4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
96 #include <asm/pgtable.h>
97 #include <asm/pgalloc.h>
98 #include <linux/uaccess.h>
99 #include <asm/mmu_context.h>
100 #include <asm/cacheflush.h>
101 #include <asm/tlbflush.h>
103 #include <trace/events/sched.h>
105 #define CREATE_TRACE_POINTS
106 #include <trace/events/task.h>
109 * Minimum number of threads to boot the kernel
111 #define MIN_THREADS 20
114 * Maximum number of threads
116 #define MAX_THREADS FUTEX_TID_MASK
119 * Protected counters by write_lock_irq(&tasklist_lock)
121 unsigned long total_forks; /* Handle normal Linux uptimes. */
122 int nr_threads; /* The idle threads do not count.. */
124 int max_threads; /* tunable limit on nr_threads */
126 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
128 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
130 #ifdef CONFIG_PROVE_RCU
131 int lockdep_tasklist_lock_is_held(void)
133 return lockdep_is_held(&tasklist_lock);
135 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
136 #endif /* #ifdef CONFIG_PROVE_RCU */
138 int nr_processes(void)
143 for_each_possible_cpu(cpu)
144 total += per_cpu(process_counts, cpu);
149 void __weak arch_release_task_struct(struct task_struct *tsk)
153 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
154 static struct kmem_cache *task_struct_cachep;
156 static inline struct task_struct *alloc_task_struct_node(int node)
158 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161 static inline void free_task_struct(struct task_struct *tsk)
163 kmem_cache_free(task_struct_cachep, tsk);
167 void __weak arch_release_thread_stack(unsigned long *stack)
171 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
174 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
175 * kmemcache based allocator.
177 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
179 #ifdef CONFIG_VMAP_STACK
181 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
182 * flush. Try to minimize the number of calls by caching stacks.
184 #define NR_CACHED_STACKS 2
185 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
187 static int free_vm_stack_cache(unsigned int cpu)
189 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
192 for (i = 0; i < NR_CACHED_STACKS; i++) {
193 struct vm_struct *vm_stack = cached_vm_stacks[i];
198 vfree(vm_stack->addr);
199 cached_vm_stacks[i] = NULL;
206 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
208 #ifdef CONFIG_VMAP_STACK
212 for (i = 0; i < NR_CACHED_STACKS; i++) {
215 s = this_cpu_xchg(cached_stacks[i], NULL);
220 /* Clear stale pointers from reused stack. */
221 memset(s->addr, 0, THREAD_SIZE);
223 tsk->stack_vm_area = s;
228 * Allocated stacks are cached and later reused by new threads,
229 * so memcg accounting is performed manually on assigning/releasing
230 * stacks to tasks. Drop __GFP_ACCOUNT.
232 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
233 VMALLOC_START, VMALLOC_END,
234 THREADINFO_GFP & ~__GFP_ACCOUNT,
236 0, node, __builtin_return_address(0));
239 * We can't call find_vm_area() in interrupt context, and
240 * free_thread_stack() can be called in interrupt context,
241 * so cache the vm_struct.
244 tsk->stack_vm_area = find_vm_area(stack);
247 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
250 return page ? page_address(page) : NULL;
254 static inline void free_thread_stack(struct task_struct *tsk)
256 #ifdef CONFIG_VMAP_STACK
257 struct vm_struct *vm = task_stack_vm_area(tsk);
262 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
263 mod_memcg_page_state(vm->pages[i],
264 MEMCG_KERNEL_STACK_KB,
265 -(int)(PAGE_SIZE / 1024));
267 memcg_kmem_uncharge(vm->pages[i], 0);
270 for (i = 0; i < NR_CACHED_STACKS; i++) {
271 if (this_cpu_cmpxchg(cached_stacks[i],
272 NULL, tsk->stack_vm_area) != NULL)
278 vfree_atomic(tsk->stack);
283 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
286 static struct kmem_cache *thread_stack_cache;
288 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
291 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
294 static void free_thread_stack(struct task_struct *tsk)
296 kmem_cache_free(thread_stack_cache, tsk->stack);
299 void thread_stack_cache_init(void)
301 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
302 THREAD_SIZE, THREAD_SIZE, 0, 0,
304 BUG_ON(thread_stack_cache == NULL);
309 /* SLAB cache for signal_struct structures (tsk->signal) */
310 static struct kmem_cache *signal_cachep;
312 /* SLAB cache for sighand_struct structures (tsk->sighand) */
313 struct kmem_cache *sighand_cachep;
315 /* SLAB cache for files_struct structures (tsk->files) */
316 struct kmem_cache *files_cachep;
318 /* SLAB cache for fs_struct structures (tsk->fs) */
319 struct kmem_cache *fs_cachep;
321 /* SLAB cache for vm_area_struct structures */
322 static struct kmem_cache *vm_area_cachep;
324 /* SLAB cache for mm_struct structures (tsk->mm) */
325 static struct kmem_cache *mm_cachep;
327 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
329 struct vm_area_struct *vma;
331 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
337 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
339 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
343 INIT_LIST_HEAD(&new->anon_vma_chain);
348 void vm_area_free(struct vm_area_struct *vma)
350 kmem_cache_free(vm_area_cachep, vma);
353 static void account_kernel_stack(struct task_struct *tsk, int account)
355 void *stack = task_stack_page(tsk);
356 struct vm_struct *vm = task_stack_vm_area(tsk);
358 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
363 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
365 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
366 mod_zone_page_state(page_zone(vm->pages[i]),
368 PAGE_SIZE / 1024 * account);
372 * All stack pages are in the same zone and belong to the
375 struct page *first_page = virt_to_page(stack);
377 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
378 THREAD_SIZE / 1024 * account);
380 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
381 account * (THREAD_SIZE / 1024));
385 static int memcg_charge_kernel_stack(struct task_struct *tsk)
387 #ifdef CONFIG_VMAP_STACK
388 struct vm_struct *vm = task_stack_vm_area(tsk);
394 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
396 * If memcg_kmem_charge() fails, page->mem_cgroup
397 * pointer is NULL, and both memcg_kmem_uncharge()
398 * and mod_memcg_page_state() in free_thread_stack()
399 * will ignore this page. So it's safe.
