1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
71 #include <linux/uaccess.h>
72 #include <asm/unistd.h>
73 #include <asm/mmu_context.h>
75 static void __unhash_process(struct task_struct *p, bool group_dead)
78 detach_pid(p, PIDTYPE_PID);
80 detach_pid(p, PIDTYPE_TGID);
81 detach_pid(p, PIDTYPE_PGID);
82 detach_pid(p, PIDTYPE_SID);
84 list_del_rcu(&p->tasks);
85 list_del_init(&p->sibling);
86 __this_cpu_dec(process_counts);
88 list_del_rcu(&p->thread_group);
89 list_del_rcu(&p->thread_node);
93 * This function expects the tasklist_lock write-locked.
95 static void __exit_signal(struct task_struct *tsk)
97 struct signal_struct *sig = tsk->signal;
98 bool group_dead = thread_group_leader(tsk);
99 struct sighand_struct *sighand;
100 struct tty_struct *tty;
103 sighand = rcu_dereference_check(tsk->sighand,
104 lockdep_tasklist_lock_is_held());
105 spin_lock(&sighand->siglock);
107 #ifdef CONFIG_POSIX_TIMERS
108 posix_cpu_timers_exit(tsk);
110 posix_cpu_timers_exit_group(tsk);
118 * If there is any task waiting for the group exit
121 if (sig->notify_count > 0 && !--sig->notify_count)
122 wake_up_process(sig->group_exec_task);
124 if (tsk == sig->curr_target)
125 sig->curr_target = next_thread(tsk);
128 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
129 sizeof(unsigned long long));
132 * Accumulate here the counters for all threads as they die. We could
133 * skip the group leader because it is the last user of signal_struct,
134 * but we want to avoid the race with thread_group_cputime() which can
135 * see the empty ->thread_head list.
137 task_cputime(tsk, &utime, &stime);
138 write_seqlock(&sig->stats_lock);
141 sig->gtime += task_gtime(tsk);
142 sig->min_flt += tsk->min_flt;
143 sig->maj_flt += tsk->maj_flt;
144 sig->nvcsw += tsk->nvcsw;
145 sig->nivcsw += tsk->nivcsw;
146 sig->inblock += task_io_get_inblock(tsk);
147 sig->oublock += task_io_get_oublock(tsk);
148 task_io_accounting_add(&sig->ioac, &tsk->ioac);
149 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
151 __unhash_process(tsk, group_dead);
152 write_sequnlock(&sig->stats_lock);
155 * Do this under ->siglock, we can race with another thread
156 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
158 flush_sigqueue(&tsk->pending);
160 spin_unlock(&sighand->siglock);
162 __cleanup_sighand(sighand);
163 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
165 flush_sigqueue(&sig->shared_pending);
170 static void delayed_put_task_struct(struct rcu_head *rhp)
172 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
174 kprobe_flush_task(tsk);
175 rethook_flush_task(tsk);
176 perf_event_delayed_put(tsk);
177 trace_sched_process_free(tsk);
178 put_task_struct(tsk);
181 void put_task_struct_rcu_user(struct task_struct *task)
183 if (refcount_dec_and_test(&task->rcu_users))
184 call_rcu(&task->rcu, delayed_put_task_struct);
187 void __weak release_thread(struct task_struct *dead_task)
191 void release_task(struct task_struct *p)
193 struct task_struct *leader;
194 struct pid *thread_pid;
197 /* don't need to get the RCU readlock here - the process is dead and
198 * can't be modifying its own credentials. But shut RCU-lockdep up */
200 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
205 write_lock_irq(&tasklist_lock);
206 ptrace_release_task(p);
207 thread_pid = get_pid(p->thread_pid);
211 * If we are the last non-leader member of the thread
212 * group, and the leader is zombie, then notify the
213 * group leader's parent process. (if it wants notification.)
216 leader = p->group_leader;
217 if (leader != p && thread_group_empty(leader)
218 && leader->exit_state == EXIT_ZOMBIE) {
220 * If we were the last child thread and the leader has
221 * exited already, and the leader's parent ignores SIGCHLD,
222 * then we are the one who should release the leader.
224 zap_leader = do_notify_parent(leader, leader->exit_signal);
226 leader->exit_state = EXIT_DEAD;
229 write_unlock_irq(&tasklist_lock);
230 seccomp_filter_release(p);
231 proc_flush_pid(thread_pid);
234 put_task_struct_rcu_user(p);
237 if (unlikely(zap_leader))
241 int rcuwait_wake_up(struct rcuwait *w)
244 struct task_struct *task;
249 * Order condition vs @task, such that everything prior to the load
250 * of @task is visible. This is the condition as to why the user called
251 * rcuwait_wake() in the first place. Pairs with set_current_state()
252 * barrier (A) in rcuwait_wait_event().
