1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
73 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
75 #include <asm/mmu_context.h>
78 * The default value should be high enough to not crash a system that randomly
79 * crashes its kernel from time to time, but low enough to at least not permit
80 * overflowing 32-bit refcounts or the ldsem writer count.
82 static unsigned int oops_limit = 10000;
85 static struct ctl_table kern_exit_table[] = {
87 .procname = "oops_limit",
89 .maxlen = sizeof(oops_limit),
91 .proc_handler = proc_douintvec,
96 static __init int kernel_exit_sysctls_init(void)
98 register_sysctl_init("kernel", kern_exit_table);
101 late_initcall(kernel_exit_sysctls_init);
104 static atomic_t oops_count = ATOMIC_INIT(0);
107 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
110 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
113 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
115 static __init int kernel_exit_sysfs_init(void)
117 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
120 late_initcall(kernel_exit_sysfs_init);
123 static void __unhash_process(struct task_struct *p, bool group_dead)
126 detach_pid(p, PIDTYPE_PID);
128 detach_pid(p, PIDTYPE_TGID);
129 detach_pid(p, PIDTYPE_PGID);
130 detach_pid(p, PIDTYPE_SID);
132 list_del_rcu(&p->tasks);
133 list_del_init(&p->sibling);
134 __this_cpu_dec(process_counts);
136 list_del_rcu(&p->thread_group);
137 list_del_rcu(&p->thread_node);
141 * This function expects the tasklist_lock write-locked.
143 static void __exit_signal(struct task_struct *tsk)
145 struct signal_struct *sig = tsk->signal;
146 bool group_dead = thread_group_leader(tsk);
147 struct sighand_struct *sighand;
148 struct tty_struct *tty;
151 sighand = rcu_dereference_check(tsk->sighand,
152 lockdep_tasklist_lock_is_held());
153 spin_lock(&sighand->siglock);
155 #ifdef CONFIG_POSIX_TIMERS
156 posix_cpu_timers_exit(tsk);
158 posix_cpu_timers_exit_group(tsk);
166 * If there is any task waiting for the group exit
169 if (sig->notify_count > 0 && !--sig->notify_count)
170 wake_up_process(sig->group_exec_task);
172 if (tsk == sig->curr_target)
173 sig->curr_target = next_thread(tsk);
176 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
177 sizeof(unsigned long long));
180 * Accumulate here the counters for all threads as they die. We could
181 * skip the group leader because it is the last user of signal_struct,
182 * but we want to avoid the race with thread_group_cputime() which can
183 * see the empty ->thread_head list.
185 task_cputime(tsk, &utime, &stime);
186 write_seqlock(&sig->stats_lock);
189 sig->gtime += task_gtime(tsk);
190 sig->min_flt += tsk->min_flt;
191 sig->maj_flt += tsk->maj_flt;
192 sig->nvcsw += tsk->nvcsw;
193 sig->nivcsw += tsk->nivcsw;
194 sig->inblock += task_io_get_inblock(tsk);
195 sig->oublock += task_io_get_oublock(tsk);
196 task_io_accounting_add(&sig->ioac, &tsk->ioac);
197 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
199 __unhash_process(tsk, group_dead);
200 write_sequnlock(&sig->stats_lock);
203 * Do this under ->siglock, we can race with another thread
204 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
206 flush_sigqueue(&tsk->pending);
208 spin_unlock(&sighand->siglock);
210 __cleanup_sighand(sighand);
211 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
213 flush_sigqueue(&sig->shared_pending);
218 static void delayed_put_task_struct(struct rcu_head *rhp)
220 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
222 kprobe_flush_task(tsk);
223 rethook_flush_task(tsk);
224 perf_event_delayed_put(tsk);
225 trace_sched_process_free(tsk);
226 put_task_struct(tsk);
229 void put_task_struct_rcu_user(struct task_struct *task)
231 if (refcount_dec_and_test(&task->rcu_users))
232 call_rcu(&task->rcu, delayed_put_task_struct);
235 void __weak release_thread(struct task_struct *dead_task)
239 void release_task(struct task_struct *p)
241 struct task_struct *leader;
242 struct pid *thread_pid;
245 /* don't need to get the RCU readlock here - the process is dead and
246 * can't be modifying its own credentials. But shut RCU-lockdep up */
248 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
253 write_lock_irq(&tasklist_lock);
254 ptrace_release_task(p);
255 thread_pid = get_pid(p->thread_pid);
259 * If we are the last non-leader member of the thread
260 * group, and the leader is zombie, then notify the
261 * group leader's parent process. (if it wants notification.)
264 leader = p->group_leader;
265 if (leader != p && thread_group_empty(leader)
266 && leader->exit_state == EXIT_ZOMBIE) {
268 * If we were the last child thread and the leader has
269 * exited already, and the leader's parent ignores SIGCHLD,
270 * then we are the one who should release the leader.
