KEYS: Use bool in make_key_ref() and is_key_possessed()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88  * Protected counters by write_lock_irq(&tasklist_lock)
89  */
90 unsigned long total_forks;      /* Handle normal Linux uptimes. */
91 int nr_threads;                 /* The idle threads do not count.. */
92
93 int max_threads;                /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102         return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109         int cpu;
110         int total = 0;
111
112         for_each_possible_cpu(cpu)
113                 total += per_cpu(process_counts, cpu);
114
115         return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132         kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144  * kmemcache based allocator.
145  */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148                                                   int node)
149 {
150         struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151                                              THREAD_SIZE_ORDER);
152
153         return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158         free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164                                                   int node)
165 {
166         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171         kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177                                               THREAD_SIZE, 0, NULL);
178         BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203         struct zone *zone = page_zone(virt_to_page(ti));
204
205         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207
208 void free_task(struct task_struct *tsk)
209 {
210         account_kernel_stack(tsk->stack, -1);
211         arch_release_thread_info(tsk->stack);
212         free_thread_info(tsk->stack);
213         rt_mutex_debug_task_free(tsk);
214         ftrace_graph_exit_task(tsk);
215         put_seccomp_filter(tsk);
216         arch_release_task_struct(tsk);
217         free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223         taskstats_tgid_free(sig);
224         sched_autogroup_exit(sig);
225         kmem_cache_free(signal_cachep, sig);
226 }
227
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230         if (atomic_dec_and_test(&sig->sigcnt))
231                 free_signal_struct(sig);
232 }
233
234 void __put_task_struct(struct task_struct *tsk)
235 {
236         WARN_ON(!tsk->exit_state);
237         WARN_ON(atomic_read(&tsk->usage));
238         WARN_ON(tsk == current);
239
240         security_task_free(tsk);
241         exit_creds(tsk);
242         delayacct_tsk_free(tsk);
243         put_signal_struct(tsk->signal);
244
245         if (!profile_handoff_task(tsk))
246                 free_task(tsk);
247 }
248 EXPORT_SYMBOL_GPL(__put_task_struct);
249
250 void __init __weak arch_task_cache_init(void) { }
251
252 void __init fork_init(unsigned long mempages)
253 {
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
257 #endif
258         /* create a slab on which task_structs can be allocated */
259         task_struct_cachep =
260                 kmem_cache_create("task_struct", sizeof(struct task_struct),
261                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
263
264         /* do the arch specific task caches init */
265         arch_task_cache_init();
266
267         /*
268          * The default maximum number of threads is set to a safe
269          * value: the thread structures can take up at most half
270          * of memory.
271          */
272         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
273
274         /*
275          * we need to allow at least 20 threads to boot a system
276          */
277         if (max_threads < 20)
278                 max_threads = 20;
279
280         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282         init_task.signal->rlim[RLIMIT_SIGPENDING] =
283                 init_task.signal->rlim[RLIMIT_NPROC];
284 }
285
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287                                                struct task_struct *src)
288 {
289         *dst = *src;
290         return 0;
291 }
292
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 {
295         struct task_struct *tsk;
296         struct thread_info *ti;
297         unsigned long *stackend;
298         int node = tsk_fork_get_node(orig);
299         int err;
300
301         tsk = alloc_task_struct_node(node);
302         if (!tsk)
303                 return NULL;
304
305         ti = alloc_thread_info_node(tsk, node);
306         if (!ti)
307                 goto free_tsk;
308
309         err = arch_dup_task_struct(tsk, orig);
310         if (err)
311                 goto free_ti;
312
313         tsk->stack = ti;
314
315         setup_thread_stack(tsk, orig);
316         clear_user_return_notifier(tsk);
317         clear_tsk_need_resched(tsk);
318         stackend = end_of_stack(tsk);
319         *stackend = STACK_END_MAGIC;    /* for overflow detection */
320
321 #ifdef CONFIG_CC_STACKPROTECTOR
322         tsk->stack_canary = get_random_int();
323 #endif
324
325         /*
326          * One for us, one for whoever does the "release_task()" (usually
327          * parent)
328          */
329         atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331         tsk->btrace_seq = 0;
332 #endif
333         tsk->splice_pipe = NULL;
334         tsk->task_frag.page = NULL;
335
336         account_kernel_stack(ti, 1);
337
338         return tsk;
339
340 free_ti:
341         free_thread_info(ti);
342 free_tsk:
343         free_task_struct(tsk);
344         return NULL;
345 }
346
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351         struct rb_node **rb_link, *rb_parent;
352         int retval;
353         unsigned long charge;
354
355         uprobe_start_dup_mmap();
356         down_write(&oldmm->mmap_sem);
357         flush_cache_dup_mm(oldmm);
358         uprobe_dup_mmap(oldmm, mm);
359         /*
360          * Not linked in yet - no deadlock potential:
361          */
362         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
363
364         mm->locked_vm = 0;
365         mm->mmap = NULL;
366         mm->mmap_cache = NULL;
367         mm->map_count = 0;
368         cpumask_clear(mm_cpumask(mm));
369         mm->mm_rb = RB_ROOT;
370         rb_link = &mm->mm_rb.rb_node;
371         rb_parent = NULL;
372         pprev = &mm->mmap;
373         retval = ksm_fork(mm, oldmm);
374         if (retval)
375                 goto out;
376         retval = khugepaged_fork(mm, oldmm);
377         if (retval)
378                 goto out;
379
380         prev = NULL;
381         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
382                 struct file *file;
383
384                 if (mpnt->vm_flags & VM_DONTCOPY) {
385                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
386                                                         -vma_pages(mpnt));
387                         continue;
388                 }
389                 charge = 0;
390                 if (mpnt->vm_flags & VM_ACCOUNT) {
391                         unsigned long len = vma_pages(mpnt);
392
393                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
394                                 goto fail_nomem;
395                         charge = len;
396                 }
397                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
398                 if (!tmp)
399                         goto fail_nomem;
400                 *tmp = *mpnt;
401                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
402                 retval = vma_dup_policy(mpnt, tmp);
403                 if (retval)
404                         goto fail_nomem_policy;
405                 tmp->vm_mm = mm;
406                 if (anon_vma_fork(tmp, mpnt))
407                         goto fail_nomem_anon_vma_fork;
408                 tmp->vm_flags &= ~VM_LOCKED;
409                 tmp->vm_next = tmp->vm_prev = NULL;
410                 file = tmp->vm_file;
411                 if (file) {
412                         struct inode *inode = file_inode(file);
413                         struct address_space *mapping = file->f_mapping;
414
415                         get_file(file);
416                         if (tmp->vm_flags & VM_DENYWRITE)
417                                 atomic_dec(&inode->i_writecount);
418                         mutex_lock(&mapping->i_mmap_mutex);
419                         if (tmp->vm_flags & VM_SHARED)
420                                 mapping->i_mmap_writable++;
421                         flush_dcache_mmap_lock(mapping);
422                         /* insert tmp into the share list, just after mpnt */
423                         if (unlikely(tmp->vm_flags & VM_NONLINEAR))
424                                 vma_nonlinear_insert(tmp,
425                                                 &mapping->i_mmap_nonlinear);
426                         else
427                                 vma_interval_tree_insert_after(tmp, mpnt,
428                                                         &mapping->i_mmap);
429                         flush_dcache_mmap_unlock(mapping);
430                         mutex_unlock(&mapping->i_mmap_mutex);
431                 }
432
433                 /*
434                  * Clear hugetlb-related page reserves for children. This only
435                  * affects MAP_PRIVATE mappings. Faults generated by the child
436                  * are not guaranteed to succeed, even if read-only
437                  */
438                 if (is_vm_hugetlb_page(tmp))
439                         reset_vma_resv_huge_pages(tmp);
440
441                 /*
442                  * Link in the new vma and copy the page table entries.