255 * [S] tsk = current [S] cond = true
261 task = rcu_dereference(w->task);
263 ret = wake_up_process(task);
268 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
271 * Determine if a process group is "orphaned", according to the POSIX
272 * definition in 2.2.2.52. Orphaned process groups are not to be affected
273 * by terminal-generated stop signals. Newly orphaned process groups are
274 * to receive a SIGHUP and a SIGCONT.
276 * "I ask you, have you ever known what it is to be an orphan?"
278 static int will_become_orphaned_pgrp(struct pid *pgrp,
279 struct task_struct *ignored_task)
281 struct task_struct *p;
283 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
284 if ((p == ignored_task) ||
285 (p->exit_state && thread_group_empty(p)) ||
286 is_global_init(p->real_parent))
289 if (task_pgrp(p->real_parent) != pgrp &&
290 task_session(p->real_parent) == task_session(p))
292 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
297 int is_current_pgrp_orphaned(void)
301 read_lock(&tasklist_lock);
302 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
303 read_unlock(&tasklist_lock);
308 static bool has_stopped_jobs(struct pid *pgrp)
310 struct task_struct *p;
312 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
313 if (p->signal->flags & SIGNAL_STOP_STOPPED)
315 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
321 * Check to see if any process groups have become orphaned as
322 * a result of our exiting, and if they have any stopped jobs,
323 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
326 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
328 struct pid *pgrp = task_pgrp(tsk);
329 struct task_struct *ignored_task = tsk;
332 /* exit: our father is in a different pgrp than
333 * we are and we were the only connection outside.
335 parent = tsk->real_parent;
337 /* reparent: our child is in a different pgrp than
338 * we are, and it was the only connection outside.
342 if (task_pgrp(parent) != pgrp &&
343 task_session(parent) == task_session(tsk) &&
344 will_become_orphaned_pgrp(pgrp, ignored_task) &&
345 has_stopped_jobs(pgrp)) {
346 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
347 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
351 static void coredump_task_exit(struct task_struct *tsk)
353 struct core_state *core_state;
356 * Serialize with any possible pending coredump.
357 * We must hold siglock around checking core_state
358 * and setting PF_POSTCOREDUMP. The core-inducing thread
359 * will increment ->nr_threads for each thread in the
360 * group without PF_POSTCOREDUMP set.
362 spin_lock_irq(&tsk->sighand->siglock);
363 tsk->flags |= PF_POSTCOREDUMP;
364 core_state = tsk->signal->core_state;
365 spin_unlock_irq(&tsk->sighand->siglock);
367 struct core_thread self;
370 if (self.task->flags & PF_SIGNALED)
371 self.next = xchg(&core_state->dumper.next, &self);
375 * Implies mb(), the result of xchg() must be visible
376 * to core_state->dumper.
378 if (atomic_dec_and_test(&core_state->nr_threads))
379 complete(&core_state->startup);
382 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
383 if (!self.task) /* see coredump_finish() */
387 __set_current_state(TASK_RUNNING);
393 * A task is exiting. If it owned this mm, find a new owner for the mm.
395 void mm_update_next_owner(struct mm_struct *mm)
397 struct task_struct *c, *g, *p = current;
401 * If the exiting or execing task is not the owner, it's
402 * someone else's problem.
407 * The current owner is exiting/execing and there are no other
408 * candidates. Do not leave the mm pointing to a possibly
409 * freed task structure.
411 if (atomic_read(&mm->mm_users) <= 1) {
412 WRITE_ONCE(mm->owner, NULL);
416 read_lock(&tasklist_lock);
418 * Search in the children
420 list_for_each_entry(c, &p->children, sibling) {
422 goto assign_new_owner;
426 * Search in the siblings
428 list_for_each_entry(c, &p->real_parent->children, sibling) {
430 goto assign_new_owner;
434 * Search through everything else, we should not get here often.
436 for_each_process(g) {
437 if (g->flags & PF_KTHREAD)
439 for_each_thread(g, c) {
441 goto assign_new_owner;
446 read_unlock(&tasklist_lock);
448 * We found no owner yet mm_users > 1: this implies that we are
449 * most likely racing with swapoff (try_to_unuse()) or /proc or
450 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
452 WRITE_ONCE(mm->owner, NULL);
459 * The task_lock protects c->mm from changing.
460 * We always want mm->owner->mm == mm
464 * Delay read_unlock() till we have the task_lock()
465 * to ensure that c does not slip away underneath us
467 read_unlock(&tasklist_lock);
473 WRITE_ONCE(mm->owner, c);
474 lru_gen_migrate_mm(mm);
478 #endif /* CONFIG_MEMCG */
481 * Turn us into a lazy TLB process if we
484 static void exit_mm(void)
486 struct mm_struct *mm = current->mm;
488 exit_mm_release(current, mm);
494 BUG_ON(mm != current->active_mm);
495 /* more a memory barrier than a real lock */
498 * When a thread stops operating on an address space, the loop
499 * in membarrier_private_expedited() may not observe that
500 * tsk->mm, and the loop in membarrier_global_expedited() may
501 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
502 * rq->membarrier_state, so those would not issue an IPI.