272 zap_leader = do_notify_parent(leader, leader->exit_signal);
274 leader->exit_state = EXIT_DEAD;
277 write_unlock_irq(&tasklist_lock);
278 seccomp_filter_release(p);
279 proc_flush_pid(thread_pid);
282 put_task_struct_rcu_user(p);
285 if (unlikely(zap_leader))
289 int rcuwait_wake_up(struct rcuwait *w)
292 struct task_struct *task;
297 * Order condition vs @task, such that everything prior to the load
298 * of @task is visible. This is the condition as to why the user called
299 * rcuwait_wake() in the first place. Pairs with set_current_state()
300 * barrier (A) in rcuwait_wait_event().
303 * [S] tsk = current [S] cond = true
309 task = rcu_dereference(w->task);
311 ret = wake_up_process(task);
316 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
319 * Determine if a process group is "orphaned", according to the POSIX
320 * definition in 2.2.2.52. Orphaned process groups are not to be affected
321 * by terminal-generated stop signals. Newly orphaned process groups are
322 * to receive a SIGHUP and a SIGCONT.
324 * "I ask you, have you ever known what it is to be an orphan?"
326 static int will_become_orphaned_pgrp(struct pid *pgrp,
327 struct task_struct *ignored_task)
329 struct task_struct *p;
331 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332 if ((p == ignored_task) ||
333 (p->exit_state && thread_group_empty(p)) ||
334 is_global_init(p->real_parent))
337 if (task_pgrp(p->real_parent) != pgrp &&
338 task_session(p->real_parent) == task_session(p))
340 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
345 int is_current_pgrp_orphaned(void)
349 read_lock(&tasklist_lock);
350 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
351 read_unlock(&tasklist_lock);
356 static bool has_stopped_jobs(struct pid *pgrp)
358 struct task_struct *p;
360 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
361 if (p->signal->flags & SIGNAL_STOP_STOPPED)
363 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
369 * Check to see if any process groups have become orphaned as
370 * a result of our exiting, and if they have any stopped jobs,
371 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
374 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
376 struct pid *pgrp = task_pgrp(tsk);
377 struct task_struct *ignored_task = tsk;
380 /* exit: our father is in a different pgrp than
381 * we are and we were the only connection outside.
383 parent = tsk->real_parent;
385 /* reparent: our child is in a different pgrp than
386 * we are, and it was the only connection outside.
390 if (task_pgrp(parent) != pgrp &&
391 task_session(parent) == task_session(tsk) &&
392 will_become_orphaned_pgrp(pgrp, ignored_task) &&
393 has_stopped_jobs(pgrp)) {
394 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
395 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
399 static void coredump_task_exit(struct task_struct *tsk)
401 struct core_state *core_state;
404 * Serialize with any possible pending coredump.
405 * We must hold siglock around checking core_state
406 * and setting PF_POSTCOREDUMP. The core-inducing thread
407 * will increment ->nr_threads for each thread in the
408 * group without PF_POSTCOREDUMP set.
410 spin_lock_irq(&tsk->sighand->siglock);
411 tsk->flags |= PF_POSTCOREDUMP;
412 core_state = tsk->signal->core_state;
413 spin_unlock_irq(&tsk->sighand->siglock);
415 /* The vhost_worker does not particpate in coredumps */
417 ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
418 struct core_thread self;
421 if (self.task->flags & PF_SIGNALED)
422 self.next = xchg(&core_state->dumper.next, &self);
426 * Implies mb(), the result of xchg() must be visible
427 * to core_state->dumper.
429 if (atomic_dec_and_test(&core_state->nr_threads))
430 complete(&core_state->startup);
433 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
434 if (!self.task) /* see coredump_finish() */
438 __set_current_state(TASK_RUNNING);
444 * A task is exiting. If it owned this mm, find a new owner for the mm.
446 void mm_update_next_owner(struct mm_struct *mm)
448 struct task_struct *c, *g, *p = current;
452 * If the exiting or execing task is not the owner, it's
453 * someone else's problem.
458 * The current owner is exiting/execing and there are no other
459 * candidates. Do not leave the mm pointing to a possibly
460 * freed task structure.
462 if (atomic_read(&mm->mm_users) <= 1) {
463 WRITE_ONCE(mm->owner, NULL);
467 read_lock(&tasklist_lock);
469 * Search in the children
471 list_for_each_entry(c, &p->children, sibling) {
473 goto assign_new_owner;
477 * Search in the siblings
479 list_for_each_entry(c, &p->real_parent->children, sibling) {
481 goto assign_new_owner;
485 * Search through everything else, we should not get here often.
487 for_each_process(g) {
488 if (g->flags & PF_KTHREAD)
490 for_each_thread(g, c) {
492 goto assign_new_owner;
497 read_unlock(&tasklist_lock);
499 * We found no owner yet mm_users > 1: this implies that we are
500 * most likely racing with swapoff (try_to_unuse()) or /proc or
501 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
503 WRITE_ONCE(mm->owner, NULL);
510 * The task_lock protects c->mm from changing.
