);
2110 goto bad_fork_cleanup_security;
2111 retval = copy_files(clone_flags, p);
2113 goto bad_fork_cleanup_semundo;
2114 retval = copy_fs(clone_flags, p);
2116 goto bad_fork_cleanup_files;
2117 retval = copy_sighand(clone_flags, p);
2119 goto bad_fork_cleanup_fs;
2120 retval = copy_signal(clone_flags, p);
2122 goto bad_fork_cleanup_sighand;
2123 retval = copy_mm(clone_flags, p);
2125 goto bad_fork_cleanup_signal;
2126 retval = copy_namespaces(clone_flags, p);
2128 goto bad_fork_cleanup_mm;
2129 retval = copy_io(clone_flags, p);
2131 goto bad_fork_cleanup_namespaces;
2132 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2134 goto bad_fork_cleanup_io;
2136 stackleak_task_init(p);
2138 if (pid != &init_struct_pid) {
2139 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2140 args->set_tid_size);
2142 retval = PTR_ERR(pid);
2143 goto bad_fork_cleanup_thread;
2148 * This has to happen after we've potentially unshared the file
2149 * descriptor table (so that the pidfd doesn't leak into the child
2150 * if the fd table isn't shared).
2152 if (clone_flags & CLONE_PIDFD) {
2153 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2155 goto bad_fork_free_pid;
2159 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2160 O_RDWR | O_CLOEXEC);
2161 if (IS_ERR(pidfile)) {
2162 put_unused_fd(pidfd);
2163 retval = PTR_ERR(pidfile);
2164 goto bad_fork_free_pid;
2166 get_pid(pid); /* held by pidfile now */
2168 retval = put_user(pidfd, args->pidfd);
2170 goto bad_fork_put_pidfd;
2179 * sigaltstack should be cleared when sharing the same VM
2181 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2185 * Syscall tracing and stepping should be turned off in the
2186 * child regardless of CLONE_PTRACE.
2188 user_disable_single_step(p);
2189 clear_task_syscall_work(p, SYSCALL_TRACE);
2190 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2191 clear_task_syscall_work(p, SYSCALL_EMU);
2193 clear_tsk_latency_tracing(p);
2195 /* ok, now we should be set up.. */
2196 p->pid = pid_nr(pid);
2197 if (clone_flags & CLONE_THREAD) {
2198 p->group_leader = current->group_leader;
2199 p->tgid = current->tgid;
2201 p->group_leader = p;
2206 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2207 p->dirty_paused_when = 0;
2209 p->pdeath_signal = 0;
2210 INIT_LIST_HEAD(&p->thread_group);
2211 p->task_works = NULL;
2213 #ifdef CONFIG_KRETPROBES
2214 p->kretprobe_instances.first = NULL;
2218 * Ensure that the cgroup subsystem policies allow the new process to be
2219 * forked. It should be noted that the new process's css_set can be changed
2220 * between here and cgroup_post_fork() if an organisation operation is in
2223 retval = cgroup_can_fork(p, args);
2225 goto bad_fork_put_pidfd;
2228 * From this point on we must avoid any synchronous user-space
2229 * communication until we take the tasklist-lock. In particular, we do
2230 * not want user-space to be able to predict the process start-time by
2231 * stalling fork(2) after we recorded the start_time but before it is
2232 * visible to the system.
2235 p->start_time = ktime_get_ns();
2236 p->start_boottime = ktime_get_boottime_ns();
2239 * Make it visible to the rest of the system, but dont wake it up yet.
2240 * Need tasklist lock for parent etc handling!
