exit: Put an upper limit on how often we can oops
[platform/kernel/linux-starfive.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70
71 #include <linux/uaccess.h>
72 #include <asm/unistd.h>
73 #include <asm/mmu_context.h>
74
75 /*
76  * The default value should be high enough to not crash a system that randomly
77  * crashes its kernel from time to time, but low enough to at least not permit
78  * overflowing 32-bit refcounts or the ldsem writer count.
79  */
80 static unsigned int oops_limit = 10000;
81
82 #ifdef CONFIG_SYSCTL
83 static struct ctl_table kern_exit_table[] = {
84         {
85                 .procname       = "oops_limit",
86                 .data           = &oops_limit,
87                 .maxlen         = sizeof(oops_limit),
88                 .mode           = 0644,
89                 .proc_handler   = proc_douintvec,
90         },
91         { }
92 };
93
94 static __init int kernel_exit_sysctls_init(void)
95 {
96         register_sysctl_init("kernel", kern_exit_table);
97         return 0;
98 }
99 late_initcall(kernel_exit_sysctls_init);
100 #endif
101
102 static void __unhash_process(struct task_struct *p, bool group_dead)
103 {
104         nr_threads--;
105         detach_pid(p, PIDTYPE_PID);
106         if (group_dead) {
107                 detach_pid(p, PIDTYPE_TGID);
108                 detach_pid(p, PIDTYPE_PGID);
109                 detach_pid(p, PIDTYPE_SID);
110
111                 list_del_rcu(&p->tasks);
112                 list_del_init(&p->sibling);
113                 __this_cpu_dec(process_counts);
114         }
115         list_del_rcu(&p->thread_group);
116         list_del_rcu(&p->thread_node);
117 }
118
119 /*
120  * This function expects the tasklist_lock write-locked.
121  */
122 static void __exit_signal(struct task_struct *tsk)
123 {
124         struct signal_struct *sig = tsk->signal;
125         bool group_dead = thread_group_leader(tsk);
126         struct sighand_struct *sighand;
127         struct tty_struct *tty;
128         u64 utime, stime;
129
130         sighand = rcu_dereference_check(tsk->sighand,
131                                         lockdep_tasklist_lock_is_held());
132         spin_lock(&sighand->siglock);
133
134 #ifdef CONFIG_POSIX_TIMERS
135         posix_cpu_timers_exit(tsk);
136         if (group_dead)
137                 posix_cpu_timers_exit_group(tsk);
138 #endif
139
140         if (group_dead) {
141                 tty = sig->tty;
142                 sig->tty = NULL;
143         } else {
144                 /*
145                  * If there is any task waiting for the group exit
146                  * then notify it:
147                  */
148                 if (sig->notify_count > 0 && !--sig->notify_count)
149                         wake_up_process(sig->group_exec_task);
150
151                 if (tsk == sig->curr_target)
152                         sig->curr_target = next_thread(tsk);
153         }
154
155         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
156                               sizeof(unsigned long long));
157
158         /*
159          * Accumulate here the counters for all threads as they die. We could
160          * skip the group leader because it is the last user of signal_struct,
161          * but we want to avoid the race with thread_group_cputime() which can
162          * see the empty ->thread_head list.
163          */
164         task_cputime(tsk, &utime, &stime);
165         write_seqlock(&sig->stats_lock);
166         sig->utime += utime;
167         sig->stime += stime;
168         sig->gtime += task_gtime(tsk);
169         sig->min_flt += tsk->min_flt;
170         sig->maj_flt += tsk->maj_flt;
171         sig->nvcsw += tsk->nvcsw;
172         sig->nivcsw += tsk->nivcsw;
173         sig->inblock += task_io_get_inblock(tsk);
174         sig->oublock += task_io_get_oublock(tsk);
175         task_io_accounting_add(&sig->ioac, &tsk->ioac);
176         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
177         sig->nr_threads--;
178         __unhash_process(tsk, group_dead);
179         write_sequnlock(&sig->stats_lock);
180
181         /*
182          * Do this under ->siglock, we can race with another thread
183          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
184          */
185         flush_sigqueue(&tsk->pending);
186         tsk->sighand = NULL;
187         spin_unlock(&sighand->siglock);
188
189         __cleanup_sighand(sighand);
190         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
191         if (group_dead) {
192                 flush_sigqueue(&sig->shared_pending);
193                 tty_kref_put(tty);
194         }
195 }
196
197 static void delayed_put_task_struct(struct rcu_head *rhp)
198 {
199         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
200
201         kprobe_flush_task(tsk);
202         rethook_flush_task(tsk);
203         perf_event_delayed_put(tsk);
204         trace_sched_process_free(tsk);
205         put_task_struct(tsk);
206 }
207
208 void put_task_struct_rcu_user(struct task_struct *task)
209 {
210         if (refcount_dec_and_test(&task->rcu_users))
211                 call_rcu(&task->rcu, delayed_put_task_struct);
212 }
213
214 void __weak release_thread(struct task_struct *dead_task)
215 {
216 }
217
218 void release_task(struct task_struct *p)
219 {
220         struct task_struct *leader;
221         struct pid *thread_pid;
222         int zap_leader;
223 repeat:
224         /* don't need to get the RCU readlock here - the process is dead and
225          * can't be modifying its own credentials. But shut RCU-lockdep up */
226         rcu_read_lock();
227         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
228         rcu_read_unlock();
229
230         cgroup_release(p);
231
232         write_lock_irq(&tasklist_lock);
233         ptrace_release_task(p);
234         thread_pid = get_pid(p->thread_pid);
235         __exit_signal(p);
236
237         /*
238          * If we are the last non-leader member of the thread
239          * group, and the leader is zombie, then notify the
240          * group leader's parent process. (if it wants notification.)
241          */
242         zap_leader = 0;
243         leader = p->group_leader;
244         if (leader != p && thread_group_empty(leader)
245                         && leader->exit_state == EXIT_ZOMBIE) {
246                 /*
247                  * If we were the last child thread and the leader has
248                  * exited already, and the leader's parent ignores SIGCHLD,
249                  * then we are the one who should release the leader.
250                  */
251                 zap_leader = do_notify_parent(leader, leader->exit_signal);
252                 if (zap_leader)
253                         leader->exit_state = EXIT_DEAD;
254         }
255
256         write_unlock_irq(&tasklist_lock);
257         seccomp_filter_release(p);
258         proc_flush_pid(thread_pid);
259         put_pid(thread_pid);
260         release_thread(p);
261         put_task_struct_rcu_user(p);
262
263         p = leader;
264         if (unlikely(zap_leader))
265                 goto repeat;
266 }
267
268 int rcuwait_wake_up(struct rcuwait *w)
269 {
270         int ret = 0;
271         struct task_struct *task;
272
273         rcu_read_lock();
274
275         /*
276          * Order condition vs @task, such that everything prior to the load
277          * of @task is visible. This is the condition as to why the user called
278          * rcuwait_wake() in the first place. Pairs with set_current_state()
279          * barrier (A) in rcuwait_wait_event().
