Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-rc-fixes-2.6
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/signalfd.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/cpuset.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
52
53 extern void sem_exit (void);
54
55 static void exit_mm(struct task_struct * tsk);
56
57 static void __unhash_process(struct task_struct *p)
58 {
59         nr_threads--;
60         detach_pid(p, PIDTYPE_PID);
61         if (thread_group_leader(p)) {
62                 detach_pid(p, PIDTYPE_PGID);
63                 detach_pid(p, PIDTYPE_SID);
64
65                 list_del_rcu(&p->tasks);
66                 __get_cpu_var(process_counts)--;
67         }
68         list_del_rcu(&p->thread_group);
69         remove_parent(p);
70 }
71
72 /*
73  * This function expects the tasklist_lock write-locked.
74  */
75 static void __exit_signal(struct task_struct *tsk)
76 {
77         struct signal_struct *sig = tsk->signal;
78         struct sighand_struct *sighand;
79
80         BUG_ON(!sig);
81         BUG_ON(!atomic_read(&sig->count));
82
83         rcu_read_lock();
84         sighand = rcu_dereference(tsk->sighand);
85         spin_lock(&sighand->siglock);
86
87         /*
88          * Notify that this sighand has been detached. This must
89          * be called with the tsk->sighand lock held. Also, this
90          * access tsk->sighand internally, so it must be called
91          * before tsk->sighand is reset.
92          */
93         signalfd_detach_locked(tsk);
94
95         posix_cpu_timers_exit(tsk);
96         if (atomic_dec_and_test(&sig->count))
97                 posix_cpu_timers_exit_group(tsk);
98         else {
99                 /*
100                  * If there is any task waiting for the group exit
101                  * then notify it:
102                  */
103                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
104                         wake_up_process(sig->group_exit_task);
105                         sig->group_exit_task = NULL;
106                 }
107                 if (tsk == sig->curr_target)
108                         sig->curr_target = next_thread(tsk);
109                 /*
110                  * Accumulate here the counters for all threads but the
111                  * group leader as they die, so they can be added into
112                  * the process-wide totals when those are taken.
113                  * The group leader stays around as a zombie as long
114                  * as there are other threads.  When it gets reaped,
115                  * the exit.c code will add its counts into these totals.
116                  * We won't ever get here for the group leader, since it
117                  * will have been the last reference on the signal_struct.
118                  */
119                 sig->utime = cputime_add(sig->utime, tsk->utime);
120                 sig->stime = cputime_add(sig->stime, tsk->stime);
121                 sig->min_flt += tsk->min_flt;
122                 sig->maj_flt += tsk->maj_flt;
123                 sig->nvcsw += tsk->nvcsw;
124                 sig->nivcsw += tsk->nivcsw;
125                 sig->sched_time += tsk->sched_time;
126                 sig->inblock += task_io_get_inblock(tsk);
127                 sig->oublock += task_io_get_oublock(tsk);
128                 sig = NULL; /* Marker for below. */
129         }
130
131         __unhash_process(tsk);
132
133         tsk->signal = NULL;
134         tsk->sighand = NULL;
135         spin_unlock(&sighand->siglock);
136         rcu_read_unlock();
137
138         __cleanup_sighand(sighand);
139         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
140         flush_sigqueue(&tsk->pending);
141         if (sig) {
142                 flush_sigqueue(&sig->shared_pending);
143                 taskstats_tgid_free(sig);
144                 __cleanup_signal(sig);
145         }
146 }
147
148 static void delayed_put_task_struct(struct rcu_head *rhp)
149 {
150         put_task_struct(container_of(rhp, struct task_struct, rcu));
151 }
152
153 void release_task(struct task_struct * p)
154 {
155         struct task_struct *leader;
156         int zap_leader;
157 repeat:
158         atomic_dec(&p->user->processes);
159         write_lock_irq(&tasklist_lock);
160         ptrace_unlink(p);
161         BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
162         __exit_signal(p);
163
164         /*
165          * If we are the last non-leader member of the thread
166          * group, and the leader is zombie, then notify the
167          * group leader's parent process. (if it wants notification.)
168          */
169         zap_leader = 0;
170         leader = p->group_leader;
171         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
172                 BUG_ON(leader->exit_signal == -1);
173                 do_notify_parent(leader, leader->exit_signal);
174                 /*
175                  * If we were the last child thread and the leader has
176                  * exited already, and the leader's parent ignores SIGCHLD,
177                  * then we are the one who should release the leader.
178                  *
179                  * do_notify_parent() will have marked it self-reaping in
180                  * that case.
181                  */
182                 zap_leader = (leader->exit_signal == -1);
183         }
184
185         sched_exit(p);
186         write_unlock_irq(&tasklist_lock);
187         proc_flush_task(p);
188         release_thread(p);
189         call_rcu(&p->rcu, delayed_put_task_struct);
190
191         p = leader;
192         if (unlikely(zap_leader))
193                 goto repeat;
194 }
195
196 /*
197  * This checks not only the pgrp, but falls back on the pid if no
198  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
199  * without this...
200  *
201  * The caller must hold rcu lock or the tasklist lock.
202  */
203 struct pid *session_of_pgrp(struct pid *pgrp)
204 {
205         struct task_struct *p;
206         struct pid *sid = NULL;
207
208         p = pid_task(pgrp, PIDTYPE_PGID);
209         if (p == NULL)
210                 p = pid_task(pgrp, PIDTYPE_PID);
211         if (p != NULL)
212                 sid = task_session(p);
213
214         return sid;
215 }
216
217 /*
218  * Determine if a process group is "orphaned", according to the POSIX
219  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
220  * by terminal-generated stop signals.  Newly orphaned process groups are
221  * to receive a SIGHUP and a SIGCONT.
222  *
223  * "I ask you, have you ever known what it is to be an orphan?"