511 * We always want mm->owner->mm == mm
515 * Delay read_unlock() till we have the task_lock()
516 * to ensure that c does not slip away underneath us
518 read_unlock(&tasklist_lock);
524 WRITE_ONCE(mm->owner, c);
525 lru_gen_migrate_mm(mm);
529 #endif /* CONFIG_MEMCG */
532 * Turn us into a lazy TLB process if we
535 static void exit_mm(void)
537 struct mm_struct *mm = current->mm;
539 exit_mm_release(current, mm);
545 BUG_ON(mm != current->active_mm);
546 /* more a memory barrier than a real lock */
549 * When a thread stops operating on an address space, the loop
550 * in membarrier_private_expedited() may not observe that
551 * tsk->mm, and the loop in membarrier_global_expedited() may
552 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
553 * rq->membarrier_state, so those would not issue an IPI.
554 * Membarrier requires a memory barrier after accessing
555 * user-space memory, before clearing tsk->mm or the
556 * rq->membarrier_state.
558 smp_mb__after_spinlock();
561 membarrier_update_current_mm(NULL);
562 enter_lazy_tlb(mm, current);
564 task_unlock(current);
565 mmap_read_unlock(mm);
566 mm_update_next_owner(mm);
568 if (test_thread_flag(TIF_MEMDIE))
572 static struct task_struct *find_alive_thread(struct task_struct *p)
574 struct task_struct *t;
576 for_each_thread(p, t) {
577 if (!(t->flags & PF_EXITING))
583 static struct task_struct *find_child_reaper(struct task_struct *father,
584 struct list_head *dead)
585 __releases(&tasklist_lock)
586 __acquires(&tasklist_lock)
588 struct pid_namespace *pid_ns = task_active_pid_ns(father);
589 struct task_struct *reaper = pid_ns->child_reaper;
590 struct task_struct *p, *n;
592 if (likely(reaper != father))
595 reaper = find_alive_thread(father);
597 pid_ns->child_reaper = reaper;
601 write_unlock_irq(&tasklist_lock);
603 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
604 list_del_init(&p->ptrace_entry);
608 zap_pid_ns_processes(pid_ns);
609 write_lock_irq(&tasklist_lock);
615 * When we die, we re-parent all our children, and try to:
616 * 1. give them to another thread in our thread group, if such a member exists
617 * 2. give it to the first ancestor process which prctl'd itself as a
618 * child_subreaper for its children (like a service manager)
619 * 3. give it to the init process (PID 1) in our pid namespace
621 static struct task_struct *find_new_reaper(struct task_struct *father,
622 struct task_struct *child_reaper)
624 struct task_struct *thread, *reaper;
626 thread = find_alive_thread(father);
630 if (father->signal->has_child_subreaper) {
631 unsigned int ns_level = task_pid(father)->level;
633 * Find the first ->is_child_subreaper ancestor in our pid_ns.
634 * We can't check reaper != child_reaper to ensure we do not
635 * cross the namespaces, the exiting parent could be injected
636 * by setns() + fork().
637 * We check pid->level, this is slightly more efficient than
638 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
640 for (reaper = father->real_parent;
641 task_pid(reaper)->level == ns_level;
642 reaper = reaper->real_parent) {
643 if (reaper == &init_task)
645 if (!reaper->signal->is_child_subreaper)
647 thread = find_alive_thread(reaper);
657 * Any that need to be release_task'd are put on the @dead list.
659 static void reparent_leader(struct task_struct *father, struct task_struct *p,
660 struct list_head *dead)
662 if (unlikely(p->exit_state == EXIT_DEAD))
665 /* We don't want people slaying init. */
666 p->exit_signal = SIGCHLD;
668 /* If it has exited notify the new parent about this child's death. */
670 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
671 if (do_notify_parent(p, p->exit_signal)) {
672 p->exit_state = EXIT_DEAD;
673 list_add(&p->ptrace_entry, dead);
677 kill_orphaned_pgrp(p, father);
681 * This does two things:
683 * A. Make init inherit all the child processes
684 * B. Check to see if any process groups have become orphaned
685 * as a result of our exiting, and if they have any stopped
686 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
688 static void forget_original_parent(struct task_struct *father,
689 struct list_head *dead)
691 struct task_struct *p, *t, *reaper;
693 if (unlikely(!list_empty(&father->ptraced)))
694 exit_ptrace(father, dead);
696 /* Can drop and reacquire tasklist_lock */
697 reaper = find_child_reaper(father, dead);
698 if (list_empty(&father->children))
701 reaper = find_new_reaper(father, reaper);
702 list_for_each_entry(p, &father->children, sibling) {
703 for_each_thread(p, t) {
704 RCU_INIT_POINTER(t->real_parent, reaper);
705 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
706 if (likely(!t->ptrace))
707 t->parent = t->real_parent;
708 if (t->pdeath_signal)
709 group_send_sig_info(t->pdeath_signal,
714 * If this is a threaded reparent there is no need to
715 * notify anyone anything has happened.
717 if (!same_thread_group(reaper, father))
718 reparent_leader(father, p, dead);
720 list_splice_tail_init(&father->children, &reaper->children);
724 * Send signals to all our closest relatives so that they know
725 * to properly mourn us..
727 static void exit_notify(struct task_struct *tsk, int group_dead)
730 struct task_struct *p, *n;
733 write_lock_irq(&tasklist_lock);
734 forget_original_parent(tsk, &dead);
737 kill_orphaned_pgrp(tsk->group_leader, NULL);
739 tsk->exit_state = EXIT_ZOMBIE;
740 if (unlikely(tsk->ptrace)) {
741 int sig = thread_group_leader(tsk) &&
742 thread_group_empty(tsk) &&
743 !ptrace_reparented(tsk) ?