2242 write_lock_irq(&tasklist_lock);
2244 /* CLONE_PARENT re-uses the old parent */
2245 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2246 p->real_parent = current->real_parent;
2247 p->parent_exec_id = current->parent_exec_id;
2248 if (clone_flags & CLONE_THREAD)
2249 p->exit_signal = -1;
2251 p->exit_signal = current->group_leader->exit_signal;
2253 p->real_parent = current;
2254 p->parent_exec_id = current->self_exec_id;
2255 p->exit_signal = args->exit_signal;
2258 klp_copy_process(p);
2260 spin_lock(¤t->sighand->siglock);
2263 * Copy seccomp details explicitly here, in case they were changed
2264 * before holding sighand lock.
2268 rseq_fork(p, clone_flags);
2270 /* Don't start children in a dying pid namespace */
2271 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2273 goto bad_fork_cancel_cgroup;
2276 /* Let kill terminate clone/fork in the middle */
2277 if (fatal_signal_pending(current)) {
2279 goto bad_fork_cancel_cgroup;
2282 /* past the last point of failure */
2284 fd_install(pidfd, pidfile);
2286 init_task_pid_links(p);
2287 if (likely(p->pid)) {
2288 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2290 init_task_pid(p, PIDTYPE_PID, pid);
2291 if (thread_group_leader(p)) {
2292 init_task_pid(p, PIDTYPE_TGID, pid);
2293 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2294 init_task_pid(p, PIDTYPE_SID, task_session(current));
2296 if (is_child_reaper(pid)) {
2297 ns_of_pid(pid)->child_reaper = p;
2298 p->signal->flags |= SIGNAL_UNKILLABLE;
2300 p->signal->shared_pending.signal = delayed.signal;
2301 p->signal->tty = tty_kref_get(current->signal->tty);
2303 * Inherit has_child_subreaper flag under the same
2304 * tasklist_lock with adding child to the process tree
2305 * for propagate_has_child_subreaper optimization.
2307 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2308 p->real_parent->signal->is_child_subreaper;
2309 list_add_tail(&p->sibling, &p->real_parent->children);
2310 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2311 attach_pid(p, PIDTYPE_TGID);
2312 attach_pid(p, PIDTYPE_PGID);
2313 attach_pid(p, PIDTYPE_SID);
2314 __this_cpu_inc(process_counts);
2316 current->signal->nr_threads++;
2317 atomic_inc(¤t->signal->live);
2318 refcount_inc(¤t->signal->sigcnt);
2319 task_join_group_stop(p);
2320 list_add_tail_rcu(&p->thread_group,
2321 &p->group_leader->thread_group);
2322 list_add_tail_rcu(&p->thread_node,
2323 &p->signal->thread_head);
2325 attach_pid(p, PIDTYPE_PID);
2329 hlist_del_init(&delayed.node);
2330 spin_unlock(¤t->sighand->siglock);
2331 syscall_tracepoint_update(p);
2332 write_unlock_irq(&tasklist_lock);
2334 proc_fork_connector(p);
2336 cgroup_post_fork(p, args);
2339 trace_task_newtask(p, clone_flags);
2340 uprobe_copy_process(p, clone_flags);
2342 copy_oom_score_adj(clone_flags, p);
2346 bad_fork_cancel_cgroup:
2347 spin_unlock(¤t->sighand->siglock);
2348 write_unlock_irq(&tasklist_lock);
2349 cgroup_cancel_fork(p, args);
2351 if (clone_flags & CLONE_PIDFD) {
2353 put_unused_fd(pidfd);
2356 if (pid != &init_struct_pid)
2358 bad_fork_cleanup_thread:
2360 bad_fork_cleanup_io:
2363 bad_fork_cleanup_namespaces:
2364 exit_task_namespaces(p);
2365 bad_fork_cleanup_mm:
2367 mm_clear_owner(p->mm, p);
2370 bad_fork_cleanup_signal:
2371 if (!(clone_flags & CLONE_THREAD))
2372 free_signal_struct(p->signal);
2373 bad_fork_cleanup_sighand:
2374 __cleanup_sighand(p->sighand);
2375 bad_fork_cleanup_fs:
2376 exit_fs(p); /* blocking */
2377 bad_fork_cleanup_files:
2378 exit_files(p); /* blocking */
2379 bad_fork_cleanup_semundo:
2381 bad_fork_cleanup_security:
2382 security_task_free(p);
2383 bad_fork_cleanup_audit:
2385 bad_fork_cleanup_perf:
2386 perf_event_free_task(p);
2387 bad_fork_cleanup_policy:
2388 lockdep_free_task(p);
2390 mpol_put(p->mempolicy);
2391 bad_fork_cleanup_threadgroup_lock:
2393 delayacct_tsk_free(p);
2394 bad_fork_cleanup_count:
2395 atomic_dec(&p->cred->user->processes);
2398 p->state = TASK_DEAD;
2400 delayed_free_task(p);
2402 spin_lock_irq(¤t->sighand->siglock);
2403 hlist_del_init(&delayed.node);
2404 spin_unlock_irq(¤t->sighand->siglock);
2405 return ERR_PTR(retval);
2408 static inline void init_idle_pids(struct task_struct *idle)
2412 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2413 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2414 init_task_pid(idle, type, &init_struct_pid);
2418 struct task_struct *fork_idle(int cpu)
2420 struct task_struct *task;
2421 struct kernel_clone_args args = {
2425 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2426 if (!IS_ERR(task)) {
2427 init_idle_pids(task);
2428 init_idle(task, cpu);
2434 struct mm_struct *copy_init_mm(void)
2436 return dup_mm(NULL, &init_mm);
2440 * This is like kernel_clone(), but shaved down and tailored to just
2441 * creating io_uring workers. It returns a created task, or an error pointer.
2442 * The returned task is inactive, and the caller must fire it up through
2443 * wake_up_new_task(p). All signals are blocked in the created task.
2445 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2447 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2449 struct kernel_clone_args args = {
2450 .flags = ((lower_32_bits(flags) | CLONE_VM |
2451 CLONE_UNTRACED) & ~CSIGNAL),
2452 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2453 .stack = (unsigned long)fn,
2454 .stack_size = (unsigned long)arg,
2458 return copy_process(NULL, 0, node, &args);
2462 * Ok, this is the main fork-routine.
2464 * It copies the process, and if successful kick-starts
2465 * it and waits for it to finish using the VM if required.
2467 * args->exit_signal is expected to be checked for sanity by the caller.
2469 pid_t kernel_clone(struct kernel_clone_args *args)
2471 u64 clone_flags = args->flags;
2472 struct completion vfork;
2474 struct task_struct *p;
2479 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2480 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2481 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2482 * field in struct clone_args and it still doesn't make sense to have
2483 * them both point at the same memory location. Performing this check
2484 * here has the advantage that we don't need to have a separate helper
2485 * to check for legacy clone().
2487 if ((args->flags & CLONE_PIDFD) &&
2488 (args->flags & CLONE_PARENT_SETTID) &&
2489 (args->pidfd == args->parent_tid))
2493 * Determine whether and which event to report to ptracer. When
2494 * called from kernel_thread or CLONE_UNTRACED is explicitly
2495 * requested, no event is reported; otherwise, report if the event
2496 * for the type of forking is enabled.
2498 if (!(clone_flags & CLONE_UNTRACED)) {
2499 if (clone_flags & CLONE_VFORK)
2500 trace = PTRACE_EVENT_VFORK;
2501 else if (args->exit_signal != SIGCHLD)
2502 trace = PTRACE_EVENT_CLONE;
2504 trace = PTRACE_EVENT_FORK;
2506 if (likely(!ptrace_event_enabled(current, trace)))
2510 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2511 add_latent_entropy();
2517 * Do this prior waking up the new thread - the thread pointer
2518 * might get invalid after that point, if the thread exits quickly.