224  */
225 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
226 {
227         struct task_struct *p;
228         int ret = 1;
229
230         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
231                 if (p == ignored_task
232                                 || p->exit_state
233                                 || is_init(p->real_parent))
234                         continue;
235                 if (task_pgrp(p->real_parent) != pgrp &&
236                     task_session(p->real_parent) == task_session(p)) {
237                         ret = 0;
238                         break;
239                 }
240         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
241         return ret;     /* (sighing) "Often!" */
242 }
243
244 int is_current_pgrp_orphaned(void)
245 {
246         int retval;
247
248         read_lock(&tasklist_lock);
249         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
250         read_unlock(&tasklist_lock);
251
252         return retval;
253 }
254
255 static int has_stopped_jobs(struct pid *pgrp)
256 {
257         int retval = 0;
258         struct task_struct *p;
259
260         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
261                 if (p->state != TASK_STOPPED)
262                         continue;
263                 retval = 1;
264                 break;
265         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
266         return retval;
267 }
268
269 /**
270  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
271  *
272  * If a kernel thread is launched as a result of a system call, or if
273  * it ever exits, it should generally reparent itself to kthreadd so it
274  * isn't in the way of other processes and is correctly cleaned up on exit.
275  *
276  * The various task state such as scheduling policy and priority may have
277  * been inherited from a user process, so we reset them to sane values here.
278  *
279  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
280  */
281 static void reparent_to_kthreadd(void)
282 {
283         write_lock_irq(&tasklist_lock);
284
285         ptrace_unlink(current);
286         /* Reparent to init */
287         remove_parent(current);
288         current->real_parent = current->parent = kthreadd_task;
289         add_parent(current);
290
291         /* Set the exit signal to SIGCHLD so we signal init on exit */
292         current->exit_signal = SIGCHLD;
293
294         if (!has_rt_policy(current) && (task_nice(current) < 0))
295                 set_user_nice(current, 0);
296         /* cpus_allowed? */
297         /* rt_priority? */
298         /* signals? */
299         security_task_reparent_to_init(current);
300         memcpy(current->signal->rlim, init_task.signal->rlim,
301                sizeof(current->signal->rlim));
302         atomic_inc(&(INIT_USER->__count));
303         write_unlock_irq(&tasklist_lock);
304         switch_uid(INIT_USER);
305 }
306
307 void __set_special_pids(pid_t session, pid_t pgrp)
308 {
309         struct task_struct *curr = current->group_leader;
310
311         if (process_session(curr) != session) {
312                 detach_pid(curr, PIDTYPE_SID);
313                 set_signal_session(curr->signal, session);
314                 attach_pid(curr, PIDTYPE_SID, find_pid(session));
315         }
316         if (process_group(curr) != pgrp) {
317                 detach_pid(curr, PIDTYPE_PGID);
318                 curr->signal->pgrp = pgrp;
319                 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
320         }
321 }
322
323 static void set_special_pids(pid_t session, pid_t pgrp)
324 {
325         write_lock_irq(&tasklist_lock);
326         __set_special_pids(session, pgrp);
327         write_unlock_irq(&tasklist_lock);
328 }
329
330 /*
331  * Let kernel threads use this to say that they
332  * allow a certain signal (since daemonize() will
333  * have disabled all of them by default).
334  */
335 int allow_signal(int sig)
336 {
337         if (!valid_signal(sig) || sig < 1)
338                 return -EINVAL;
339
340         spin_lock_irq(&current->sighand->siglock);
341         sigdelset(&current->blocked, sig);
342         if (!current->mm) {
343                 /* Kernel threads handle their own signals.
344                    Let the signal code know it'll be handled, so
345                    that they don't get converted to SIGKILL or
346                    just silently dropped */
347                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
348         }
349         recalc_sigpending();
350         spin_unlock_irq(&current->sighand->siglock);
351         return 0;
352 }
353
354 EXPORT_SYMBOL(allow_signal);
355
356 int disallow_signal(int sig)
357 {
358         if (!valid_signal(sig) || sig < 1)
359                 return -EINVAL;
360
361         spin_lock_irq(&current->sighand->siglock);
362         current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
363         recalc_sigpending();
364         spin_unlock_irq(&current->sighand->siglock);
365         return 0;
366 }
367
368 EXPORT_SYMBOL(disallow_signal);
369
370 /*
371  *      Put all the gunge required to become a kernel thread without
372  *      attached user resources in one place where it belongs.
373  */
374
375 void daemonize(const char *name, ...)
376 {
377         va_list args;
378         struct fs_struct *fs;
379         sigset_t blocked;
380
381         va_start(args, name);
382         vsnprintf(current->comm, sizeof(current->comm), name, args);
383         va_end(args);
384
385         /*
386          * If we were started as result of loading a module, close all of the
387          * user space pages.  We don't need them, and if we didn't close them
388          * they would be locked into memory.
389          */
390         exit_mm(current);
391
392         set_special_pids(1, 1);
393         proc_clear_tty(current);
394
395         /* Block and flush all signals */
396         sigfillset(&blocked);
397         sigprocmask(SIG_BLOCK, &blocked, NULL);
398         flush_signals(current);
399
400         /* Become as one with the init task */
401
402         exit_fs(current);       /* current->fs->count--; */
403         fs = init_task.fs;
404         current->fs = fs;
405         atomic_inc(&fs->count);
406
407         exit_task_namespaces(current);
408         current->nsproxy = init_task.nsproxy;
409         get_task_namespaces(current);
410
411         exit_files(current);
412         current->files = init_task.files;
413         atomic_inc(&current->files->count);
414
415         reparent_to_kthreadd();
416 }
417
418 EXPORT_SYMBOL(daemonize);
419
420 static void close_files(struct files_struct * files)
421 {
422         int i, j;
423         struct fdtable *fdt;
424
425         j = 0;
426
427         /*
428          * It is safe to dereference the fd table without RCU or
429          * ->file_lock because this is the last reference to the
430          * files structure.