503 * Membarrier requires a memory barrier after accessing
504 * user-space memory, before clearing tsk->mm or the
505 * rq->membarrier_state.
507 smp_mb__after_spinlock();
510 membarrier_update_current_mm(NULL);
511 enter_lazy_tlb(mm, current);
513 task_unlock(current);
514 mmap_read_unlock(mm);
515 mm_update_next_owner(mm);
517 if (test_thread_flag(TIF_MEMDIE))
521 static struct task_struct *find_alive_thread(struct task_struct *p)
523 struct task_struct *t;
525 for_each_thread(p, t) {
526 if (!(t->flags & PF_EXITING))
532 static struct task_struct *find_child_reaper(struct task_struct *father,
533 struct list_head *dead)
534 __releases(&tasklist_lock)
535 __acquires(&tasklist_lock)
537 struct pid_namespace *pid_ns = task_active_pid_ns(father);
538 struct task_struct *reaper = pid_ns->child_reaper;
539 struct task_struct *p, *n;
541 if (likely(reaper != father))
544 reaper = find_alive_thread(father);
546 pid_ns->child_reaper = reaper;
550 write_unlock_irq(&tasklist_lock);
552 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
553 list_del_init(&p->ptrace_entry);
557 zap_pid_ns_processes(pid_ns);
558 write_lock_irq(&tasklist_lock);
564 * When we die, we re-parent all our children, and try to:
565 * 1. give them to another thread in our thread group, if such a member exists
566 * 2. give it to the first ancestor process which prctl'd itself as a
567 * child_subreaper for its children (like a service manager)
568 * 3. give it to the init process (PID 1) in our pid namespace
570 static struct task_struct *find_new_reaper(struct task_struct *father,
571 struct task_struct *child_reaper)
573 struct task_struct *thread, *reaper;
575 thread = find_alive_thread(father);
579 if (father->signal->has_child_subreaper) {
580 unsigned int ns_level = task_pid(father)->level;
582 * Find the first ->is_child_subreaper ancestor in our pid_ns.
583 * We can't check reaper != child_reaper to ensure we do not
584 * cross the namespaces, the exiting parent could be injected
585 * by setns() + fork().
586 * We check pid->level, this is slightly more efficient than
587 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
589 for (reaper = father->real_parent;
590 task_pid(reaper)->level == ns_level;
591 reaper = reaper->real_parent) {
592 if (reaper == &init_task)
594 if (!reaper->signal->is_child_subreaper)
596 thread = find_alive_thread(reaper);
606 * Any that need to be release_task'd are put on the @dead list.
608 static void reparent_leader(struct task_struct *father, struct task_struct *p,
609 struct list_head *dead)
611 if (unlikely(p->exit_state == EXIT_DEAD))
614 /* We don't want people slaying init. */
615 p->exit_signal = SIGCHLD;
617 /* If it has exited notify the new parent about this child's death. */
619 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
620 if (do_notify_parent(p, p->exit_signal)) {
621 p->exit_state = EXIT_DEAD;
622 list_add(&p->ptrace_entry, dead);
626 kill_orphaned_pgrp(p, father);
630 * This does two things:
632 * A. Make init inherit all the child processes
633 * B. Check to see if any process groups have become orphaned
634 * as a result of our exiting, and if they have any stopped
635 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
637 static void forget_original_parent(struct task_struct *father,
638 struct list_head *dead)
640 struct task_struct *p, *t, *reaper;
642 if (unlikely(!list_empty(&father->ptraced)))
643 exit_ptrace(father, dead);
645 /* Can drop and reacquire tasklist_lock */
646 reaper = find_child_reaper(father, dead);
647 if (list_empty(&father->children))
650 reaper = find_new_reaper(father, reaper);
651 list_for_each_entry(p, &father->children, sibling) {
652 for_each_thread(p, t) {
653 RCU_INIT_POINTER(t->real_parent, reaper);
654 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
655 if (likely(!t->ptrace))
656 t->parent = t->real_parent;
657 if (t->pdeath_signal)
658 group_send_sig_info(t->pdeath_signal,
663 * If this is a threaded reparent there is no need to
664 * notify anyone anything has happened.
666 if (!same_thread_group(reaper, father))
667 reparent_leader(father, p, dead);
669 list_splice_tail_init(&father->children, &reaper->children);
673 * Send signals to all our closest relatives so that they know
674 * to properly mourn us..
676 static void exit_notify(struct task_struct *tsk, int group_dead)
679 struct task_struct *p, *n;
682 write_lock_irq(&tasklist_lock);
683 forget_original_parent(tsk, &dead);
686 kill_orphaned_pgrp(tsk->group_leader, NULL);
688 tsk->exit_state = EXIT_ZOMBIE;
689 if (unlikely(tsk->ptrace)) {
690 int sig = thread_group_leader(tsk) &&
691 thread_group_empty(tsk) &&
692 !ptrace_reparented(tsk) ?