401 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
405 mod_memcg_page_state(vm->pages[i],
406 MEMCG_KERNEL_STACK_KB,
414 static void release_task_stack(struct task_struct *tsk)
416 if (WARN_ON(tsk->state != TASK_DEAD))
417 return; /* Better to leak the stack than to free prematurely */
419 account_kernel_stack(tsk, -1);
420 arch_release_thread_stack(tsk->stack);
421 free_thread_stack(tsk);
423 #ifdef CONFIG_VMAP_STACK
424 tsk->stack_vm_area = NULL;
428 #ifdef CONFIG_THREAD_INFO_IN_TASK
429 void put_task_stack(struct task_struct *tsk)
431 if (atomic_dec_and_test(&tsk->stack_refcount))
432 release_task_stack(tsk);
436 void free_task(struct task_struct *tsk)
438 #ifndef CONFIG_THREAD_INFO_IN_TASK
440 * The task is finally done with both the stack and thread_info,
443 release_task_stack(tsk);
446 * If the task had a separate stack allocation, it should be gone
449 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
451 rt_mutex_debug_task_free(tsk);
452 ftrace_graph_exit_task(tsk);
453 put_seccomp_filter(tsk);
454 arch_release_task_struct(tsk);
455 if (tsk->flags & PF_KTHREAD)
456 free_kthread_struct(tsk);
457 free_task_struct(tsk);
459 EXPORT_SYMBOL(free_task);
462 static __latent_entropy int dup_mmap(struct mm_struct *mm,
463 struct mm_struct *oldmm)
465 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
466 struct rb_node **rb_link, *rb_parent;
468 unsigned long charge;
471 uprobe_start_dup_mmap();
472 if (down_write_killable(&oldmm->mmap_sem)) {
474 goto fail_uprobe_end;
476 flush_cache_dup_mm(oldmm);
477 uprobe_dup_mmap(oldmm, mm);
479 * Not linked in yet - no deadlock potential:
481 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
483 /* No ordering required: file already has been exposed. */
484 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
486 mm->total_vm = oldmm->total_vm;
487 mm->data_vm = oldmm->data_vm;
488 mm->exec_vm = oldmm->exec_vm;
489 mm->stack_vm = oldmm->stack_vm;
491 rb_link = &mm->mm_rb.rb_node;
494 retval = ksm_fork(mm, oldmm);
497 retval = khugepaged_fork(mm, oldmm);
502 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
505 if (mpnt->vm_flags & VM_DONTCOPY) {
506 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
511 * Don't duplicate many vmas if we've been oom-killed (for
514 if (fatal_signal_pending(current)) {
518 if (mpnt->vm_flags & VM_ACCOUNT) {
519 unsigned long len = vma_pages(mpnt);
521 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
525 tmp = vm_area_dup(mpnt);
528 retval = vma_dup_policy(mpnt, tmp);
530 goto fail_nomem_policy;
532 retval = dup_userfaultfd(tmp, &uf);
534 goto fail_nomem_anon_vma_fork;
535 if (tmp->vm_flags & VM_WIPEONFORK) {
536 /* VM_WIPEONFORK gets a clean slate in the child. */
537 tmp->anon_vma = NULL;
538 if (anon_vma_prepare(tmp))
539 goto fail_nomem_anon_vma_fork;
540 } else if (anon_vma_fork(tmp, mpnt))
541 goto fail_nomem_anon_vma_fork;
542 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
543 tmp->vm_next = tmp->vm_prev = NULL;
546 struct inode *inode = file_inode(file);
547 struct address_space *mapping = file->f_mapping;
550 if (tmp->vm_flags & VM_DENYWRITE)
551 atomic_dec(&inode->i_writecount);
552 i_mmap_lock_write(mapping);
553 if (tmp->vm_flags & VM_SHARED)
554 atomic_inc(&mapping->i_mmap_writable);
555 flush_dcache_mmap_lock(mapping);
556 /* insert tmp into the share list, just after mpnt */
557 vma_interval_tree_insert_after(tmp, mpnt,
559 flush_dcache_mmap_unlock(mapping);
560 i_mmap_unlock_write(mapping);
564 * Clear hugetlb-related page reserves for children. This only
565 * affects MAP_PRIVATE mappings. Faults generated by the child
566 * are not guaranteed to succeed, even if read-only
568 if (is_vm_hugetlb_page(tmp))
569 reset_vma_resv_huge_pages(tmp);
572 * Link in the new vma and copy the page table entries.
575 pprev = &tmp->vm_next;
579 __vma_link_rb(mm, tmp, rb_link, rb_parent);
580 rb_link = &tmp->vm_rb.rb_right;
581 rb_parent = &tmp->vm_rb;
584 if (!(tmp->vm_flags & VM_WIPEONFORK))
585 retval = copy_page_range(mm, oldmm, mpnt);
587 if (tmp->vm_ops && tmp->vm_ops->open)
588 tmp->vm_ops->open(tmp);
593 /* a new mm has just been created */
594 retval = arch_dup_mmap(oldmm, mm);
596 up_write(&mm->mmap_sem);
598 up_write(&oldmm->mmap_sem);
599 dup_userfaultfd_complete(&uf);
601 uprobe_end_dup_mmap();
603 fail_nomem_anon_vma_fork:
604 mpol_put(vma_policy(tmp));
609 vm_unacct_memory(charge);
613 static inline int mm_alloc_pgd(struct mm_struct *mm)
615 mm->pgd = pgd_alloc(mm);
616 if (unlikely(!mm->pgd))
621 static inline void mm_free_pgd(struct mm_struct *mm)
623 pgd_free(mm, mm->pgd);
626 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
628 down_write(&oldmm->mmap_sem);
629 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
630 up_write(&oldmm->mmap_sem);
633 #define mm_alloc_pgd(mm) (0)
634 #define mm_free_pgd(mm)
635 #endif /* CONFIG_MMU */
637 static void check_mm(struct mm_struct *mm)
641 for (i = 0; i < NR_MM_COUNTERS; i++) {
642 long x = atomic_long_read(&mm->rss_stat.count[i]);
645 printk(KERN_ALERT "BUG: Bad rss-counter state "
646 "mm:%p idx:%d val:%ld\n", mm, i, x);
649 if (mm_pgtables_bytes(mm))
650 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
651 mm_pgtables_bytes(mm));
653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
654 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
658 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
659 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
662 * Called when the last reference to the mm
663 * is dropped: either by a lazy thread or by
664 * mmput. Free the page directory and the mm.
666 void __mmdrop(struct mm_struct *mm)
668 BUG_ON(mm == &init_mm);
669 WARN_ON_ONCE(mm == current->mm);
670 WARN_ON_ONCE(mm == current->active_mm);
674 mmu_notifier_mm_destroy(mm);
676 put_user_ns(mm->user_ns);
679 EXPORT_SYMBOL_GPL(__mmdrop);
681 static void mmdrop_async_fn(struct work_struct *work)
683 struct mm_struct *mm;
685 mm = container_of(work, struct mm_struct, async_put_work);
689 static void mmdrop_async(struct mm_struct *mm)
691 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
692 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
693 schedule_work(&mm->async_put_work);
697 static inline void free_signal_struct(struct signal_struct *sig)
699 taskstats_tgid_free(sig);
700 sched_autogroup_exit(sig);
702 * __mmdrop is not safe to call from softirq context on x86 due to
703 * pgd_dtor so postpone it to the async context
706 mmdrop_async(sig->oom_mm);
707 kmem_cache_free(signal_cachep, sig);
710 static inline void put_signal_struct(struct signal_struct *sig)
712 if (atomic_dec_and_test(&sig->sigcnt))
713 free_signal_struct(sig);
716 void __put_task_struct(struct task_struct *tsk)
718 WARN_ON(!tsk->exit_state);
719 WARN_ON(atomic_read(&tsk->usage));
720 WARN_ON(tsk == current);
724 security_task_free(tsk);
726 delayacct_tsk_free(tsk);
727 put_signal_struct(tsk->signal);
729 if (!profile_handoff_task(tsk))
732 EXPORT_SYMBOL_GPL(__put_task_struct);
734 void __init __weak arch_task_cache_init(void) { }
739 static void set_max_threads(unsigned int max_threads_suggested)
744 * The number of threads shall be limited such that the thread
745 * structures may only consume a small part of the available memory.
