Merge tag 'v6.1-rc1' into next
[platform/kernel/linux-starfive.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70
71 #include <linux/uaccess.h>
72 #include <asm/unistd.h>
73 #include <asm/mmu_context.h>
74
75 static void __unhash_process(struct task_struct *p, bool group_dead)
76 {
77         nr_threads--;
78         detach_pid(p, PIDTYPE_PID);
79         if (group_dead) {
80                 detach_pid(p, PIDTYPE_TGID);
81                 detach_pid(p, PIDTYPE_PGID);
82                 detach_pid(p, PIDTYPE_SID);
83
84                 list_del_rcu(&p->tasks);
85                 list_del_init(&p->sibling);
86                 __this_cpu_dec(process_counts);
87         }
88         list_del_rcu(&p->thread_group);
89         list_del_rcu(&p->thread_node);
90 }
91
92 /*
93  * This function expects the tasklist_lock write-locked.
94  */
95 static void __exit_signal(struct task_struct *tsk)
96 {
97         struct signal_struct *sig = tsk->signal;
98         bool group_dead = thread_group_leader(tsk);
99         struct sighand_struct *sighand;
100         struct tty_struct *tty;
101         u64 utime, stime;
102
103         sighand = rcu_dereference_check(tsk->sighand,
104                                         lockdep_tasklist_lock_is_held());
105         spin_lock(&sighand->siglock);
106
107 #ifdef CONFIG_POSIX_TIMERS
108         posix_cpu_timers_exit(tsk);
109         if (group_dead)
110                 posix_cpu_timers_exit_group(tsk);
111 #endif
112
113         if (group_dead) {
114                 tty = sig->tty;
115                 sig->tty = NULL;
116         } else {
117                 /*
118                  * If there is any task waiting for the group exit
119                  * then notify it:
120                  */
121                 if (sig->notify_count > 0 && !--sig->notify_count)
122                         wake_up_process(sig->group_exec_task);
123
124                 if (tsk == sig->curr_target)
125                         sig->curr_target = next_thread(tsk);
126         }
127
128         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
129                               sizeof(unsigned long long));
130
131         /*
132          * Accumulate here the counters for all threads as they die. We could
133          * skip the group leader because it is the last user of signal_struct,
134          * but we want to avoid the race with thread_group_cputime() which can
135          * see the empty ->thread_head list.
136          */
137         task_cputime(tsk, &utime, &stime);
138         write_seqlock(&sig->stats_lock);
139         sig->utime += utime;
140         sig->stime += stime;
141         sig->gtime += task_gtime(tsk);
142         sig->min_flt += tsk->min_flt;
143         sig->maj_flt += tsk->maj_flt;
144         sig->nvcsw += tsk->nvcsw;
145         sig->nivcsw += tsk->nivcsw;
146         sig->inblock += task_io_get_inblock(tsk);
147         sig->oublock += task_io_get_oublock(tsk);
148         task_io_accounting_add(&sig->ioac, &tsk->ioac);
149         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
150         sig->nr_threads--;
151         __unhash_process(tsk, group_dead);
152         write_sequnlock(&sig->stats_lock);
153
154         /*
155          * Do this under ->siglock, we can race with another thread
156          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
157          */
158         flush_sigqueue(&tsk->pending);
159         tsk->sighand = NULL;
160         spin_unlock(&sighand->siglock);
161
162         __cleanup_sighand(sighand);
163         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
164         if (group_dead) {
165                 flush_sigqueue(&sig->shared_pending);
166                 tty_kref_put(tty);
167         }
168 }
169
170 static void delayed_put_task_struct(struct rcu_head *rhp)
171 {
172         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
173
174         kprobe_flush_task(tsk);
175         rethook_flush_task(tsk);
176         perf_event_delayed_put(tsk);
177         trace_sched_process_free(tsk);
178         put_task_struct(tsk);
179 }
180
181 void put_task_struct_rcu_user(struct task_struct *task)
182 {
183         if (refcount_dec_and_test(&task->rcu_users))
184                 call_rcu(&task->rcu, delayed_put_task_struct);
185 }
186
187 void __weak release_thread(struct task_struct *dead_task)
188 {
189 }
190
191 void release_task(struct task_struct *p)
192 {
193         struct task_struct *leader;
194         struct pid *thread_pid;
195         int zap_leader;
196 repeat:
197         /* don't need to get the RCU readlock here - the process is dead and
198          * can't be modifying its own credentials. But shut RCU-lockdep up */
199         rcu_read_lock();
200         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
201         rcu_read_unlock();
202
203         cgroup_release(p);
204
205         write_lock_irq(&tasklist_lock);
206         ptrace_release_task(p);
207         thread_pid = get_pid(p->thread_pid);
208         __exit_signal(p);
209
210         /*
211          * If we are the last non-leader member of the thread
212          * group, and the leader is zombie, then notify the
213          * group leader's parent process. (if it wants notification.)
214          */
215         zap_leader = 0;
216         leader = p->group_leader;
217         if (leader != p && thread_group_empty(leader)
218                         && leader->exit_state == EXIT_ZOMBIE) {
219                 /*
220                  * If we were the last child thread and the leader has
221                  * exited already, and the leader's parent ignores SIGCHLD,
222                  * then we are the one who should release the leader.
223                  */
224                 zap_leader = do_notify_parent(leader, leader->exit_signal);
225                 if (zap_leader)
226                         leader->exit_state = EXIT_DEAD;
227         }
228
229         write_unlock_irq(&tasklist_lock);
230         seccomp_filter_release(p);
231         proc_flush_pid(thread_pid);
232         put_pid(thread_pid);
233         release_thread(p);
234         put_task_struct_rcu_user(p);
235
236         p = leader;
237         if (unlikely(zap_leader))
238                 goto repeat;
239 }
240
241 int rcuwait_wake_up(struct rcuwait *w)
242 {
243         int ret = 0;
244         struct task_struct *task;
245
246         rcu_read_lock();
247
248         /*
249          * Order condition vs @task, such that everything prior to the load
250          * of @task is visible. This is the condition as to why the user called
251          * rcuwait_wake() in the first place. Pairs with set_current_state()
252          * barrier (A) in rcuwait_wait_event().
253          *
254          *    WAIT                WAKE
255          *    [S] tsk = current   [S] cond = true
256          *        MB (A)              MB (B)
257          *    [L] cond            [L] tsk
258          */
259         smp_mb(); /* (B) */
260
261         task = rcu_dereference(w->task);
262         if (task)
263                 ret = wake_up_process(task);
264         rcu_read_unlock();
265
266         return ret;
267 }
268 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
269
270 /*
271  * Determine if a process group is "orphaned", according to the POSIX
272  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
273  * by terminal-generated stop signals.  Newly orphaned process groups are
274  * to receive a SIGHUP and a SIGCONT.
275  *
276  * "I ask you, have you ever known what it is to be an orphan?"