693 tsk->exit_signal : SIGCHLD;
694 autoreap = do_notify_parent(tsk, sig);
695 } else if (thread_group_leader(tsk)) {
696 autoreap = thread_group_empty(tsk) &&
697 do_notify_parent(tsk, tsk->exit_signal);
703 tsk->exit_state = EXIT_DEAD;
704 list_add(&tsk->ptrace_entry, &dead);
707 /* mt-exec, de_thread() is waiting for group leader */
708 if (unlikely(tsk->signal->notify_count < 0))
709 wake_up_process(tsk->signal->group_exec_task);
710 write_unlock_irq(&tasklist_lock);
712 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
713 list_del_init(&p->ptrace_entry);
718 #ifdef CONFIG_DEBUG_STACK_USAGE
719 static void check_stack_usage(void)
721 static DEFINE_SPINLOCK(low_water_lock);
722 static int lowest_to_date = THREAD_SIZE;
725 free = stack_not_used(current);
727 if (free >= lowest_to_date)
730 spin_lock(&low_water_lock);
731 if (free < lowest_to_date) {
732 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
733 current->comm, task_pid_nr(current), free);
734 lowest_to_date = free;
736 spin_unlock(&low_water_lock);
739 static inline void check_stack_usage(void) {}
742 static void synchronize_group_exit(struct task_struct *tsk, long code)
744 struct sighand_struct *sighand = tsk->sighand;
745 struct signal_struct *signal = tsk->signal;
747 spin_lock_irq(&sighand->siglock);
748 signal->quick_threads--;
749 if ((signal->quick_threads == 0) &&
750 !(signal->flags & SIGNAL_GROUP_EXIT)) {
751 signal->flags = SIGNAL_GROUP_EXIT;
752 signal->group_exit_code = code;
753 signal->group_stop_count = 0;
755 spin_unlock_irq(&sighand->siglock);
758 void __noreturn do_exit(long code)
760 struct task_struct *tsk = current;
763 synchronize_group_exit(tsk, code);
768 kmsan_task_exit(tsk);
770 coredump_task_exit(tsk);
771 ptrace_event(PTRACE_EVENT_EXIT, code);
773 validate_creds_for_do_exit(tsk);
775 io_uring_files_cancel();
776 exit_signals(tsk); /* sets PF_EXITING */
778 /* sync mm's RSS info before statistics gathering */
780 sync_mm_rss(tsk->mm);
781 acct_update_integrals(tsk);
782 group_dead = atomic_dec_and_test(&tsk->signal->live);
785 * If the last thread of global init has exited, panic
786 * immediately to get a useable coredump.
788 if (unlikely(is_global_init(tsk)))
789 panic("Attempted to kill init! exitcode=0x%08x\n",
790 tsk->signal->group_exit_code ?: (int)code);
792 #ifdef CONFIG_POSIX_TIMERS
793 hrtimer_cancel(&tsk->signal->real_timer);
797 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
799 acct_collect(code, group_dead);
804 tsk->exit_code = code;
805 taskstats_exit(tsk, group_dead);
811 trace_sched_process_exit(tsk);
818 disassociate_ctty(1);
819 exit_task_namespaces(tsk);
824 * Flush inherited counters to the parent - before the parent
825 * gets woken up by child-exit notifications.
827 * because of cgroup mode, must be called before cgroup_exit()
829 perf_event_exit_task(tsk);
831 sched_autogroup_exit_task(tsk);
835 * FIXME: do that only when needed, using sched_exit tracepoint
837 flush_ptrace_hw_breakpoint(tsk);
839 exit_tasks_rcu_start();
840 exit_notify(tsk, group_dead);
841 proc_exit_connector(tsk);
842 mpol_put_task_policy(tsk);
844 if (unlikely(current->pi_state_cache))
845 kfree(current->pi_state_cache);
848 * Make sure we are holding no locks:
850 debug_check_no_locks_held();
853 exit_io_context(tsk);
855 if (tsk->splice_pipe)
856 free_pipe_info(tsk->splice_pipe);
858 if (tsk->task_frag.page)
859 put_page(tsk->task_frag.page);
861 validate_creds_for_do_exit(tsk);
862 exit_task_stack_account(tsk);
867 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
869 exit_tasks_rcu_finish();
871 lockdep_free_task(tsk);
875 void __noreturn make_task_dead(int signr)
878 * Take the task off the cpu after something catastrophic has
881 * We can get here from a kernel oops, sometimes with preemption off.
882 * Start by checking for critical errors.
883 * Then fix up important state like USER_DS and preemption.
884 * Then do everything else.