747 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
748 threads = MAX_THREADS;
750 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
751 (u64) THREAD_SIZE * 8UL);
753 if (threads > max_threads_suggested)
754 threads = max_threads_suggested;
756 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
759 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
760 /* Initialized by the architecture: */
761 int arch_task_struct_size __read_mostly;
764 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
766 /* Fetch thread_struct whitelist for the architecture. */
767 arch_thread_struct_whitelist(offset, size);
770 * Handle zero-sized whitelist or empty thread_struct, otherwise
771 * adjust offset to position of thread_struct in task_struct.
773 if (unlikely(*size == 0))
776 *offset += offsetof(struct task_struct, thread);
779 void __init fork_init(void)
782 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
783 #ifndef ARCH_MIN_TASKALIGN
784 #define ARCH_MIN_TASKALIGN 0
786 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
787 unsigned long useroffset, usersize;
789 /* create a slab on which task_structs can be allocated */
790 task_struct_whitelist(&useroffset, &usersize);
791 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
792 arch_task_struct_size, align,
793 SLAB_PANIC|SLAB_ACCOUNT,
794 useroffset, usersize, NULL);
797 /* do the arch specific task caches init */
798 arch_task_cache_init();
800 set_max_threads(MAX_THREADS);
802 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
803 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
804 init_task.signal->rlim[RLIMIT_SIGPENDING] =
805 init_task.signal->rlim[RLIMIT_NPROC];
807 for (i = 0; i < UCOUNT_COUNTS; i++) {
808 init_user_ns.ucount_max[i] = max_threads/2;
811 #ifdef CONFIG_VMAP_STACK
812 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
813 NULL, free_vm_stack_cache);
816 lockdep_init_task(&init_task);
819 int __weak arch_dup_task_struct(struct task_struct *dst,
820 struct task_struct *src)
826 void set_task_stack_end_magic(struct task_struct *tsk)
828 unsigned long *stackend;
830 stackend = end_of_stack(tsk);
831 *stackend = STACK_END_MAGIC; /* for overflow detection */
834 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
836 struct task_struct *tsk;
837 unsigned long *stack;
838 struct vm_struct *stack_vm_area;
841 if (node == NUMA_NO_NODE)
842 node = tsk_fork_get_node(orig);
843 tsk = alloc_task_struct_node(node);
847 stack = alloc_thread_stack_node(tsk, node);
851 if (memcg_charge_kernel_stack(tsk))
854 stack_vm_area = task_stack_vm_area(tsk);
856 err = arch_dup_task_struct(tsk, orig);
859 * arch_dup_task_struct() clobbers the stack-related fields. Make
860 * sure they're properly initialized before using any stack-related
864 #ifdef CONFIG_VMAP_STACK
865 tsk->stack_vm_area = stack_vm_area;
867 #ifdef CONFIG_THREAD_INFO_IN_TASK
868 atomic_set(&tsk->stack_refcount, 1);
874 #ifdef CONFIG_SECCOMP
876 * We must handle setting up seccomp filters once we're under
877 * the sighand lock in case orig has changed between now and
878 * then. Until then, filter must be NULL to avoid messing up
879 * the usage counts on the error path calling free_task.
881 tsk->seccomp.filter = NULL;
884 setup_thread_stack(tsk, orig);
885 clear_user_return_notifier(tsk);
886 clear_tsk_need_resched(tsk);
887 set_task_stack_end_magic(tsk);
889 #ifdef CONFIG_STACKPROTECTOR
890 tsk->stack_canary = get_random_canary();
894 * One for us, one for whoever does the "release_task()" (usually
897 atomic_set(&tsk->usage, 2);
898 #ifdef CONFIG_BLK_DEV_IO_TRACE
901 tsk->splice_pipe = NULL;
902 tsk->task_frag.page = NULL;
903 tsk->wake_q.next = NULL;
905 account_kernel_stack(tsk, 1);
909 #ifdef CONFIG_FAULT_INJECTION
913 #ifdef CONFIG_BLK_CGROUP
914 tsk->throttle_queue = NULL;
915 tsk->use_memdelay = 0;
919 tsk->active_memcg = NULL;
924 free_thread_stack(tsk);
926 free_task_struct(tsk);
930 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
932 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
934 static int __init coredump_filter_setup(char *s)
936 default_dump_filter =
937 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
938 MMF_DUMP_FILTER_MASK;
942 __setup("coredump_filter=", coredump_filter_setup);
944 #include <linux/init_task.h>
946 static void mm_init_aio(struct mm_struct *mm)
949 spin_lock_init(&mm->ioctx_lock);
950 mm->ioctx_table = NULL;
954 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
961 static void mm_init_uprobes_state(struct mm_struct *mm)
963 #ifdef CONFIG_UPROBES
964 mm->uprobes_state.xol_area = NULL;
968 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
969 struct user_namespace *user_ns)
973 mm->vmacache_seqnum = 0;
974 atomic_set(&mm->mm_users, 1);
975 atomic_set(&mm->mm_count, 1);
976 init_rwsem(&mm->mmap_sem);
977 INIT_LIST_HEAD(&mm->mmlist);
978 mm->core_state = NULL;
979 mm_pgtables_bytes_init(mm);
983 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
984 spin_lock_init(&mm->page_table_lock);
985 spin_lock_init(&mm->arg_lock);
988 mm_init_owner(mm, p);
989 RCU_INIT_POINTER(mm->exe_file, NULL);
990 mmu_notifier_mm_init(mm);
992 init_tlb_flush_pending(mm);
993 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
994 mm->pmd_huge_pte = NULL;
996 mm_init_uprobes_state(mm);
999 mm->flags = current->mm->flags & MMF_INIT_MASK;
1000 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1002 mm->flags = default_dump_filter;
1006 if (mm_alloc_pgd(mm))
1009 if (init_new_context(p, mm))
1010 goto fail_nocontext;
1012 mm->user_ns = get_user_ns(user_ns);
1023 * Allocate and initialize an mm_struct.
1025 struct mm_struct *mm_alloc(void)
1027 struct mm_struct *mm;
1033 memset(mm, 0, sizeof(*mm));
1034 return mm_init(mm, current, current_user_ns());
1037 static inline void __mmput(struct mm_struct *mm)
1039 VM_BUG_ON(atomic_read(&mm->mm_users));
1041 uprobe_clear_state(mm);
1044 khugepaged_exit(mm); /* must run before exit_mmap */
1046 mm_put_huge_zero_page(mm);
1047 set_mm_exe_file(mm, NULL);
1048 if (!list_empty(&mm->mmlist)) {
1049 spin_lock(&mmlist_lock);
1050 list_del(&mm->mmlist);
1051 spin_unlock(&mmlist_lock);
1054 module_put(mm->binfmt->module);
1059 * Decrement the use count and release all resources for an mm.
1061 void mmput(struct mm_struct *mm)
1065 if (atomic_dec_and_test(&mm->mm_users))
1068 EXPORT_SYMBOL_GPL(mmput);
1071 static void mmput_async_fn(struct work_struct *work)
1073 struct mm_struct *mm = container_of(work, struct mm_struct,
1079 void mmput_async(struct mm_struct *mm)
1081 if (atomic_dec_and_test(&mm->mm_users)) {
1082 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1083 schedule_work(&mm->async_put_work);
1089 * set_mm_exe_file - change a reference to the mm's executable file
1091 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1093 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1094 * invocations: in mmput() nobody alive left, in execve task is single
1095 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1096 * mm->exe_file, but does so without using set_mm_exe_file() in order
1097 * to do avoid the need for any locks.