744 tsk->exit_signal : SIGCHLD;
745 autoreap = do_notify_parent(tsk, sig);
746 } else if (thread_group_leader(tsk)) {
747 autoreap = thread_group_empty(tsk) &&
748 do_notify_parent(tsk, tsk->exit_signal);
754 tsk->exit_state = EXIT_DEAD;
755 list_add(&tsk->ptrace_entry, &dead);
758 /* mt-exec, de_thread() is waiting for group leader */
759 if (unlikely(tsk->signal->notify_count < 0))
760 wake_up_process(tsk->signal->group_exec_task);
761 write_unlock_irq(&tasklist_lock);
763 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
764 list_del_init(&p->ptrace_entry);
769 #ifdef CONFIG_DEBUG_STACK_USAGE
770 static void check_stack_usage(void)
772 static DEFINE_SPINLOCK(low_water_lock);
773 static int lowest_to_date = THREAD_SIZE;
776 free = stack_not_used(current);
778 if (free >= lowest_to_date)
781 spin_lock(&low_water_lock);
782 if (free < lowest_to_date) {
783 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
784 current->comm, task_pid_nr(current), free);
785 lowest_to_date = free;
787 spin_unlock(&low_water_lock);
790 static inline void check_stack_usage(void) {}
793 static void synchronize_group_exit(struct task_struct *tsk, long code)
795 struct sighand_struct *sighand = tsk->sighand;
796 struct signal_struct *signal = tsk->signal;
798 spin_lock_irq(&sighand->siglock);
799 signal->quick_threads--;
800 if ((signal->quick_threads == 0) &&
801 !(signal->flags & SIGNAL_GROUP_EXIT)) {
802 signal->flags = SIGNAL_GROUP_EXIT;
803 signal->group_exit_code = code;
804 signal->group_stop_count = 0;
806 spin_unlock_irq(&sighand->siglock);
809 void __noreturn do_exit(long code)
811 struct task_struct *tsk = current;
814 WARN_ON(irqs_disabled());
816 synchronize_group_exit(tsk, code);
821 kmsan_task_exit(tsk);
823 coredump_task_exit(tsk);
824 ptrace_event(PTRACE_EVENT_EXIT, code);
825 user_events_exit(tsk);
827 validate_creds_for_do_exit(tsk);
829 io_uring_files_cancel();
830 exit_signals(tsk); /* sets PF_EXITING */
832 /* sync mm's RSS info before statistics gathering */
834 sync_mm_rss(tsk->mm);
835 acct_update_integrals(tsk);
836 group_dead = atomic_dec_and_test(&tsk->signal->live);
839 * If the last thread of global init has exited, panic
840 * immediately to get a useable coredump.
842 if (unlikely(is_global_init(tsk)))
843 panic("Attempted to kill init! exitcode=0x%08x\n",
844 tsk->signal->group_exit_code ?: (int)code);
846 #ifdef CONFIG_POSIX_TIMERS
847 hrtimer_cancel(&tsk->signal->real_timer);
851 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
853 acct_collect(code, group_dead);
858 tsk->exit_code = code;
859 taskstats_exit(tsk, group_dead);
865 trace_sched_process_exit(tsk);
872 disassociate_ctty(1);
873 exit_task_namespaces(tsk);
878 * Flush inherited counters to the parent - before the parent
879 * gets woken up by child-exit notifications.
881 * because of cgroup mode, must be called before cgroup_exit()
883 perf_event_exit_task(tsk);
885 sched_autogroup_exit_task(tsk);
889 * FIXME: do that only when needed, using sched_exit tracepoint
891 flush_ptrace_hw_breakpoint(tsk);
893 exit_tasks_rcu_start();
894 exit_notify(tsk, group_dead);
895 proc_exit_connector(tsk);
896 mpol_put_task_policy(tsk);
898 if (unlikely(current->pi_state_cache))
899 kfree(current->pi_state_cache);
902 * Make sure we are holding no locks:
904 debug_check_no_locks_held();
907 exit_io_context(tsk);
909 if (tsk->splice_pipe)
910 free_pipe_info(tsk->splice_pipe);
912 if (tsk->task_frag.page)
913 put_page(tsk->task_frag.page);
915 validate_creds_for_do_exit(tsk);
916 exit_task_stack_account(tsk);
921 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
923 exit_tasks_rcu_finish();
925 lockdep_free_task(tsk);
929 void __noreturn make_task_dead(int signr)
932 * Take the task off the cpu after something catastrophic has
935 * We can get here from a kernel oops, sometimes with preemption off.
936 * Start by checking for critical errors.
937 * Then fix up important state like USER_DS and preemption.
938 * Then do everything else.