886 struct task_struct *tsk = current;
888 if (unlikely(in_interrupt()))
889 panic("Aiee, killing interrupt handler!");
890 if (unlikely(!tsk->pid))
891 panic("Attempted to kill the idle task!");
893 if (unlikely(in_atomic())) {
894 pr_info("note: %s[%d] exited with preempt_count %d\n",
895 current->comm, task_pid_nr(current),
897 preempt_count_set(PREEMPT_ENABLED);
901 * We're taking recursive faults here in make_task_dead. Safest is to just
902 * leave this task alone and wait for reboot.
904 if (unlikely(tsk->flags & PF_EXITING)) {
905 pr_alert("Fixing recursive fault but reboot is needed!\n");
906 futex_exit_recursive(tsk);
907 tsk->exit_state = EXIT_DEAD;
908 refcount_inc(&tsk->rcu_users);
915 SYSCALL_DEFINE1(exit, int, error_code)
917 do_exit((error_code&0xff)<<8);
921 * Take down every thread in the group. This is called by fatal signals
922 * as well as by sys_exit_group (below).
925 do_group_exit(int exit_code)
927 struct signal_struct *sig = current->signal;
929 if (sig->flags & SIGNAL_GROUP_EXIT)
930 exit_code = sig->group_exit_code;
931 else if (sig->group_exec_task)
934 struct sighand_struct *const sighand = current->sighand;
936 spin_lock_irq(&sighand->siglock);
937 if (sig->flags & SIGNAL_GROUP_EXIT)
938 /* Another thread got here before we took the lock. */
939 exit_code = sig->group_exit_code;
940 else if (sig->group_exec_task)
943 sig->group_exit_code = exit_code;
944 sig->flags = SIGNAL_GROUP_EXIT;
945 zap_other_threads(current);
947 spin_unlock_irq(&sighand->siglock);
955 * this kills every thread in the thread group. Note that any externally
956 * wait4()-ing process will get the correct exit code - even if this
957 * thread is not the thread group leader.
959 SYSCALL_DEFINE1(exit_group, int, error_code)
961 do_group_exit((error_code & 0xff) << 8);
974 enum pid_type wo_type;
978 struct waitid_info *wo_info;
980 struct rusage *wo_rusage;
982 wait_queue_entry_t child_wait;
986 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
988 return wo->wo_type == PIDTYPE_MAX ||
989 task_pid_type(p, wo->wo_type) == wo->wo_pid;
993 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
995 if (!eligible_pid(wo, p))
999 * Wait for all children (clone and not) if __WALL is set or
1000 * if it is traced by us.
1002 if (ptrace || (wo->wo_flags & __WALL))
1006 * Otherwise, wait for clone children *only* if __WCLONE is set;
1007 * otherwise, wait for non-clone children *only*.
1009 * Note: a "clone" child here is one that reports to its parent
1010 * using a signal other than SIGCHLD, or a non-leader thread which
1011 * we can only see if it is traced by us.
1013 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1020 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1021 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1022 * the lock and this task is uninteresting. If we return nonzero, we have
1023 * released the lock and the system call should return.
1025 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1028 pid_t pid = task_pid_vnr(p);
1029 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1030 struct waitid_info *infop;
1032 if (!likely(wo->wo_flags & WEXITED))
1035 if (unlikely(wo->wo_flags & WNOWAIT)) {
1036 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1037 ? p->signal->group_exit_code : p->exit_code;
1039 read_unlock(&tasklist_lock);
1040 sched_annotate_sleep();
1042 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1047 * Move the task's state to DEAD/TRACE, only one thread can do this.
1049 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1050 EXIT_TRACE : EXIT_DEAD;
1051 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1054 * We own this thread, nobody else can reap it.
1056 read_unlock(&tasklist_lock);
1057 sched_annotate_sleep();
1060 * Check thread_group_leader() to exclude the traced sub-threads.
1062 if (state == EXIT_DEAD && thread_group_leader(p)) {
1063 struct signal_struct *sig = p->signal;
1064 struct signal_struct *psig = current->signal;
1065 unsigned long maxrss;
1066 u64 tgutime, tgstime;
1069 * The resource counters for the group leader are in its
1070 * own task_struct. Those for dead threads in the group
1071 * are in its signal_struct, as are those for the child
1072 * processes it has previously reaped. All these
1073 * accumulate in the parent's signal_struct c* fields.
1075 * We don't bother to take a lock here to protect these
1076 * p->signal fields because the whole thread group is dead
1077 * and nobody can change them.
1079 * psig->stats_lock also protects us from our sub-threads
1080 * which can reap other children at the same time. Until
1081 * we change k_getrusage()-like users to rely on this lock
1082 * we have to take ->siglock as well.
1084 * We use thread_group_cputime_adjusted() to get times for
1085 * the thread group, which consolidates times for all threads
1086 * in the group including the group leader.