1099 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1101 struct file *old_exe_file;
1104 * It is safe to dereference the exe_file without RCU as
1105 * this function is only called if nobody else can access
1106 * this mm -- see comment above for justification.
1108 old_exe_file = rcu_dereference_raw(mm->exe_file);
1111 get_file(new_exe_file);
1112 rcu_assign_pointer(mm->exe_file, new_exe_file);
1118 * get_mm_exe_file - acquire a reference to the mm's executable file
1120 * Returns %NULL if mm has no associated executable file.
1121 * User must release file via fput().
1123 struct file *get_mm_exe_file(struct mm_struct *mm)
1125 struct file *exe_file;
1128 exe_file = rcu_dereference(mm->exe_file);
1129 if (exe_file && !get_file_rcu(exe_file))
1134 EXPORT_SYMBOL(get_mm_exe_file);
1137 * get_task_exe_file - acquire a reference to the task's executable file
1139 * Returns %NULL if task's mm (if any) has no associated executable file or
1140 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1141 * User must release file via fput().
1143 struct file *get_task_exe_file(struct task_struct *task)
1145 struct file *exe_file = NULL;
1146 struct mm_struct *mm;
1151 if (!(task->flags & PF_KTHREAD))
1152 exe_file = get_mm_exe_file(mm);
1157 EXPORT_SYMBOL(get_task_exe_file);
1160 * get_task_mm - acquire a reference to the task's mm
1162 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1163 * this kernel workthread has transiently adopted a user mm with use_mm,
1164 * to do its AIO) is not set and if so returns a reference to it, after
1165 * bumping up the use count. User must release the mm via mmput()
1166 * after use. Typically used by /proc and ptrace.
1168 struct mm_struct *get_task_mm(struct task_struct *task)
1170 struct mm_struct *mm;
1175 if (task->flags & PF_KTHREAD)
1183 EXPORT_SYMBOL_GPL(get_task_mm);
1185 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1187 struct mm_struct *mm;
1190 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1192 return ERR_PTR(err);
1194 mm = get_task_mm(task);
1195 if (mm && mm != current->mm &&
1196 !ptrace_may_access(task, mode)) {
1198 mm = ERR_PTR(-EACCES);
1200 mutex_unlock(&task->signal->cred_guard_mutex);
1205 static void complete_vfork_done(struct task_struct *tsk)
1207 struct completion *vfork;
1210 vfork = tsk->vfork_done;
1211 if (likely(vfork)) {
1212 tsk->vfork_done = NULL;
1218 static int wait_for_vfork_done(struct task_struct *child,
1219 struct completion *vfork)
1223 freezer_do_not_count();
1224 killed = wait_for_completion_killable(vfork);
1229 child->vfork_done = NULL;
1233 put_task_struct(child);
1237 /* Please note the differences between mmput and mm_release.
1238 * mmput is called whenever we stop holding onto a mm_struct,
1239 * error success whatever.
1241 * mm_release is called after a mm_struct has been removed
1242 * from the current process.
1244 * This difference is important for error handling, when we
1245 * only half set up a mm_struct for a new process and need to restore
1246 * the old one. Because we mmput the new mm_struct before
1247 * restoring the old one. . .
1248 * Eric Biederman 10 January 1998
1250 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1252 /* Get rid of any futexes when releasing the mm */
1254 if (unlikely(tsk->robust_list)) {
1255 exit_robust_list(tsk);
1256 tsk->robust_list = NULL;
1258 #ifdef CONFIG_COMPAT
1259 if (unlikely(tsk->compat_robust_list)) {
1260 compat_exit_robust_list(tsk);
1261 tsk->compat_robust_list = NULL;
1264 if (unlikely(!list_empty(&tsk->pi_state_list)))
1265 exit_pi_state_list(tsk);
1268 uprobe_free_utask(tsk);
1270 /* Get rid of any cached register state */
1271 deactivate_mm(tsk, mm);
1274 * Signal userspace if we're not exiting with a core dump
1275 * because we want to leave the value intact for debugging
1278 if (tsk->clear_child_tid) {
1279 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1280 atomic_read(&mm->mm_users) > 1) {
1282 * We don't check the error code - if userspace has
1283 * not set up a proper pointer then tough luck.
1285 put_user(0, tsk->clear_child_tid);
1286 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1287 1, NULL, NULL, 0, 0);
1289 tsk->clear_child_tid = NULL;
1293 * All done, finally we can wake up parent and return this mm to him.
1294 * Also kthread_stop() uses this completion for synchronization.
1296 if (tsk->vfork_done)
1297 complete_vfork_done(tsk);
1301 * Allocate a new mm structure and copy contents from the
1302 * mm structure of the passed in task structure.
1304 static struct mm_struct *dup_mm(struct task_struct *tsk)
1306 struct mm_struct *mm, *oldmm = current->mm;
1313 memcpy(mm, oldmm, sizeof(*mm));
1315 if (!mm_init(mm, tsk, mm->user_ns))
1318 err = dup_mmap(mm, oldmm);
1322 mm->hiwater_rss = get_mm_rss(mm);
1323 mm->hiwater_vm = mm->total_vm;
1325 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1331 /* don't put binfmt in mmput, we haven't got module yet */
1339 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1341 struct mm_struct *mm, *oldmm;
1344 tsk->min_flt = tsk->maj_flt = 0;
1345 tsk->nvcsw = tsk->nivcsw = 0;
1346 #ifdef CONFIG_DETECT_HUNG_TASK
1347 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1348 tsk->last_switch_time = 0;
1352 tsk->active_mm = NULL;
1355 * Are we cloning a kernel thread?
1357 * We need to steal a active VM for that..
1359 oldmm = current->mm;
1363 /* initialize the new vmacache entries */
1364 vmacache_flush(tsk);
1366 if (clone_flags & CLONE_VM) {
1379 tsk->active_mm = mm;
1386 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1388 struct fs_struct *fs = current->fs;
1389 if (clone_flags & CLONE_FS) {
1390 /* tsk->fs is already what we want */
1391 spin_lock(&fs->lock);
1393 spin_unlock(&fs->lock);
1397 spin_unlock(&fs->lock);
1400 tsk->fs = copy_fs_struct(fs);
1406 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1408 struct files_struct *oldf, *newf;
1412 * A background process may not have any files ...
1414 oldf = current->files;
1418 if (clone_flags & CLONE_FILES) {
1419 atomic_inc(&oldf->count);
1423 newf = dup_fd(oldf, &error);
1433 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1436 struct io_context *ioc = current->io_context;
1437 struct io_context *new_ioc;
1442 * Share io context with parent, if CLONE_IO is set
1444 if (clone_flags & CLONE_IO) {
1446 tsk->io_context = ioc;
1447 } else if (ioprio_valid(ioc->ioprio)) {
1448 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1449 if (unlikely(!new_ioc))
1452 new_ioc->ioprio = ioc->ioprio;
1453 put_io_context(new_ioc);
1459 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1461 struct sighand_struct *sig;
1463 if (clone_flags & CLONE_SIGHAND) {
1464 atomic_inc(¤t->sighand->count);
1467 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1468 rcu_assign_pointer(tsk->sighand, sig);
1472 atomic_set(&sig->count, 1);
1473 spin_lock_irq(¤t->sighand->siglock);
1474 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1475 spin_unlock_irq(¤t->sighand->siglock);
1479 void __cleanup_sighand(struct sighand_struct *sighand)
1481 if (atomic_dec_and_test(&sighand->count)) {
1482 signalfd_cleanup(sighand);
1484 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1485 * without an RCU grace period, see __lock_task_sighand().