280          *
281          *    WAIT                WAKE
282          *    [S] tsk = current   [S] cond = true
283          *        MB (A)              MB (B)
284          *    [L] cond            [L] tsk
285          */
286         smp_mb(); /* (B) */
287
288         task = rcu_dereference(w->task);
289         if (task)
290                 ret = wake_up_process(task);
291         rcu_read_unlock();
292
293         return ret;
294 }
295 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
296
297 /*
298  * Determine if a process group is "orphaned", according to the POSIX
299  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
300  * by terminal-generated stop signals.  Newly orphaned process groups are
301  * to receive a SIGHUP and a SIGCONT.
302  *
303  * "I ask you, have you ever known what it is to be an orphan?"
304  */
305 static int will_become_orphaned_pgrp(struct pid *pgrp,
306                                         struct task_struct *ignored_task)
307 {
308         struct task_struct *p;
309
310         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
311                 if ((p == ignored_task) ||
312                     (p->exit_state && thread_group_empty(p)) ||
313                     is_global_init(p->real_parent))
314                         continue;
315
316                 if (task_pgrp(p->real_parent) != pgrp &&
317                     task_session(p->real_parent) == task_session(p))
318                         return 0;
319         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
320
321         return 1;
322 }
323
324 int is_current_pgrp_orphaned(void)
325 {
326         int retval;
327
328         read_lock(&tasklist_lock);
329         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
330         read_unlock(&tasklist_lock);
331
332         return retval;
333 }
334
335 static bool has_stopped_jobs(struct pid *pgrp)
336 {
337         struct task_struct *p;
338
339         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
340                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
341                         return true;
342         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
343
344         return false;
345 }
346
347 /*
348  * Check to see if any process groups have become orphaned as
349  * a result of our exiting, and if they have any stopped jobs,
350  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
351  */
352 static void
353 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
354 {
355         struct pid *pgrp = task_pgrp(tsk);
356         struct task_struct *ignored_task = tsk;
357
358         if (!parent)
359                 /* exit: our father is in a different pgrp than
360                  * we are and we were the only connection outside.
361                  */
362                 parent = tsk->real_parent;
363         else
364                 /* reparent: our child is in a different pgrp than
365                  * we are, and it was the only connection outside.
366                  */
367                 ignored_task = NULL;
368
369         if (task_pgrp(parent) != pgrp &&
370             task_session(parent) == task_session(tsk) &&
371             will_become_orphaned_pgrp(pgrp, ignored_task) &&
372             has_stopped_jobs(pgrp)) {
373                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
374                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
375         }
376 }
377
378 static void coredump_task_exit(struct task_struct *tsk)
379 {
380         struct core_state *core_state;
381
382         /*
383          * Serialize with any possible pending coredump.
384          * We must hold siglock around checking core_state
385          * and setting PF_POSTCOREDUMP.  The core-inducing thread
386          * will increment ->nr_threads for each thread in the
387          * group without PF_POSTCOREDUMP set.
388          */
389         spin_lock_irq(&tsk->sighand->siglock);
390         tsk->flags |= PF_POSTCOREDUMP;
391         core_state = tsk->signal->core_state;
392         spin_unlock_irq(&tsk->sighand->siglock);
393         if (core_state) {
394                 struct core_thread self;
395
396                 self.task = current;
397                 if (self.task->flags & PF_SIGNALED)
398                         self.next = xchg(&core_state->dumper.next, &self);
399                 else
400                         self.task = NULL;
401                 /*
402                  * Implies mb(), the result of xchg() must be visible
403                  * to core_state->dumper.
404                  */
405                 if (atomic_dec_and_test(&core_state->nr_threads))
406                         complete(&core_state->startup);
407
408                 for (;;) {
409                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
410                         if (!self.task) /* see coredump_finish() */
411                                 break;
412                         schedule();
413                 }
414                 __set_current_state(TASK_RUNNING);
415         }
416 }
417
418 #ifdef CONFIG_MEMCG
419 /*
420  * A task is exiting.   If it owned this mm, find a new owner for the mm.
421  */
422 void mm_update_next_owner(struct mm_struct *mm)
423 {
424         struct task_struct *c, *g, *p = current;
425
426 retry:
427         /*
428          * If the exiting or execing task is not the owner, it's
429          * someone else's problem.
430          */
431         if (mm->owner != p)
432                 return;
433         /*
434          * The current owner is exiting/execing and there are no other
435          * candidates.  Do not leave the mm pointing to a possibly
436          * freed task structure.
437          */
438         if (atomic_read(&mm->mm_users) <= 1) {
439                 WRITE_ONCE(mm->owner, NULL);
440                 return;
441         }
442
443         read_lock(&tasklist_lock);
444         /*
445          * Search in the children
446          */
447         list_for_each_entry(c, &p->children, sibling) {
448                 if (c->mm == mm)
449                         goto assign_new_owner;
450         }
451
452         /*
453          * Search in the siblings
454          */
455         list_for_each_entry(c, &p->real_parent->children, sibling) {
456                 if (c->mm == mm)
457                         goto assign_new_owner;
458         }
459
460         /*
461          * Search through everything else, we should not get here often.
462          */
463         for_each_process(g) {
464                 if (g->flags & PF_KTHREAD)
465                         continue;
466                 for_each_thread(g, c) {
467                         if (c->mm == mm)
468                                 goto assign_new_owner;
469                         if (c->mm)
470                                 break;
471                 }
472         }
473         read_unlock(&tasklist_lock);
474         /*
475          * We found no owner yet mm_users > 1: this implies that we are
476          * most likely racing with swapoff (try_to_unuse()) or /proc or
477          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
478          */
479         WRITE_ONCE(mm->owner, NULL);
480         return;
481
482 assign_new_owner:
483         BUG_ON(c == p);
484         get_task_struct(c);
485         /*
486          * The task_lock protects c->mm from changing.
487          * We always want mm->owner->mm == mm
488          */
489         task_lock(c);
490         /*
491          * Delay read_unlock() till we have the task_lock()
492          * to ensure that c does not slip away underneath us
493          */
494         read_unlock(&tasklist_lock);
495         if (c->mm != mm) {
496                 task_unlock(c);
497                 put_task_struct(c);
498                 goto retry;
499         }
500         WRITE_ONCE(mm->owner, c);
501         lru_gen_migrate_mm(mm);
502         task_unlock(c);
503         put_task_struct(c);
504 }
505 #endif /* CONFIG_MEMCG */
506
507 /*
508  * Turn us into a lazy TLB process if we
509  * aren't already..
510  */
511 static void exit_mm(void)
512 {
513         struct mm_struct *mm = current->mm;
514
515         exit_mm_release(current, mm);
516         if (!mm)
517                 return;
518         sync_mm_rss(mm);
519         mmap_read_lock(mm);
520         mmgrab(mm);
521         BUG_ON(mm != current->active_mm);
522         /* more a memory barrier than a real lock */
523         task_lock(current);
524         /*
525          * When a thread stops operating on an address space, the loop
526          * in membarrier_private_expedited() may not observe that
527          * tsk->mm, and the loop in membarrier_global_expedited() may
528          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
529          * rq->membarrier_state, so those would not issue an IPI.