940 struct task_struct *tsk = current;
943 if (unlikely(in_interrupt()))
944 panic("Aiee, killing interrupt handler!");
945 if (unlikely(!tsk->pid))
946 panic("Attempted to kill the idle task!");
948 if (unlikely(irqs_disabled())) {
949 pr_info("note: %s[%d] exited with irqs disabled\n",
950 current->comm, task_pid_nr(current));
953 if (unlikely(in_atomic())) {
954 pr_info("note: %s[%d] exited with preempt_count %d\n",
955 current->comm, task_pid_nr(current),
957 preempt_count_set(PREEMPT_ENABLED);
961 * Every time the system oopses, if the oops happens while a reference
962 * to an object was held, the reference leaks.
963 * If the oops doesn't also leak memory, repeated oopsing can cause
964 * reference counters to wrap around (if they're not using refcount_t).
965 * This means that repeated oopsing can make unexploitable-looking bugs
966 * exploitable through repeated oopsing.
967 * To make sure this can't happen, place an upper bound on how often the
968 * kernel may oops without panic().
970 limit = READ_ONCE(oops_limit);
971 if (atomic_inc_return(&oops_count) >= limit && limit)
972 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
975 * We're taking recursive faults here in make_task_dead. Safest is to just
976 * leave this task alone and wait for reboot.
978 if (unlikely(tsk->flags & PF_EXITING)) {
979 pr_alert("Fixing recursive fault but reboot is needed!\n");
980 futex_exit_recursive(tsk);
981 tsk->exit_state = EXIT_DEAD;
982 refcount_inc(&tsk->rcu_users);
989 SYSCALL_DEFINE1(exit, int, error_code)
991 do_exit((error_code&0xff)<<8);
995 * Take down every thread in the group. This is called by fatal signals
996 * as well as by sys_exit_group (below).
999 do_group_exit(int exit_code)
1001 struct signal_struct *sig = current->signal;
1003 if (sig->flags & SIGNAL_GROUP_EXIT)
1004 exit_code = sig->group_exit_code;
1005 else if (sig->group_exec_task)
1008 struct sighand_struct *const sighand = current->sighand;
1010 spin_lock_irq(&sighand->siglock);
1011 if (sig->flags & SIGNAL_GROUP_EXIT)
1012 /* Another thread got here before we took the lock. */
1013 exit_code = sig->group_exit_code;
1014 else if (sig->group_exec_task)
1017 sig->group_exit_code = exit_code;
1018 sig->flags = SIGNAL_GROUP_EXIT;
1019 zap_other_threads(current);
1021 spin_unlock_irq(&sighand->siglock);
1029 * this kills every thread in the thread group. Note that any externally
1030 * wait4()-ing process will get the correct exit code - even if this
1031 * thread is not the thread group leader.
1033 SYSCALL_DEFINE1(exit_group, int, error_code)
1035 do_group_exit((error_code & 0xff) << 8);
1040 struct waitid_info {
1048 enum pid_type wo_type;
1052 struct waitid_info *wo_info;
1054 struct rusage *wo_rusage;
1056 wait_queue_entry_t child_wait;
1060 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1062 return wo->wo_type == PIDTYPE_MAX ||
1063 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1067 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1069 if (!eligible_pid(wo, p))
1073 * Wait for all children (clone and not) if __WALL is set or
1074 * if it is traced by us.
1076 if (ptrace || (wo->wo_flags & __WALL))
1080 * Otherwise, wait for clone children *only* if __WCLONE is set;
1081 * otherwise, wait for non-clone children *only*.
1083 * Note: a "clone" child here is one that reports to its parent
1084 * using a signal other than SIGCHLD, or a non-leader thread which
1085 * we can only see if it is traced by us.
1087 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1094 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1095 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1096 * the lock and this task is uninteresting. If we return nonzero, we have
1097 * released the lock and the system call should return.
1099 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1102 pid_t pid = task_pid_vnr(p);
1103 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1104 struct waitid_info *infop;
1106 if (!likely(wo->wo_flags & WEXITED))
1109 if (unlikely(wo->wo_flags & WNOWAIT)) {
1110 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1111 ? p->signal->group_exit_code : p->exit_code;
1113 read_unlock(&tasklist_lock);
1114 sched_annotate_sleep();
1116 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1121 * Move the task's state to DEAD/TRACE, only one thread can do this.
1123 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1124 EXIT_TRACE : EXIT_DEAD;
1125 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1128 * We own this thread, nobody else can reap it.
1130 read_unlock(&tasklist_lock);
1131 sched_annotate_sleep();
1134 * Check thread_group_leader() to exclude the traced sub-threads.
1136 if (state == EXIT_DEAD && thread_group_leader(p)) {
1137 struct signal_struct *sig = p->signal;
1138 struct signal_struct *psig = current->signal;
1139 unsigned long maxrss;
1140 u64 tgutime, tgstime;
1143 * The resource counters for the group leader are in its
1144 * own task_struct. Those for dead threads in the group
1145 * are in its signal_struct, as are those for the child
1146 * processes it has previously reaped. All these
1147 * accumulate in the parent's signal_struct c* fields.
1149 * We don't bother to take a lock here to protect these
1150 * p->signal fields because the whole thread group is dead
1151 * and nobody can change them.
1153 * psig->stats_lock also protects us from our sub-threads
1154 * which can reap other children at the same time. Until
1155 * we change k_getrusage()-like users to rely on this lock
1156 * we have to take ->siglock as well.