443                  */
444                 *pprev = tmp;
445                 pprev = &tmp->vm_next;
446                 tmp->vm_prev = prev;
447                 prev = tmp;
448
449                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
450                 rb_link = &tmp->vm_rb.rb_right;
451                 rb_parent = &tmp->vm_rb;
452
453                 mm->map_count++;
454                 retval = copy_page_range(mm, oldmm, mpnt);
455
456                 if (tmp->vm_ops && tmp->vm_ops->open)
457                         tmp->vm_ops->open(tmp);
458
459                 if (retval)
460                         goto out;
461         }
462         /* a new mm has just been created */
463         arch_dup_mmap(oldmm, mm);
464         retval = 0;
465 out:
466         up_write(&mm->mmap_sem);
467         flush_tlb_mm(oldmm);
468         up_write(&oldmm->mmap_sem);
469         uprobe_end_dup_mmap();
470         return retval;
471 fail_nomem_anon_vma_fork:
472         mpol_put(vma_policy(tmp));
473 fail_nomem_policy:
474         kmem_cache_free(vm_area_cachep, tmp);
475 fail_nomem:
476         retval = -ENOMEM;
477         vm_unacct_memory(charge);
478         goto out;
479 }
480
481 static inline int mm_alloc_pgd(struct mm_struct *mm)
482 {
483         mm->pgd = pgd_alloc(mm);
484         if (unlikely(!mm->pgd))
485                 return -ENOMEM;
486         return 0;
487 }
488
489 static inline void mm_free_pgd(struct mm_struct *mm)
490 {
491         pgd_free(mm, mm->pgd);
492 }
493 #else
494 #define dup_mmap(mm, oldmm)     (0)
495 #define mm_alloc_pgd(mm)        (0)
496 #define mm_free_pgd(mm)
497 #endif /* CONFIG_MMU */
498
499 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
500
501 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
502 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
503
504 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
505
506 static int __init coredump_filter_setup(char *s)
507 {
508         default_dump_filter =
509                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
510                 MMF_DUMP_FILTER_MASK;
511         return 1;
512 }
513
514 __setup("coredump_filter=", coredump_filter_setup);
515
516 #include <linux/init_task.h>
517
518 static void mm_init_aio(struct mm_struct *mm)
519 {
520 #ifdef CONFIG_AIO
521         spin_lock_init(&mm->ioctx_lock);
522         mm->ioctx_table = NULL;
523 #endif
524 }
525
526 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
527 {
528         atomic_set(&mm->mm_users, 1);
529         atomic_set(&mm->mm_count, 1);
530         init_rwsem(&mm->mmap_sem);
531         INIT_LIST_HEAD(&mm->mmlist);
532         mm->flags = (current->mm) ?
533                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
534         mm->core_state = NULL;
535         mm->nr_ptes = 0;
536         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
537         spin_lock_init(&mm->page_table_lock);
538         mm_init_aio(mm);
539         mm_init_owner(mm, p);
540
541         if (likely(!mm_alloc_pgd(mm))) {
542                 mm->def_flags = 0;
543                 mmu_notifier_mm_init(mm);
544                 return mm;
545         }
546
547         free_mm(mm);
548         return NULL;
549 }
550
551 static void check_mm(struct mm_struct *mm)
552 {
553         int i;
554
555         for (i = 0; i < NR_MM_COUNTERS; i++) {
556                 long x = atomic_long_read(&mm->rss_stat.count[i]);
557
558                 if (unlikely(x))
559                         printk(KERN_ALERT "BUG: Bad rss-counter state "
560                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
561         }
562
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
564         VM_BUG_ON(mm->pmd_huge_pte);
565 #endif
566 }
567
568 /*
569  * Allocate and initialize an mm_struct.
570  */
571 struct mm_struct *mm_alloc(void)
572 {
573         struct mm_struct *mm;
574
575         mm = allocate_mm();
576         if (!mm)
577                 return NULL;
578
579         memset(mm, 0, sizeof(*mm));
580         mm_init_cpumask(mm);
581         return mm_init(mm, current);
582 }
583
584 /*
585  * Called when the last reference to the mm
586  * is dropped: either by a lazy thread or by
587  * mmput. Free the page directory and the mm.
588  */
589 void __mmdrop(struct mm_struct *mm)
590 {
591         BUG_ON(mm == &init_mm);
592         mm_free_pgd(mm);
593         destroy_context(mm);
594         mmu_notifier_mm_destroy(mm);
595         check_mm(mm);
596         free_mm(mm);
597 }
598 EXPORT_SYMBOL_GPL(__mmdrop);
599
600 /*
601  * Decrement the use count and release all resources for an mm.
602  */
603 void mmput(struct mm_struct *mm)
604 {
605         might_sleep();
606
607         if (atomic_dec_and_test(&mm->mm_users)) {
608                 uprobe_clear_state(mm);
609                 exit_aio(mm);
610                 ksm_exit(mm);
611                 khugepaged_exit(mm); /* must run before exit_mmap */
612                 exit_mmap(mm);
613                 set_mm_exe_file(mm, NULL);
614                 if (!list_empty(&mm->mmlist)) {
615                         spin_lock(&mmlist_lock);
616                         list_del(&mm->mmlist);
617                         spin_unlock(&mmlist_lock);
618                 }
619                 if (mm->binfmt)
620                         module_put(mm->binfmt->module);
621                 mmdrop(mm);
622         }
623 }
624 EXPORT_SYMBOL_GPL(mmput);
625
626 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
627 {
628         if (new_exe_file)
629                 get_file(new_exe_file);
630         if (mm->exe_file)
631                 fput(mm->exe_file);
632         mm->exe_file = new_exe_file;
633 }
634
635 struct file *get_mm_exe_file(struct mm_struct *mm)
636 {
637         struct file *exe_file;
638
639         /* We need mmap_sem to protect against races with removal of exe_file */
640         down_read(&mm->mmap_sem);
641         exe_file = mm->exe_file;
642         if (exe_file)
643                 get_file(exe_file);
644         up_read(&mm->mmap_sem);
645         return exe_file;
646 }
647
648 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
649 {
650         /* It's safe to write the exe_file pointer without exe_file_lock because
651          * this is called during fork when the task is not yet in /proc */
652         newmm->exe_file = get_mm_exe_file(oldmm);
653 }
654
655 /**
656  * get_task_mm - acquire a reference to the task's mm
657  *
658  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
659  * this kernel workthread has transiently adopted a user mm with use_mm,
660  * to do its AIO) is not set and if so returns a reference to it, after
661  * bumping up the use count.  User must release the mm via mmput()
662  * after use.  Typically used by /proc and ptrace.