1487 kmem_cache_free(sighand_cachep, sighand);
1491 #ifdef CONFIG_POSIX_TIMERS
1493 * Initialize POSIX timer handling for a thread group.
1495 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1497 unsigned long cpu_limit;
1499 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1500 if (cpu_limit != RLIM_INFINITY) {
1501 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1502 sig->cputimer.running = true;
1505 /* The timer lists. */
1506 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1507 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1508 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1511 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1514 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1516 struct signal_struct *sig;
1518 if (clone_flags & CLONE_THREAD)
1521 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1526 sig->nr_threads = 1;
1527 atomic_set(&sig->live, 1);
1528 atomic_set(&sig->sigcnt, 1);
1530 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1531 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1532 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1534 init_waitqueue_head(&sig->wait_chldexit);
1535 sig->curr_target = tsk;
1536 init_sigpending(&sig->shared_pending);
1537 INIT_HLIST_HEAD(&sig->multiprocess);
1538 seqlock_init(&sig->stats_lock);
1539 prev_cputime_init(&sig->prev_cputime);
1541 #ifdef CONFIG_POSIX_TIMERS
1542 INIT_LIST_HEAD(&sig->posix_timers);
1543 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1544 sig->real_timer.function = it_real_fn;
1547 task_lock(current->group_leader);
1548 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1549 task_unlock(current->group_leader);
1551 posix_cpu_timers_init_group(sig);
1553 tty_audit_fork(sig);
1554 sched_autogroup_fork(sig);
1556 sig->oom_score_adj = current->signal->oom_score_adj;
1557 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1559 mutex_init(&sig->cred_guard_mutex);
1564 static void copy_seccomp(struct task_struct *p)
1566 #ifdef CONFIG_SECCOMP
1568 * Must be called with sighand->lock held, which is common to
1569 * all threads in the group. Holding cred_guard_mutex is not
1570 * needed because this new task is not yet running and cannot
1573 assert_spin_locked(¤t->sighand->siglock);
1575 /* Ref-count the new filter user, and assign it. */
1576 get_seccomp_filter(current);
1577 p->seccomp = current->seccomp;
1580 * Explicitly enable no_new_privs here in case it got set
1581 * between the task_struct being duplicated and holding the
1582 * sighand lock. The seccomp state and nnp must be in sync.
1584 if (task_no_new_privs(current))
1585 task_set_no_new_privs(p);
1588 * If the parent gained a seccomp mode after copying thread
1589 * flags and between before we held the sighand lock, we have
1590 * to manually enable the seccomp thread flag here.
1592 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1593 set_tsk_thread_flag(p, TIF_SECCOMP);
1597 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1599 current->clear_child_tid = tidptr;
1601 return task_pid_vnr(current);
1604 static void rt_mutex_init_task(struct task_struct *p)
1606 raw_spin_lock_init(&p->pi_lock);
1607 #ifdef CONFIG_RT_MUTEXES
1608 p->pi_waiters = RB_ROOT_CACHED;
1609 p->pi_top_task = NULL;
1610 p->pi_blocked_on = NULL;
1614 #ifdef CONFIG_POSIX_TIMERS
1616 * Initialize POSIX timer handling for a single task.
1618 static void posix_cpu_timers_init(struct task_struct *tsk)
1620 tsk->cputime_expires.prof_exp = 0;
1621 tsk->cputime_expires.virt_exp = 0;
1622 tsk->cputime_expires.sched_exp = 0;
1623 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1624 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1625 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1628 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1631 static inline void init_task_pid_links(struct task_struct *task)
1635 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1636 INIT_HLIST_NODE(&task->pid_links[type]);
1641 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1643 if (type == PIDTYPE_PID)
1644 task->thread_pid = pid;
1646 task->signal->pids[type] = pid;
1649 static inline void rcu_copy_process(struct task_struct *p)
1651 #ifdef CONFIG_PREEMPT_RCU
1652 p->rcu_read_lock_nesting = 0;
1653 p->rcu_read_unlock_special.s = 0;
1654 p->rcu_blocked_node = NULL;
1655 INIT_LIST_HEAD(&p->rcu_node_entry);
1656 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1657 #ifdef CONFIG_TASKS_RCU
1658 p->rcu_tasks_holdout = false;
1659 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1660 p->rcu_tasks_idle_cpu = -1;
1661 #endif /* #ifdef CONFIG_TASKS_RCU */
1665 * This creates a new process as a copy of the old one,
1666 * but does not actually start it yet.
1668 * It copies the registers, and all the appropriate
1669 * parts of the process environment (as per the clone
1670 * flags). The actual kick-off is left to the caller.
1672 static __latent_entropy struct task_struct *copy_process(
1673 unsigned long clone_flags,
1674 unsigned long stack_start,
1675 unsigned long stack_size,
1676 int __user *child_tidptr,
1683 struct task_struct *p;
1684 struct multiprocess_signals delayed;
1687 * Don't allow sharing the root directory with processes in a different
1690 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1691 return ERR_PTR(-EINVAL);
1693 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1694 return ERR_PTR(-EINVAL);
1697 * Thread groups must share signals as well, and detached threads
1698 * can only be started up within the thread group.
1700 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1701 return ERR_PTR(-EINVAL);
1704 * Shared signal handlers imply shared VM. By way of the above,
1705 * thread groups also imply shared VM. Blocking this case allows
1706 * for various simplifications in other code.
1708 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1709 return ERR_PTR(-EINVAL);
1712 * Siblings of global init remain as zombies on exit since they are
1713 * not reaped by their parent (swapper). To solve this and to avoid
1714 * multi-rooted process trees, prevent global and container-inits
1715 * from creating siblings.
1717 if ((clone_flags & CLONE_PARENT) &&
1718 current->signal->flags & SIGNAL_UNKILLABLE)
1719 return ERR_PTR(-EINVAL);
1722 * If the new process will be in a different pid or user namespace
1723 * do not allow it to share a thread group with the forking task.
1725 if (clone_flags & CLONE_THREAD) {
1726 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1727 (task_active_pid_ns(current) !=
1728 current->nsproxy->pid_ns_for_children))
1729 return ERR_PTR(-EINVAL);
1733 * Force any signals received before this point to be delivered
1734 * before the fork happens. Collect up signals sent to multiple
1735 * processes that happen during the fork and delay them so that
1736 * they appear to happen after the fork.
1738 sigemptyset(&delayed.signal);
1739 INIT_HLIST_NODE(&delayed.node);
1741 spin_lock_irq(¤t->sighand->siglock);
1742 if (!(clone_flags & CLONE_THREAD))
1743 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1744 recalc_sigpending();
1745 spin_unlock_irq(¤t->sighand->siglock);
1746 retval = -ERESTARTNOINTR;
1747 if (signal_pending(current))
1751 p = dup_task_struct(current, node);
1756 * This _must_ happen before we call free_task(), i.e. before we jump
1757 * to any of the bad_fork_* labels. This is to avoid freeing
1758 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1759 * kernel threads (PF_KTHREAD).