2520 trace_sched_process_fork(current, p);
2522 pid = get_task_pid(p, PIDTYPE_PID);
2525 if (clone_flags & CLONE_PARENT_SETTID)
2526 put_user(nr, args->parent_tid);
2528 if (clone_flags & CLONE_VFORK) {
2529 p->vfork_done = &vfork;
2530 init_completion(&vfork);
2534 wake_up_new_task(p);
2536 /* forking complete and child started to run, tell ptracer */
2537 if (unlikely(trace))
2538 ptrace_event_pid(trace, pid);
2540 if (clone_flags & CLONE_VFORK) {
2541 if (!wait_for_vfork_done(p, &vfork))
2542 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2550 * Create a kernel thread.
2552 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2554 struct kernel_clone_args args = {
2555 .flags = ((lower_32_bits(flags) | CLONE_VM |
2556 CLONE_UNTRACED) & ~CSIGNAL),
2557 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2558 .stack = (unsigned long)fn,
2559 .stack_size = (unsigned long)arg,
2562 return kernel_clone(&args);
2565 #ifdef __ARCH_WANT_SYS_FORK
2566 SYSCALL_DEFINE0(fork)
2569 struct kernel_clone_args args = {
2570 .exit_signal = SIGCHLD,
2573 return kernel_clone(&args);
2575 /* can not support in nommu mode */
2581 #ifdef __ARCH_WANT_SYS_VFORK
2582 SYSCALL_DEFINE0(vfork)
2584 struct kernel_clone_args args = {
2585 .flags = CLONE_VFORK | CLONE_VM,
2586 .exit_signal = SIGCHLD,
2589 return kernel_clone(&args);
2593 #ifdef __ARCH_WANT_SYS_CLONE
2594 #ifdef CONFIG_CLONE_BACKWARDS
2595 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2596 int __user *, parent_tidptr,
2598 int __user *, child_tidptr)
2599 #elif defined(CONFIG_CLONE_BACKWARDS2)
2600 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2601 int __user *, parent_tidptr,
2602 int __user *, child_tidptr,
2604 #elif defined(CONFIG_CLONE_BACKWARDS3)
2605 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2607 int __user *, parent_tidptr,
2608 int __user *, child_tidptr,
2611 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2612 int __user *, parent_tidptr,
2613 int __user *, child_tidptr,
2617 struct kernel_clone_args args = {
2618 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2619 .pidfd = parent_tidptr,
2620 .child_tid = child_tidptr,
2621 .parent_tid = parent_tidptr,
2622 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2627 return kernel_clone(&args);
2631 #ifdef __ARCH_WANT_SYS_CLONE3
2633 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2634 struct clone_args __user *uargs,
2638 struct clone_args args;
2639 pid_t *kset_tid = kargs->set_tid;
2641 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2642 CLONE_ARGS_SIZE_VER0);
2643 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2644 CLONE_ARGS_SIZE_VER1);
2645 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2646 CLONE_ARGS_SIZE_VER2);
2647 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2649 if (unlikely(usize > PAGE_SIZE))
2651 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2654 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2658 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2661 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2664 if (unlikely(args.set_tid && args.set_tid_size == 0))
2668 * Verify that higher 32bits of exit_signal are unset and that
2669 * it is a valid signal
2671 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2672 !valid_signal(args.exit_signal)))
2675 if ((args.flags & CLONE_INTO_CGROUP) &&
2676 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2679 *kargs = (struct kernel_clone_args){
2680 .flags = args.flags,
2681 .pidfd = u64_to_user_ptr(args.pidfd),
2682 .child_tid = u64_to_user_ptr(args.child_tid),
2683 .parent_tid = u64_to_user_ptr(args.parent_tid),
2684 .exit_signal = args.exit_signal,
2685 .stack = args.stack,
2686 .stack_size = args.stack_size,
2688 .set_tid_size = args.set_tid_size,
2689 .cgroup = args.cgroup,
2693 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2694 (kargs->set_tid_size * sizeof(pid_t))))
2697 kargs->set_tid = kset_tid;
2703 * clone3_stack_valid - check and prepare stack
2704 * @kargs: kernel clone args
2706 * Verify that the stack arguments userspace gave us are sane.