530          * Membarrier requires a memory barrier after accessing
531          * user-space memory, before clearing tsk->mm or the
532          * rq->membarrier_state.
533          */
534         smp_mb__after_spinlock();
535         local_irq_disable();
536         current->mm = NULL;
537         membarrier_update_current_mm(NULL);
538         enter_lazy_tlb(mm, current);
539         local_irq_enable();
540         task_unlock(current);
541         mmap_read_unlock(mm);
542         mm_update_next_owner(mm);
543         mmput(mm);
544         if (test_thread_flag(TIF_MEMDIE))
545                 exit_oom_victim();
546 }
547
548 static struct task_struct *find_alive_thread(struct task_struct *p)
549 {
550         struct task_struct *t;
551
552         for_each_thread(p, t) {
553                 if (!(t->flags & PF_EXITING))
554                         return t;
555         }
556         return NULL;
557 }
558
559 static struct task_struct *find_child_reaper(struct task_struct *father,
560                                                 struct list_head *dead)
561         __releases(&tasklist_lock)
562         __acquires(&tasklist_lock)
563 {
564         struct pid_namespace *pid_ns = task_active_pid_ns(father);
565         struct task_struct *reaper = pid_ns->child_reaper;
566         struct task_struct *p, *n;
567
568         if (likely(reaper != father))
569                 return reaper;
570
571         reaper = find_alive_thread(father);
572         if (reaper) {
573                 pid_ns->child_reaper = reaper;
574                 return reaper;
575         }
576
577         write_unlock_irq(&tasklist_lock);
578
579         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
580                 list_del_init(&p->ptrace_entry);
581                 release_task(p);
582         }
583
584         zap_pid_ns_processes(pid_ns);
585         write_lock_irq(&tasklist_lock);
586
587         return father;
588 }
589
590 /*
591  * When we die, we re-parent all our children, and try to:
592  * 1. give them to another thread in our thread group, if such a member exists
593  * 2. give it to the first ancestor process which prctl'd itself as a
594  *    child_subreaper for its children (like a service manager)
595  * 3. give it to the init process (PID 1) in our pid namespace
596  */
597 static struct task_struct *find_new_reaper(struct task_struct *father,
598                                            struct task_struct *child_reaper)
599 {
600         struct task_struct *thread, *reaper;
601
602         thread = find_alive_thread(father);
603         if (thread)
604                 return thread;
605
606         if (father->signal->has_child_subreaper) {
607                 unsigned int ns_level = task_pid(father)->level;
608                 /*
609                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
610                  * We can't check reaper != child_reaper to ensure we do not
611                  * cross the namespaces, the exiting parent could be injected
612                  * by setns() + fork().
613                  * We check pid->level, this is slightly more efficient than
614                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
615                  */
616                 for (reaper = father->real_parent;
617                      task_pid(reaper)->level == ns_level;
618                      reaper = reaper->real_parent) {
619                         if (reaper == &init_task)
620                                 break;
621                         if (!reaper->signal->is_child_subreaper)
622                                 continue;
623                         thread = find_alive_thread(reaper);
624                         if (thread)
625                                 return thread;
626                 }
627         }
628
629         return child_reaper;
630 }
631
632 /*
633 * Any that need to be release_task'd are put on the @dead list.
634  */
635 static void reparent_leader(struct task_struct *father, struct task_struct *p,
636                                 struct list_head *dead)
637 {
638         if (unlikely(p->exit_state == EXIT_DEAD))
639                 return;
640
641         /* We don't want people slaying init. */
642         p->exit_signal = SIGCHLD;
643
644         /* If it has exited notify the new parent about this child's death. */
645         if (!p->ptrace &&
646             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
647                 if (do_notify_parent(p, p->exit_signal)) {
648                         p->exit_state = EXIT_DEAD;
649                         list_add(&p->ptrace_entry, dead);
650                 }
651         }
652
653         kill_orphaned_pgrp(p, father);
654 }
655
656 /*
657  * This does two things:
658  *
659  * A.  Make init inherit all the child processes
660  * B.  Check to see if any process groups have become orphaned
661  *      as a result of our exiting, and if they have any stopped
662  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
663  */
664 static void forget_original_parent(struct task_struct *father,
665                                         struct list_head *dead)
666 {
667         struct task_struct *p, *t, *reaper;
668
669         if (unlikely(!list_empty(&father->ptraced)))
670                 exit_ptrace(father, dead);
671
672         /* Can drop and reacquire tasklist_lock */
673         reaper = find_child_reaper(father, dead);
674         if (list_empty(&father->children))
675                 return;
676
677         reaper = find_new_reaper(father, reaper);
678         list_for_each_entry(p, &father->children, sibling) {
679                 for_each_thread(p, t) {
680                         RCU_INIT_POINTER(t->real_parent, reaper);
681                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
682                         if (likely(!t->ptrace))
683                                 t->parent = t->real_parent;
684                         if (t->pdeath_signal)
685                                 group_send_sig_info(t->pdeath_signal,
686                                                     SEND_SIG_NOINFO, t,
687                                                     PIDTYPE_TGID);
688                 }
689                 /*
690                  * If this is a threaded reparent there is no need to
691                  * notify anyone anything has happened.
692                  */
693                 if (!same_thread_group(reaper, father))
694                         reparent_leader(father, p, dead);
695         }
696         list_splice_tail_init(&father->children, &reaper->children);
697 }
698
699 /*
700  * Send signals to all our closest relatives so that they know
701  * to properly mourn us..
702  */
703 static void exit_notify(struct task_struct *tsk, int group_dead)
704 {
705         bool autoreap;
706         struct task_struct *p, *n;
707         LIST_HEAD(dead);
708
709         write_lock_irq(&tasklist_lock);
710         forget_original_parent(tsk, &dead);
711
712         if (group_dead)
713                 kill_orphaned_pgrp(tsk->group_leader, NULL);
714
715         tsk->exit_state = EXIT_ZOMBIE;
716         if (unlikely(tsk->ptrace)) {
717                 int sig = thread_group_leader(tsk) &&
718                                 thread_group_empty(tsk) &&
719                                 !ptrace_reparented(tsk) ?