1088 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1089 spin_lock_irq(¤t->sighand->siglock);
1090 write_seqlock(&psig->stats_lock);
1091 psig->cutime += tgutime + sig->cutime;
1092 psig->cstime += tgstime + sig->cstime;
1093 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1095 p->min_flt + sig->min_flt + sig->cmin_flt;
1097 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1099 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1101 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1103 task_io_get_inblock(p) +
1104 sig->inblock + sig->cinblock;
1106 task_io_get_oublock(p) +
1107 sig->oublock + sig->coublock;
1108 maxrss = max(sig->maxrss, sig->cmaxrss);
1109 if (psig->cmaxrss < maxrss)
1110 psig->cmaxrss = maxrss;
1111 task_io_accounting_add(&psig->ioac, &p->ioac);
1112 task_io_accounting_add(&psig->ioac, &sig->ioac);
1113 write_sequnlock(&psig->stats_lock);
1114 spin_unlock_irq(¤t->sighand->siglock);
1118 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1119 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1120 ? p->signal->group_exit_code : p->exit_code;
1121 wo->wo_stat = status;
1123 if (state == EXIT_TRACE) {
1124 write_lock_irq(&tasklist_lock);
1125 /* We dropped tasklist, ptracer could die and untrace */
1128 /* If parent wants a zombie, don't release it now */
1129 state = EXIT_ZOMBIE;
1130 if (do_notify_parent(p, p->exit_signal))
1132 p->exit_state = state;
1133 write_unlock_irq(&tasklist_lock);
1135 if (state == EXIT_DEAD)
1139 infop = wo->wo_info;
1141 if ((status & 0x7f) == 0) {
1142 infop->cause = CLD_EXITED;
1143 infop->status = status >> 8;
1145 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1146 infop->status = status & 0x7f;
1155 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1158 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1159 return &p->exit_code;
1161 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1162 return &p->signal->group_exit_code;
1168 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1170 * @ptrace: is the wait for ptrace
1171 * @p: task to wait for
1173 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1176 * read_lock(&tasklist_lock), which is released if return value is
1177 * non-zero. Also, grabs and releases @p->sighand->siglock.
1180 * 0 if wait condition didn't exist and search for other wait conditions
1181 * should continue. Non-zero return, -errno on failure and @p's pid on
1182 * success, implies that tasklist_lock is released and wait condition
1183 * search should terminate.
1185 static int wait_task_stopped(struct wait_opts *wo,
1186 int ptrace, struct task_struct *p)
1188 struct waitid_info *infop;
1189 int exit_code, *p_code, why;
1190 uid_t uid = 0; /* unneeded, required by compiler */
1194 * Traditionally we see ptrace'd stopped tasks regardless of options.
1196 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1199 if (!task_stopped_code(p, ptrace))
1203 spin_lock_irq(&p->sighand->siglock);
1205 p_code = task_stopped_code(p, ptrace);
1206 if (unlikely(!p_code))
1209 exit_code = *p_code;
1213 if (!unlikely(wo->wo_flags & WNOWAIT))
1216 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1218 spin_unlock_irq(&p->sighand->siglock);
1223 * Now we are pretty sure this task is interesting.
1224 * Make sure it doesn't get reaped out from under us while we
1225 * give up the lock and then examine it below. We don't want to
1226 * keep holding onto the tasklist_lock while we call getrusage and
1227 * possibly take page faults for user memory.
1230 pid = task_pid_vnr(p);
1231 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1232 read_unlock(&tasklist_lock);
1233 sched_annotate_sleep();
1235 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1238 if (likely(!(wo->wo_flags & WNOWAIT)))
1239 wo->wo_stat = (exit_code << 8) | 0x7f;
1241 infop = wo->wo_info;
1244 infop->status = exit_code;
1252 * Handle do_wait work for one task in a live, non-stopped state.
1253 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1254 * the lock and this task is uninteresting. If we return nonzero, we have
1255 * released the lock and the system call should return.
1257 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1259 struct waitid_info *infop;
1263 if (!unlikely(wo->wo_flags & WCONTINUED))
1266 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1269 spin_lock_irq(&p->sighand->siglock);
1270 /* Re-check with the lock held. */
1271 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1272 spin_unlock_irq(&p->sighand->siglock);
1275 if (!unlikely(wo->wo_flags & WNOWAIT))
1276 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1277 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1278 spin_unlock_irq(&p->sighand->siglock);
1280 pid = task_pid_vnr(p);
1282 read_unlock(&tasklist_lock);
1283 sched_annotate_sleep();
1285 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1288 infop = wo->wo_info;
1290 wo->wo_stat = 0xffff;
1292 infop->cause = CLD_CONTINUED;
1295 infop->status = SIGCONT;
1301 * Consider @p for a wait by @parent.
1303 * -ECHILD should be in ->notask_error before the first call.
1304 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1305 * Returns zero if the search for a child should continue;
1306 * then ->notask_error is 0 if @p is an eligible child,
1309 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1310 struct task_struct *p)
1313 * We can race with wait_task_zombie() from another thread.
1314 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1315 * can't confuse the checks below.