277  */
278 static int will_become_orphaned_pgrp(struct pid *pgrp,
279                                         struct task_struct *ignored_task)
280 {
281         struct task_struct *p;
282
283         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
284                 if ((p == ignored_task) ||
285                     (p->exit_state && thread_group_empty(p)) ||
286                     is_global_init(p->real_parent))
287                         continue;
288
289                 if (task_pgrp(p->real_parent) != pgrp &&
290                     task_session(p->real_parent) == task_session(p))
291                         return 0;
292         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
293
294         return 1;
295 }
296
297 int is_current_pgrp_orphaned(void)
298 {
299         int retval;
300
301         read_lock(&tasklist_lock);
302         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
303         read_unlock(&tasklist_lock);
304
305         return retval;
306 }
307
308 static bool has_stopped_jobs(struct pid *pgrp)
309 {
310         struct task_struct *p;
311
312         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
313                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
314                         return true;
315         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
316
317         return false;
318 }
319
320 /*
321  * Check to see if any process groups have become orphaned as
322  * a result of our exiting, and if they have any stopped jobs,
323  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
324  */
325 static void
326 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
327 {
328         struct pid *pgrp = task_pgrp(tsk);
329         struct task_struct *ignored_task = tsk;
330
331         if (!parent)
332                 /* exit: our father is in a different pgrp than
333                  * we are and we were the only connection outside.
334                  */
335                 parent = tsk->real_parent;
336         else
337                 /* reparent: our child is in a different pgrp than
338                  * we are, and it was the only connection outside.
339                  */
340                 ignored_task = NULL;
341
342         if (task_pgrp(parent) != pgrp &&
343             task_session(parent) == task_session(tsk) &&
344             will_become_orphaned_pgrp(pgrp, ignored_task) &&
345             has_stopped_jobs(pgrp)) {
346                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
347                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
348         }
349 }
350
351 static void coredump_task_exit(struct task_struct *tsk)
352 {
353         struct core_state *core_state;
354
355         /*
356          * Serialize with any possible pending coredump.
357          * We must hold siglock around checking core_state
358          * and setting PF_POSTCOREDUMP.  The core-inducing thread
359          * will increment ->nr_threads for each thread in the
360          * group without PF_POSTCOREDUMP set.
361          */
362         spin_lock_irq(&tsk->sighand->siglock);
363         tsk->flags |= PF_POSTCOREDUMP;
364         core_state = tsk->signal->core_state;
365         spin_unlock_irq(&tsk->sighand->siglock);
366         if (core_state) {
367                 struct core_thread self;
368
369                 self.task = current;
370                 if (self.task->flags & PF_SIGNALED)
371                         self.next = xchg(&core_state->dumper.next, &self);
372                 else
373                         self.task = NULL;
374                 /*
375                  * Implies mb(), the result of xchg() must be visible
376                  * to core_state->dumper.
377                  */
378                 if (atomic_dec_and_test(&core_state->nr_threads))
379                         complete(&core_state->startup);
380
381                 for (;;) {
382                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
383                         if (!self.task) /* see coredump_finish() */
384                                 break;
385                         schedule();
386                 }
387                 __set_current_state(TASK_RUNNING);
388         }
389 }
390
391 #ifdef CONFIG_MEMCG
392 /*
393  * A task is exiting.   If it owned this mm, find a new owner for the mm.
394  */
395 void mm_update_next_owner(struct mm_struct *mm)
396 {
397         struct task_struct *c, *g, *p = current;
398
399 retry:
400         /*
401          * If the exiting or execing task is not the owner, it's
402          * someone else's problem.
403          */
404         if (mm->owner != p)
405                 return;
406         /*
407          * The current owner is exiting/execing and there are no other
408          * candidates.  Do not leave the mm pointing to a possibly
409          * freed task structure.
410          */
411         if (atomic_read(&mm->mm_users) <= 1) {
412                 WRITE_ONCE(mm->owner, NULL);
413                 return;
414         }
415
416         read_lock(&tasklist_lock);
417         /*
418          * Search in the children
419          */
420         list_for_each_entry(c, &p->children, sibling) {
421                 if (c->mm == mm)
422                         goto assign_new_owner;
423         }
424
425         /*
426          * Search in the siblings
427          */
428         list_for_each_entry(c, &p->real_parent->children, sibling) {
429                 if (c->mm == mm)
430                         goto assign_new_owner;
431         }
432
433         /*
434          * Search through everything else, we should not get here often.
435          */
436         for_each_process(g) {
437                 if (g->flags & PF_KTHREAD)
438                         continue;
439                 for_each_thread(g, c) {
440                         if (c->mm == mm)
441                                 goto assign_new_owner;
442                         if (c->mm)
443                                 break;
444                 }
445         }
446         read_unlock(&tasklist_lock);
447         /*
448          * We found no owner yet mm_users > 1: this implies that we are
449          * most likely racing with swapoff (try_to_unuse()) or /proc or
450          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
451          */
452         WRITE_ONCE(mm->owner, NULL);
453         return;
454
455 assign_new_owner:
456         BUG_ON(c == p);
457         get_task_struct(c);
458         /*
459          * The task_lock protects c->mm from changing.
460          * We always want mm->owner->mm == mm
461          */
462         task_lock(c);
463         /*
464          * Delay read_unlock() till we have the task_lock()
465          * to ensure that c does not slip away underneath us
466          */
467         read_unlock(&tasklist_lock);
468         if (c->mm != mm) {
469                 task_unlock(c);
470                 put_task_struct(c);
471                 goto retry;
472         }
473         WRITE_ONCE(mm->owner, c);
474         lru_gen_migrate_mm(mm);
475         task_unlock(c);
476         put_task_struct(c);
477 }
478 #endif /* CONFIG_MEMCG */
479
480 /*
481  * Turn us into a lazy TLB process if we
482  * aren't already..
483  */
484 static void exit_mm(void)
485 {
486         struct mm_struct *mm = current->mm;
487
488         exit_mm_release(current, mm);
489         if (!mm)
490                 return;
491         sync_mm_rss(mm);
492         mmap_read_lock(mm);
493         mmgrab(mm);
494         BUG_ON(mm != current->active_mm);
495         /* more a memory barrier than a real lock */
496         task_lock(current);
497         /*
498          * When a thread stops operating on an address space, the loop
499          * in membarrier_private_expedited() may not observe that
500          * tsk->mm, and the loop in membarrier_global_expedited() may
501          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
502          * rq->membarrier_state, so those would not issue an IPI.
503          * Membarrier requires a memory barrier after accessing
504          * user-space memory, before clearing tsk->mm or the
505          * rq->membarrier_state.