720                         tsk->exit_signal : SIGCHLD;
721                 autoreap = do_notify_parent(tsk, sig);
722         } else if (thread_group_leader(tsk)) {
723                 autoreap = thread_group_empty(tsk) &&
724                         do_notify_parent(tsk, tsk->exit_signal);
725         } else {
726                 autoreap = true;
727         }
728
729         if (autoreap) {
730                 tsk->exit_state = EXIT_DEAD;
731                 list_add(&tsk->ptrace_entry, &dead);
732         }
733
734         /* mt-exec, de_thread() is waiting for group leader */
735         if (unlikely(tsk->signal->notify_count < 0))
736                 wake_up_process(tsk->signal->group_exec_task);
737         write_unlock_irq(&tasklist_lock);
738
739         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
740                 list_del_init(&p->ptrace_entry);
741                 release_task(p);
742         }
743 }
744
745 #ifdef CONFIG_DEBUG_STACK_USAGE
746 static void check_stack_usage(void)
747 {
748         static DEFINE_SPINLOCK(low_water_lock);
749         static int lowest_to_date = THREAD_SIZE;
750         unsigned long free;
751
752         free = stack_not_used(current);
753
754         if (free >= lowest_to_date)
755                 return;
756
757         spin_lock(&low_water_lock);
758         if (free < lowest_to_date) {
759                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
760                         current->comm, task_pid_nr(current), free);
761                 lowest_to_date = free;
762         }
763         spin_unlock(&low_water_lock);
764 }
765 #else
766 static inline void check_stack_usage(void) {}
767 #endif
768
769 static void synchronize_group_exit(struct task_struct *tsk, long code)
770 {
771         struct sighand_struct *sighand = tsk->sighand;
772         struct signal_struct *signal = tsk->signal;
773
774         spin_lock_irq(&sighand->siglock);
775         signal->quick_threads--;
776         if ((signal->quick_threads == 0) &&
777             !(signal->flags & SIGNAL_GROUP_EXIT)) {
778                 signal->flags = SIGNAL_GROUP_EXIT;
779                 signal->group_exit_code = code;
780                 signal->group_stop_count = 0;
781         }
782         spin_unlock_irq(&sighand->siglock);
783 }
784
785 void __noreturn do_exit(long code)
786 {
787         struct task_struct *tsk = current;
788         int group_dead;
789
790         synchronize_group_exit(tsk, code);
791
792         WARN_ON(tsk->plug);
793
794         kcov_task_exit(tsk);
795         kmsan_task_exit(tsk);
796
797         coredump_task_exit(tsk);
798         ptrace_event(PTRACE_EVENT_EXIT, code);
799
800         validate_creds_for_do_exit(tsk);
801
802         io_uring_files_cancel();
803         exit_signals(tsk);  /* sets PF_EXITING */
804
805         /* sync mm's RSS info before statistics gathering */
806         if (tsk->mm)
807                 sync_mm_rss(tsk->mm);
808         acct_update_integrals(tsk);
809         group_dead = atomic_dec_and_test(&tsk->signal->live);
810         if (group_dead) {
811                 /*
812                  * If the last thread of global init has exited, panic
813                  * immediately to get a useable coredump.
814                  */
815                 if (unlikely(is_global_init(tsk)))
816                         panic("Attempted to kill init! exitcode=0x%08x\n",
817                                 tsk->signal->group_exit_code ?: (int)code);
818
819 #ifdef CONFIG_POSIX_TIMERS
820                 hrtimer_cancel(&tsk->signal->real_timer);
821                 exit_itimers(tsk);
822 #endif
823                 if (tsk->mm)
824                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
825         }
826         acct_collect(code, group_dead);
827         if (group_dead)
828                 tty_audit_exit();
829         audit_free(tsk);
830
831         tsk->exit_code = code;
832         taskstats_exit(tsk, group_dead);
833
834         exit_mm();
835
836         if (group_dead)
837                 acct_process();
838         trace_sched_process_exit(tsk);
839
840         exit_sem(tsk);
841         exit_shm(tsk);
842         exit_files(tsk);
843         exit_fs(tsk);
844         if (group_dead)
845                 disassociate_ctty(1);
846         exit_task_namespaces(tsk);
847         exit_task_work(tsk);
848         exit_thread(tsk);
849
850         /*
851          * Flush inherited counters to the parent - before the parent
852          * gets woken up by child-exit notifications.
853          *
854          * because of cgroup mode, must be called before cgroup_exit()
855          */
856         perf_event_exit_task(tsk);
857
858         sched_autogroup_exit_task(tsk);
859         cgroup_exit(tsk);
860
861         /*
862          * FIXME: do that only when needed, using sched_exit tracepoint
863          */
864         flush_ptrace_hw_breakpoint(tsk);
865
866         exit_tasks_rcu_start();
867         exit_notify(tsk, group_dead);
868         proc_exit_connector(tsk);
869         mpol_put_task_policy(tsk);
870 #ifdef CONFIG_FUTEX
871         if (unlikely(current->pi_state_cache))
872                 kfree(current->pi_state_cache);
873 #endif
874         /*
875          * Make sure we are holding no locks:
876          */
877         debug_check_no_locks_held();
878
879         if (tsk->io_context)
880                 exit_io_context(tsk);
881
882         if (tsk->splice_pipe)
883                 free_pipe_info(tsk->splice_pipe);
884
885         if (tsk->task_frag.page)
886                 put_page(tsk->task_frag.page);
887
888         validate_creds_for_do_exit(tsk);
889         exit_task_stack_account(tsk);
890
891         check_stack_usage();
892         preempt_disable();
893         if (tsk->nr_dirtied)
894                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
895         exit_rcu();
896         exit_tasks_rcu_finish();
897
898         lockdep_free_task(tsk);
899         do_task_dead();
900 }
901
902 void __noreturn make_task_dead(int signr)
903 {
904         static atomic_t oops_count = ATOMIC_INIT(0);
905
906         /*
907          * Take the task off the cpu after something catastrophic has
908          * happened.
909          *
910          * We can get here from a kernel oops, sometimes with preemption off.
911          * Start by checking for critical errors.
912          * Then fix up important state like USER_DS and preemption.
913          * Then do everything else.
914          */
915         struct task_struct *tsk = current;
916
917         if (unlikely(in_interrupt()))
918                 panic("Aiee, killing interrupt handler!");
919         if (unlikely(!tsk->pid))
920                 panic("Attempted to kill the idle task!");
921
922         if (unlikely(in_atomic())) {
923                 pr_info("note: %s[%d] exited with preempt_count %d\n",
924                         current->comm, task_pid_nr(current),
925                         preempt_count());
926                 preempt_count_set(PREEMPT_ENABLED);
927         }
928
929         /*
930          * Every time the system oopses, if the oops happens while a reference
931          * to an object was held, the reference leaks.
932          * If the oops doesn't also leak memory, repeated oopsing can cause
933          * reference counters to wrap around (if they're not using refcount_t).
934          * This means that repeated oopsing can make unexploitable-looking bugs
935          * exploitable through repeated oopsing.
936          * To make sure this can't happen, place an upper bound on how often the
937          * kernel may oops without panic().
938          */
939         if (atomic_inc_return(&oops_count) >= READ_ONCE(oops_limit))
940                 panic("Oopsed too often (kernel.oops_limit is %d)", oops_limit);
941
942         /*
943          * We're taking recursive faults here in make_task_dead. Safest is to just
944          * leave this task alone and wait for reboot.
945          */
946         if (unlikely(tsk->flags & PF_EXITING)) {
947                 pr_alert("Fixing recursive fault but reboot is needed!\n");
948                 futex_exit_recursive(tsk);
949                 tsk->exit_state = EXIT_DEAD;
950                 refcount_inc(&tsk->rcu_users);
951                 do_task_dead();
952         }
953
954         do_exit(signr);
955 }
956
957 SYSCALL_DEFINE1(exit, int, error_code)
958 {
959         do_exit((error_code&0xff)<<8);
960 }
961
962 /*
963  * Take down every thread in the group.  This is called by fatal signals
964  * as well as by sys_exit_group (below).