1317 int exit_state = READ_ONCE(p->exit_state);
1320 if (unlikely(exit_state == EXIT_DEAD))
1323 ret = eligible_child(wo, ptrace, p);
1327 if (unlikely(exit_state == EXIT_TRACE)) {
1329 * ptrace == 0 means we are the natural parent. In this case
1330 * we should clear notask_error, debugger will notify us.
1332 if (likely(!ptrace))
1333 wo->notask_error = 0;
1337 if (likely(!ptrace) && unlikely(p->ptrace)) {
1339 * If it is traced by its real parent's group, just pretend
1340 * the caller is ptrace_do_wait() and reap this child if it
1343 * This also hides group stop state from real parent; otherwise
1344 * a single stop can be reported twice as group and ptrace stop.
1345 * If a ptracer wants to distinguish these two events for its
1346 * own children it should create a separate process which takes
1347 * the role of real parent.
1349 if (!ptrace_reparented(p))
1354 if (exit_state == EXIT_ZOMBIE) {
1355 /* we don't reap group leaders with subthreads */
1356 if (!delay_group_leader(p)) {
1358 * A zombie ptracee is only visible to its ptracer.
1359 * Notification and reaping will be cascaded to the
1360 * real parent when the ptracer detaches.
1362 if (unlikely(ptrace) || likely(!p->ptrace))
1363 return wait_task_zombie(wo, p);
1367 * Allow access to stopped/continued state via zombie by
1368 * falling through. Clearing of notask_error is complex.
1372 * If WEXITED is set, notask_error should naturally be
1373 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1374 * so, if there are live subthreads, there are events to
1375 * wait for. If all subthreads are dead, it's still safe
1376 * to clear - this function will be called again in finite
1377 * amount time once all the subthreads are released and
1378 * will then return without clearing.
1382 * Stopped state is per-task and thus can't change once the
1383 * target task dies. Only continued and exited can happen.
1384 * Clear notask_error if WCONTINUED | WEXITED.
1386 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1387 wo->notask_error = 0;
1390 * @p is alive and it's gonna stop, continue or exit, so
1391 * there always is something to wait for.
1393 wo->notask_error = 0;
1397 * Wait for stopped. Depending on @ptrace, different stopped state
1398 * is used and the two don't interact with each other.
1400 ret = wait_task_stopped(wo, ptrace, p);
1405 * Wait for continued. There's only one continued state and the
1406 * ptracer can consume it which can confuse the real parent. Don't
1407 * use WCONTINUED from ptracer. You don't need or want it.
1409 return wait_task_continued(wo, p);
1413 * Do the work of do_wait() for one thread in the group, @tsk.
1415 * -ECHILD should be in ->notask_error before the first call.
1416 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1417 * Returns zero if the search for a child should continue; then
1418 * ->notask_error is 0 if there were any eligible children,
1421 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1423 struct task_struct *p;
1425 list_for_each_entry(p, &tsk->children, sibling) {
1426 int ret = wait_consider_task(wo, 0, p);
1435 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1437 struct task_struct *p;
1439 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1440 int ret = wait_consider_task(wo, 1, p);
1449 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1450 int sync, void *key)
1452 struct wait_opts *wo = container_of(wait, struct wait_opts,
1454 struct task_struct *p = key;
1456 if (!eligible_pid(wo, p))
1459 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1462 return default_wake_function(wait, mode, sync, key);
1465 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1467 __wake_up_sync_key(&parent->signal->wait_chldexit,
1468 TASK_INTERRUPTIBLE, p);
1471 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1472 struct task_struct *target)
1474 struct task_struct *parent =
1475 !ptrace ? target->real_parent : target->parent;
1477 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1478 same_thread_group(current, parent));
1482 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1483 * and tracee lists to find the target task.
1485 static int do_wait_pid(struct wait_opts *wo)
1488 struct task_struct *target;
1492 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1493 if (target && is_effectively_child(wo, ptrace, target)) {
1494 retval = wait_consider_task(wo, ptrace, target);
1500 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1501 if (target && target->ptrace &&
1502 is_effectively_child(wo, ptrace, target)) {
1503 retval = wait_consider_task(wo, ptrace, target);
1511 static long do_wait(struct wait_opts *wo)
1515 trace_sched_process_wait(wo->wo_pid);
1517 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1518 wo->child_wait.private = current;
1519 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1522 * If there is nothing that can match our criteria, just get out.