663  */
664 struct mm_struct *get_task_mm(struct task_struct *task)
665 {
666         struct mm_struct *mm;
667
668         task_lock(task);
669         mm = task->mm;
670         if (mm) {
671                 if (task->flags & PF_KTHREAD)
672                         mm = NULL;
673                 else
674                         atomic_inc(&mm->mm_users);
675         }
676         task_unlock(task);
677         return mm;
678 }
679 EXPORT_SYMBOL_GPL(get_task_mm);
680
681 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
682 {
683         struct mm_struct *mm;
684         int err;
685
686         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
687         if (err)
688                 return ERR_PTR(err);
689
690         mm = get_task_mm(task);
691         if (mm && mm != current->mm &&
692                         !ptrace_may_access(task, mode)) {
693                 mmput(mm);
694                 mm = ERR_PTR(-EACCES);
695         }
696         mutex_unlock(&task->signal->cred_guard_mutex);
697
698         return mm;
699 }
700
701 static void complete_vfork_done(struct task_struct *tsk)
702 {
703         struct completion *vfork;
704
705         task_lock(tsk);
706         vfork = tsk->vfork_done;
707         if (likely(vfork)) {
708                 tsk->vfork_done = NULL;
709                 complete(vfork);
710         }
711         task_unlock(tsk);
712 }
713
714 static int wait_for_vfork_done(struct task_struct *child,
715                                 struct completion *vfork)
716 {
717         int killed;
718
719         freezer_do_not_count();
720         killed = wait_for_completion_killable(vfork);
721         freezer_count();
722
723         if (killed) {
724                 task_lock(child);
725                 child->vfork_done = NULL;
726                 task_unlock(child);
727         }
728
729         put_task_struct(child);
730         return killed;
731 }
732
733 /* Please note the differences between mmput and mm_release.
734  * mmput is called whenever we stop holding onto a mm_struct,
735  * error success whatever.
736  *
737  * mm_release is called after a mm_struct has been removed
738  * from the current process.
739  *
740  * This difference is important for error handling, when we
741  * only half set up a mm_struct for a new process and need to restore
742  * the old one.  Because we mmput the new mm_struct before
743  * restoring the old one. . .
744  * Eric Biederman 10 January 1998
745  */
746 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
747 {
748         /* Get rid of any futexes when releasing the mm */
749 #ifdef CONFIG_FUTEX
750         if (unlikely(tsk->robust_list)) {
751                 exit_robust_list(tsk);
752                 tsk->robust_list = NULL;
753         }
754 #ifdef CONFIG_COMPAT
755         if (unlikely(tsk->compat_robust_list)) {
756                 compat_exit_robust_list(tsk);
757                 tsk->compat_robust_list = NULL;
758         }
759 #endif
760         if (unlikely(!list_empty(&tsk->pi_state_list)))
761                 exit_pi_state_list(tsk);
762 #endif
763
764         uprobe_free_utask(tsk);
765
766         /* Get rid of any cached register state */
767         deactivate_mm(tsk, mm);
768
769         /*
770          * If we're exiting normally, clear a user-space tid field if
771          * requested.  We leave this alone when dying by signal, to leave
772          * the value intact in a core dump, and to save the unnecessary
773          * trouble, say, a killed vfork parent shouldn't touch this mm.
774          * Userland only wants this done for a sys_exit.
775          */
776         if (tsk->clear_child_tid) {
777                 if (!(tsk->flags & PF_SIGNALED) &&
778                     atomic_read(&mm->mm_users) > 1) {
779                         /*
780                          * We don't check the error code - if userspace has
781                          * not set up a proper pointer then tough luck.
782                          */
783                         put_user(0, tsk->clear_child_tid);
784                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
785                                         1, NULL, NULL, 0);
786                 }
787                 tsk->clear_child_tid = NULL;
788         }
789
790         /*
791          * All done, finally we can wake up parent and return this mm to him.
792          * Also kthread_stop() uses this completion for synchronization.
793          */
794         if (tsk->vfork_done)
795                 complete_vfork_done(tsk);
796 }
797
798 /*
799  * Allocate a new mm structure and copy contents from the
800  * mm structure of the passed in task structure.
801  */
802 struct mm_struct *dup_mm(struct task_struct *tsk)
803 {
804         struct mm_struct *mm, *oldmm = current->mm;
805         int err;
806
807         if (!oldmm)
808                 return NULL;
809
810         mm = allocate_mm();
811         if (!mm)
812                 goto fail_nomem;
813
814         memcpy(mm, oldmm, sizeof(*mm));
815         mm_init_cpumask(mm);
816
817 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
818         mm->pmd_huge_pte = NULL;
819 #endif
820 #ifdef CONFIG_NUMA_BALANCING
821         mm->first_nid = NUMA_PTE_SCAN_INIT;
822 #endif
823         if (!mm_init(mm, tsk))
824                 goto fail_nomem;
825
826         if (init_new_context(tsk, mm))
827                 goto fail_nocontext;
828
829         dup_mm_exe_file(oldmm, mm);
830
831         err = dup_mmap(mm, oldmm);
832         if (err)
833                 goto free_pt;
834
835         mm->hiwater_rss = get_mm_rss(mm);
836         mm->hiwater_vm = mm->total_vm;
837
838         if (mm->binfmt && !try_module_get(mm->binfmt->module))
839                 goto free_pt;
840
841         return mm;
842
843 free_pt:
844         /* don't put binfmt in mmput, we haven't got module yet */
845         mm->binfmt = NULL;
846         mmput(mm);
847
848 fail_nomem:
849         return NULL;
850
851 fail_nocontext:
852         /*
853          * If init_new_context() failed, we cannot use mmput() to free the mm
854          * because it calls destroy_context()
855          */
856         mm_free_pgd(mm);
857         free_mm(mm);
858         return NULL;
859 }
860
861 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
862 {
863         struct mm_struct *mm, *oldmm;
864         int retval;
865
866         tsk->min_flt = tsk->maj_flt = 0;
867         tsk->nvcsw = tsk->nivcsw = 0;
868 #ifdef CONFIG_DETECT_HUNG_TASK
869         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
870 #endif
871
872         tsk->mm = NULL;
873         tsk->active_mm = NULL;
874
875         /*
876          * Are we cloning a kernel thread?