1761 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1763 * Clear TID on mm_release()?
1765 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1767 ftrace_graph_init_task(p);
1769 rt_mutex_init_task(p);
1771 #ifdef CONFIG_PROVE_LOCKING
1772 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1773 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1776 if (atomic_read(&p->real_cred->user->processes) >=
1777 task_rlimit(p, RLIMIT_NPROC)) {
1778 if (p->real_cred->user != INIT_USER &&
1779 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1782 current->flags &= ~PF_NPROC_EXCEEDED;
1784 retval = copy_creds(p, clone_flags);
1789 * If multiple threads are within copy_process(), then this check
1790 * triggers too late. This doesn't hurt, the check is only there
1791 * to stop root fork bombs.
1794 if (nr_threads >= max_threads)
1795 goto bad_fork_cleanup_count;
1797 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1798 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1799 p->flags |= PF_FORKNOEXEC;
1800 INIT_LIST_HEAD(&p->children);
1801 INIT_LIST_HEAD(&p->sibling);
1802 rcu_copy_process(p);
1803 p->vfork_done = NULL;
1804 spin_lock_init(&p->alloc_lock);
1806 init_sigpending(&p->pending);
1808 p->utime = p->stime = p->gtime = 0;
1809 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1810 p->utimescaled = p->stimescaled = 0;
1812 prev_cputime_init(&p->prev_cputime);
1814 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1815 seqcount_init(&p->vtime.seqcount);
1816 p->vtime.starttime = 0;
1817 p->vtime.state = VTIME_INACTIVE;
1820 #if defined(SPLIT_RSS_COUNTING)
1821 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1824 p->default_timer_slack_ns = current->timer_slack_ns;
1830 task_io_accounting_init(&p->ioac);
1831 acct_clear_integrals(p);
1833 posix_cpu_timers_init(p);
1835 p->start_time = ktime_get_ns();
1836 p->real_start_time = ktime_get_boot_ns();
1837 p->io_context = NULL;
1838 audit_set_context(p, NULL);
1841 p->mempolicy = mpol_dup(p->mempolicy);
1842 if (IS_ERR(p->mempolicy)) {
1843 retval = PTR_ERR(p->mempolicy);
1844 p->mempolicy = NULL;
1845 goto bad_fork_cleanup_threadgroup_lock;
1848 #ifdef CONFIG_CPUSETS
1849 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1850 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1851 seqcount_init(&p->mems_allowed_seq);
1853 #ifdef CONFIG_TRACE_IRQFLAGS
1855 p->hardirqs_enabled = 0;
1856 p->hardirq_enable_ip = 0;
1857 p->hardirq_enable_event = 0;
1858 p->hardirq_disable_ip = _THIS_IP_;
1859 p->hardirq_disable_event = 0;
1860 p->softirqs_enabled = 1;
1861 p->softirq_enable_ip = _THIS_IP_;
1862 p->softirq_enable_event = 0;
1863 p->softirq_disable_ip = 0;
1864 p->softirq_disable_event = 0;
1865 p->hardirq_context = 0;
1866 p->softirq_context = 0;
1869 p->pagefault_disabled = 0;
1871 #ifdef CONFIG_LOCKDEP
1872 p->lockdep_depth = 0; /* no locks held yet */
1873 p->curr_chain_key = 0;
1874 p->lockdep_recursion = 0;
1875 lockdep_init_task(p);
1878 #ifdef CONFIG_DEBUG_MUTEXES
1879 p->blocked_on = NULL; /* not blocked yet */
1881 #ifdef CONFIG_BCACHE
1882 p->sequential_io = 0;
1883 p->sequential_io_avg = 0;
1886 /* Perform scheduler related setup. Assign this task to a CPU. */
1887 retval = sched_fork(clone_flags, p);
1889 goto bad_fork_cleanup_policy;
1891 retval = perf_event_init_task(p);
1893 goto bad_fork_cleanup_policy;
1894 retval = audit_alloc(p);
1896 goto bad_fork_cleanup_perf;
1897 /* copy all the process information */
1899 retval = security_task_alloc(p, clone_flags);
1901 goto bad_fork_cleanup_audit;
1902 retval = copy_semundo(clone_flags, p);
1904 goto bad_fork_cleanup_security;
1905 retval = copy_files(clone_flags, p);
1907 goto bad_fork_cleanup_semundo;
1908 retval = copy_fs(clone_flags, p);
1910 goto bad_fork_cleanup_files;
1911 retval = copy_sighand(clone_flags, p);
1913 goto bad_fork_cleanup_fs;
1914 retval = copy_signal(clone_flags, p);
1916 goto bad_fork_cleanup_sighand;
1917 retval = copy_mm(clone_flags, p);
1919 goto bad_fork_cleanup_signal;
1920 retval = copy_namespaces(clone_flags, p);
1922 goto bad_fork_cleanup_mm;
1923 retval = copy_io(clone_flags, p);
1925 goto bad_fork_cleanup_namespaces;
1926 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1928 goto bad_fork_cleanup_io;
1930 stackleak_task_init(p);
1932 if (pid != &init_struct_pid) {
1933 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1935 retval = PTR_ERR(pid);
1936 goto bad_fork_cleanup_thread;
1944 p->robust_list = NULL;
1945 #ifdef CONFIG_COMPAT
1946 p->compat_robust_list = NULL;
1948 INIT_LIST_HEAD(&p->pi_state_list);
1949 p->pi_state_cache = NULL;
1952 * sigaltstack should be cleared when sharing the same VM
1954 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1958 * Syscall tracing and stepping should be turned off in the
1959 * child regardless of CLONE_PTRACE.
1961 user_disable_single_step(p);
1962 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1963 #ifdef TIF_SYSCALL_EMU
1964 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1966 clear_all_latency_tracing(p);
1968 /* ok, now we should be set up.. */
1969 p->pid = pid_nr(pid);
1970 if (clone_flags & CLONE_THREAD) {
1971 p->exit_signal = -1;
1972 p->group_leader = current->group_leader;
1973 p->tgid = current->tgid;
1975 if (clone_flags & CLONE_PARENT)
1976 p->exit_signal = current->group_leader->exit_signal;
1978 p->exit_signal = (clone_flags & CSIGNAL);
1979 p->group_leader = p;
1984 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1985 p->dirty_paused_when = 0;
1987 p->pdeath_signal = 0;
1988 INIT_LIST_HEAD(&p->thread_group);
1989 p->task_works = NULL;
1991 cgroup_threadgroup_change_begin(current);
1993 * Ensure that the cgroup subsystem policies allow the new process to be
1994 * forked. It should be noted the the new process's css_set can be changed
1995 * between here and cgroup_post_fork() if an organisation operation is in
1998 retval = cgroup_can_fork(p);
2000 goto bad_fork_free_pid;
2003 * Make it visible to the rest of the system, but dont wake it up yet.
2004 * Need tasklist lock for parent etc handling!
2006 write_lock_irq(&tasklist_lock);
2008 /* CLONE_PARENT re-uses the old parent */
2009 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2010 p->real_parent = current->real_parent;
2011 p->parent_exec_id = current->parent_exec_id;
2013 p->real_parent = current;
2014 p->parent_exec_id = current->self_exec_id;
2017 klp_copy_process(p);
2019 spin_lock(¤t->sighand->siglock);
2022 * Copy seccomp details explicitly here, in case they were changed
2023 * before holding sighand lock.