1158 * We use thread_group_cputime_adjusted() to get times for
1159 * the thread group, which consolidates times for all threads
1160 * in the group including the group leader.
1162 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1163 spin_lock_irq(¤t->sighand->siglock);
1164 write_seqlock(&psig->stats_lock);
1165 psig->cutime += tgutime + sig->cutime;
1166 psig->cstime += tgstime + sig->cstime;
1167 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1169 p->min_flt + sig->min_flt + sig->cmin_flt;
1171 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1173 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1175 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1177 task_io_get_inblock(p) +
1178 sig->inblock + sig->cinblock;
1180 task_io_get_oublock(p) +
1181 sig->oublock + sig->coublock;
1182 maxrss = max(sig->maxrss, sig->cmaxrss);
1183 if (psig->cmaxrss < maxrss)
1184 psig->cmaxrss = maxrss;
1185 task_io_accounting_add(&psig->ioac, &p->ioac);
1186 task_io_accounting_add(&psig->ioac, &sig->ioac);
1187 write_sequnlock(&psig->stats_lock);
1188 spin_unlock_irq(¤t->sighand->siglock);
1192 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1193 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1194 ? p->signal->group_exit_code : p->exit_code;
1195 wo->wo_stat = status;
1197 if (state == EXIT_TRACE) {
1198 write_lock_irq(&tasklist_lock);
1199 /* We dropped tasklist, ptracer could die and untrace */
1202 /* If parent wants a zombie, don't release it now */
1203 state = EXIT_ZOMBIE;
1204 if (do_notify_parent(p, p->exit_signal))
1206 p->exit_state = state;
1207 write_unlock_irq(&tasklist_lock);
1209 if (state == EXIT_DEAD)
1213 infop = wo->wo_info;
1215 if ((status & 0x7f) == 0) {
1216 infop->cause = CLD_EXITED;
1217 infop->status = status >> 8;
1219 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1220 infop->status = status & 0x7f;
1229 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1232 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1233 return &p->exit_code;
1235 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1236 return &p->signal->group_exit_code;
1242 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1244 * @ptrace: is the wait for ptrace
1245 * @p: task to wait for
1247 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1250 * read_lock(&tasklist_lock), which is released if return value is
1251 * non-zero. Also, grabs and releases @p->sighand->siglock.
1254 * 0 if wait condition didn't exist and search for other wait conditions
1255 * should continue. Non-zero return, -errno on failure and @p's pid on
1256 * success, implies that tasklist_lock is released and wait condition
1257 * search should terminate.
1259 static int wait_task_stopped(struct wait_opts *wo,
1260 int ptrace, struct task_struct *p)
1262 struct waitid_info *infop;
1263 int exit_code, *p_code, why;
1264 uid_t uid = 0; /* unneeded, required by compiler */
1268 * Traditionally we see ptrace'd stopped tasks regardless of options.
1270 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1273 if (!task_stopped_code(p, ptrace))
1277 spin_lock_irq(&p->sighand->siglock);
1279 p_code = task_stopped_code(p, ptrace);
1280 if (unlikely(!p_code))
1283 exit_code = *p_code;
1287 if (!unlikely(wo->wo_flags & WNOWAIT))
1290 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1292 spin_unlock_irq(&p->sighand->siglock);
1297 * Now we are pretty sure this task is interesting.
1298 * Make sure it doesn't get reaped out from under us while we
1299 * give up the lock and then examine it below. We don't want to
1300 * keep holding onto the tasklist_lock while we call getrusage and
1301 * possibly take page faults for user memory.
1304 pid = task_pid_vnr(p);
1305 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1306 read_unlock(&tasklist_lock);
1307 sched_annotate_sleep();
1309 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1312 if (likely(!(wo->wo_flags & WNOWAIT)))
1313 wo->wo_stat = (exit_code << 8) | 0x7f;
1315 infop = wo->wo_info;
1318 infop->status = exit_code;
1326 * Handle do_wait work for one task in a live, non-stopped state.
1327 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1328 * the lock and this task is uninteresting. If we return nonzero, we have
1329 * released the lock and the system call should return.
1331 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1333 struct waitid_info *infop;
1337 if (!unlikely(wo->wo_flags & WCONTINUED))
1340 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1343 spin_lock_irq(&p->sighand->siglock);
1344 /* Re-check with the lock held. */
1345 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1346 spin_unlock_irq(&p->sighand->siglock);
1349 if (!unlikely(wo->wo_flags & WNOWAIT))
1350 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1351 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1352 spin_unlock_irq(&p->sighand->siglock);
1354 pid = task_pid_vnr(p);
1356 read_unlock(&tasklist_lock);
1357 sched_annotate_sleep();
1359 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1362 infop = wo->wo_info;
1364 wo->wo_stat = 0xffff;
1366 infop->cause = CLD_CONTINUED;
1369 infop->status = SIGCONT;
1375 * Consider @p for a wait by @parent.
1377 * -ECHILD should be in ->notask_error before the first call.
1378 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1379 * Returns zero if the search for a child should continue;
1380 * then ->notask_error is 0 if @p is an eligible child,
1383 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1384 struct task_struct *p)
1387 * We can race with wait_task_zombie() from another thread.