877          *
878          * We need to steal a active VM for that..
879          */
880         oldmm = current->mm;
881         if (!oldmm)
882                 return 0;
883
884         if (clone_flags & CLONE_VM) {
885                 atomic_inc(&oldmm->mm_users);
886                 mm = oldmm;
887                 goto good_mm;
888         }
889
890         retval = -ENOMEM;
891         mm = dup_mm(tsk);
892         if (!mm)
893                 goto fail_nomem;
894
895 good_mm:
896         tsk->mm = mm;
897         tsk->active_mm = mm;
898         return 0;
899
900 fail_nomem:
901         return retval;
902 }
903
904 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
905 {
906         struct fs_struct *fs = current->fs;
907         if (clone_flags & CLONE_FS) {
908                 /* tsk->fs is already what we want */
909                 spin_lock(&fs->lock);
910                 if (fs->in_exec) {
911                         spin_unlock(&fs->lock);
912                         return -EAGAIN;
913                 }
914                 fs->users++;
915                 spin_unlock(&fs->lock);
916                 return 0;
917         }
918         tsk->fs = copy_fs_struct(fs);
919         if (!tsk->fs)
920                 return -ENOMEM;
921         return 0;
922 }
923
924 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
925 {
926         struct files_struct *oldf, *newf;
927         int error = 0;
928
929         /*
930          * A background process may not have any files ...
931          */
932         oldf = current->files;
933         if (!oldf)
934                 goto out;
935
936         if (clone_flags & CLONE_FILES) {
937                 atomic_inc(&oldf->count);
938                 goto out;
939         }
940
941         newf = dup_fd(oldf, &error);
942         if (!newf)
943                 goto out;
944
945         tsk->files = newf;
946         error = 0;
947 out:
948         return error;
949 }
950
951 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
952 {
953 #ifdef CONFIG_BLOCK
954         struct io_context *ioc = current->io_context;
955         struct io_context *new_ioc;
956
957         if (!ioc)
958                 return 0;
959         /*
960          * Share io context with parent, if CLONE_IO is set
961          */
962         if (clone_flags & CLONE_IO) {
963                 ioc_task_link(ioc);
964                 tsk->io_context = ioc;
965         } else if (ioprio_valid(ioc->ioprio)) {
966                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
967                 if (unlikely(!new_ioc))
968                         return -ENOMEM;
969
970                 new_ioc->ioprio = ioc->ioprio;
971                 put_io_context(new_ioc);
972         }
973 #endif
974         return 0;
975 }
976
977 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
978 {
979         struct sighand_struct *sig;
980
981         if (clone_flags & CLONE_SIGHAND) {
982                 atomic_inc(&current->sighand->count);
983                 return 0;
984         }
985         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
986         rcu_assign_pointer(tsk->sighand, sig);
987         if (!sig)
988                 return -ENOMEM;
989         atomic_set(&sig->count, 1);
990         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
991         return 0;
992 }
993
994 void __cleanup_sighand(struct sighand_struct *sighand)
995 {
996         if (atomic_dec_and_test(&sighand->count)) {
997                 signalfd_cleanup(sighand);
998                 kmem_cache_free(sighand_cachep, sighand);
999         }
1000 }
1001
1002
1003 /*
1004  * Initialize POSIX timer handling for a thread group.
1005  */
1006 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1007 {
1008         unsigned long cpu_limit;
1009
1010         /* Thread group counters. */
1011         thread_group_cputime_init(sig);
1012
1013         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1014         if (cpu_limit != RLIM_INFINITY) {
1015                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1016                 sig->cputimer.running = 1;
1017         }
1018
1019         /* The timer lists. */
1020         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1021         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1022         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1023 }
1024
1025 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1026 {
1027         struct signal_struct *sig;
1028
1029         if (clone_flags & CLONE_THREAD)
1030                 return 0;
1031
1032         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1033         tsk->signal = sig;
1034         if (!sig)
1035                 return -ENOMEM;
1036
1037         sig->nr_threads = 1;
1038         atomic_set(&sig->live, 1);
1039         atomic_set(&sig->sigcnt, 1);
1040         init_waitqueue_head(&sig->wait_chldexit);
1041         sig->curr_target = tsk;
1042         init_sigpending(&sig->shared_pending);
1043         INIT_LIST_HEAD(&sig->posix_timers);
1044
1045         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1046         sig->real_timer.function = it_real_fn;
1047
1048         task_lock(current->group_leader);
1049         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1050         task_unlock(current->group_leader);
1051
1052         posix_cpu_timers_init_group(sig);
1053
1054         tty_audit_fork(sig);
1055         sched_autogroup_fork(sig);
1056
1057 #ifdef CONFIG_CGROUPS
1058         init_rwsem(&sig->group_rwsem);
1059 #endif
1060
1061         sig->oom_score_adj = current->signal->oom_score_adj;
1062         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1063
1064         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1065                                    current->signal->is_child_subreaper;
1066
1067         mutex_init(&sig->cred_guard_mutex);
1068
1069         return 0;
1070 }
1071
1072 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1073 {
1074         unsigned long new_flags = p->flags;
1075
1076         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1077         new_flags |= PF_FORKNOEXEC;
1078         p->flags = new_flags;
1079 }
1080
1081 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1082 {
1083         current->clear_child_tid = tidptr;
1084
1085         return task_pid_vnr(current);
1086 }
1087
1088 static void rt_mutex_init_task(struct task_struct *p)
1089 {
1090         raw_spin_lock_init(&p->pi_lock);
1091 #ifdef CONFIG_RT_MUTEXES
1092         plist_head_init(&p->pi_waiters);
1093         p->pi_blocked_on = NULL;
1094 #endif
1095 }
1096
1097 #ifdef CONFIG_MM_OWNER
1098 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1099 {
1100         mm->owner = p;
1101 }
1102 #endif /* CONFIG_MM_OWNER */
1103
1104 /*
1105  * Initialize POSIX timer handling for a single task.
1106  */
1107 static void posix_cpu_timers_init(struct task_struct *tsk)
1108 {
1109         tsk->cputime_expires.prof_exp = 0;
1110         tsk->cputime_expires.virt_exp = 0;
1111         tsk->cputime_expires.sched_exp = 0;
1112         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1113         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1114         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1115 }
1116
1117 static inline void
1118 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1119 {
1120          task->pids[type].pid = pid;
1121 }
1122
1123 /*
1124  * This creates a new process as a copy of the old one,
1125  * but does not actually start it yet.