965  */
966 void __noreturn
967 do_group_exit(int exit_code)
968 {
969         struct signal_struct *sig = current->signal;
970
971         if (sig->flags & SIGNAL_GROUP_EXIT)
972                 exit_code = sig->group_exit_code;
973         else if (sig->group_exec_task)
974                 exit_code = 0;
975         else {
976                 struct sighand_struct *const sighand = current->sighand;
977
978                 spin_lock_irq(&sighand->siglock);
979                 if (sig->flags & SIGNAL_GROUP_EXIT)
980                         /* Another thread got here before we took the lock.  */
981                         exit_code = sig->group_exit_code;
982                 else if (sig->group_exec_task)
983                         exit_code = 0;
984                 else {
985                         sig->group_exit_code = exit_code;
986                         sig->flags = SIGNAL_GROUP_EXIT;
987                         zap_other_threads(current);
988                 }
989                 spin_unlock_irq(&sighand->siglock);
990         }
991
992         do_exit(exit_code);
993         /* NOTREACHED */
994 }
995
996 /*
997  * this kills every thread in the thread group. Note that any externally
998  * wait4()-ing process will get the correct exit code - even if this
999  * thread is not the thread group leader.
1000  */
1001 SYSCALL_DEFINE1(exit_group, int, error_code)
1002 {
1003         do_group_exit((error_code & 0xff) << 8);
1004         /* NOTREACHED */
1005         return 0;
1006 }
1007
1008 struct waitid_info {
1009         pid_t pid;
1010         uid_t uid;
1011         int status;
1012         int cause;
1013 };
1014
1015 struct wait_opts {
1016         enum pid_type           wo_type;
1017         int                     wo_flags;
1018         struct pid              *wo_pid;
1019
1020         struct waitid_info      *wo_info;
1021         int                     wo_stat;
1022         struct rusage           *wo_rusage;
1023
1024         wait_queue_entry_t              child_wait;
1025         int                     notask_error;
1026 };
1027
1028 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1029 {
1030         return  wo->wo_type == PIDTYPE_MAX ||
1031                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1032 }
1033
1034 static int
1035 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1036 {
1037         if (!eligible_pid(wo, p))
1038                 return 0;
1039
1040         /*
1041          * Wait for all children (clone and not) if __WALL is set or
1042          * if it is traced by us.
1043          */
1044         if (ptrace || (wo->wo_flags & __WALL))
1045                 return 1;
1046
1047         /*
1048          * Otherwise, wait for clone children *only* if __WCLONE is set;
1049          * otherwise, wait for non-clone children *only*.
1050          *
1051          * Note: a "clone" child here is one that reports to its parent
1052          * using a signal other than SIGCHLD, or a non-leader thread which
1053          * we can only see if it is traced by us.
1054          */
1055         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1056                 return 0;
1057
1058         return 1;
1059 }
1060
1061 /*
1062  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1063  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1064  * the lock and this task is uninteresting.  If we return nonzero, we have
1065  * released the lock and the system call should return.
1066  */
1067 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1068 {
1069         int state, status;
1070         pid_t pid = task_pid_vnr(p);
1071         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1072         struct waitid_info *infop;
1073
1074         if (!likely(wo->wo_flags & WEXITED))
1075                 return 0;
1076
1077         if (unlikely(wo->wo_flags & WNOWAIT)) {
1078                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1079                         ? p->signal->group_exit_code : p->exit_code;
1080                 get_task_struct(p);
1081                 read_unlock(&tasklist_lock);
1082                 sched_annotate_sleep();
1083                 if (wo->wo_rusage)
1084                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1085                 put_task_struct(p);
1086                 goto out_info;
1087         }
1088         /*
1089          * Move the task's state to DEAD/TRACE, only one thread can do this.
1090          */
1091         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1092                 EXIT_TRACE : EXIT_DEAD;
1093         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1094                 return 0;
1095         /*
1096          * We own this thread, nobody else can reap it.
1097          */
1098         read_unlock(&tasklist_lock);
1099         sched_annotate_sleep();
1100
1101         /*
1102          * Check thread_group_leader() to exclude the traced sub-threads.
1103          */
1104         if (state == EXIT_DEAD && thread_group_leader(p)) {
1105                 struct signal_struct *sig = p->signal;
1106                 struct signal_struct *psig = current->signal;
1107                 unsigned long maxrss;
1108                 u64 tgutime, tgstime;
1109
1110                 /*
1111                  * The resource counters for the group leader are in its
1112                  * own task_struct.  Those for dead threads in the group
1113                  * are in its signal_struct, as are those for the child
1114                  * processes it has previously reaped.  All these
1115                  * accumulate in the parent's signal_struct c* fields.
1116                  *
1117                  * We don't bother to take a lock here to protect these
1118                  * p->signal fields because the whole thread group is dead
1119                  * and nobody can change them.
1120                  *
1121                  * psig->stats_lock also protects us from our sub-threads
1122                  * which can reap other children at the same time. Until
1123                  * we change k_getrusage()-like users to rely on this lock
1124                  * we have to take ->siglock as well.
1125                  *
1126                  * We use thread_group_cputime_adjusted() to get times for
1127                  * the thread group, which consolidates times for all threads
1128                  * in the group including the group leader.
1129                  */
1130                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1131                 spin_lock_irq(&current->sighand->siglock);
1132                 write_seqlock(&psig->stats_lock);
1133                 psig->cutime += tgutime + sig->cutime;
1134                 psig->cstime += tgstime + sig->cstime;
1135                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1136                 psig->cmin_flt +=
1137                         p->min_flt + sig->min_flt + sig->cmin_flt;
1138                 psig->cmaj_flt +=
1139                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1140                 psig->cnvcsw +=
1141                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1142                 psig->cnivcsw +=
1143                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1144                 psig->cinblock +=
1145                         task_io_get_inblock(p) +
1146                         sig->inblock + sig->cinblock;
1147                 psig->coublock +=
1148                         task_io_get_oublock(p) +
1149                         sig->oublock + sig->coublock;
1150                 maxrss = max(sig->maxrss, sig->cmaxrss);
1151                 if (psig->cmaxrss < maxrss)
1152                         psig->cmaxrss = maxrss;
1153                 task_io_accounting_add(&psig->ioac, &p->ioac);
1154                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1155                 write_sequnlock(&psig->stats_lock);
1156                 spin_unlock_irq(&current->sighand->siglock);
1157         }
1158
1159         if (wo->wo_rusage)
1160                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1161         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1162                 ? p->signal->group_exit_code : p->exit_code;
1163         wo->wo_stat = status;
1164
1165         if (state == EXIT_TRACE) {
1166                 write_lock_irq(&tasklist_lock);
1167                 /* We dropped tasklist, ptracer could die and untrace */
1168                 ptrace_unlink(p);
1169
1170                 /* If parent wants a zombie, don't release it now */
1171                 state = EXIT_ZOMBIE;
1172                 if (do_notify_parent(p, p->exit_signal))
1173                         state = EXIT_DEAD;
1174                 p->exit_state = state;
1175                 write_unlock_irq(&tasklist_lock);
1176         }
1177         if (state == EXIT_DEAD)
1178                 release_task(p);
1179
1180 out_info:
1181         infop = wo->wo_info;
1182         if (infop) {
1183                 if ((status & 0x7f) == 0) {
1184                         infop->cause = CLD_EXITED;
1185                         infop->status = status >> 8;
1186                 } else {
1187                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1188                         infop->status = status & 0x7f;
1189                 }
1190                 infop->pid = pid;
1191                 infop->uid = uid;
1192         }
1193
1194         return pid;
1195 }
1196
1197 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1198 {
1199         if (ptrace) {
1200                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1201                         return &p->exit_code;
1202         } else {
1203                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1204                         return &p->signal->group_exit_code;
1205         }
1206         return NULL;
1207 }
1208
1209 /**
1210  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1211  * @wo: wait options
1212  * @ptrace: is the wait for ptrace
1213  * @p: task to wait for
1214  *
1215  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1216  *
1217  * CONTEXT:
1218  * read_lock(&tasklist_lock), which is released if return value is
1219  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1220  *
1221  * RETURNS:
1222  * 0 if wait condition didn't exist and search for other wait conditions
1223  * should continue.  Non-zero return, -errno on failure and @p's pid on
1224  * success, implies that tasklist_lock is released and wait condition
1225  * search should terminate.