2027 rseq_fork(p, clone_flags);
2029 /* Don't start children in a dying pid namespace */
2030 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2032 goto bad_fork_cancel_cgroup;
2035 /* Let kill terminate clone/fork in the middle */
2036 if (fatal_signal_pending(current)) {
2038 goto bad_fork_cancel_cgroup;
2042 init_task_pid_links(p);
2043 if (likely(p->pid)) {
2044 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2046 init_task_pid(p, PIDTYPE_PID, pid);
2047 if (thread_group_leader(p)) {
2048 init_task_pid(p, PIDTYPE_TGID, pid);
2049 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2050 init_task_pid(p, PIDTYPE_SID, task_session(current));
2052 if (is_child_reaper(pid)) {
2053 ns_of_pid(pid)->child_reaper = p;
2054 p->signal->flags |= SIGNAL_UNKILLABLE;
2056 p->signal->shared_pending.signal = delayed.signal;
2057 p->signal->tty = tty_kref_get(current->signal->tty);
2059 * Inherit has_child_subreaper flag under the same
2060 * tasklist_lock with adding child to the process tree
2061 * for propagate_has_child_subreaper optimization.
2063 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2064 p->real_parent->signal->is_child_subreaper;
2065 list_add_tail(&p->sibling, &p->real_parent->children);
2066 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2067 attach_pid(p, PIDTYPE_TGID);
2068 attach_pid(p, PIDTYPE_PGID);
2069 attach_pid(p, PIDTYPE_SID);
2070 __this_cpu_inc(process_counts);
2072 current->signal->nr_threads++;
2073 atomic_inc(¤t->signal->live);
2074 atomic_inc(¤t->signal->sigcnt);
2075 task_join_group_stop(p);
2076 list_add_tail_rcu(&p->thread_group,
2077 &p->group_leader->thread_group);
2078 list_add_tail_rcu(&p->thread_node,
2079 &p->signal->thread_head);
2081 attach_pid(p, PIDTYPE_PID);
2085 hlist_del_init(&delayed.node);
2086 spin_unlock(¤t->sighand->siglock);
2087 syscall_tracepoint_update(p);
2088 write_unlock_irq(&tasklist_lock);
2090 proc_fork_connector(p);
2091 cgroup_post_fork(p);
2092 cgroup_threadgroup_change_end(current);
2095 trace_task_newtask(p, clone_flags);
2096 uprobe_copy_process(p, clone_flags);
2100 bad_fork_cancel_cgroup:
2101 spin_unlock(¤t->sighand->siglock);
2102 write_unlock_irq(&tasklist_lock);
2103 cgroup_cancel_fork(p);
2105 cgroup_threadgroup_change_end(current);
2106 if (pid != &init_struct_pid)
2108 bad_fork_cleanup_thread:
2110 bad_fork_cleanup_io:
2113 bad_fork_cleanup_namespaces:
2114 exit_task_namespaces(p);
2115 bad_fork_cleanup_mm:
2118 bad_fork_cleanup_signal:
2119 if (!(clone_flags & CLONE_THREAD))
2120 free_signal_struct(p->signal);
2121 bad_fork_cleanup_sighand:
2122 __cleanup_sighand(p->sighand);
2123 bad_fork_cleanup_fs:
2124 exit_fs(p); /* blocking */
2125 bad_fork_cleanup_files:
2126 exit_files(p); /* blocking */
2127 bad_fork_cleanup_semundo:
2129 bad_fork_cleanup_security:
2130 security_task_free(p);
2131 bad_fork_cleanup_audit:
2133 bad_fork_cleanup_perf:
2134 perf_event_free_task(p);
2135 bad_fork_cleanup_policy:
2136 lockdep_free_task(p);
2138 mpol_put(p->mempolicy);
2139 bad_fork_cleanup_threadgroup_lock:
2141 delayacct_tsk_free(p);
2142 bad_fork_cleanup_count:
2143 atomic_dec(&p->cred->user->processes);
2146 p->state = TASK_DEAD;
2150 spin_lock_irq(¤t->sighand->siglock);
2151 hlist_del_init(&delayed.node);
2152 spin_unlock_irq(¤t->sighand->siglock);
2153 return ERR_PTR(retval);
2156 static inline void init_idle_pids(struct task_struct *idle)
2160 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2161 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2162 init_task_pid(idle, type, &init_struct_pid);
2166 struct task_struct *fork_idle(int cpu)
2168 struct task_struct *task;
2169 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2171 if (!IS_ERR(task)) {
2172 init_idle_pids(task);
2173 init_idle(task, cpu);
2180 * Ok, this is the main fork-routine.
2182 * It copies the process, and if successful kick-starts
2183 * it and waits for it to finish using the VM if required.
2185 long _do_fork(unsigned long clone_flags,
2186 unsigned long stack_start,
2187 unsigned long stack_size,
2188 int __user *parent_tidptr,
2189 int __user *child_tidptr,
2192 struct completion vfork;
2194 struct task_struct *p;
2199 * Determine whether and which event to report to ptracer. When
2200 * called from kernel_thread or CLONE_UNTRACED is explicitly
2201 * requested, no event is reported; otherwise, report if the event
2202 * for the type of forking is enabled.
2204 if (!(clone_flags & CLONE_UNTRACED)) {
2205 if (clone_flags & CLONE_VFORK)
2206 trace = PTRACE_EVENT_VFORK;
2207 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2208 trace = PTRACE_EVENT_CLONE;
2210 trace = PTRACE_EVENT_FORK;
2212 if (likely(!ptrace_event_enabled(current, trace)))
2216 p = copy_process(clone_flags, stack_start, stack_size,
2217 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2218 add_latent_entropy();
2224 * Do this prior waking up the new thread - the thread pointer
2225 * might get invalid after that point, if the thread exits quickly.
2227 trace_sched_process_fork(current, p);
2229 pid = get_task_pid(p, PIDTYPE_PID);
2232 if (clone_flags & CLONE_PARENT_SETTID)
2233 put_user(nr, parent_tidptr);
2235 if (clone_flags & CLONE_VFORK) {
2236 p->vfork_done = &vfork;
2237 init_completion(&vfork);
2241 wake_up_new_task(p);
2243 /* forking complete and child started to run, tell ptracer */
2244 if (unlikely(trace))
2245 ptrace_event_pid(trace, pid);
2247 if (clone_flags & CLONE_VFORK) {
2248 if (!wait_for_vfork_done(p, &vfork))
2249 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2256 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2257 /* For compatibility with architectures that call do_fork directly rather than
2258 * using the syscall entry points below. */
2259 long do_fork(unsigned long clone_flags,
2260 unsigned long stack_start,
2261 unsigned long stack_size,
2262 int __user *parent_tidptr,
2263 int __user *child_tidptr)
2265 return _do_fork(clone_flags, stack_start, stack_size,
2266 parent_tidptr, child_tidptr, 0);
2271 * Create a kernel thread.