1126  *
1127  * It copies the registers, and all the appropriate
1128  * parts of the process environment (as per the clone
1129  * flags). The actual kick-off is left to the caller.
1130  */
1131 static struct task_struct *copy_process(unsigned long clone_flags,
1132                                         unsigned long stack_start,
1133                                         unsigned long stack_size,
1134                                         int __user *child_tidptr,
1135                                         struct pid *pid,
1136                                         int trace)
1137 {
1138         int retval;
1139         struct task_struct *p;
1140
1141         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1142                 return ERR_PTR(-EINVAL);
1143
1144         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1145                 return ERR_PTR(-EINVAL);
1146
1147         /*
1148          * Thread groups must share signals as well, and detached threads
1149          * can only be started up within the thread group.
1150          */
1151         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1152                 return ERR_PTR(-EINVAL);
1153
1154         /*
1155          * Shared signal handlers imply shared VM. By way of the above,
1156          * thread groups also imply shared VM. Blocking this case allows
1157          * for various simplifications in other code.
1158          */
1159         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1160                 return ERR_PTR(-EINVAL);
1161
1162         /*
1163          * Siblings of global init remain as zombies on exit since they are
1164          * not reaped by their parent (swapper). To solve this and to avoid
1165          * multi-rooted process trees, prevent global and container-inits
1166          * from creating siblings.
1167          */
1168         if ((clone_flags & CLONE_PARENT) &&
1169                                 current->signal->flags & SIGNAL_UNKILLABLE)
1170                 return ERR_PTR(-EINVAL);
1171
1172         /*
1173          * If the new process will be in a different pid or user namespace
1174          * do not allow it to share a thread group or signal handlers or
1175          * parent with the forking task.
1176          */
1177         if (clone_flags & (CLONE_SIGHAND | CLONE_PARENT)) {
1178                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1179                     (task_active_pid_ns(current) !=
1180                                 current->nsproxy->pid_ns_for_children))
1181                         return ERR_PTR(-EINVAL);
1182         }
1183
1184         retval = security_task_create(clone_flags);
1185         if (retval)
1186                 goto fork_out;
1187
1188         retval = -ENOMEM;
1189         p = dup_task_struct(current);
1190         if (!p)
1191                 goto fork_out;
1192
1193         ftrace_graph_init_task(p);
1194         get_seccomp_filter(p);
1195
1196         rt_mutex_init_task(p);
1197
1198 #ifdef CONFIG_PROVE_LOCKING
1199         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1200         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1201 #endif
1202         retval = -EAGAIN;
1203         if (atomic_read(&p->real_cred->user->processes) >=
1204                         task_rlimit(p, RLIMIT_NPROC)) {
1205                 if (p->real_cred->user != INIT_USER &&
1206                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1207                         goto bad_fork_free;
1208         }
1209         current->flags &= ~PF_NPROC_EXCEEDED;
1210
1211         retval = copy_creds(p, clone_flags);
1212         if (retval < 0)
1213                 goto bad_fork_free;
1214
1215         /*
1216          * If multiple threads are within copy_process(), then this check
1217          * triggers too late. This doesn't hurt, the check is only there
1218          * to stop root fork bombs.
1219          */
1220         retval = -EAGAIN;
1221         if (nr_threads >= max_threads)
1222                 goto bad_fork_cleanup_count;
1223
1224         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1225                 goto bad_fork_cleanup_count;
1226
1227         p->did_exec = 0;
1228         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1229         copy_flags(clone_flags, p);
1230         INIT_LIST_HEAD(&p->children);
1231         INIT_LIST_HEAD(&p->sibling);
1232         rcu_copy_process(p);
1233         p->vfork_done = NULL;
1234         spin_lock_init(&p->alloc_lock);
1235
1236         init_sigpending(&p->pending);
1237
1238         p->utime = p->stime = p->gtime = 0;
1239         p->utimescaled = p->stimescaled = 0;
1240 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1241         p->prev_cputime.utime = p->prev_cputime.stime = 0;
1242 #endif
1243 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1244         seqlock_init(&p->vtime_seqlock);
1245         p->vtime_snap = 0;
1246         p->vtime_snap_whence = VTIME_SLEEPING;
1247 #endif
1248
1249 #if defined(SPLIT_RSS_COUNTING)
1250         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1251 #endif
1252
1253         p->default_timer_slack_ns = current->timer_slack_ns;
1254
1255         task_io_accounting_init(&p->ioac);
1256         acct_clear_integrals(p);
1257
1258         posix_cpu_timers_init(p);
1259
1260         do_posix_clock_monotonic_gettime(&p->start_time);
1261         p->real_start_time = p->start_time;
1262         monotonic_to_bootbased(&p->real_start_time);
1263         p->io_context = NULL;
1264         p->audit_context = NULL;
1265         if (clone_flags & CLONE_THREAD)
1266                 threadgroup_change_begin(current);
1267         cgroup_fork(p);
1268 #ifdef CONFIG_NUMA
1269         p->mempolicy = mpol_dup(p->mempolicy);
1270         if (IS_ERR(p->mempolicy)) {
1271                 retval = PTR_ERR(p->mempolicy);
1272                 p->mempolicy = NULL;
1273                 goto bad_fork_cleanup_cgroup;
1274         }
1275         mpol_fix_fork_child_flag(p);
1276 #endif
1277 #ifdef CONFIG_CPUSETS
1278         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1279         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1280         seqcount_init(&p->mems_allowed_seq);
1281 #endif
1282 #ifdef CONFIG_TRACE_IRQFLAGS
1283         p->irq_events = 0;
1284         p->hardirqs_enabled = 0;
1285         p->hardirq_enable_ip = 0;
1286         p->hardirq_enable_event = 0;
1287         p->hardirq_disable_ip = _THIS_IP_;
1288         p->hardirq_disable_event = 0;
1289         p->softirqs_enabled = 1;
1290         p->softirq_enable_ip = _THIS_IP_;
1291         p->softirq_enable_event = 0;
1292         p->softirq_disable_ip = 0;
1293         p->softirq_disable_event = 0;
1294         p->hardirq_context = 0;
1295         p->softirq_context = 0;
1296 #endif
1297 #ifdef CONFIG_LOCKDEP
1298         p->lockdep_depth = 0; /* no locks held yet */
1299         p->curr_chain_key = 0;
1300         p->lockdep_recursion = 0;
1301 #endif
1302
1303 #ifdef CONFIG_DEBUG_MUTEXES
1304         p->blocked_on = NULL; /* not blocked yet */
1305 #endif
1306 #ifdef CONFIG_MEMCG
1307         p->memcg_batch.do_batch = 0;
1308         p->memcg_batch.memcg = NULL;
1309 #endif
1310 #ifdef CONFIG_BCACHE
1311         p->sequential_io        = 0;
1312         p->sequential_io_avg    = 0;
1313 #endif
1314
1315         /* Perform scheduler related setup. Assign this task to a CPU. */
1316         sched_fork(p);
1317
1318         retval = perf_event_init_task(p);
1319         if (retval)
1320                 goto bad_fork_cleanup_policy;
1321         retval = audit_alloc(p);
1322         if (retval)
1323                 goto bad_fork_cleanup_policy;
1324         /* copy all the process information */
1325         retval = copy_semundo(clone_flags, p);
1326         if (retval)
1327                 goto bad_fork_cleanup_audit;
1328         retval = copy_files(clone_flags, p);
1329         if (retval)
1330                 goto bad_fork_cleanup_semundo;
1331         retval = copy_fs(clone_flags, p);
1332         if (retval)
1333                 goto bad_fork_cleanup_files;
1334         retval = copy_sighand(clone_flags, p);
1335         if (retval)
1336                 goto bad_fork_cleanup_fs;
1337         retval = copy_signal(clone_flags, p);
1338         if (retval)
1339                 goto bad_fork_cleanup_sighand;
1340         retval = copy_mm(clone_flags, p);
1341         if (retval)
1342                 goto bad_fork_cleanup_signal;
1343         retval = copy_namespaces(clone_flags, p);
1344         if (retval)
1345                 goto bad_fork_cleanup_mm;
1346         retval = copy_io(clone_flags, p);
1347         if (retval)
1348                 goto bad_fork_cleanup_namespaces;
1349         retval = copy_thread(clone_flags, stack_start, stack_size, p);
1350         if (retval)
1351                 goto bad_fork_cleanup_io;
1352
1353         if (pid != &init_struct_pid) {
1354                 retval = -ENOMEM;
1355                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1356                 if (!pid)
1357                         goto bad_fork_cleanup_io;
1358         }
1359
1360         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1361         /*
1362          * Clear TID on mm_release()?