2707 * In addition, set the stack direction for userspace since it's easy for us to
2710 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2712 if (kargs->stack == 0) {
2713 if (kargs->stack_size > 0)
2716 if (kargs->stack_size == 0)
2719 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2722 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2723 kargs->stack += kargs->stack_size;
2730 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2732 /* Verify that no unknown flags are passed along. */
2734 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2738 * - make the CLONE_DETACHED bit reuseable for clone3
2739 * - make the CSIGNAL bits reuseable for clone3
2741 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2744 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2745 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2748 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2752 if (!clone3_stack_valid(kargs))
2759 * clone3 - create a new process with specific properties
2760 * @uargs: argument structure
2761 * @size: size of @uargs
2763 * clone3() is the extensible successor to clone()/clone2().
2764 * It takes a struct as argument that is versioned by its size.
2766 * Return: On success, a positive PID for the child process.
2767 * On error, a negative errno number.
2769 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2773 struct kernel_clone_args kargs;
2774 pid_t set_tid[MAX_PID_NS_LEVEL];
2776 kargs.set_tid = set_tid;
2778 err = copy_clone_args_from_user(&kargs, uargs, size);
2782 if (!clone3_args_valid(&kargs))
2785 return kernel_clone(&kargs);
2789 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2791 struct task_struct *leader, *parent, *child;
2794 read_lock(&tasklist_lock);
2795 leader = top = top->group_leader;
2797 for_each_thread(leader, parent) {
2798 list_for_each_entry(child, &parent->children, sibling) {
2799 res = visitor(child, data);
2811 if (leader != top) {
2813 parent = child->real_parent;
2814 leader = parent->group_leader;
2818 read_unlock(&tasklist_lock);
2821 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2822 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2825 static void sighand_ctor(void *data)
2827 struct sighand_struct *sighand = data;
2829 spin_lock_init(&sighand->siglock);
2830 init_waitqueue_head(&sighand->signalfd_wqh);
2833 void __init proc_caches_init(void)
2835 unsigned int mm_size;
2837 sighand_cachep = kmem_cache_create("sighand_cache",
2838 sizeof(struct sighand_struct), 0,
2839 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2840 SLAB_ACCOUNT, sighand_ctor);
2841 signal_cachep = kmem_cache_create("signal_cache",
2842 sizeof(struct signal_struct), 0,
2843 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2845 files_cachep = kmem_cache_create("files_cache",
2846 sizeof(struct files_struct), 0,
2847 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2849 fs_cachep = kmem_cache_create("fs_cache",
2850 sizeof(struct fs_struct), 0,
2851 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2855 * The mm_cpumask is located at the end of mm_struct, and is
2856 * dynamically sized based on the maximum CPU number this system
2857 * can have, taking hotplug into account (nr_cpu_ids).
2859 mm_size = sizeof(struct mm_struct) + cpumask_size();
2861 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2862 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2863 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2864 offsetof(struct mm_struct, saved_auxv),
2865 sizeof_field(struct mm_struct, saved_auxv),
2867 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2869 nsproxy_cache_init();
2873 * Check constraints on flags passed to the unshare system call.