506          */
507         smp_mb__after_spinlock();
508         local_irq_disable();
509         current->mm = NULL;
510         membarrier_update_current_mm(NULL);
511         enter_lazy_tlb(mm, current);
512         local_irq_enable();
513         task_unlock(current);
514         mmap_read_unlock(mm);
515         mm_update_next_owner(mm);
516         mmput(mm);
517         if (test_thread_flag(TIF_MEMDIE))
518                 exit_oom_victim();
519 }
520
521 static struct task_struct *find_alive_thread(struct task_struct *p)
522 {
523         struct task_struct *t;
524
525         for_each_thread(p, t) {
526                 if (!(t->flags & PF_EXITING))
527                         return t;
528         }
529         return NULL;
530 }
531
532 static struct task_struct *find_child_reaper(struct task_struct *father,
533                                                 struct list_head *dead)
534         __releases(&tasklist_lock)
535         __acquires(&tasklist_lock)
536 {
537         struct pid_namespace *pid_ns = task_active_pid_ns(father);
538         struct task_struct *reaper = pid_ns->child_reaper;
539         struct task_struct *p, *n;
540
541         if (likely(reaper != father))
542                 return reaper;
543
544         reaper = find_alive_thread(father);
545         if (reaper) {
546                 pid_ns->child_reaper = reaper;
547                 return reaper;
548         }
549
550         write_unlock_irq(&tasklist_lock);
551
552         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
553                 list_del_init(&p->ptrace_entry);
554                 release_task(p);
555         }
556
557         zap_pid_ns_processes(pid_ns);
558         write_lock_irq(&tasklist_lock);
559
560         return father;
561 }
562
563 /*
564  * When we die, we re-parent all our children, and try to:
565  * 1. give them to another thread in our thread group, if such a member exists
566  * 2. give it to the first ancestor process which prctl'd itself as a
567  *    child_subreaper for its children (like a service manager)
568  * 3. give it to the init process (PID 1) in our pid namespace
569  */
570 static struct task_struct *find_new_reaper(struct task_struct *father,
571                                            struct task_struct *child_reaper)
572 {
573         struct task_struct *thread, *reaper;
574
575         thread = find_alive_thread(father);
576         if (thread)
577                 return thread;
578
579         if (father->signal->has_child_subreaper) {
580                 unsigned int ns_level = task_pid(father)->level;
581                 /*
582                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
583                  * We can't check reaper != child_reaper to ensure we do not
584                  * cross the namespaces, the exiting parent could be injected
585                  * by setns() + fork().
586                  * We check pid->level, this is slightly more efficient than
587                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
588                  */
589                 for (reaper = father->real_parent;
590                      task_pid(reaper)->level == ns_level;
591                      reaper = reaper->real_parent) {
592                         if (reaper == &init_task)
593                                 break;
594                         if (!reaper->signal->is_child_subreaper)
595                                 continue;
596                         thread = find_alive_thread(reaper);
597                         if (thread)
598                                 return thread;
599                 }
600         }
601
602         return child_reaper;
603 }
604
605 /*
606 * Any that need to be release_task'd are put on the @dead list.
607  */
608 static void reparent_leader(struct task_struct *father, struct task_struct *p,
609                                 struct list_head *dead)
610 {
611         if (unlikely(p->exit_state == EXIT_DEAD))
612                 return;
613
614         /* We don't want people slaying init. */
615         p->exit_signal = SIGCHLD;
616
617         /* If it has exited notify the new parent about this child's death. */
618         if (!p->ptrace &&
619             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
620                 if (do_notify_parent(p, p->exit_signal)) {
621                         p->exit_state = EXIT_DEAD;
622                         list_add(&p->ptrace_entry, dead);
623                 }
624         }
625
626         kill_orphaned_pgrp(p, father);
627 }
628
629 /*
630  * This does two things:
631  *
632  * A.  Make init inherit all the child processes
633  * B.  Check to see if any process groups have become orphaned
634  *      as a result of our exiting, and if they have any stopped
635  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
636  */
637 static void forget_original_parent(struct task_struct *father,
638                                         struct list_head *dead)
639 {
640         struct task_struct *p, *t, *reaper;
641
642         if (unlikely(!list_empty(&father->ptraced)))
643                 exit_ptrace(father, dead);
644
645         /* Can drop and reacquire tasklist_lock */
646         reaper = find_child_reaper(father, dead);
647         if (list_empty(&father->children))
648                 return;
649
650         reaper = find_new_reaper(father, reaper);
651         list_for_each_entry(p, &father->children, sibling) {
652                 for_each_thread(p, t) {
653                         RCU_INIT_POINTER(t->real_parent, reaper);
654                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
655                         if (likely(!t->ptrace))
656                                 t->parent = t->real_parent;
657                         if (t->pdeath_signal)
658                                 group_send_sig_info(t->pdeath_signal,
659                                                     SEND_SIG_NOINFO, t,
660                                                     PIDTYPE_TGID);
661                 }
662                 /*
663                  * If this is a threaded reparent there is no need to
664                  * notify anyone anything has happened.
665                  */
666                 if (!same_thread_group(reaper, father))
667                         reparent_leader(father, p, dead);
668         }
669         list_splice_tail_init(&father->children, &reaper->children);
670 }
671
672 /*
673  * Send signals to all our closest relatives so that they know
674  * to properly mourn us..
675  */
676 static void exit_notify(struct task_struct *tsk, int group_dead)
677 {
678         bool autoreap;
679         struct task_struct *p, *n;
680         LIST_HEAD(dead);
681
682         write_lock_irq(&tasklist_lock);
683         forget_original_parent(tsk, &dead);
684
685         if (group_dead)
686                 kill_orphaned_pgrp(tsk->group_leader, NULL);
687
688         tsk->exit_state = EXIT_ZOMBIE;
689         if (unlikely(tsk->ptrace)) {
690                 int sig = thread_group_leader(tsk) &&
691                                 thread_group_empty(tsk) &&
692                                 !ptrace_reparented(tsk) ?