431          */
432         fdt = files_fdtable(files);
433         for (;;) {
434                 unsigned long set;
435                 i = j * __NFDBITS;
436                 if (i >= fdt->max_fds)
437                         break;
438                 set = fdt->open_fds->fds_bits[j++];
439                 while (set) {
440                         if (set & 1) {
441                                 struct file * file = xchg(&fdt->fd[i], NULL);
442                                 if (file) {
443                                         filp_close(file, files);
444                                         cond_resched();
445                                 }
446                         }
447                         i++;
448                         set >>= 1;
449                 }
450         }
451 }
452
453 struct files_struct *get_files_struct(struct task_struct *task)
454 {
455         struct files_struct *files;
456
457         task_lock(task);
458         files = task->files;
459         if (files)
460                 atomic_inc(&files->count);
461         task_unlock(task);
462
463         return files;
464 }
465
466 void fastcall put_files_struct(struct files_struct *files)
467 {
468         struct fdtable *fdt;
469
470         if (atomic_dec_and_test(&files->count)) {
471                 close_files(files);
472                 /*
473                  * Free the fd and fdset arrays if we expanded them.
474                  * If the fdtable was embedded, pass files for freeing
475                  * at the end of the RCU grace period. Otherwise,
476                  * you can free files immediately.
477                  */
478                 fdt = files_fdtable(files);
479                 if (fdt != &files->fdtab)
480                         kmem_cache_free(files_cachep, files);
481                 free_fdtable(fdt);
482         }
483 }
484
485 EXPORT_SYMBOL(put_files_struct);
486
487 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
488 {
489         struct files_struct *old;
490
491         old = tsk->files;
492         task_lock(tsk);
493         tsk->files = files;
494         task_unlock(tsk);
495         put_files_struct(old);
496 }
497 EXPORT_SYMBOL(reset_files_struct);
498
499 static inline void __exit_files(struct task_struct *tsk)
500 {
501         struct files_struct * files = tsk->files;
502
503         if (files) {
504                 task_lock(tsk);
505                 tsk->files = NULL;
506                 task_unlock(tsk);
507                 put_files_struct(files);
508         }
509 }
510
511 void exit_files(struct task_struct *tsk)
512 {
513         __exit_files(tsk);
514 }
515
516 static inline void __put_fs_struct(struct fs_struct *fs)
517 {
518         /* No need to hold fs->lock if we are killing it */
519         if (atomic_dec_and_test(&fs->count)) {
520                 dput(fs->root);
521                 mntput(fs->rootmnt);
522                 dput(fs->pwd);
523                 mntput(fs->pwdmnt);
524                 if (fs->altroot) {
525                         dput(fs->altroot);
526                         mntput(fs->altrootmnt);
527                 }
528                 kmem_cache_free(fs_cachep, fs);
529         }
530 }
531
532 void put_fs_struct(struct fs_struct *fs)
533 {
534         __put_fs_struct(fs);
535 }
536
537 static inline void __exit_fs(struct task_struct *tsk)
538 {
539         struct fs_struct * fs = tsk->fs;
540
541         if (fs) {
542                 task_lock(tsk);
543                 tsk->fs = NULL;
544                 task_unlock(tsk);
545                 __put_fs_struct(fs);
546         }
547 }
548
549 void exit_fs(struct task_struct *tsk)
550 {
551         __exit_fs(tsk);
552 }
553
554 EXPORT_SYMBOL_GPL(exit_fs);
555
556 /*
557  * Turn us into a lazy TLB process if we
558  * aren't already..
559  */
560 static void exit_mm(struct task_struct * tsk)
561 {
562         struct mm_struct *mm = tsk->mm;
563
564         mm_release(tsk, mm);
565         if (!mm)
566                 return;
567         /*
568          * Serialize with any possible pending coredump.
569          * We must hold mmap_sem around checking core_waiters
570          * and clearing tsk->mm.  The core-inducing thread
571          * will increment core_waiters for each thread in the
572          * group with ->mm != NULL.
573          */
574         down_read(&mm->mmap_sem);
575         if (mm->core_waiters) {
576                 up_read(&mm->mmap_sem);
577                 down_write(&mm->mmap_sem);
578                 if (!--mm->core_waiters)
579                         complete(mm->core_startup_done);
580                 up_write(&mm->mmap_sem);
581
582                 wait_for_completion(&mm->core_done);
583                 down_read(&mm->mmap_sem);
584         }
585         atomic_inc(&mm->mm_count);
586         BUG_ON(mm != tsk->active_mm);
587         /* more a memory barrier than a real lock */
588         task_lock(tsk);
589         tsk->mm = NULL;
590         up_read(&mm->mmap_sem);
591         enter_lazy_tlb(mm, current);
592         task_unlock(tsk);
593         mmput(mm);
594 }
595
596 static inline void
597 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
598 {
599         /*
600          * Make sure we're not reparenting to ourselves and that
601          * the parent is not a zombie.
602          */
603         BUG_ON(p == reaper || reaper->exit_state);
604         p->real_parent = reaper;
605 }
606
607 static void
608 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
609 {
610         if (p->pdeath_signal)
611                 /* We already hold the tasklist_lock here.  */
612                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
613
614         /* Move the child from its dying parent to the new one.  */
615         if (unlikely(traced)) {
616                 /* Preserve ptrace links if someone else is tracing this child.  */
617                 list_del_init(&p->ptrace_list);
618                 if (p->parent != p->real_parent)
619                         list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
620         } else {
621                 /* If this child is being traced, then we're the one tracing it
622                  * anyway, so let go of it.
623                  */
624                 p->ptrace = 0;
625                 remove_parent(p);
626                 p->parent = p->real_parent;
627                 add_parent(p);
628
629                 if (p->state == TASK_TRACED) {
630                         /*
631                          * If it was at a trace stop, turn it into
632                          * a normal stop since it's no longer being
633                          * traced.
634                          */
635                         ptrace_untrace(p);
636                 }
637         }
638
639         /* If this is a threaded reparent there is no need to
640          * notify anyone anything has happened.
641          */
642         if (p->real_parent->group_leader == father->group_leader)
643                 return;
644
645         /* We don't want people slaying init.  */
646         if (p->exit_signal != -1)
647                 p->exit_signal = SIGCHLD;
648
649         /* If we'd notified the old parent about this child's death,
650          * also notify the new parent.