2875 static int check_unshare_flags(unsigned long unshare_flags)
2877 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2878 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2879 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2880 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2884 * Not implemented, but pretend it works if there is nothing
2885 * to unshare. Note that unsharing the address space or the
2886 * signal handlers also need to unshare the signal queues (aka
2889 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2890 if (!thread_group_empty(current))
2893 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2894 if (refcount_read(¤t->sighand->count) > 1)
2897 if (unshare_flags & CLONE_VM) {
2898 if (!current_is_single_threaded())
2906 * Unshare the filesystem structure if it is being shared
2908 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2910 struct fs_struct *fs = current->fs;
2912 if (!(unshare_flags & CLONE_FS) || !fs)
2915 /* don't need lock here; in the worst case we'll do useless copy */
2919 *new_fsp = copy_fs_struct(fs);
2927 * Unshare file descriptor table if it is being shared
2929 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2930 struct files_struct **new_fdp)
2932 struct files_struct *fd = current->files;
2935 if ((unshare_flags & CLONE_FILES) &&
2936 (fd && atomic_read(&fd->count) > 1)) {
2937 *new_fdp = dup_fd(fd, max_fds, &error);
2946 * unshare allows a process to 'unshare' part of the process
2947 * context which was originally shared using clone. copy_*
2948 * functions used by kernel_clone() cannot be used here directly
2949 * because they modify an inactive task_struct that is being
2950 * constructed. Here we are modifying the current, active,
2953 int ksys_unshare(unsigned long unshare_flags)
2955 struct fs_struct *fs, *new_fs = NULL;
2956 struct files_struct *fd, *new_fd = NULL;
2957 struct cred *new_cred = NULL;
2958 struct nsproxy *new_nsproxy = NULL;
2963 * If unsharing a user namespace must also unshare the thread group
2964 * and unshare the filesystem root and working directories.
2966 if (unshare_flags & CLONE_NEWUSER)
2967 unshare_flags |= CLONE_THREAD | CLONE_FS;
2969 * If unsharing vm, must also unshare signal handlers.
2971 if (unshare_flags & CLONE_VM)
2972 unshare_flags |= CLONE_SIGHAND;
2974 * If unsharing a signal handlers, must also unshare the signal queues.
2976 if (unshare_flags & CLONE_SIGHAND)
2977 unshare_flags |= CLONE_THREAD;
2979 * If unsharing namespace, must also unshare filesystem information.
2981 if (unshare_flags & CLONE_NEWNS)
2982 unshare_flags |= CLONE_FS;
2984 err = check_unshare_flags(unshare_flags);
2986 goto bad_unshare_out;
2988 * CLONE_NEWIPC must also detach from the undolist: after switching
2989 * to a new ipc namespace, the semaphore arrays from the old
2990 * namespace are unreachable.
2992 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2994 err = unshare_fs(unshare_flags, &new_fs);
2996 goto bad_unshare_out;
2997 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2999 goto bad_unshare_cleanup_fs;
3000 err = unshare_userns(unshare_flags, &new_cred);
3002 goto bad_unshare_cleanup_fd;
3003 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3006 goto bad_unshare_cleanup_cred;
3008 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3011 * CLONE_SYSVSEM is equivalent to sys_exit().
3015 if (unshare_flags & CLONE_NEWIPC) {
3016 /* Orphan segments in old ns (see sem above). */
3018 shm_init_task(current);
3022 switch_task_namespaces(current, new_nsproxy);
3028 spin_lock(&fs->lock);
3029 current->fs = new_fs;
3034 spin_unlock(&fs->lock);
3038 fd = current->files;
3039 current->files = new_fd;
3043 task_unlock(current);
3046 /* Install the new user namespace */
3047 commit_creds(new_cred);
3052 perf_event_namespaces(current);
3054 bad_unshare_cleanup_cred:
3057 bad_unshare_cleanup_fd:
3059 put_files_struct(new_fd);
3061 bad_unshare_cleanup_fs:
3063 free_fs_struct(new_fs);
3069 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3071 return ksys_unshare(unshare_flags);
3075 * Helper to unshare the files of the current task.
3076 * We don't want to expose copy_files internals to
3077 * the exec layer of the kernel.
3080 int unshare_files(void)
3082 struct task_struct *task = current;
3083 struct files_struct *old, *copy = NULL;
3086 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3094 put_files_struct(old);
3098 int sysctl_max_threads(struct ctl_table *table, int write,
3099 void *buffer, size_t *lenp, loff_t *ppos)
3103 int threads = max_threads;
3105 int max = MAX_THREADS;
3112 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3116 max_threads = threads;