693                         tsk->exit_signal : SIGCHLD;
694                 autoreap = do_notify_parent(tsk, sig);
695         } else if (thread_group_leader(tsk)) {
696                 autoreap = thread_group_empty(tsk) &&
697                         do_notify_parent(tsk, tsk->exit_signal);
698         } else {
699                 autoreap = true;
700         }
701
702         if (autoreap) {
703                 tsk->exit_state = EXIT_DEAD;
704                 list_add(&tsk->ptrace_entry, &dead);
705         }
706
707         /* mt-exec, de_thread() is waiting for group leader */
708         if (unlikely(tsk->signal->notify_count < 0))
709                 wake_up_process(tsk->signal->group_exec_task);
710         write_unlock_irq(&tasklist_lock);
711
712         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
713                 list_del_init(&p->ptrace_entry);
714                 release_task(p);
715         }
716 }
717
718 #ifdef CONFIG_DEBUG_STACK_USAGE
719 static void check_stack_usage(void)
720 {
721         static DEFINE_SPINLOCK(low_water_lock);
722         static int lowest_to_date = THREAD_SIZE;
723         unsigned long free;
724
725         free = stack_not_used(current);
726
727         if (free >= lowest_to_date)
728                 return;
729
730         spin_lock(&low_water_lock);
731         if (free < lowest_to_date) {
732                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
733                         current->comm, task_pid_nr(current), free);
734                 lowest_to_date = free;
735         }
736         spin_unlock(&low_water_lock);
737 }
738 #else
739 static inline void check_stack_usage(void) {}
740 #endif
741
742 static void synchronize_group_exit(struct task_struct *tsk, long code)
743 {
744         struct sighand_struct *sighand = tsk->sighand;
745         struct signal_struct *signal = tsk->signal;
746
747         spin_lock_irq(&sighand->siglock);
748         signal->quick_threads--;
749         if ((signal->quick_threads == 0) &&
750             !(signal->flags & SIGNAL_GROUP_EXIT)) {
751                 signal->flags = SIGNAL_GROUP_EXIT;
752                 signal->group_exit_code = code;
753                 signal->group_stop_count = 0;
754         }
755         spin_unlock_irq(&sighand->siglock);
756 }
757
758 void __noreturn do_exit(long code)
759 {
760         struct task_struct *tsk = current;
761         int group_dead;
762
763         synchronize_group_exit(tsk, code);
764
765         WARN_ON(tsk->plug);
766
767         kcov_task_exit(tsk);
768         kmsan_task_exit(tsk);
769
770         coredump_task_exit(tsk);
771         ptrace_event(PTRACE_EVENT_EXIT, code);
772
773         validate_creds_for_do_exit(tsk);
774
775         io_uring_files_cancel();
776         exit_signals(tsk);  /* sets PF_EXITING */
777
778         /* sync mm's RSS info before statistics gathering */
779         if (tsk->mm)
780                 sync_mm_rss(tsk->mm);
781         acct_update_integrals(tsk);
782         group_dead = atomic_dec_and_test(&tsk->signal->live);
783         if (group_dead) {
784                 /*
785                  * If the last thread of global init has exited, panic
786                  * immediately to get a useable coredump.
787                  */
788                 if (unlikely(is_global_init(tsk)))
789                         panic("Attempted to kill init! exitcode=0x%08x\n",
790                                 tsk->signal->group_exit_code ?: (int)code);
791
792 #ifdef CONFIG_POSIX_TIMERS
793                 hrtimer_cancel(&tsk->signal->real_timer);
794                 exit_itimers(tsk);
795 #endif
796                 if (tsk->mm)
797                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
798         }
799         acct_collect(code, group_dead);
800         if (group_dead)
801                 tty_audit_exit();
802         audit_free(tsk);
803
804         tsk->exit_code = code;
805         taskstats_exit(tsk, group_dead);
806
807         exit_mm();
808
809         if (group_dead)
810                 acct_process();
811         trace_sched_process_exit(tsk);
812
813         exit_sem(tsk);
814         exit_shm(tsk);
815         exit_files(tsk);
816         exit_fs(tsk);
817         if (group_dead)
818                 disassociate_ctty(1);
819         exit_task_namespaces(tsk);
820         exit_task_work(tsk);
821         exit_thread(tsk);
822
823         /*
824          * Flush inherited counters to the parent - before the parent
825          * gets woken up by child-exit notifications.
826          *
827          * because of cgroup mode, must be called before cgroup_exit()
828          */
829         perf_event_exit_task(tsk);
830
831         sched_autogroup_exit_task(tsk);
832         cgroup_exit(tsk);
833
834         /*
835          * FIXME: do that only when needed, using sched_exit tracepoint
836          */
837         flush_ptrace_hw_breakpoint(tsk);
838
839         exit_tasks_rcu_start();
840         exit_notify(tsk, group_dead);
841         proc_exit_connector(tsk);
842         mpol_put_task_policy(tsk);
843 #ifdef CONFIG_FUTEX
844         if (unlikely(current->pi_state_cache))
845                 kfree(current->pi_state_cache);
846 #endif
847         /*
848          * Make sure we are holding no locks:
849          */
850         debug_check_no_locks_held();
851
852         if (tsk->io_context)
853                 exit_io_context(tsk);
854
855         if (tsk->splice_pipe)
856                 free_pipe_info(tsk->splice_pipe);
857
858         if (tsk->task_frag.page)
859                 put_page(tsk->task_frag.page);
860
861         validate_creds_for_do_exit(tsk);
862         exit_task_stack_account(tsk);
863
864         check_stack_usage();
865         preempt_disable();
866         if (tsk->nr_dirtied)
867                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
868         exit_rcu();
869         exit_tasks_rcu_finish();
870
871         lockdep_free_task(tsk);
872         do_task_dead();
873 }
874
875 void __noreturn make_task_dead(int signr)
876 {
877         /*
878          * Take the task off the cpu after something catastrophic has
879          * happened.
880          *
881          * We can get here from a kernel oops, sometimes with preemption off.
882          * Start by checking for critical errors.
883          * Then fix up important state like USER_DS and preemption.
884          * Then do everything else.
885          */
886         struct task_struct *tsk = current;
887
888         if (unlikely(in_interrupt()))
889                 panic("Aiee, killing interrupt handler!");
890         if (unlikely(!tsk->pid))
891                 panic("Attempted to kill the idle task!");
892
893         if (unlikely(in_atomic())) {
894                 pr_info("note: %s[%d] exited with preempt_count %d\n",
895                         current->comm, task_pid_nr(current),
896                         preempt_count());
897                 preempt_count_set(PREEMPT_ENABLED);
898         }
899
900         /*
901          * We're taking recursive faults here in make_task_dead. Safest is to just
902          * leave this task alone and wait for reboot.
903          */
904         if (unlikely(tsk->flags & PF_EXITING)) {
905                 pr_alert("Fixing recursive fault but reboot is needed!\n");
906                 futex_exit_recursive(tsk);
907                 tsk->exit_state = EXIT_DEAD;
908                 refcount_inc(&tsk->rcu_users);
909                 do_task_dead();
910         }
911
912         do_exit(signr);
913 }
914
915 SYSCALL_DEFINE1(exit, int, error_code)
916 {
917         do_exit((error_code&0xff)<<8);
918 }
919
920 /*
921  * Take down every thread in the group.  This is called by fatal signals
922  * as well as by sys_exit_group (below).
923  */
924 void __noreturn
925 do_group_exit(int exit_code)
926 {
927         struct signal_struct *sig = current->signal;
928
929         if (sig->flags & SIGNAL_GROUP_EXIT)
930                 exit_code = sig->group_exit_code;
931         else if (sig->group_exec_task)
932                 exit_code = 0;
933         else {
934                 struct sighand_struct *const sighand = current->sighand;
935
936                 spin_lock_irq(&sighand->siglock);
937                 if (sig->flags & SIGNAL_GROUP_EXIT)
938                         /* Another thread got here before we took the lock.  */
939                         exit_code = sig->group_exit_code;
940                 else if (sig->group_exec_task)
941                         exit_code = 0;
942                 else {
943                         sig->group_exit_code = exit_code;
944                         sig->flags = SIGNAL_GROUP_EXIT;
945                         zap_other_threads(current);
946                 }
947                 spin_unlock_irq(&sighand->siglock);
948         }
949
950         do_exit(exit_code);
951         /* NOTREACHED */
952 }
953
954 /*
955  * this kills every thread in the thread group. Note that any externally
956  * wait4()-ing process will get the correct exit code - even if this
957  * thread is not the thread group leader.