651          */
652         if (!traced && p->exit_state == EXIT_ZOMBIE &&
653             p->exit_signal != -1 && thread_group_empty(p))
654                 do_notify_parent(p, p->exit_signal);
655
656         /*
657          * process group orphan check
658          * Case ii: Our child is in a different pgrp
659          * than we are, and it was the only connection
660          * outside, so the child pgrp is now orphaned.
661          */
662         if ((task_pgrp(p) != task_pgrp(father)) &&
663             (task_session(p) == task_session(father))) {
664                 struct pid *pgrp = task_pgrp(p);
665
666                 if (will_become_orphaned_pgrp(pgrp, NULL) &&
667                     has_stopped_jobs(pgrp)) {
668                         __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
669                         __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
670                 }
671         }
672 }
673
674 /*
675  * When we die, we re-parent all our children.
676  * Try to give them to another thread in our thread
677  * group, and if no such member exists, give it to
678  * the child reaper process (ie "init") in our pid
679  * space.
680  */
681 static void
682 forget_original_parent(struct task_struct *father, struct list_head *to_release)
683 {
684         struct task_struct *p, *reaper = father;
685         struct list_head *_p, *_n;
686
687         do {
688                 reaper = next_thread(reaper);
689                 if (reaper == father) {
690                         reaper = child_reaper(father);
691                         break;
692                 }
693         } while (reaper->exit_state);
694
695         /*
696          * There are only two places where our children can be:
697          *
698          * - in our child list
699          * - in our ptraced child list
700          *
701          * Search them and reparent children.
702          */
703         list_for_each_safe(_p, _n, &father->children) {
704                 int ptrace;
705                 p = list_entry(_p, struct task_struct, sibling);
706
707                 ptrace = p->ptrace;
708
709                 /* if father isn't the real parent, then ptrace must be enabled */
710                 BUG_ON(father != p->real_parent && !ptrace);
711
712                 if (father == p->real_parent) {
713                         /* reparent with a reaper, real father it's us */
714                         choose_new_parent(p, reaper);
715                         reparent_thread(p, father, 0);
716                 } else {
717                         /* reparent ptraced task to its real parent */
718                         __ptrace_unlink (p);
719                         if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
720                             thread_group_empty(p))
721                                 do_notify_parent(p, p->exit_signal);
722                 }
723
724                 /*
725                  * if the ptraced child is a zombie with exit_signal == -1
726                  * we must collect it before we exit, or it will remain
727                  * zombie forever since we prevented it from self-reap itself
728                  * while it was being traced by us, to be able to see it in wait4.
729                  */
730                 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
731                         list_add(&p->ptrace_list, to_release);
732         }
733         list_for_each_safe(_p, _n, &father->ptrace_children) {
734                 p = list_entry(_p, struct task_struct, ptrace_list);
735                 choose_new_parent(p, reaper);
736                 reparent_thread(p, father, 1);
737         }
738 }
739
740 /*
741  * Send signals to all our closest relatives so that they know
742  * to properly mourn us..
743  */
744 static void exit_notify(struct task_struct *tsk)
745 {
746         int state;
747         struct task_struct *t;
748         struct list_head ptrace_dead, *_p, *_n;
749         struct pid *pgrp;
750
751         if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
752             && !thread_group_empty(tsk)) {
753                 /*
754                  * This occurs when there was a race between our exit
755                  * syscall and a group signal choosing us as the one to
756                  * wake up.  It could be that we are the only thread
757                  * alerted to check for pending signals, but another thread
758                  * should be woken now to take the signal since we will not.
759                  * Now we'll wake all the threads in the group just to make
760                  * sure someone gets all the pending signals.
761                  */
762                 read_lock(&tasklist_lock);
763                 spin_lock_irq(&tsk->sighand->siglock);
764                 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
765                         if (!signal_pending(t) && !(t->flags & PF_EXITING))
766                                 recalc_sigpending_and_wake(t);
767                 spin_unlock_irq(&tsk->sighand->siglock);
768                 read_unlock(&tasklist_lock);
769         }
770
771         write_lock_irq(&tasklist_lock);
772
773         /*
774          * This does two things:
775          *
776          * A.  Make init inherit all the child processes
777          * B.  Check to see if any process groups have become orphaned
778          *      as a result of our exiting, and if they have any stopped
779          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
780          */
781
782         INIT_LIST_HEAD(&ptrace_dead);
783         forget_original_parent(tsk, &ptrace_dead);
784         BUG_ON(!list_empty(&tsk->children));
785         BUG_ON(!list_empty(&tsk->ptrace_children));
786
787         /*
788          * Check to see if any process groups have become orphaned
789          * as a result of our exiting, and if they have any stopped
790          * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
791          *
792          * Case i: Our father is in a different pgrp than we are
793          * and we were the only connection outside, so our pgrp
794          * is about to become orphaned.
795          */
796          
797         t = tsk->real_parent;
798         
799         pgrp = task_pgrp(tsk);
800         if ((task_pgrp(t) != pgrp) &&
801             (task_session(t) == task_session(tsk)) &&
802             will_become_orphaned_pgrp(pgrp, tsk) &&
803             has_stopped_jobs(pgrp)) {
804                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
805                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
806         }
807
808         /* Let father know we died 
809          *
810          * Thread signals are configurable, but you aren't going to use
811          * that to send signals to arbitary processes. 
812          * That stops right now.
813          *
814          * If the parent exec id doesn't match the exec id we saved
815          * when we started then we know the parent has changed security
816          * domain.
817          *
818          * If our self_exec id doesn't match our parent_exec_id then
819          * we have changed execution domain as these two values started
820          * the same after a fork.
821          *      
822          */
823         
824         if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
825             ( tsk->parent_exec_id != t->self_exec_id  ||
826               tsk->self_exec_id != tsk->parent_exec_id)
827             && !capable(CAP_KILL))
828                 tsk->exit_signal = SIGCHLD;
829
830
831         /* If something other than our normal parent is ptracing us, then
832          * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
833          * only has special meaning to our real parent.