1226  */
1227 static int wait_task_stopped(struct wait_opts *wo,
1228                                 int ptrace, struct task_struct *p)
1229 {
1230         struct waitid_info *infop;
1231         int exit_code, *p_code, why;
1232         uid_t uid = 0; /* unneeded, required by compiler */
1233         pid_t pid;
1234
1235         /*
1236          * Traditionally we see ptrace'd stopped tasks regardless of options.
1237          */
1238         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1239                 return 0;
1240
1241         if (!task_stopped_code(p, ptrace))
1242                 return 0;
1243
1244         exit_code = 0;
1245         spin_lock_irq(&p->sighand->siglock);
1246
1247         p_code = task_stopped_code(p, ptrace);
1248         if (unlikely(!p_code))
1249                 goto unlock_sig;
1250
1251         exit_code = *p_code;
1252         if (!exit_code)
1253                 goto unlock_sig;
1254
1255         if (!unlikely(wo->wo_flags & WNOWAIT))
1256                 *p_code = 0;
1257
1258         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1259 unlock_sig:
1260         spin_unlock_irq(&p->sighand->siglock);
1261         if (!exit_code)
1262                 return 0;
1263
1264         /*
1265          * Now we are pretty sure this task is interesting.
1266          * Make sure it doesn't get reaped out from under us while we
1267          * give up the lock and then examine it below.  We don't want to
1268          * keep holding onto the tasklist_lock while we call getrusage and
1269          * possibly take page faults for user memory.
1270          */
1271         get_task_struct(p);
1272         pid = task_pid_vnr(p);
1273         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1274         read_unlock(&tasklist_lock);
1275         sched_annotate_sleep();
1276         if (wo->wo_rusage)
1277                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1278         put_task_struct(p);
1279
1280         if (likely(!(wo->wo_flags & WNOWAIT)))
1281                 wo->wo_stat = (exit_code << 8) | 0x7f;
1282
1283         infop = wo->wo_info;
1284         if (infop) {
1285                 infop->cause = why;
1286                 infop->status = exit_code;
1287                 infop->pid = pid;
1288                 infop->uid = uid;
1289         }
1290         return pid;
1291 }
1292
1293 /*
1294  * Handle do_wait work for one task in a live, non-stopped state.
1295  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1296  * the lock and this task is uninteresting.  If we return nonzero, we have
1297  * released the lock and the system call should return.
1298  */
1299 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1300 {
1301         struct waitid_info *infop;
1302         pid_t pid;
1303         uid_t uid;
1304
1305         if (!unlikely(wo->wo_flags & WCONTINUED))
1306                 return 0;
1307
1308         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1309                 return 0;
1310
1311         spin_lock_irq(&p->sighand->siglock);
1312         /* Re-check with the lock held.  */
1313         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1314                 spin_unlock_irq(&p->sighand->siglock);
1315                 return 0;
1316         }
1317         if (!unlikely(wo->wo_flags & WNOWAIT))
1318                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1319         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1320         spin_unlock_irq(&p->sighand->siglock);
1321
1322         pid = task_pid_vnr(p);
1323         get_task_struct(p);
1324         read_unlock(&tasklist_lock);
1325         sched_annotate_sleep();
1326         if (wo->wo_rusage)
1327                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1328         put_task_struct(p);
1329
1330         infop = wo->wo_info;
1331         if (!infop) {
1332                 wo->wo_stat = 0xffff;
1333         } else {
1334                 infop->cause = CLD_CONTINUED;
1335                 infop->pid = pid;
1336                 infop->uid = uid;
1337                 infop->status = SIGCONT;
1338         }
1339         return pid;
1340 }
1341
1342 /*
1343  * Consider @p for a wait by @parent.
1344  *
1345  * -ECHILD should be in ->notask_error before the first call.
1346  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1347  * Returns zero if the search for a child should continue;
1348  * then ->notask_error is 0 if @p is an eligible child,
1349  * or still -ECHILD.
1350  */
1351 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1352                                 struct task_struct *p)
1353 {
1354         /*
1355          * We can race with wait_task_zombie() from another thread.
1356          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1357          * can't confuse the checks below.
1358          */
1359         int exit_state = READ_ONCE(p->exit_state);
1360         int ret;
1361
1362         if (unlikely(exit_state == EXIT_DEAD))
1363                 return 0;
1364
1365         ret = eligible_child(wo, ptrace, p);
1366         if (!ret)
1367                 return ret;
1368
1369         if (unlikely(exit_state == EXIT_TRACE)) {
1370                 /*
1371                  * ptrace == 0 means we are the natural parent. In this case
1372                  * we should clear notask_error, debugger will notify us.
1373                  */
1374                 if (likely(!ptrace))
1375                         wo->notask_error = 0;
1376                 return 0;
1377         }
1378
1379         if (likely(!ptrace) && unlikely(p->ptrace)) {
1380                 /*
1381                  * If it is traced by its real parent's group, just pretend
1382                  * the caller is ptrace_do_wait() and reap this child if it
1383                  * is zombie.
1384                  *
1385                  * This also hides group stop state from real parent; otherwise
1386                  * a single stop can be reported twice as group and ptrace stop.
1387                  * If a ptracer wants to distinguish these two events for its
1388                  * own children it should create a separate process which takes
1389                  * the role of real parent.
1390                  */
1391                 if (!ptrace_reparented(p))
1392                         ptrace = 1;
1393         }
1394
1395         /* slay zombie? */
1396         if (exit_state == EXIT_ZOMBIE) {
1397                 /* we don't reap group leaders with subthreads */
1398                 if (!delay_group_leader(p)) {
1399                         /*
1400                          * A zombie ptracee is only visible to its ptracer.
1401                          * Notification and reaping will be cascaded to the
1402                          * real parent when the ptracer detaches.
1403                          */
1404                         if (unlikely(ptrace) || likely(!p->ptrace))
1405                                 return wait_task_zombie(wo, p);
1406                 }
1407
1408                 /*
1409                  * Allow access to stopped/continued state via zombie by
1410                  * falling through.  Clearing of notask_error is complex.