1363          */
1364         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1365 #ifdef CONFIG_BLOCK
1366         p->plug = NULL;
1367 #endif
1368 #ifdef CONFIG_FUTEX
1369         p->robust_list = NULL;
1370 #ifdef CONFIG_COMPAT
1371         p->compat_robust_list = NULL;
1372 #endif
1373         INIT_LIST_HEAD(&p->pi_state_list);
1374         p->pi_state_cache = NULL;
1375 #endif
1376         uprobe_copy_process(p);
1377         /*
1378          * sigaltstack should be cleared when sharing the same VM
1379          */
1380         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1381                 p->sas_ss_sp = p->sas_ss_size = 0;
1382
1383         /*
1384          * Syscall tracing and stepping should be turned off in the
1385          * child regardless of CLONE_PTRACE.
1386          */
1387         user_disable_single_step(p);
1388         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1389 #ifdef TIF_SYSCALL_EMU
1390         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1391 #endif
1392         clear_all_latency_tracing(p);
1393
1394         /* ok, now we should be set up.. */
1395         p->pid = pid_nr(pid);
1396         if (clone_flags & CLONE_THREAD) {
1397                 p->exit_signal = -1;
1398                 p->group_leader = current->group_leader;
1399                 p->tgid = current->tgid;
1400         } else {
1401                 if (clone_flags & CLONE_PARENT)
1402                         p->exit_signal = current->group_leader->exit_signal;
1403                 else
1404                         p->exit_signal = (clone_flags & CSIGNAL);
1405                 p->group_leader = p;
1406                 p->tgid = p->pid;
1407         }
1408
1409         p->pdeath_signal = 0;
1410         p->exit_state = 0;
1411
1412         p->nr_dirtied = 0;
1413         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1414         p->dirty_paused_when = 0;
1415
1416         INIT_LIST_HEAD(&p->thread_group);
1417         p->task_works = NULL;
1418
1419         /*
1420          * Make it visible to the rest of the system, but dont wake it up yet.
1421          * Need tasklist lock for parent etc handling!
1422          */
1423         write_lock_irq(&tasklist_lock);
1424
1425         /* CLONE_PARENT re-uses the old parent */
1426         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1427                 p->real_parent = current->real_parent;
1428                 p->parent_exec_id = current->parent_exec_id;
1429         } else {
1430                 p->real_parent = current;
1431                 p->parent_exec_id = current->self_exec_id;
1432         }
1433
1434         spin_lock(&current->sighand->siglock);
1435
1436         /*
1437          * Process group and session signals need to be delivered to just the
1438          * parent before the fork or both the parent and the child after the
1439          * fork. Restart if a signal comes in before we add the new process to
1440          * it's process group.
1441          * A fatal signal pending means that current will exit, so the new
1442          * thread can't slip out of an OOM kill (or normal SIGKILL).
1443         */
1444         recalc_sigpending();
1445         if (signal_pending(current)) {
1446                 spin_unlock(&current->sighand->siglock);
1447                 write_unlock_irq(&tasklist_lock);
1448                 retval = -ERESTARTNOINTR;
1449                 goto bad_fork_free_pid;
1450         }
1451
1452         if (likely(p->pid)) {
1453                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1454
1455                 init_task_pid(p, PIDTYPE_PID, pid);
1456                 if (thread_group_leader(p)) {
1457                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1458                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1459
1460                         if (is_child_reaper(pid)) {
1461                                 ns_of_pid(pid)->child_reaper = p;
1462                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1463                         }
1464
1465                         p->signal->leader_pid = pid;
1466                         p->signal->tty = tty_kref_get(current->signal->tty);
1467                         list_add_tail(&p->sibling, &p->real_parent->children);
1468                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1469                         attach_pid(p, PIDTYPE_PGID);
1470                         attach_pid(p, PIDTYPE_SID);
1471                         __this_cpu_inc(process_counts);
1472                 } else {
1473                         current->signal->nr_threads++;
1474                         atomic_inc(&current->signal->live);
1475                         atomic_inc(&current->signal->sigcnt);
1476                         list_add_tail_rcu(&p->thread_group,
1477                                           &p->group_leader->thread_group);
1478                 }
1479                 attach_pid(p, PIDTYPE_PID);
1480                 nr_threads++;
1481         }
1482
1483         total_forks++;
1484         spin_unlock(&current->sighand->siglock);
1485         write_unlock_irq(&tasklist_lock);
1486         proc_fork_connector(p);
1487         cgroup_post_fork(p);
1488         if (clone_flags & CLONE_THREAD)
1489                 threadgroup_change_end(current);
1490         perf_event_fork(p);
1491
1492         trace_task_newtask(p, clone_flags);
1493
1494         return p;
1495
1496 bad_fork_free_pid:
1497         if (pid != &init_struct_pid)
1498                 free_pid(pid);
1499 bad_fork_cleanup_io:
1500         if (p->io_context)
1501                 exit_io_context(p);
1502 bad_fork_cleanup_namespaces:
1503         exit_task_namespaces(p);
1504 bad_fork_cleanup_mm:
1505         if (p->mm)
1506                 mmput(p->mm);
1507 bad_fork_cleanup_signal:
1508         if (!(clone_flags & CLONE_THREAD))
1509                 free_signal_struct(p->signal);
1510 bad_fork_cleanup_sighand:
1511         __cleanup_sighand(p->sighand);
1512 bad_fork_cleanup_fs:
1513         exit_fs(p); /* blocking */
1514 bad_fork_cleanup_files:
1515         exit_files(p); /* blocking */
1516 bad_fork_cleanup_semundo:
1517         exit_sem(p);
1518 bad_fork_cleanup_audit:
1519         audit_free(p);
1520 bad_fork_cleanup_policy:
1521         perf_event_free_task(p);
1522 #ifdef CONFIG_NUMA
1523         mpol_put(p->mempolicy);
1524 bad_fork_cleanup_cgroup:
1525 #endif
1526         if (clone_flags & CLONE_THREAD)
1527                 threadgroup_change_end(current);
1528         cgroup_exit(p, 0);
1529         delayacct_tsk_free(p);
1530         module_put(task_thread_info(p)->exec_domain->module);
1531 bad_fork_cleanup_count:
1532         atomic_dec(&p->cred->user->processes);
1533         exit_creds(p);
1534 bad_fork_free:
1535         free_task(p);
1536 fork_out:
1537         return ERR_PTR(retval);
1538 }
1539
1540 static inline void init_idle_pids(struct pid_link *links)
1541 {
1542         enum pid_type type;
1543
1544         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1545                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1546                 links[type].pid = &init_struct_pid;
1547         }
1548 }
1549
1550 struct task_struct *fork_idle(int cpu)
1551 {
1552         struct task_struct *task;
1553         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1554         if (!IS_ERR(task)) {
1555                 init_idle_pids(task->pids);
1556                 init_idle(task, cpu);
1557         }
1558
1559         return task;
1560 }
1561
1562 /*
1563  *  Ok, this is the main fork-routine.