834          */
835         if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
836                 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
837                 do_notify_parent(tsk, signal);
838         } else if (tsk->ptrace) {
839                 do_notify_parent(tsk, SIGCHLD);
840         }
841
842         state = EXIT_ZOMBIE;
843         if (tsk->exit_signal == -1 &&
844             (likely(tsk->ptrace == 0) ||
845              unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
846                 state = EXIT_DEAD;
847         tsk->exit_state = state;
848
849         write_unlock_irq(&tasklist_lock);
850
851         list_for_each_safe(_p, _n, &ptrace_dead) {
852                 list_del_init(_p);
853                 t = list_entry(_p, struct task_struct, ptrace_list);
854                 release_task(t);
855         }
856
857         /* If the process is dead, release it - nobody will wait for it */
858         if (state == EXIT_DEAD)
859                 release_task(tsk);
860 }
861
862 fastcall NORET_TYPE void do_exit(long code)
863 {
864         struct task_struct *tsk = current;
865         int group_dead;
866
867         profile_task_exit(tsk);
868
869         WARN_ON(atomic_read(&tsk->fs_excl));
870
871         if (unlikely(in_interrupt()))
872                 panic("Aiee, killing interrupt handler!");
873         if (unlikely(!tsk->pid))
874                 panic("Attempted to kill the idle task!");
875         if (unlikely(tsk == child_reaper(tsk))) {
876                 if (tsk->nsproxy->pid_ns != &init_pid_ns)
877                         tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
878                 else
879                         panic("Attempted to kill init!");
880         }
881
882
883         if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
884                 current->ptrace_message = code;
885                 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
886         }
887
888         /*
889          * We're taking recursive faults here in do_exit. Safest is to just
890          * leave this task alone and wait for reboot.
891          */
892         if (unlikely(tsk->flags & PF_EXITING)) {
893                 printk(KERN_ALERT
894                         "Fixing recursive fault but reboot is needed!\n");
895                 /*
896                  * We can do this unlocked here. The futex code uses
897                  * this flag just to verify whether the pi state
898                  * cleanup has been done or not. In the worst case it
899                  * loops once more. We pretend that the cleanup was
900                  * done as there is no way to return. Either the
901                  * OWNER_DIED bit is set by now or we push the blocked
902                  * task into the wait for ever nirwana as well.
903                  */
904                 tsk->flags |= PF_EXITPIDONE;
905                 if (tsk->io_context)
906                         exit_io_context();
907                 set_current_state(TASK_UNINTERRUPTIBLE);
908                 schedule();
909         }
910
911         /*
912          * tsk->flags are checked in the futex code to protect against
913          * an exiting task cleaning up the robust pi futexes.
914          */
915         spin_lock_irq(&tsk->pi_lock);
916         tsk->flags |= PF_EXITING;
917         spin_unlock_irq(&tsk->pi_lock);
918
919         if (unlikely(in_atomic()))
920                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
921                                 current->comm, current->pid,
922                                 preempt_count());
923
924         acct_update_integrals(tsk);
925         if (tsk->mm) {
926                 update_hiwater_rss(tsk->mm);
927                 update_hiwater_vm(tsk->mm);
928         }
929         group_dead = atomic_dec_and_test(&tsk->signal->live);
930         if (group_dead) {
931                 hrtimer_cancel(&tsk->signal->real_timer);
932                 exit_itimers(tsk->signal);
933         }
934         acct_collect(code, group_dead);
935         if (unlikely(tsk->robust_list))
936                 exit_robust_list(tsk);
937 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
938         if (unlikely(tsk->compat_robust_list))
939                 compat_exit_robust_list(tsk);
940 #endif
941         if (unlikely(tsk->audit_context))
942                 audit_free(tsk);
943
944         taskstats_exit(tsk, group_dead);
945
946         exit_mm(tsk);
947
948         if (group_dead)
949                 acct_process();
950         exit_sem(tsk);
951         __exit_files(tsk);
952         __exit_fs(tsk);
953         exit_thread();
954         cpuset_exit(tsk);
955         exit_keys(tsk);
956
957         if (group_dead && tsk->signal->leader)
958                 disassociate_ctty(1);
959
960         module_put(task_thread_info(tsk)->exec_domain->module);
961         if (tsk->binfmt)
962                 module_put(tsk->binfmt->module);
963
964         tsk->exit_code = code;
965         proc_exit_connector(tsk);
966         exit_task_namespaces(tsk);
967         exit_notify(tsk);
968 #ifdef CONFIG_NUMA
969         mpol_free(tsk->mempolicy);
970         tsk->mempolicy = NULL;
971 #endif
972         /*
973          * This must happen late, after the PID is not
974          * hashed anymore:
975          */
976         if (unlikely(!list_empty(&tsk->pi_state_list)))
977                 exit_pi_state_list(tsk);
978         if (unlikely(current->pi_state_cache))
979                 kfree(current->pi_state_cache);
980         /*
981          * Make sure we are holding no locks:
982          */
983         debug_check_no_locks_held(tsk);
984         /*
985          * We can do this unlocked here. The futex code uses this flag
986          * just to verify whether the pi state cleanup has been done
987          * or not. In the worst case it loops once more.
988          */
989         tsk->flags |= PF_EXITPIDONE;
990
991         if (tsk->io_context)
992                 exit_io_context();
993
994         if (tsk->splice_pipe)
995                 __free_pipe_info(tsk->splice_pipe);
996
997         preempt_disable();
998         /* causes final put_task_struct in finish_task_switch(). */
999         tsk->state = TASK_DEAD;
1000
1001         schedule();
1002         BUG();
1003         /* Avoid "noreturn function does return".  */
1004         for (;;)
1005                 cpu_relax();    /* For when BUG is null */
1006 }
1007
1008 EXPORT_SYMBOL_GPL(do_exit);
1009
1010 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1011 {
1012         if (comp)
1013                 complete(comp);
1014
1015         do_exit(code);
1016 }
1017
1018 EXPORT_SYMBOL(complete_and_exit);
1019
1020 asmlinkage long sys_exit(int error_code)
1021 {
1022         do_exit((error_code&0xff)<<8);
1023 }
1024
1025 /*
1026  * Take down every thread in the group.  This is called by fatal signals
1027  * as well as by sys_exit_group (below).