1411                  *
1412                  * When !@ptrace:
1413                  *
1414                  * If WEXITED is set, notask_error should naturally be
1415                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1416                  * so, if there are live subthreads, there are events to
1417                  * wait for.  If all subthreads are dead, it's still safe
1418                  * to clear - this function will be called again in finite
1419                  * amount time once all the subthreads are released and
1420                  * will then return without clearing.
1421                  *
1422                  * When @ptrace:
1423                  *
1424                  * Stopped state is per-task and thus can't change once the
1425                  * target task dies.  Only continued and exited can happen.
1426                  * Clear notask_error if WCONTINUED | WEXITED.
1427                  */
1428                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1429                         wo->notask_error = 0;
1430         } else {
1431                 /*
1432                  * @p is alive and it's gonna stop, continue or exit, so
1433                  * there always is something to wait for.
1434                  */
1435                 wo->notask_error = 0;
1436         }
1437
1438         /*
1439          * Wait for stopped.  Depending on @ptrace, different stopped state
1440          * is used and the two don't interact with each other.
1441          */
1442         ret = wait_task_stopped(wo, ptrace, p);
1443         if (ret)
1444                 return ret;
1445
1446         /*
1447          * Wait for continued.  There's only one continued state and the
1448          * ptracer can consume it which can confuse the real parent.  Don't
1449          * use WCONTINUED from ptracer.  You don't need or want it.
1450          */
1451         return wait_task_continued(wo, p);
1452 }
1453
1454 /*
1455  * Do the work of do_wait() for one thread in the group, @tsk.
1456  *
1457  * -ECHILD should be in ->notask_error before the first call.
1458  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1459  * Returns zero if the search for a child should continue; then
1460  * ->notask_error is 0 if there were any eligible children,
1461  * or still -ECHILD.
1462  */
1463 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1464 {
1465         struct task_struct *p;
1466
1467         list_for_each_entry(p, &tsk->children, sibling) {
1468                 int ret = wait_consider_task(wo, 0, p);
1469
1470                 if (ret)
1471                         return ret;
1472         }
1473
1474         return 0;
1475 }
1476
1477 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1478 {
1479         struct task_struct *p;
1480
1481         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1482                 int ret = wait_consider_task(wo, 1, p);
1483
1484                 if (ret)
1485                         return ret;
1486         }
1487
1488         return 0;
1489 }
1490
1491 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1492                                 int sync, void *key)
1493 {
1494         struct wait_opts *wo = container_of(wait, struct wait_opts,
1495                                                 child_wait);
1496         struct task_struct *p = key;
1497
1498         if (!eligible_pid(wo, p))
1499                 return 0;
1500
1501         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1502                 return 0;
1503
1504         return default_wake_function(wait, mode, sync, key);
1505 }
1506
1507 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1508 {
1509         __wake_up_sync_key(&parent->signal->wait_chldexit,
1510                            TASK_INTERRUPTIBLE, p);
1511 }
1512
1513 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1514                                  struct task_struct *target)
1515 {
1516         struct task_struct *parent =
1517                 !ptrace ? target->real_parent : target->parent;
1518
1519         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1520                                      same_thread_group(current, parent));
1521 }
1522
1523 /*
1524  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1525  * and tracee lists to find the target task.
1526  */
1527 static int do_wait_pid(struct wait_opts *wo)
1528 {
1529         bool ptrace;
1530         struct task_struct *target;
1531         int retval;
1532
1533         ptrace = false;
1534         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1535         if (target && is_effectively_child(wo, ptrace, target)) {
1536                 retval = wait_consider_task(wo, ptrace, target);
1537                 if (retval)
1538                         return retval;
1539         }
1540
1541         ptrace = true;
1542         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1543         if (target && target->ptrace &&
1544             is_effectively_child(wo, ptrace, target)) {
1545                 retval = wait_consider_task(wo, ptrace, target);
1546                 if (retval)
1547                         return retval;
1548         }
1549
1550         return 0;
1551 }
1552
1553 static long do_wait(struct wait_opts *wo)
1554 {
1555         int retval;
1556
1557         trace_sched_process_wait(wo->wo_pid);
1558
1559         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1560         wo->child_wait.private = current;
1561         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1562 repeat:
1563         /*
1564          * If there is nothing that can match our criteria, just get out.
1565          * We will clear ->notask_error to zero if we see any child that
1566          * might later match our criteria, even if we are not able to reap
1567          * it yet.
1568          */
1569         wo->notask_error = -ECHILD;
1570         if ((wo->wo_type < PIDTYPE_MAX) &&
1571            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1572                 goto notask;
1573
1574         set_current_state(TASK_INTERRUPTIBLE);
1575         read_lock(&tasklist_lock);
1576
1577         if (wo->wo_type == PIDTYPE_PID) {
1578                 retval = do_wait_pid(wo);
1579                 if (retval)
1580                         goto end;
1581         } else {
1582                 struct task_struct *tsk = current;
1583
1584                 do {
1585                         retval = do_wait_thread(wo, tsk);
1586                         if (retval)
1587                                 goto end;
1588
1589                         retval = ptrace_do_wait(wo, tsk);
1590                         if (retval)
1591                                 goto end;
1592
1593                         if (wo->wo_flags & __WNOTHREAD)
1594                                 break;
1595                 } while_each_thread(current, tsk);
1596         }
1597         read_unlock(&tasklist_lock);
1598
1599 notask:
1600         retval = wo->notask_error;
1601         if (!retval && !(wo->wo_flags & WNOHANG)) {
1602                 retval = -ERESTARTSYS;
1603                 if (!signal_pending(current)) {
1604                         schedule();
1605                         goto repeat;
1606                 }
1607         }
1608 end:
1609         __set_current_state(TASK_RUNNING);
1610         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1611         return retval;
1612 }
1613
1614 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1615                           int options, struct rusage *ru)
1616 {
1617         struct wait_opts wo;
1618         struct pid *pid = NULL;
1619         enum pid_type type;
1620         long ret;
1621         unsigned int f_flags = 0;
1622
1623         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1624                         __WNOTHREAD|__WCLONE|__WALL))
1625                 return -EINVAL;
1626         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1627                 return -EINVAL;
1628
1629         switch (which) {
1630         case P_ALL:
1631                 type = PIDTYPE_MAX;
1632                 break;
1633         case P_PID:
1634                 type = PIDTYPE_PID;
1635                 if (upid <= 0)
1636                         return -EINVAL;
1637
1638                 pid = find_get_pid(upid);
1639                 break;