1564  *
1565  * It copies the process, and if successful kick-starts
1566  * it and waits for it to finish using the VM if required.
1567  */
1568 long do_fork(unsigned long clone_flags,
1569               unsigned long stack_start,
1570               unsigned long stack_size,
1571               int __user *parent_tidptr,
1572               int __user *child_tidptr)
1573 {
1574         struct task_struct *p;
1575         int trace = 0;
1576         long nr;
1577
1578         /*
1579          * Determine whether and which event to report to ptracer.  When
1580          * called from kernel_thread or CLONE_UNTRACED is explicitly
1581          * requested, no event is reported; otherwise, report if the event
1582          * for the type of forking is enabled.
1583          */
1584         if (!(clone_flags & CLONE_UNTRACED)) {
1585                 if (clone_flags & CLONE_VFORK)
1586                         trace = PTRACE_EVENT_VFORK;
1587                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1588                         trace = PTRACE_EVENT_CLONE;
1589                 else
1590                         trace = PTRACE_EVENT_FORK;
1591
1592                 if (likely(!ptrace_event_enabled(current, trace)))
1593                         trace = 0;
1594         }
1595
1596         p = copy_process(clone_flags, stack_start, stack_size,
1597                          child_tidptr, NULL, trace);
1598         /*
1599          * Do this prior waking up the new thread - the thread pointer
1600          * might get invalid after that point, if the thread exits quickly.
1601          */
1602         if (!IS_ERR(p)) {
1603                 struct completion vfork;
1604
1605                 trace_sched_process_fork(current, p);
1606
1607                 nr = task_pid_vnr(p);
1608
1609                 if (clone_flags & CLONE_PARENT_SETTID)
1610                         put_user(nr, parent_tidptr);
1611
1612                 if (clone_flags & CLONE_VFORK) {
1613                         p->vfork_done = &vfork;
1614                         init_completion(&vfork);
1615                         get_task_struct(p);
1616                 }
1617
1618                 wake_up_new_task(p);
1619
1620                 /* forking complete and child started to run, tell ptracer */
1621                 if (unlikely(trace))
1622                         ptrace_event(trace, nr);
1623
1624                 if (clone_flags & CLONE_VFORK) {
1625                         if (!wait_for_vfork_done(p, &vfork))
1626                                 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1627                 }
1628         } else {
1629                 nr = PTR_ERR(p);
1630         }
1631         return nr;
1632 }
1633
1634 /*
1635  * Create a kernel thread.
1636  */
1637 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1638 {
1639         return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1640                 (unsigned long)arg, NULL, NULL);
1641 }
1642
1643 #ifdef __ARCH_WANT_SYS_FORK
1644 SYSCALL_DEFINE0(fork)
1645 {
1646 #ifdef CONFIG_MMU
1647         return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1648 #else
1649         /* can not support in nommu mode */
1650         return(-EINVAL);
1651 #endif
1652 }
1653 #endif
1654
1655 #ifdef __ARCH_WANT_SYS_VFORK
1656 SYSCALL_DEFINE0(vfork)
1657 {
1658         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 
1659                         0, NULL, NULL);
1660 }
1661 #endif
1662
1663 #ifdef __ARCH_WANT_SYS_CLONE
1664 #ifdef CONFIG_CLONE_BACKWARDS
1665 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1666                  int __user *, parent_tidptr,
1667                  int, tls_val,
1668                  int __user *, child_tidptr)
1669 #elif defined(CONFIG_CLONE_BACKWARDS2)
1670 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1671                  int __user *, parent_tidptr,
1672                  int __user *, child_tidptr,
1673                  int, tls_val)
1674 #elif defined(CONFIG_CLONE_BACKWARDS3)
1675 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1676                 int, stack_size,
1677                 int __user *, parent_tidptr,
1678                 int __user *, child_tidptr,
1679                 int, tls_val)
1680 #else
1681 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1682                  int __user *, parent_tidptr,
1683                  int __user *, child_tidptr,
1684                  int, tls_val)
1685 #endif
1686 {
1687         return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1688 }
1689 #endif
1690
1691 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1692 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1693 #endif
1694
1695 static void sighand_ctor(void *data)
1696 {
1697         struct sighand_struct *sighand = data;
1698
1699         spin_lock_init(&sighand->siglock);
1700         init_waitqueue_head(&sighand->signalfd_wqh);
1701 }
1702
1703 void __init proc_caches_init(void)
1704 {
1705         sighand_cachep = kmem_cache_create("sighand_cache",
1706                         sizeof(struct sighand_struct), 0,
1707                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1708                         SLAB_NOTRACK, sighand_ctor);
1709         signal_cachep = kmem_cache_create("signal_cache",
1710                         sizeof(struct signal_struct), 0,
1711                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1712         files_cachep = kmem_cache_create("files_cache",
1713                         sizeof(struct files_struct), 0,
1714                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1715         fs_cachep = kmem_cache_create("fs_cache",
1716                         sizeof(struct fs_struct), 0,
1717                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1718         /*
1719          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1720          * whole struct cpumask for the OFFSTACK case. We could change
1721          * this to *only* allocate as much of it as required by the
1722          * maximum number of CPU's we can ever have.  The cpumask_allocation
1723          * is at the end of the structure, exactly for that reason.