1523 * We will clear ->notask_error to zero if we see any child that
1524 * might later match our criteria, even if we are not able to reap
1527 wo->notask_error = -ECHILD;
1528 if ((wo->wo_type < PIDTYPE_MAX) &&
1529 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1532 set_current_state(TASK_INTERRUPTIBLE);
1533 read_lock(&tasklist_lock);
1535 if (wo->wo_type == PIDTYPE_PID) {
1536 retval = do_wait_pid(wo);
1540 struct task_struct *tsk = current;
1543 retval = do_wait_thread(wo, tsk);
1547 retval = ptrace_do_wait(wo, tsk);
1551 if (wo->wo_flags & __WNOTHREAD)
1553 } while_each_thread(current, tsk);
1555 read_unlock(&tasklist_lock);
1558 retval = wo->notask_error;
1559 if (!retval && !(wo->wo_flags & WNOHANG)) {
1560 retval = -ERESTARTSYS;
1561 if (!signal_pending(current)) {
1567 __set_current_state(TASK_RUNNING);
1568 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1572 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1573 int options, struct rusage *ru)
1575 struct wait_opts wo;
1576 struct pid *pid = NULL;
1579 unsigned int f_flags = 0;
1581 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1582 __WNOTHREAD|__WCLONE|__WALL))
1584 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1596 pid = find_get_pid(upid);
1599 type = PIDTYPE_PGID;
1604 pid = find_get_pid(upid);
1606 pid = get_task_pid(current, PIDTYPE_PGID);
1613 pid = pidfd_get_pid(upid, &f_flags);
1615 return PTR_ERR(pid);
1624 wo.wo_flags = options;
1627 if (f_flags & O_NONBLOCK)
1628 wo.wo_flags |= WNOHANG;
1631 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1638 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1639 infop, int, options, struct rusage __user *, ru)
1642 struct waitid_info info = {.status = 0};
1643 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1649 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1655 if (!user_write_access_begin(infop, sizeof(*infop)))
1658 unsafe_put_user(signo, &infop->si_signo, Efault);
1659 unsafe_put_user(0, &infop->si_errno, Efault);
1660 unsafe_put_user(info.cause, &infop->si_code, Efault);
1661 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1662 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1663 unsafe_put_user(info.status, &infop->si_status, Efault);
1664 user_write_access_end();
1667 user_write_access_end();
1671 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1674 struct wait_opts wo;
1675 struct pid *pid = NULL;
1679 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1680 __WNOTHREAD|__WCLONE|__WALL))
1683 /* -INT_MIN is not defined */
1684 if (upid == INT_MIN)
1689 else if (upid < 0) {
1690 type = PIDTYPE_PGID;
1691 pid = find_get_pid(-upid);
1692 } else if (upid == 0) {
1693 type = PIDTYPE_PGID;
1694 pid = get_task_pid(current, PIDTYPE_PGID);
1695 } else /* upid > 0 */ {
1697 pid = find_get_pid(upid);
1702 wo.wo_flags = options | WEXITED;
1708 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1714 int kernel_wait(pid_t pid, int *stat)
1716 struct wait_opts wo = {
1717 .wo_type = PIDTYPE_PID,
1718 .wo_pid = find_get_pid(pid),
1719 .wo_flags = WEXITED,
1724 if (ret > 0 && wo.wo_stat)
1730 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1731 int, options, struct rusage __user *, ru)
1734 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1737 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1743 #ifdef __ARCH_WANT_SYS_WAITPID
1746 * sys_waitpid() remains for compatibility. waitpid() should be
1747 * implemented by calling sys_wait4() from libc.a.
1749 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1751 return kernel_wait4(pid, stat_addr, options, NULL);
1756 #ifdef CONFIG_COMPAT
1757 COMPAT_SYSCALL_DEFINE4(wait4,
1759 compat_uint_t __user *, stat_addr,
1761 struct compat_rusage __user *, ru)
1764 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1766 if (ru && put_compat_rusage(&r, ru))
1772 COMPAT_SYSCALL_DEFINE5(waitid,
1773 int, which, compat_pid_t, pid,
1774 struct compat_siginfo __user *, infop, int, options,
1775 struct compat_rusage __user *, uru)
1778 struct waitid_info info = {.status = 0};
1779 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1785 /* kernel_waitid() overwrites everything in ru */
1786 if (COMPAT_USE_64BIT_TIME)
1787 err = copy_to_user(uru, &ru, sizeof(ru));
1789 err = put_compat_rusage(&ru, uru);
1798 if (!user_write_access_begin(infop, sizeof(*infop)))
1801 unsafe_put_user(signo, &infop->si_signo, Efault);
1802 unsafe_put_user(0, &infop->si_errno, Efault);
1803 unsafe_put_user(info.cause, &infop->si_code, Efault);
1804 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1805 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1806 unsafe_put_user(info.status, &infop->si_status, Efault);
1807 user_write_access_end();
1810 user_write_access_end();
1816 * thread_group_exited - check that a thread group has exited
1817 * @pid: tgid of thread group to be checked.
1819 * Test if the thread group represented by tgid has exited (all
1820 * threads are zombies, dead or completely gone).
1822 * Return: true if the thread group has exited. false otherwise.
1824 bool thread_group_exited(struct pid *pid)
1826 struct task_struct *task;
1830 task = pid_task(pid, PIDTYPE_PID);
1832 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1837 EXPORT_SYMBOL(thread_group_exited);
1839 __weak void abort(void)
1843 /* if that doesn't kill us, halt */
1844 panic("Oops failed to kill thread");
1846 EXPORT_SYMBOL(abort);