958  */
959 SYSCALL_DEFINE1(exit_group, int, error_code)
960 {
961         do_group_exit((error_code & 0xff) << 8);
962         /* NOTREACHED */
963         return 0;
964 }
965
966 struct waitid_info {
967         pid_t pid;
968         uid_t uid;
969         int status;
970         int cause;
971 };
972
973 struct wait_opts {
974         enum pid_type           wo_type;
975         int                     wo_flags;
976         struct pid              *wo_pid;
977
978         struct waitid_info      *wo_info;
979         int                     wo_stat;
980         struct rusage           *wo_rusage;
981
982         wait_queue_entry_t              child_wait;
983         int                     notask_error;
984 };
985
986 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
987 {
988         return  wo->wo_type == PIDTYPE_MAX ||
989                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
990 }
991
992 static int
993 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
994 {
995         if (!eligible_pid(wo, p))
996                 return 0;
997
998         /*
999          * Wait for all children (clone and not) if __WALL is set or
1000          * if it is traced by us.
1001          */
1002         if (ptrace || (wo->wo_flags & __WALL))
1003                 return 1;
1004
1005         /*
1006          * Otherwise, wait for clone children *only* if __WCLONE is set;
1007          * otherwise, wait for non-clone children *only*.
1008          *
1009          * Note: a "clone" child here is one that reports to its parent
1010          * using a signal other than SIGCHLD, or a non-leader thread which
1011          * we can only see if it is traced by us.
1012          */
1013         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1014                 return 0;
1015
1016         return 1;
1017 }
1018
1019 /*
1020  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1021  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1022  * the lock and this task is uninteresting.  If we return nonzero, we have
1023  * released the lock and the system call should return.
1024  */
1025 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1026 {
1027         int state, status;
1028         pid_t pid = task_pid_vnr(p);
1029         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1030         struct waitid_info *infop;
1031
1032         if (!likely(wo->wo_flags & WEXITED))
1033                 return 0;
1034
1035         if (unlikely(wo->wo_flags & WNOWAIT)) {
1036                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1037                         ? p->signal->group_exit_code : p->exit_code;
1038                 get_task_struct(p);
1039                 read_unlock(&tasklist_lock);
1040                 sched_annotate_sleep();
1041                 if (wo->wo_rusage)
1042                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1043                 put_task_struct(p);
1044                 goto out_info;
1045         }
1046         /*
1047          * Move the task's state to DEAD/TRACE, only one thread can do this.
1048          */
1049         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1050                 EXIT_TRACE : EXIT_DEAD;
1051         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1052                 return 0;
1053         /*
1054          * We own this thread, nobody else can reap it.
1055          */
1056         read_unlock(&tasklist_lock);
1057         sched_annotate_sleep();
1058
1059         /*
1060          * Check thread_group_leader() to exclude the traced sub-threads.
1061          */
1062         if (state == EXIT_DEAD && thread_group_leader(p)) {
1063                 struct signal_struct *sig = p->signal;
1064                 struct signal_struct *psig = current->signal;
1065                 unsigned long maxrss;
1066                 u64 tgutime, tgstime;
1067
1068                 /*
1069                  * The resource counters for the group leader are in its
1070                  * own task_struct.  Those for dead threads in the group
1071                  * are in its signal_struct, as are those for the child
1072                  * processes it has previously reaped.  All these
1073                  * accumulate in the parent's signal_struct c* fields.
1074                  *
1075                  * We don't bother to take a lock here to protect these
1076                  * p->signal fields because the whole thread group is dead
1077                  * and nobody can change them.
1078                  *
1079                  * psig->stats_lock also protects us from our sub-threads
1080                  * which can reap other children at the same time. Until
1081                  * we change k_getrusage()-like users to rely on this lock
1082                  * we have to take ->siglock as well.
1083                  *
1084                  * We use thread_group_cputime_adjusted() to get times for
1085                  * the thread group, which consolidates times for all threads
1086                  * in the group including the group leader.
1087                  */
1088                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1089                 spin_lock_irq(&current->sighand->siglock);
1090                 write_seqlock(&psig->stats_lock);
1091                 psig->cutime += tgutime + sig->cutime;
1092                 psig->cstime += tgstime + sig->cstime;
1093                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1094                 psig->cmin_flt +=
1095                         p->min_flt + sig->min_flt + sig->cmin_flt;
1096                 psig->cmaj_flt +=
1097                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1098                 psig->cnvcsw +=
1099                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1100                 psig->cnivcsw +=
1101                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1102                 psig->cinblock +=
1103                         task_io_get_inblock(p) +
1104                         sig->inblock + sig->cinblock;
1105                 psig->coublock +=
1106                         task_io_get_oublock(p) +
1107                         sig->oublock + sig->coublock;
1108                 maxrss = max(sig->maxrss, sig->cmaxrss);
1109                 if (psig->cmaxrss < maxrss)
1110                         psig->cmaxrss = maxrss;
1111                 task_io_accounting_add(&psig->ioac, &p->ioac);
1112                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1113                 write_sequnlock(&psig->stats_lock);
1114                 spin_unlock_irq(&current->sighand->siglock);
1115         }
1116
1117         if (wo->wo_rusage)
1118                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1119         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1120                 ? p->signal->group_exit_code : p->exit_code;
1121         wo->wo_stat = status;
1122
1123         if (state == EXIT_TRACE) {
1124                 write_lock_irq(&tasklist_lock);
1125                 /* We dropped tasklist, ptracer could die and untrace */
1126                 ptrace_unlink(p);
1127
1128                 /* If parent wants a zombie, don't release it now */
1129                 state = EXIT_ZOMBIE;
1130                 if (do_notify_parent(p, p->exit_signal))
1131                         state = EXIT_DEAD;
1132                 p->exit_state = state;
1133                 write_unlock_irq(&tasklist_lock);
1134         }
1135         if (state == EXIT_DEAD)
1136                 release_task(p);
1137
1138 out_info:
1139         infop = wo->wo_info;
1140         if (infop) {
1141                 if ((status & 0x7f) == 0) {
1142                         infop->cause = CLD_EXITED;
1143                         infop->status = status >> 8;
1144                 } else {
1145                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1146                         infop->status = status & 0x7f;
1147                 }
1148                 infop->pid = pid;
1149                 infop->uid = uid;
1150         }
1151
1152         return pid;
1153 }
1154
1155 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1156 {
1157         if (ptrace) {
1158                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1159                         return &p->exit_code;
1160         } else {
1161                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1162                         return &p->signal->group_exit_code;
1163         }
1164         return NULL;
1165 }
1166
1167 /**
1168  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1169  * @wo: wait options
1170  * @ptrace: is the wait for ptrace
1171  * @p: task to wait for
1172  *
1173  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1174  *
1175  * CONTEXT:
1176  * read_lock(&tasklist_lock), which is released if return value is
1177  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1178  *
1179  * RETURNS:
1180  * 0 if wait condition didn't exist and search for other wait conditions
1181  * should continue.  Non-zero return, -errno on failure and @p's pid on
1182  * success, implies that tasklist_lock is released and wait condition
1183  * search should terminate.