1724          */
1725         mm_cachep = kmem_cache_create("mm_struct",
1726                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1727                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1728         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1729         mmap_init();
1730         nsproxy_cache_init();
1731 }
1732
1733 /*
1734  * Check constraints on flags passed to the unshare system call.
1735  */
1736 static int check_unshare_flags(unsigned long unshare_flags)
1737 {
1738         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1739                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1740                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1741                                 CLONE_NEWUSER|CLONE_NEWPID))
1742                 return -EINVAL;
1743         /*
1744          * Not implemented, but pretend it works if there is nothing to
1745          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1746          * needs to unshare vm.
1747          */
1748         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1749                 /* FIXME: get_task_mm() increments ->mm_users */
1750                 if (atomic_read(&current->mm->mm_users) > 1)
1751                         return -EINVAL;
1752         }
1753
1754         return 0;
1755 }
1756
1757 /*
1758  * Unshare the filesystem structure if it is being shared
1759  */
1760 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1761 {
1762         struct fs_struct *fs = current->fs;
1763
1764         if (!(unshare_flags & CLONE_FS) || !fs)
1765                 return 0;
1766
1767         /* don't need lock here; in the worst case we'll do useless copy */
1768         if (fs->users == 1)
1769                 return 0;
1770
1771         *new_fsp = copy_fs_struct(fs);
1772         if (!*new_fsp)
1773                 return -ENOMEM;
1774
1775         return 0;
1776 }
1777
1778 /*
1779  * Unshare file descriptor table if it is being shared
1780  */
1781 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1782 {
1783         struct files_struct *fd = current->files;
1784         int error = 0;
1785
1786         if ((unshare_flags & CLONE_FILES) &&
1787             (fd && atomic_read(&fd->count) > 1)) {
1788                 *new_fdp = dup_fd(fd, &error);
1789                 if (!*new_fdp)
1790                         return error;
1791         }
1792
1793         return 0;
1794 }
1795
1796 /*
1797  * unshare allows a process to 'unshare' part of the process
1798  * context which was originally shared using clone.  copy_*
1799  * functions used by do_fork() cannot be used here directly
1800  * because they modify an inactive task_struct that is being
1801  * constructed. Here we are modifying the current, active,
1802  * task_struct.
1803  */
1804 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1805 {
1806         struct fs_struct *fs, *new_fs = NULL;
1807         struct files_struct *fd, *new_fd = NULL;
1808         struct cred *new_cred = NULL;
1809         struct nsproxy *new_nsproxy = NULL;
1810         int do_sysvsem = 0;
1811         int err;
1812
1813         /*
1814          * If unsharing a user namespace must also unshare the thread.
1815          */
1816         if (unshare_flags & CLONE_NEWUSER)
1817                 unshare_flags |= CLONE_THREAD | CLONE_FS;
1818         /*
1819          * If unsharing a thread from a thread group, must also unshare vm.
1820          */
1821         if (unshare_flags & CLONE_THREAD)
1822                 unshare_flags |= CLONE_VM;
1823         /*
1824          * If unsharing vm, must also unshare signal handlers.
1825          */
1826         if (unshare_flags & CLONE_VM)
1827                 unshare_flags |= CLONE_SIGHAND;
1828         /*
1829          * If unsharing namespace, must also unshare filesystem information.
1830          */
1831         if (unshare_flags & CLONE_NEWNS)
1832                 unshare_flags |= CLONE_FS;
1833
1834         err = check_unshare_flags(unshare_flags);
1835         if (err)
1836                 goto bad_unshare_out;
1837         /*
1838          * CLONE_NEWIPC must also detach from the undolist: after switching
1839          * to a new ipc namespace, the semaphore arrays from the old
1840          * namespace are unreachable.
1841          */
1842         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1843                 do_sysvsem = 1;
1844         err = unshare_fs(unshare_flags, &new_fs);
1845         if (err)
1846                 goto bad_unshare_out;
1847         err = unshare_fd(unshare_flags, &new_fd);
1848         if (err)
1849                 goto bad_unshare_cleanup_fs;
1850         err = unshare_userns(unshare_flags, &new_cred);
1851         if (err)
1852                 goto bad_unshare_cleanup_fd;
1853         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1854                                          new_cred, new_fs);
1855         if (err)
1856                 goto bad_unshare_cleanup_cred;
1857
1858         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1859                 if (do_sysvsem) {
1860                         /*
1861                          * CLONE_SYSVSEM is equivalent to sys_exit().
1862                          */
1863                         exit_sem(current);
1864                 }
1865
1866                 if (new_nsproxy)
1867                         switch_task_namespaces(current, new_nsproxy);
1868
1869                 task_lock(current);
1870
1871                 if (new_fs) {
1872                         fs = current->fs;
1873                         spin_lock(&fs->lock);
1874                         current->fs = new_fs;
1875                         if (--fs->users)
1876                                 new_fs = NULL;
1877                         else
1878                                 new_fs = fs;
1879                         spin_unlock(&fs->lock);
1880                 }
1881
1882                 if (new_fd) {
1883                         fd = current->files;
1884                         current->files = new_fd;
1885                         new_fd = fd;
1886                 }
1887
1888                 task_unlock(current);
1889
1890                 if (new_cred) {
1891                         /* Install the new user namespace */
1892                         commit_creds(new_cred);
1893                         new_cred = NULL;
1894                 }
1895         }
1896
1897 bad_unshare_cleanup_cred:
1898         if (new_cred)
1899                 put_cred(new_cred);
1900 bad_unshare_cleanup_fd:
1901         if (new_fd)
1902                 put_files_struct(new_fd);
1903
1904 bad_unshare_cleanup_fs:
1905         if (new_fs)
1906                 free_fs_struct(new_fs);
1907
1908 bad_unshare_out:
1909         return err;
1910 }
1911
1912 /*
1913  *      Helper to unshare the files of the current task.
1914  *      We don't want to expose copy_files internals to
1915  *      the exec layer of the kernel.
1916  */
1917
1918 int unshare_files(struct files_struct **displaced)
1919 {
1920         struct task_struct *task = current;
1921         struct files_struct *copy = NULL;
1922         int error;
1923
1924         error = unshare_fd(CLONE_FILES, &copy);
1925         if (error || !copy) {
1926                 *displaced = NULL;
1927                 return error;
1928         }
1929         *displaced = task->files;
1930         task_lock(task);
1931         task->files = copy;
1932         task_unlock(task);
1933         return 0;
1934 }