1640         case P_PGID:
1641                 type = PIDTYPE_PGID;
1642                 if (upid < 0)
1643                         return -EINVAL;
1644
1645                 if (upid)
1646                         pid = find_get_pid(upid);
1647                 else
1648                         pid = get_task_pid(current, PIDTYPE_PGID);
1649                 break;
1650         case P_PIDFD:
1651                 type = PIDTYPE_PID;
1652                 if (upid < 0)
1653                         return -EINVAL;
1654
1655                 pid = pidfd_get_pid(upid, &f_flags);
1656                 if (IS_ERR(pid))
1657                         return PTR_ERR(pid);
1658
1659                 break;
1660         default:
1661                 return -EINVAL;
1662         }
1663
1664         wo.wo_type      = type;
1665         wo.wo_pid       = pid;
1666         wo.wo_flags     = options;
1667         wo.wo_info      = infop;
1668         wo.wo_rusage    = ru;
1669         if (f_flags & O_NONBLOCK)
1670                 wo.wo_flags |= WNOHANG;
1671
1672         ret = do_wait(&wo);
1673         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1674                 ret = -EAGAIN;
1675
1676         put_pid(pid);
1677         return ret;
1678 }
1679
1680 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1681                 infop, int, options, struct rusage __user *, ru)
1682 {
1683         struct rusage r;
1684         struct waitid_info info = {.status = 0};
1685         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1686         int signo = 0;
1687
1688         if (err > 0) {
1689                 signo = SIGCHLD;
1690                 err = 0;
1691                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1692                         return -EFAULT;
1693         }
1694         if (!infop)
1695                 return err;
1696
1697         if (!user_write_access_begin(infop, sizeof(*infop)))
1698                 return -EFAULT;
1699
1700         unsafe_put_user(signo, &infop->si_signo, Efault);
1701         unsafe_put_user(0, &infop->si_errno, Efault);
1702         unsafe_put_user(info.cause, &infop->si_code, Efault);
1703         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1704         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1705         unsafe_put_user(info.status, &infop->si_status, Efault);
1706         user_write_access_end();
1707         return err;
1708 Efault:
1709         user_write_access_end();
1710         return -EFAULT;
1711 }
1712
1713 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1714                   struct rusage *ru)
1715 {
1716         struct wait_opts wo;
1717         struct pid *pid = NULL;
1718         enum pid_type type;
1719         long ret;
1720
1721         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1722                         __WNOTHREAD|__WCLONE|__WALL))
1723                 return -EINVAL;
1724
1725         /* -INT_MIN is not defined */
1726         if (upid == INT_MIN)
1727                 return -ESRCH;
1728
1729         if (upid == -1)
1730                 type = PIDTYPE_MAX;
1731         else if (upid < 0) {
1732                 type = PIDTYPE_PGID;
1733                 pid = find_get_pid(-upid);
1734         } else if (upid == 0) {
1735                 type = PIDTYPE_PGID;
1736                 pid = get_task_pid(current, PIDTYPE_PGID);
1737         } else /* upid > 0 */ {
1738                 type = PIDTYPE_PID;
1739                 pid = find_get_pid(upid);
1740         }
1741
1742         wo.wo_type      = type;
1743         wo.wo_pid       = pid;
1744         wo.wo_flags     = options | WEXITED;
1745         wo.wo_info      = NULL;
1746         wo.wo_stat      = 0;
1747         wo.wo_rusage    = ru;
1748         ret = do_wait(&wo);
1749         put_pid(pid);
1750         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1751                 ret = -EFAULT;
1752
1753         return ret;
1754 }
1755
1756 int kernel_wait(pid_t pid, int *stat)
1757 {
1758         struct wait_opts wo = {
1759                 .wo_type        = PIDTYPE_PID,
1760                 .wo_pid         = find_get_pid(pid),
1761                 .wo_flags       = WEXITED,
1762         };
1763         int ret;
1764
1765         ret = do_wait(&wo);
1766         if (ret > 0 && wo.wo_stat)
1767                 *stat = wo.wo_stat;
1768         put_pid(wo.wo_pid);
1769         return ret;
1770 }
1771
1772 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1773                 int, options, struct rusage __user *, ru)
1774 {
1775         struct rusage r;
1776         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1777
1778         if (err > 0) {
1779                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1780                         return -EFAULT;
1781         }
1782         return err;
1783 }
1784
1785 #ifdef __ARCH_WANT_SYS_WAITPID
1786
1787 /*
1788  * sys_waitpid() remains for compatibility. waitpid() should be
1789  * implemented by calling sys_wait4() from libc.a.
1790  */
1791 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1792 {
1793         return kernel_wait4(pid, stat_addr, options, NULL);
1794 }
1795
1796 #endif
1797
1798 #ifdef CONFIG_COMPAT
1799 COMPAT_SYSCALL_DEFINE4(wait4,
1800         compat_pid_t, pid,
1801         compat_uint_t __user *, stat_addr,
1802         int, options,
1803         struct compat_rusage __user *, ru)
1804 {
1805         struct rusage r;
1806         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1807         if (err > 0) {
1808                 if (ru && put_compat_rusage(&r, ru))
1809                         return -EFAULT;
1810         }
1811         return err;
1812 }
1813
1814 COMPAT_SYSCALL_DEFINE5(waitid,
1815                 int, which, compat_pid_t, pid,
1816                 struct compat_siginfo __user *, infop, int, options,
1817                 struct compat_rusage __user *, uru)
1818 {
1819         struct rusage ru;
1820         struct waitid_info info = {.status = 0};
1821         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1822         int signo = 0;
1823         if (err > 0) {
1824                 signo = SIGCHLD;
1825                 err = 0;
1826                 if (uru) {
1827                         /* kernel_waitid() overwrites everything in ru */
1828                         if (COMPAT_USE_64BIT_TIME)
1829                                 err = copy_to_user(uru, &ru, sizeof(ru));
1830                         else
1831                                 err = put_compat_rusage(&ru, uru);
1832                         if (err)
1833                                 return -EFAULT;
1834                 }
1835         }
1836
1837         if (!infop)
1838                 return err;
1839
1840         if (!user_write_access_begin(infop, sizeof(*infop)))
1841                 return -EFAULT;
1842
1843         unsafe_put_user(signo, &infop->si_signo, Efault);
1844         unsafe_put_user(0, &infop->si_errno, Efault);
1845         unsafe_put_user(info.cause, &infop->si_code, Efault);
1846         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1847         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1848         unsafe_put_user(info.status, &infop->si_status, Efault);
1849         user_write_access_end();
1850         return err;
1851 Efault:
1852         user_write_access_end();
1853         return -EFAULT;
1854 }
1855 #endif
1856
1857 /**
1858  * thread_group_exited - check that a thread group has exited
1859  * @pid: tgid of thread group to be checked.
1860  *
1861  * Test if the thread group represented by tgid has exited (all
1862  * threads are zombies, dead or completely gone).
1863  *
1864  * Return: true if the thread group has exited. false otherwise.
1865  */
1866 bool thread_group_exited(struct pid *pid)
1867 {
1868         struct task_struct *task;
1869         bool exited;
1870
1871         rcu_read_lock();
1872         task = pid_task(pid, PIDTYPE_PID);
1873         exited = !task ||
1874                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1875         rcu_read_unlock();
1876
1877         return exited;
1878 }
1879 EXPORT_SYMBOL(thread_group_exited);
1880
1881 __weak void abort(void)
1882 {
1883         BUG();
1884
1885         /* if that doesn't kill us, halt */
1886         panic("Oops failed to kill thread");
1887 }
1888 EXPORT_SYMBOL(abort);