1184  */
1185 static int wait_task_stopped(struct wait_opts *wo,
1186                                 int ptrace, struct task_struct *p)
1187 {
1188         struct waitid_info *infop;
1189         int exit_code, *p_code, why;
1190         uid_t uid = 0; /* unneeded, required by compiler */
1191         pid_t pid;
1192
1193         /*
1194          * Traditionally we see ptrace'd stopped tasks regardless of options.
1195          */
1196         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1197                 return 0;
1198
1199         if (!task_stopped_code(p, ptrace))
1200                 return 0;
1201
1202         exit_code = 0;
1203         spin_lock_irq(&p->sighand->siglock);
1204
1205         p_code = task_stopped_code(p, ptrace);
1206         if (unlikely(!p_code))
1207                 goto unlock_sig;
1208
1209         exit_code = *p_code;
1210         if (!exit_code)
1211                 goto unlock_sig;
1212
1213         if (!unlikely(wo->wo_flags & WNOWAIT))
1214                 *p_code = 0;
1215
1216         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1217 unlock_sig:
1218         spin_unlock_irq(&p->sighand->siglock);
1219         if (!exit_code)
1220                 return 0;
1221
1222         /*
1223          * Now we are pretty sure this task is interesting.
1224          * Make sure it doesn't get reaped out from under us while we
1225          * give up the lock and then examine it below.  We don't want to
1226          * keep holding onto the tasklist_lock while we call getrusage and
1227          * possibly take page faults for user memory.
1228          */
1229         get_task_struct(p);
1230         pid = task_pid_vnr(p);
1231         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1232         read_unlock(&tasklist_lock);
1233         sched_annotate_sleep();
1234         if (wo->wo_rusage)
1235                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1236         put_task_struct(p);
1237
1238         if (likely(!(wo->wo_flags & WNOWAIT)))
1239                 wo->wo_stat = (exit_code << 8) | 0x7f;
1240
1241         infop = wo->wo_info;
1242         if (infop) {
1243                 infop->cause = why;
1244                 infop->status = exit_code;
1245                 infop->pid = pid;
1246                 infop->uid = uid;
1247         }
1248         return pid;
1249 }
1250
1251 /*
1252  * Handle do_wait work for one task in a live, non-stopped state.
1253  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1254  * the lock and this task is uninteresting.  If we return nonzero, we have
1255  * released the lock and the system call should return.
1256  */
1257 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1258 {
1259         struct waitid_info *infop;
1260         pid_t pid;
1261         uid_t uid;
1262
1263         if (!unlikely(wo->wo_flags & WCONTINUED))
1264                 return 0;
1265
1266         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1267                 return 0;
1268
1269         spin_lock_irq(&p->sighand->siglock);
1270         /* Re-check with the lock held.  */
1271         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1272                 spin_unlock_irq(&p->sighand->siglock);
1273                 return 0;
1274         }
1275         if (!unlikely(wo->wo_flags & WNOWAIT))
1276                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1277         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1278         spin_unlock_irq(&p->sighand->siglock);
1279
1280         pid = task_pid_vnr(p);
1281         get_task_struct(p);
1282         read_unlock(&tasklist_lock);
1283         sched_annotate_sleep();
1284         if (wo->wo_rusage)
1285                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1286         put_task_struct(p);
1287
1288         infop = wo->wo_info;
1289         if (!infop) {
1290                 wo->wo_stat = 0xffff;
1291         } else {
1292                 infop->cause = CLD_CONTINUED;
1293                 infop->pid = pid;
1294                 infop->uid = uid;
1295                 infop->status = SIGCONT;
1296         }
1297         return pid;
1298 }
1299
1300 /*
1301  * Consider @p for a wait by @parent.
1302  *
1303  * -ECHILD should be in ->notask_error before the first call.
1304  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1305  * Returns zero if the search for a child should continue;
1306  * then ->notask_error is 0 if @p is an eligible child,
1307  * or still -ECHILD.
1308  */
1309 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1310                                 struct task_struct *p)
1311 {
1312         /*
1313          * We can race with wait_task_zombie() from another thread.
1314          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1315          * can't confuse the checks below.
1316          */
1317         int exit_state = READ_ONCE(p->exit_state);
1318         int ret;
1319
1320         if (unlikely(exit_state == EXIT_DEAD))
1321                 return 0;
1322
1323         ret = eligible_child(wo, ptrace, p);
1324         if (!ret)
1325                 return ret;
1326
1327         if (unlikely(exit_state == EXIT_TRACE)) {
1328                 /*
1329                  * ptrace == 0 means we are the natural parent. In this case
1330                  * we should clear notask_error, debugger will notify us.
1331                  */
1332                 if (likely(!ptrace))
1333                         wo->notask_error = 0;
1334                 return 0;
1335         }
1336
1337         if (likely(!ptrace) && unlikely(p->ptrace)) {
1338                 /*
1339                  * If it is traced by its real parent's group, just pretend
1340                  * the caller is ptrace_do_wait() and reap this child if it
1341                  * is zombie.
1342                  *
1343                  * This also hides group stop state from real parent; otherwise
1344                  * a single stop can be reported twice as group and ptrace stop.
1345                  * If a ptracer wants to distinguish these two events for its
1346                  * own children it should create a separate process which takes
1347                  * the role of real parent.
1348                  */
1349                 if (!ptrace_reparented(p))
1350                         ptrace = 1;
1351         }
1352
1353         /* slay zombie? */
1354         if (exit_state == EXIT_ZOMBIE) {
1355                 /* we don't reap group leaders with subthreads */
1356                 if (!delay_group_leader(p)) {
1357                         /*
1358                          * A zombie ptracee is only visible to its ptracer.
1359                          * Notification and reaping will be cascaded to the
1360                          * real parent when the ptracer detaches.
1361                          */
1362                         if (unlikely(ptrace) || likely(!p->ptrace))
1363                                 return wait_task_zombie(wo, p);
1364                 }
1365
1366                 /*
1367                  * Allow access to stopped/continued state via zombie by
1368                  * falling through.  Clearing of notask_error is complex.
1369                  *
1370                  * When !@ptrace:
1371                  *
1372                  * If WEXITED is set, notask_error should naturally be
1373                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1374                  * so, if there are live subthreads, there are events to
1375                  * wait for.  If all subthreads are dead, it's still safe
1376                  * to clear - this function will be called again in finite
1377                  * amount time once all the subthreads are released and
1378                  * will then return without clearing.