1028  */
1029 NORET_TYPE void
1030 do_group_exit(int exit_code)
1031 {
1032         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1033
1034         if (current->signal->flags & SIGNAL_GROUP_EXIT)
1035                 exit_code = current->signal->group_exit_code;
1036         else if (!thread_group_empty(current)) {
1037                 struct signal_struct *const sig = current->signal;
1038                 struct sighand_struct *const sighand = current->sighand;
1039                 spin_lock_irq(&sighand->siglock);
1040                 if (sig->flags & SIGNAL_GROUP_EXIT)
1041                         /* Another thread got here before we took the lock.  */
1042                         exit_code = sig->group_exit_code;
1043                 else {
1044                         sig->group_exit_code = exit_code;
1045                         zap_other_threads(current);
1046                 }
1047                 spin_unlock_irq(&sighand->siglock);
1048         }
1049
1050         do_exit(exit_code);
1051         /* NOTREACHED */
1052 }
1053
1054 /*
1055  * this kills every thread in the thread group. Note that any externally
1056  * wait4()-ing process will get the correct exit code - even if this
1057  * thread is not the thread group leader.
1058  */
1059 asmlinkage void sys_exit_group(int error_code)
1060 {
1061         do_group_exit((error_code & 0xff) << 8);
1062 }
1063
1064 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1065 {
1066         int err;
1067
1068         if (pid > 0) {
1069                 if (p->pid != pid)
1070                         return 0;
1071         } else if (!pid) {
1072                 if (process_group(p) != process_group(current))
1073                         return 0;
1074         } else if (pid != -1) {
1075                 if (process_group(p) != -pid)
1076                         return 0;
1077         }
1078
1079         /*
1080          * Do not consider detached threads that are
1081          * not ptraced:
1082          */
1083         if (p->exit_signal == -1 && !p->ptrace)
1084                 return 0;
1085
1086         /* Wait for all children (clone and not) if __WALL is set;
1087          * otherwise, wait for clone children *only* if __WCLONE is
1088          * set; otherwise, wait for non-clone children *only*.  (Note:
1089          * A "clone" child here is one that reports to its parent
1090          * using a signal other than SIGCHLD.) */
1091         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1092             && !(options & __WALL))
1093                 return 0;
1094         /*
1095          * Do not consider thread group leaders that are
1096          * in a non-empty thread group:
1097          */
1098         if (delay_group_leader(p))
1099                 return 2;
1100
1101         err = security_task_wait(p);
1102         if (err)
1103                 return err;
1104
1105         return 1;
1106 }
1107
1108 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1109                                int why, int status,
1110                                struct siginfo __user *infop,
1111                                struct rusage __user *rusagep)
1112 {
1113         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1114
1115         put_task_struct(p);
1116         if (!retval)
1117                 retval = put_user(SIGCHLD, &infop->si_signo);
1118         if (!retval)
1119                 retval = put_user(0, &infop->si_errno);
1120         if (!retval)
1121                 retval = put_user((short)why, &infop->si_code);
1122         if (!retval)
1123                 retval = put_user(pid, &infop->si_pid);
1124         if (!retval)
1125                 retval = put_user(uid, &infop->si_uid);
1126         if (!retval)
1127                 retval = put_user(status, &infop->si_status);
1128         if (!retval)
1129                 retval = pid;
1130         return retval;
1131 }
1132
1133 /*
1134  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1135  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1136  * the lock and this task is uninteresting.  If we return nonzero, we have
1137  * released the lock and the system call should return.
1138  */
1139 static int wait_task_zombie(struct task_struct *p, int noreap,
1140                             struct siginfo __user *infop,
1141                             int __user *stat_addr, struct rusage __user *ru)
1142 {
1143         unsigned long state;
1144         int retval;
1145         int status;
1146
1147         if (unlikely(noreap)) {
1148                 pid_t pid = p->pid;
1149                 uid_t uid = p->uid;
1150                 int exit_code = p->exit_code;
1151                 int why, status;
1152
1153                 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1154                         return 0;
1155                 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1156                         return 0;
1157                 get_task_struct(p);
1158                 read_unlock(&tasklist_lock);
1159                 if ((exit_code & 0x7f) == 0) {
1160                         why = CLD_EXITED;
1161                         status = exit_code >> 8;
1162                 } else {
1163                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1164                         status = exit_code & 0x7f;
1165                 }
1166                 return wait_noreap_copyout(p, pid, uid, why,
1167                                            status, infop, ru);
1168         }
1169
1170         /*
1171          * Try to move the task's state to DEAD
1172          * only one thread is allowed to do this:
1173          */
1174         state = xchg(&p->exit_state, EXIT_DEAD);
1175         if (state != EXIT_ZOMBIE) {
1176                 BUG_ON(state != EXIT_DEAD);
1177                 return 0;
1178         }
1179         if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1180                 /*
1181                  * This can only happen in a race with a ptraced thread
1182                  * dying on another processor.
1183                  */
1184                 return 0;
1185         }
1186
1187         if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1188                 struct signal_struct *psig;
1189                 struct signal_struct *sig;
1190
1191                 /*
1192                  * The resource counters for the group leader are in its
1193                  * own task_struct.  Those for dead threads in the group
1194                  * are in its signal_struct, as are those for the child
1195                  * processes it has previously reaped.  All these
1196                  * accumulate in the parent's signal_struct c* fields.
1197                  *
1198                  * We don't bother to take a lock here to protect these
1199                  * p->signal fields, because they are only touched by
1200                  * __exit_signal, which runs with tasklist_lock
1201                  * write-locked anyway, and so is excluded here.  We do
1202                  * need to protect the access to p->parent->signal fields,
1203                  * as other threads in the parent group can be right
1204                  * here reaping other children at the same time.