1388 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1389 * can't confuse the checks below.
1391 int exit_state = READ_ONCE(p->exit_state);
1394 if (unlikely(exit_state == EXIT_DEAD))
1397 ret = eligible_child(wo, ptrace, p);
1401 if (unlikely(exit_state == EXIT_TRACE)) {
1403 * ptrace == 0 means we are the natural parent. In this case
1404 * we should clear notask_error, debugger will notify us.
1406 if (likely(!ptrace))
1407 wo->notask_error = 0;
1411 if (likely(!ptrace) && unlikely(p->ptrace)) {
1413 * If it is traced by its real parent's group, just pretend
1414 * the caller is ptrace_do_wait() and reap this child if it
1417 * This also hides group stop state from real parent; otherwise
1418 * a single stop can be reported twice as group and ptrace stop.
1419 * If a ptracer wants to distinguish these two events for its
1420 * own children it should create a separate process which takes
1421 * the role of real parent.
1423 if (!ptrace_reparented(p))
1428 if (exit_state == EXIT_ZOMBIE) {
1429 /* we don't reap group leaders with subthreads */
1430 if (!delay_group_leader(p)) {
1432 * A zombie ptracee is only visible to its ptracer.
1433 * Notification and reaping will be cascaded to the
1434 * real parent when the ptracer detaches.
1436 if (unlikely(ptrace) || likely(!p->ptrace))
1437 return wait_task_zombie(wo, p);
1441 * Allow access to stopped/continued state via zombie by
1442 * falling through. Clearing of notask_error is complex.
1446 * If WEXITED is set, notask_error should naturally be
1447 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1448 * so, if there are live subthreads, there are events to
1449 * wait for. If all subthreads are dead, it's still safe
1450 * to clear - this function will be called again in finite
1451 * amount time once all the subthreads are released and
1452 * will then return without clearing.
1456 * Stopped state is per-task and thus can't change once the
1457 * target task dies. Only continued and exited can happen.
1458 * Clear notask_error if WCONTINUED | WEXITED.
1460 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1461 wo->notask_error = 0;
1464 * @p is alive and it's gonna stop, continue or exit, so
1465 * there always is something to wait for.
1467 wo->notask_error = 0;
1471 * Wait for stopped. Depending on @ptrace, different stopped state
1472 * is used and the two don't interact with each other.
1474 ret = wait_task_stopped(wo, ptrace, p);
1479 * Wait for continued. There's only one continued state and the
1480 * ptracer can consume it which can confuse the real parent. Don't
1481 * use WCONTINUED from ptracer. You don't need or want it.
1483 return wait_task_continued(wo, p);
1487 * Do the work of do_wait() for one thread in the group, @tsk.
1489 * -ECHILD should be in ->notask_error before the first call.
1490 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1491 * Returns zero if the search for a child should continue; then
1492 * ->notask_error is 0 if there were any eligible children,
1495 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1497 struct task_struct *p;
1499 list_for_each_entry(p, &tsk->children, sibling) {
1500 int ret = wait_consider_task(wo, 0, p);
1509 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1511 struct task_struct *p;
1513 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1514 int ret = wait_consider_task(wo, 1, p);
1523 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1524 int sync, void *key)
1526 struct wait_opts *wo = container_of(wait, struct wait_opts,
1528 struct task_struct *p = key;
1530 if (!eligible_pid(wo, p))
1533 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1536 return default_wake_function(wait, mode, sync, key);
1539 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1541 __wake_up_sync_key(&parent->signal->wait_chldexit,
1542 TASK_INTERRUPTIBLE, p);
1545 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1546 struct task_struct *target)
1548 struct task_struct *parent =
1549 !ptrace ? target->real_parent : target->parent;
1551 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1552 same_thread_group(current, parent));
1556 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1557 * and tracee lists to find the target task.
1559 static int do_wait_pid(struct wait_opts *wo)
1562 struct task_struct *target;
1566 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1567 if (target && is_effectively_child(wo, ptrace, target)) {
1568 retval = wait_consider_task(wo, ptrace, target);
1574 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1575 if (target && target->ptrace &&
1576 is_effectively_child(wo, ptrace, target)) {
1577 retval = wait_consider_task(wo, ptrace, target);
1585 static long do_wait(struct wait_opts *wo)
1589 trace_sched_process_wait(wo->wo_pid);
1591 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1592 wo->child_wait.private = current;
1593 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1596 * If there is nothing that can match our criteria, just get out.