2273 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2275 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2276 (unsigned long)arg, NULL, NULL, 0);
2279 #ifdef __ARCH_WANT_SYS_FORK
2280 SYSCALL_DEFINE0(fork)
2283 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2285 /* can not support in nommu mode */
2291 #ifdef __ARCH_WANT_SYS_VFORK
2292 SYSCALL_DEFINE0(vfork)
2294 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2299 #ifdef __ARCH_WANT_SYS_CLONE
2300 #ifdef CONFIG_CLONE_BACKWARDS
2301 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2302 int __user *, parent_tidptr,
2304 int __user *, child_tidptr)
2305 #elif defined(CONFIG_CLONE_BACKWARDS2)
2306 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2307 int __user *, parent_tidptr,
2308 int __user *, child_tidptr,
2310 #elif defined(CONFIG_CLONE_BACKWARDS3)
2311 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2313 int __user *, parent_tidptr,
2314 int __user *, child_tidptr,
2317 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2318 int __user *, parent_tidptr,
2319 int __user *, child_tidptr,
2323 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2327 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2329 struct task_struct *leader, *parent, *child;
2332 read_lock(&tasklist_lock);
2333 leader = top = top->group_leader;
2335 for_each_thread(leader, parent) {
2336 list_for_each_entry(child, &parent->children, sibling) {
2337 res = visitor(child, data);
2349 if (leader != top) {
2351 parent = child->real_parent;
2352 leader = parent->group_leader;
2356 read_unlock(&tasklist_lock);
2359 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2360 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2363 static void sighand_ctor(void *data)
2365 struct sighand_struct *sighand = data;
2367 spin_lock_init(&sighand->siglock);
2368 init_waitqueue_head(&sighand->signalfd_wqh);
2371 void __init proc_caches_init(void)
2373 unsigned int mm_size;
2375 sighand_cachep = kmem_cache_create("sighand_cache",
2376 sizeof(struct sighand_struct), 0,
2377 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2378 SLAB_ACCOUNT, sighand_ctor);
2379 signal_cachep = kmem_cache_create("signal_cache",
2380 sizeof(struct signal_struct), 0,
2381 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2383 files_cachep = kmem_cache_create("files_cache",
2384 sizeof(struct files_struct), 0,
2385 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2387 fs_cachep = kmem_cache_create("fs_cache",
2388 sizeof(struct fs_struct), 0,
2389 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2393 * The mm_cpumask is located at the end of mm_struct, and is
2394 * dynamically sized based on the maximum CPU number this system
2395 * can have, taking hotplug into account (nr_cpu_ids).
2397 mm_size = sizeof(struct mm_struct) + cpumask_size();
2399 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2400 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2401 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2402 offsetof(struct mm_struct, saved_auxv),
2403 sizeof_field(struct mm_struct, saved_auxv),
2405 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2407 nsproxy_cache_init();
2411 * Check constraints on flags passed to the unshare system call.
2413 static int check_unshare_flags(unsigned long unshare_flags)
2415 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2416 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2417 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2418 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2421 * Not implemented, but pretend it works if there is nothing
2422 * to unshare. Note that unsharing the address space or the
2423 * signal handlers also need to unshare the signal queues (aka
2426 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2427 if (!thread_group_empty(current))
2430 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2431 if (atomic_read(¤t->sighand->count) > 1)
2434 if (unshare_flags & CLONE_VM) {
2435 if (!current_is_single_threaded())
2443 * Unshare the filesystem structure if it is being shared
2445 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2447 struct fs_struct *fs = current->fs;
2449 if (!(unshare_flags & CLONE_FS) || !fs)
2452 /* don't need lock here; in the worst case we'll do useless copy */
2456 *new_fsp = copy_fs_struct(fs);
2464 * Unshare file descriptor table if it is being shared
2466 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2468 struct files_struct *fd = current->files;
2471 if ((unshare_flags & CLONE_FILES) &&
2472 (fd && atomic_read(&fd->count) > 1)) {
2473 *new_fdp = dup_fd(fd, &error);
2482 * unshare allows a process to 'unshare' part of the process
2483 * context which was originally shared using clone. copy_*
2484 * functions used by do_fork() cannot be used here directly
2485 * because they modify an inactive task_struct that is being
2486 * constructed. Here we are modifying the current, active,
2489 int ksys_unshare(unsigned long unshare_flags)
2491 struct fs_struct *fs, *new_fs = NULL;
2492 struct files_struct *fd, *new_fd = NULL;
2493 struct cred *new_cred = NULL;
2494 struct nsproxy *new_nsproxy = NULL;
2499 * If unsharing a user namespace must also unshare the thread group
2500 * and unshare the filesystem root and working directories.
2502 if (unshare_flags & CLONE_NEWUSER)
2503 unshare_flags |= CLONE_THREAD | CLONE_FS;
2505 * If unsharing vm, must also unshare signal handlers.
2507 if (unshare_flags & CLONE_VM)
2508 unshare_flags |= CLONE_SIGHAND;
2510 * If unsharing a signal handlers, must also unshare the signal queues.
2512 if (unshare_flags & CLONE_SIGHAND)
2513 unshare_flags |= CLONE_THREAD;
2515 * If unsharing namespace, must also unshare filesystem information.
2517 if (unshare_flags & CLONE_NEWNS)
2518 unshare_flags |= CLONE_FS;
2520 err = check_unshare_flags(unshare_flags);
2522 goto bad_unshare_out;
2524 * CLONE_NEWIPC must also detach from the undolist: after switching
2525 * to a new ipc namespace, the semaphore arrays from the old
2526 * namespace are unreachable.
2528 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2530 err = unshare_fs(unshare_flags, &new_fs);
2532 goto bad_unshare_out;
2533 err = unshare_fd(unshare_flags, &new_fd);
2535 goto bad_unshare_cleanup_fs;
2536 err = unshare_userns(unshare_flags, &new_cred);
2538 goto bad_unshare_cleanup_fd;
2539 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2542 goto bad_unshare_cleanup_cred;
2544 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2547 * CLONE_SYSVSEM is equivalent to sys_exit().
2551 if (unshare_flags & CLONE_NEWIPC) {
2552 /* Orphan segments in old ns (see sem above). */
2554 shm_init_task(current);
2558 switch_task_namespaces(current, new_nsproxy);
2564 spin_lock(&fs->lock);
2565 current->fs = new_fs;
2570 spin_unlock(&fs->lock);
2574 fd = current->files;
2575 current->files = new_fd;
2579 task_unlock(current);
2582 /* Install the new user namespace */
2583 commit_creds(new_cred);
2588 perf_event_namespaces(current);
2590 bad_unshare_cleanup_cred:
2593 bad_unshare_cleanup_fd:
2595 put_files_struct(new_fd);
2597 bad_unshare_cleanup_fs:
2599 free_fs_struct(new_fs);
2605 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2607 return ksys_unshare(unshare_flags);
2611 * Helper to unshare the files of the current task.
2612 * We don't want to expose copy_files internals to
2613 * the exec layer of the kernel.
2616 int unshare_files(struct files_struct **displaced)
2618 struct task_struct *task = current;
2619 struct files_struct *copy = NULL;
2622 error = unshare_fd(CLONE_FILES, ©);
2623 if (error || !copy) {
2627 *displaced = task->files;
2634 int sysctl_max_threads(struct ctl_table *table, int write,
2635 void __user *buffer, size_t *lenp, loff_t *ppos)
2639 int threads = max_threads;
2640 int min = MIN_THREADS;
2641 int max = MAX_THREADS;
2648 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2652 set_max_threads(threads);