1205                  */
1206                 spin_lock_irq(&p->parent->sighand->siglock);
1207                 psig = p->parent->signal;
1208                 sig = p->signal;
1209                 psig->cutime =
1210                         cputime_add(psig->cutime,
1211                         cputime_add(p->utime,
1212                         cputime_add(sig->utime,
1213                                     sig->cutime)));
1214                 psig->cstime =
1215                         cputime_add(psig->cstime,
1216                         cputime_add(p->stime,
1217                         cputime_add(sig->stime,
1218                                     sig->cstime)));
1219                 psig->cmin_flt +=
1220                         p->min_flt + sig->min_flt + sig->cmin_flt;
1221                 psig->cmaj_flt +=
1222                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1223                 psig->cnvcsw +=
1224                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1225                 psig->cnivcsw +=
1226                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1227                 psig->cinblock +=
1228                         task_io_get_inblock(p) +
1229                         sig->inblock + sig->cinblock;
1230                 psig->coublock +=
1231                         task_io_get_oublock(p) +
1232                         sig->oublock + sig->coublock;
1233                 spin_unlock_irq(&p->parent->sighand->siglock);
1234         }
1235
1236         /*
1237          * Now we are sure this task is interesting, and no other
1238          * thread can reap it because we set its state to EXIT_DEAD.
1239          */
1240         read_unlock(&tasklist_lock);
1241
1242         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1243         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1244                 ? p->signal->group_exit_code : p->exit_code;
1245         if (!retval && stat_addr)
1246                 retval = put_user(status, stat_addr);
1247         if (!retval && infop)
1248                 retval = put_user(SIGCHLD, &infop->si_signo);
1249         if (!retval && infop)
1250                 retval = put_user(0, &infop->si_errno);
1251         if (!retval && infop) {
1252                 int why;
1253
1254                 if ((status & 0x7f) == 0) {
1255                         why = CLD_EXITED;
1256                         status >>= 8;
1257                 } else {
1258                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1259                         status &= 0x7f;
1260                 }
1261                 retval = put_user((short)why, &infop->si_code);
1262                 if (!retval)
1263                         retval = put_user(status, &infop->si_status);
1264         }
1265         if (!retval && infop)
1266                 retval = put_user(p->pid, &infop->si_pid);
1267         if (!retval && infop)
1268                 retval = put_user(p->uid, &infop->si_uid);
1269         if (retval) {
1270                 // TODO: is this safe?
1271                 p->exit_state = EXIT_ZOMBIE;
1272                 return retval;
1273         }
1274         retval = p->pid;
1275         if (p->real_parent != p->parent) {
1276                 write_lock_irq(&tasklist_lock);
1277                 /* Double-check with lock held.  */
1278                 if (p->real_parent != p->parent) {
1279                         __ptrace_unlink(p);
1280                         // TODO: is this safe?
1281                         p->exit_state = EXIT_ZOMBIE;
1282                         /*
1283                          * If this is not a detached task, notify the parent.
1284                          * If it's still not detached after that, don't release
1285                          * it now.
1286                          */
1287                         if (p->exit_signal != -1) {
1288                                 do_notify_parent(p, p->exit_signal);
1289                                 if (p->exit_signal != -1)
1290                                         p = NULL;
1291                         }
1292                 }
1293                 write_unlock_irq(&tasklist_lock);
1294         }
1295         if (p != NULL)
1296                 release_task(p);
1297         BUG_ON(!retval);
1298         return retval;
1299 }
1300
1301 /*
1302  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1303  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1304  * the lock and this task is uninteresting.  If we return nonzero, we have
1305  * released the lock and the system call should return.
1306  */
1307 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1308                              int noreap, struct siginfo __user *infop,
1309                              int __user *stat_addr, struct rusage __user *ru)
1310 {
1311         int retval, exit_code;
1312
1313         if (!p->exit_code)
1314                 return 0;
1315         if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1316             p->signal && p->signal->group_stop_count > 0)
1317                 /*
1318                  * A group stop is in progress and this is the group leader.
1319                  * We won't report until all threads have stopped.
1320                  */
1321                 return 0;
1322
1323         /*
1324          * Now we are pretty sure this task is interesting.
1325          * Make sure it doesn't get reaped out from under us while we
1326          * give up the lock and then examine it below.  We don't want to
1327          * keep holding onto the tasklist_lock while we call getrusage and
1328          * possibly take page faults for user memory.
1329          */
1330         get_task_struct(p);
1331         read_unlock(&tasklist_lock);
1332
1333         if (unlikely(noreap)) {
1334                 pid_t pid = p->pid;
1335                 uid_t uid = p->uid;
1336                 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1337
1338                 exit_code = p->exit_code;
1339                 if (unlikely(!exit_code) ||
1340                     unlikely(p->state & TASK_TRACED))
1341                         goto bail_ref;
1342                 return wait_noreap_copyout(p, pid, uid,
1343                                            why, (exit_code << 8) | 0x7f,
1344                                            infop, ru);
1345         }
1346
1347         write_lock_irq(&tasklist_lock);
1348
1349         /*
1350          * This uses xchg to be atomic with the thread resuming and setting
1351          * it.  It must also be done with the write lock held to prevent a
1352          * race with the EXIT_ZOMBIE case.
1353          */
1354         exit_code = xchg(&p->exit_code, 0);
1355         if (unlikely(p->exit_state)) {
1356                 /*
1357                  * The task resumed and then died.  Let the next iteration
1358                  * catch it in EXIT_ZOMBIE.  Note that exit_code might
1359                  * already be zero here if it resumed and did _exit(0).
1360                  * The task itself is dead and won't touch exit_code again;
1361                  * other processors in this function are locked out.
1362                  */
1363                 p->exit_code = exit_code;
1364                 exit_code = 0;
1365         }
1366         if (unlikely(exit_code == 0)) {
1367                 /*
1368                  * Another thread in this function got to it first, or it
1369                  * resumed, or it resumed and then died.