1379                  *
1380                  * When @ptrace:
1381                  *
1382                  * Stopped state is per-task and thus can't change once the
1383                  * target task dies.  Only continued and exited can happen.
1384                  * Clear notask_error if WCONTINUED | WEXITED.
1385                  */
1386                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1387                         wo->notask_error = 0;
1388         } else {
1389                 /*
1390                  * @p is alive and it's gonna stop, continue or exit, so
1391                  * there always is something to wait for.
1392                  */
1393                 wo->notask_error = 0;
1394         }
1395
1396         /*
1397          * Wait for stopped.  Depending on @ptrace, different stopped state
1398          * is used and the two don't interact with each other.
1399          */
1400         ret = wait_task_stopped(wo, ptrace, p);
1401         if (ret)
1402                 return ret;
1403
1404         /*
1405          * Wait for continued.  There's only one continued state and the
1406          * ptracer can consume it which can confuse the real parent.  Don't
1407          * use WCONTINUED from ptracer.  You don't need or want it.
1408          */
1409         return wait_task_continued(wo, p);
1410 }
1411
1412 /*
1413  * Do the work of do_wait() for one thread in the group, @tsk.
1414  *
1415  * -ECHILD should be in ->notask_error before the first call.
1416  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1417  * Returns zero if the search for a child should continue; then
1418  * ->notask_error is 0 if there were any eligible children,
1419  * or still -ECHILD.
1420  */
1421 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1422 {
1423         struct task_struct *p;
1424
1425         list_for_each_entry(p, &tsk->children, sibling) {
1426                 int ret = wait_consider_task(wo, 0, p);
1427
1428                 if (ret)
1429                         return ret;
1430         }
1431
1432         return 0;
1433 }
1434
1435 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1436 {
1437         struct task_struct *p;
1438
1439         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1440                 int ret = wait_consider_task(wo, 1, p);
1441
1442                 if (ret)
1443                         return ret;
1444         }
1445
1446         return 0;
1447 }
1448
1449 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1450                                 int sync, void *key)
1451 {
1452         struct wait_opts *wo = container_of(wait, struct wait_opts,
1453                                                 child_wait);
1454         struct task_struct *p = key;
1455
1456         if (!eligible_pid(wo, p))
1457                 return 0;
1458
1459         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1460                 return 0;
1461
1462         return default_wake_function(wait, mode, sync, key);
1463 }
1464
1465 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1466 {
1467         __wake_up_sync_key(&parent->signal->wait_chldexit,
1468                            TASK_INTERRUPTIBLE, p);
1469 }
1470
1471 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1472                                  struct task_struct *target)
1473 {
1474         struct task_struct *parent =
1475                 !ptrace ? target->real_parent : target->parent;
1476
1477         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1478                                      same_thread_group(current, parent));
1479 }
1480
1481 /*
1482  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1483  * and tracee lists to find the target task.
1484  */
1485 static int do_wait_pid(struct wait_opts *wo)
1486 {
1487         bool ptrace;
1488         struct task_struct *target;
1489         int retval;
1490
1491         ptrace = false;
1492         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1493         if (target && is_effectively_child(wo, ptrace, target)) {
1494                 retval = wait_consider_task(wo, ptrace, target);
1495                 if (retval)
1496                         return retval;
1497         }
1498
1499         ptrace = true;
1500         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1501         if (target && target->ptrace &&
1502             is_effectively_child(wo, ptrace, target)) {
1503                 retval = wait_consider_task(wo, ptrace, target);
1504                 if (retval)
1505                         return retval;
1506         }
1507
1508         return 0;
1509 }
1510
1511 static long do_wait(struct wait_opts *wo)
1512 {
1513         int retval;
1514
1515         trace_sched_process_wait(wo->wo_pid);
1516
1517         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1518         wo->child_wait.private = current;
1519         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1520 repeat:
1521         /*
1522          * If there is nothing that can match our criteria, just get out.
1523          * We will clear ->notask_error to zero if we see any child that
1524          * might later match our criteria, even if we are not able to reap
1525          * it yet.
1526          */
1527         wo->notask_error = -ECHILD;
1528         if ((wo->wo_type < PIDTYPE_MAX) &&
1529            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1530                 goto notask;
1531
1532         set_current_state(TASK_INTERRUPTIBLE);
1533         read_lock(&tasklist_lock);
1534
1535         if (wo->wo_type == PIDTYPE_PID) {
1536                 retval = do_wait_pid(wo);
1537                 if (retval)
1538                         goto end;
1539         } else {
1540                 struct task_struct *tsk = current;
1541
1542                 do {
1543                         retval = do_wait_thread(wo, tsk);
1544                         if (retval)
1545                                 goto end;
1546
1547                         retval = ptrace_do_wait(wo, tsk);
1548                         if (retval)
1549                                 goto end;
1550
1551                         if (wo->wo_flags & __WNOTHREAD)
1552                                 break;
1553                 } while_each_thread(current, tsk);
1554         }
1555         read_unlock(&tasklist_lock);
1556
1557 notask:
1558         retval = wo->notask_error;
1559         if (!retval && !(wo->wo_flags & WNOHANG)) {
1560                 retval = -ERESTARTSYS;
1561                 if (!signal_pending(current)) {
1562                         schedule();
1563                         goto repeat;
1564                 }
1565         }
1566 end:
1567         __set_current_state(TASK_RUNNING);
1568         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1569         return retval;
1570 }
1571
1572 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1573                           int options, struct rusage *ru)
1574 {
1575         struct wait_opts wo;
1576         struct pid *pid = NULL;
1577         enum pid_type type;
1578         long ret;
1579         unsigned int f_flags = 0;
1580
1581         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1582                         __WNOTHREAD|__WCLONE|__WALL))
1583                 return -EINVAL;
1584         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1585                 return -EINVAL;
1586
1587         switch (which) {
1588         case P_ALL:
1589                 type = PIDTYPE_MAX;
1590                 break;
1591         case P_PID:
1592                 type = PIDTYPE_PID;
1593                 if (upid <= 0)
1594                         return -EINVAL;
1595
1596                 pid = find_get_pid(upid);
1597                 break;
1598         case P_PGID:
1599                 type = PIDTYPE_PGID;
1600                 if (upid < 0)
1601                         return -EINVAL;
1602
1603                 if (upid)
1604                         pid = find_get_pid(upid);
1605                 else