1597 * We will clear ->notask_error to zero if we see any child that
1598 * might later match our criteria, even if we are not able to reap
1601 wo->notask_error = -ECHILD;
1602 if ((wo->wo_type < PIDTYPE_MAX) &&
1603 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1606 set_current_state(TASK_INTERRUPTIBLE);
1607 read_lock(&tasklist_lock);
1609 if (wo->wo_type == PIDTYPE_PID) {
1610 retval = do_wait_pid(wo);
1614 struct task_struct *tsk = current;
1617 retval = do_wait_thread(wo, tsk);
1621 retval = ptrace_do_wait(wo, tsk);
1625 if (wo->wo_flags & __WNOTHREAD)
1627 } while_each_thread(current, tsk);
1629 read_unlock(&tasklist_lock);
1632 retval = wo->notask_error;
1633 if (!retval && !(wo->wo_flags & WNOHANG)) {
1634 retval = -ERESTARTSYS;
1635 if (!signal_pending(current)) {
1641 __set_current_state(TASK_RUNNING);
1642 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1646 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1647 int options, struct rusage *ru)
1649 struct wait_opts wo;
1650 struct pid *pid = NULL;
1653 unsigned int f_flags = 0;
1655 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1656 __WNOTHREAD|__WCLONE|__WALL))
1658 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1670 pid = find_get_pid(upid);
1673 type = PIDTYPE_PGID;
1678 pid = find_get_pid(upid);
1680 pid = get_task_pid(current, PIDTYPE_PGID);
1687 pid = pidfd_get_pid(upid, &f_flags);
1689 return PTR_ERR(pid);
1698 wo.wo_flags = options;
1701 if (f_flags & O_NONBLOCK)
1702 wo.wo_flags |= WNOHANG;
1705 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1712 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1713 infop, int, options, struct rusage __user *, ru)
1716 struct waitid_info info = {.status = 0};
1717 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1723 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1729 if (!user_write_access_begin(infop, sizeof(*infop)))
1732 unsafe_put_user(signo, &infop->si_signo, Efault);
1733 unsafe_put_user(0, &infop->si_errno, Efault);
1734 unsafe_put_user(info.cause, &infop->si_code, Efault);
1735 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1736 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1737 unsafe_put_user(info.status, &infop->si_status, Efault);
1738 user_write_access_end();
1741 user_write_access_end();
1745 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1748 struct wait_opts wo;
1749 struct pid *pid = NULL;
1753 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1754 __WNOTHREAD|__WCLONE|__WALL))
1757 /* -INT_MIN is not defined */
1758 if (upid == INT_MIN)
1763 else if (upid < 0) {
1764 type = PIDTYPE_PGID;
1765 pid = find_get_pid(-upid);
1766 } else if (upid == 0) {
1767 type = PIDTYPE_PGID;
1768 pid = get_task_pid(current, PIDTYPE_PGID);
1769 } else /* upid > 0 */ {
1771 pid = find_get_pid(upid);
1776 wo.wo_flags = options | WEXITED;
1782 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1788 int kernel_wait(pid_t pid, int *stat)
1790 struct wait_opts wo = {
1791 .wo_type = PIDTYPE_PID,
1792 .wo_pid = find_get_pid(pid),
1793 .wo_flags = WEXITED,
1798 if (ret > 0 && wo.wo_stat)
1804 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1805 int, options, struct rusage __user *, ru)
1808 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1811 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1817 #ifdef __ARCH_WANT_SYS_WAITPID
1820 * sys_waitpid() remains for compatibility. waitpid() should be
1821 * implemented by calling sys_wait4() from libc.a.
1823 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1825 return kernel_wait4(pid, stat_addr, options, NULL);
1830 #ifdef CONFIG_COMPAT
1831 COMPAT_SYSCALL_DEFINE4(wait4,
1833 compat_uint_t __user *, stat_addr,
1835 struct compat_rusage __user *, ru)
1838 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1840 if (ru && put_compat_rusage(&r, ru))
1846 COMPAT_SYSCALL_DEFINE5(waitid,
1847 int, which, compat_pid_t, pid,
1848 struct compat_siginfo __user *, infop, int, options,
1849 struct compat_rusage __user *, uru)
1852 struct waitid_info info = {.status = 0};
1853 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1859 /* kernel_waitid() overwrites everything in ru */
1860 if (COMPAT_USE_64BIT_TIME)
1861 err = copy_to_user(uru, &ru, sizeof(ru));
1863 err = put_compat_rusage(&ru, uru);
1872 if (!user_write_access_begin(infop, sizeof(*infop)))
1875 unsafe_put_user(signo, &infop->si_signo, Efault);
1876 unsafe_put_user(0, &infop->si_errno, Efault);
1877 unsafe_put_user(info.cause, &infop->si_code, Efault);
1878 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1879 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1880 unsafe_put_user(info.status, &infop->si_status, Efault);
1881 user_write_access_end();
1884 user_write_access_end();
1890 * thread_group_exited - check that a thread group has exited
1891 * @pid: tgid of thread group to be checked.
1893 * Test if the thread group represented by tgid has exited (all
1894 * threads are zombies, dead or completely gone).
1896 * Return: true if the thread group has exited. false otherwise.
1898 bool thread_group_exited(struct pid *pid)
1900 struct task_struct *task;
1904 task = pid_task(pid, PIDTYPE_PID);
1906 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1911 EXPORT_SYMBOL(thread_group_exited);
1914 * This needs to be __function_aligned as GCC implicitly makes any
1915 * implementation of abort() cold and drops alignment specified by
1916 * -falign-functions=N.
1918 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1920 __weak __function_aligned void abort(void)
1924 /* if that doesn't kill us, halt */
1925 panic("Oops failed to kill thread");
1927 EXPORT_SYMBOL(abort);