1606                         pid = get_task_pid(current, PIDTYPE_PGID);
1607                 break;
1608         case P_PIDFD:
1609                 type = PIDTYPE_PID;
1610                 if (upid < 0)
1611                         return -EINVAL;
1612
1613                 pid = pidfd_get_pid(upid, &f_flags);
1614                 if (IS_ERR(pid))
1615                         return PTR_ERR(pid);
1616
1617                 break;
1618         default:
1619                 return -EINVAL;
1620         }
1621
1622         wo.wo_type      = type;
1623         wo.wo_pid       = pid;
1624         wo.wo_flags     = options;
1625         wo.wo_info      = infop;
1626         wo.wo_rusage    = ru;
1627         if (f_flags & O_NONBLOCK)
1628                 wo.wo_flags |= WNOHANG;
1629
1630         ret = do_wait(&wo);
1631         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1632                 ret = -EAGAIN;
1633
1634         put_pid(pid);
1635         return ret;
1636 }
1637
1638 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1639                 infop, int, options, struct rusage __user *, ru)
1640 {
1641         struct rusage r;
1642         struct waitid_info info = {.status = 0};
1643         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1644         int signo = 0;
1645
1646         if (err > 0) {
1647                 signo = SIGCHLD;
1648                 err = 0;
1649                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1650                         return -EFAULT;
1651         }
1652         if (!infop)
1653                 return err;
1654
1655         if (!user_write_access_begin(infop, sizeof(*infop)))
1656                 return -EFAULT;
1657
1658         unsafe_put_user(signo, &infop->si_signo, Efault);
1659         unsafe_put_user(0, &infop->si_errno, Efault);
1660         unsafe_put_user(info.cause, &infop->si_code, Efault);
1661         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1662         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1663         unsafe_put_user(info.status, &infop->si_status, Efault);
1664         user_write_access_end();
1665         return err;
1666 Efault:
1667         user_write_access_end();
1668         return -EFAULT;
1669 }
1670
1671 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1672                   struct rusage *ru)
1673 {
1674         struct wait_opts wo;
1675         struct pid *pid = NULL;
1676         enum pid_type type;
1677         long ret;
1678
1679         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1680                         __WNOTHREAD|__WCLONE|__WALL))
1681                 return -EINVAL;
1682
1683         /* -INT_MIN is not defined */
1684         if (upid == INT_MIN)
1685                 return -ESRCH;
1686
1687         if (upid == -1)
1688                 type = PIDTYPE_MAX;
1689         else if (upid < 0) {
1690                 type = PIDTYPE_PGID;
1691                 pid = find_get_pid(-upid);
1692         } else if (upid == 0) {
1693                 type = PIDTYPE_PGID;
1694                 pid = get_task_pid(current, PIDTYPE_PGID);
1695         } else /* upid > 0 */ {
1696                 type = PIDTYPE_PID;
1697                 pid = find_get_pid(upid);
1698         }
1699
1700         wo.wo_type      = type;
1701         wo.wo_pid       = pid;
1702         wo.wo_flags     = options | WEXITED;
1703         wo.wo_info      = NULL;
1704         wo.wo_stat      = 0;
1705         wo.wo_rusage    = ru;
1706         ret = do_wait(&wo);
1707         put_pid(pid);
1708         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1709                 ret = -EFAULT;
1710
1711         return ret;
1712 }
1713
1714 int kernel_wait(pid_t pid, int *stat)
1715 {
1716         struct wait_opts wo = {
1717                 .wo_type        = PIDTYPE_PID,
1718                 .wo_pid         = find_get_pid(pid),
1719                 .wo_flags       = WEXITED,
1720         };
1721         int ret;
1722
1723         ret = do_wait(&wo);
1724         if (ret > 0 && wo.wo_stat)
1725                 *stat = wo.wo_stat;
1726         put_pid(wo.wo_pid);
1727         return ret;
1728 }
1729
1730 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1731                 int, options, struct rusage __user *, ru)
1732 {
1733         struct rusage r;
1734         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1735
1736         if (err > 0) {
1737                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1738                         return -EFAULT;
1739         }
1740         return err;
1741 }
1742
1743 #ifdef __ARCH_WANT_SYS_WAITPID
1744
1745 /*
1746  * sys_waitpid() remains for compatibility. waitpid() should be
1747  * implemented by calling sys_wait4() from libc.a.
1748  */
1749 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1750 {
1751         return kernel_wait4(pid, stat_addr, options, NULL);
1752 }
1753
1754 #endif
1755
1756 #ifdef CONFIG_COMPAT
1757 COMPAT_SYSCALL_DEFINE4(wait4,
1758         compat_pid_t, pid,
1759         compat_uint_t __user *, stat_addr,
1760         int, options,
1761         struct compat_rusage __user *, ru)
1762 {
1763         struct rusage r;
1764         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1765         if (err > 0) {
1766                 if (ru && put_compat_rusage(&r, ru))
1767                         return -EFAULT;
1768         }
1769         return err;
1770 }
1771
1772 COMPAT_SYSCALL_DEFINE5(waitid,
1773                 int, which, compat_pid_t, pid,
1774                 struct compat_siginfo __user *, infop, int, options,
1775                 struct compat_rusage __user *, uru)
1776 {
1777         struct rusage ru;
1778         struct waitid_info info = {.status = 0};
1779         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1780         int signo = 0;
1781         if (err > 0) {
1782                 signo = SIGCHLD;
1783                 err = 0;
1784                 if (uru) {
1785                         /* kernel_waitid() overwrites everything in ru */
1786                         if (COMPAT_USE_64BIT_TIME)
1787                                 err = copy_to_user(uru, &ru, sizeof(ru));
1788                         else
1789                                 err = put_compat_rusage(&ru, uru);
1790                         if (err)
1791                                 return -EFAULT;
1792                 }
1793         }
1794
1795         if (!infop)
1796                 return err;
1797
1798         if (!user_write_access_begin(infop, sizeof(*infop)))
1799                 return -EFAULT;
1800
1801         unsafe_put_user(signo, &infop->si_signo, Efault);
1802         unsafe_put_user(0, &infop->si_errno, Efault);
1803         unsafe_put_user(info.cause, &infop->si_code, Efault);
1804         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1805         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1806         unsafe_put_user(info.status, &infop->si_status, Efault);
1807         user_write_access_end();
1808         return err;
1809 Efault:
1810         user_write_access_end();
1811         return -EFAULT;
1812 }
1813 #endif
1814
1815 /**
1816  * thread_group_exited - check that a thread group has exited
1817  * @pid: tgid of thread group to be checked.
1818  *
1819  * Test if the thread group represented by tgid has exited (all
1820  * threads are zombies, dead or completely gone).
1821  *
1822  * Return: true if the thread group has exited. false otherwise.
1823  */
1824 bool thread_group_exited(struct pid *pid)
1825 {
1826         struct task_struct *task;
1827         bool exited;
1828
1829         rcu_read_lock();
1830         task = pid_task(pid, PIDTYPE_PID);
1831         exited = !task ||
1832                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1833         rcu_read_unlock();
1834
1835         return exited;
1836 }
1837 EXPORT_SYMBOL(thread_group_exited);
1838
1839 __weak void abort(void)
1840 {
1841         BUG();
1842
1843         /* if that doesn't kill us, halt */
1844         panic("Oops failed to kill thread");
1845 }
1846 EXPORT_SYMBOL(abort);