1370                  */
1371                 write_unlock_irq(&tasklist_lock);
1372 bail_ref:
1373                 put_task_struct(p);
1374                 /*
1375                  * We are returning to the wait loop without having successfully
1376                  * removed the process and having released the lock. We cannot
1377                  * continue, since the "p" task pointer is potentially stale.
1378                  *
1379                  * Return -EAGAIN, and do_wait() will restart the loop from the
1380                  * beginning. Do _not_ re-acquire the lock.
1381                  */
1382                 return -EAGAIN;
1383         }
1384
1385         /* move to end of parent's list to avoid starvation */
1386         remove_parent(p);
1387         add_parent(p);
1388
1389         write_unlock_irq(&tasklist_lock);
1390
1391         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1392         if (!retval && stat_addr)
1393                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1394         if (!retval && infop)
1395                 retval = put_user(SIGCHLD, &infop->si_signo);
1396         if (!retval && infop)
1397                 retval = put_user(0, &infop->si_errno);
1398         if (!retval && infop)
1399                 retval = put_user((short)((p->ptrace & PT_PTRACED)
1400                                           ? CLD_TRAPPED : CLD_STOPPED),
1401                                   &infop->si_code);
1402         if (!retval && infop)
1403                 retval = put_user(exit_code, &infop->si_status);
1404         if (!retval && infop)
1405                 retval = put_user(p->pid, &infop->si_pid);
1406         if (!retval && infop)
1407                 retval = put_user(p->uid, &infop->si_uid);
1408         if (!retval)
1409                 retval = p->pid;
1410         put_task_struct(p);
1411
1412         BUG_ON(!retval);
1413         return retval;
1414 }
1415
1416 /*
1417  * Handle do_wait work for one task in a live, non-stopped state.
1418  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1419  * the lock and this task is uninteresting.  If we return nonzero, we have
1420  * released the lock and the system call should return.
1421  */
1422 static int wait_task_continued(struct task_struct *p, int noreap,
1423                                struct siginfo __user *infop,
1424                                int __user *stat_addr, struct rusage __user *ru)
1425 {
1426         int retval;
1427         pid_t pid;
1428         uid_t uid;
1429
1430         if (unlikely(!p->signal))
1431                 return 0;
1432
1433         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1434                 return 0;
1435
1436         spin_lock_irq(&p->sighand->siglock);
1437         /* Re-check with the lock held.  */
1438         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1439                 spin_unlock_irq(&p->sighand->siglock);
1440                 return 0;
1441         }
1442         if (!noreap)
1443                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1444         spin_unlock_irq(&p->sighand->siglock);
1445
1446         pid = p->pid;
1447         uid = p->uid;
1448         get_task_struct(p);
1449         read_unlock(&tasklist_lock);
1450
1451         if (!infop) {
1452                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1453                 put_task_struct(p);
1454                 if (!retval && stat_addr)
1455                         retval = put_user(0xffff, stat_addr);
1456                 if (!retval)
1457                         retval = p->pid;
1458         } else {
1459                 retval = wait_noreap_copyout(p, pid, uid,
1460                                              CLD_CONTINUED, SIGCONT,
1461                                              infop, ru);
1462                 BUG_ON(retval == 0);
1463         }
1464
1465         return retval;
1466 }
1467
1468
1469 static inline int my_ptrace_child(struct task_struct *p)
1470 {
1471         if (!(p->ptrace & PT_PTRACED))
1472                 return 0;
1473         if (!(p->ptrace & PT_ATTACHED))
1474                 return 1;
1475         /*
1476          * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1477          * we are the attacher.  If we are the real parent, this is a race
1478          * inside ptrace_attach.  It is waiting for the tasklist_lock,
1479          * which we have to switch the parent links, but has already set
1480          * the flags in p->ptrace.
1481          */
1482         return (p->parent != p->real_parent);
1483 }
1484
1485 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1486                     int __user *stat_addr, struct rusage __user *ru)
1487 {
1488         DECLARE_WAITQUEUE(wait, current);
1489         struct task_struct *tsk;
1490         int flag, retval;
1491         int allowed, denied;
1492
1493         add_wait_queue(&current->signal->wait_chldexit,&wait);
1494 repeat:
1495         /*
1496          * We will set this flag if we see any child that might later
1497          * match our criteria, even if we are not able to reap it yet.
1498          */
1499         flag = 0;
1500         allowed = denied = 0;
1501         current->state = TASK_INTERRUPTIBLE;
1502         read_lock(&tasklist_lock);
1503         tsk = current;
1504         do {
1505                 struct task_struct *p;
1506                 struct list_head *_p;
1507                 int ret;
1508
1509                 list_for_each(_p,&tsk->children) {
1510                         p = list_entry(_p, struct task_struct, sibling);
1511
1512                         ret = eligible_child(pid, options, p);
1513                         if (!ret)
1514                                 continue;
1515
1516                         if (unlikely(ret < 0)) {
1517                                 denied = ret;
1518                                 continue;
1519                         }
1520                         allowed = 1;
1521
1522                         switch (p->state) {
1523                         case TASK_TRACED:
1524                                 /*
1525                                  * When we hit the race with PTRACE_ATTACH,
1526                                  * we will not report this child.  But the
1527                                  * race means it has not yet been moved to
1528                                  * our ptrace_children list, so we need to
1529                                  * set the flag here to avoid a spurious ECHILD
1530                                  * when the race happens with the only child.
1531                                  */
1532                                 flag = 1;
1533                                 if (!my_ptrace_child(p))
1534                                         continue;
1535                                 /*FALLTHROUGH*/
1536                         case TASK_STOPPED:
1537                                 /*
1538                                  * It's stopped now, so it might later
1539                                  * continue, exit, or stop again.
1540                                  */
1541                                 flag = 1;
1542                                 if (!(options & WUNTRACED) &&
1543                                     !my_ptrace_child(p))
1544                                         continue;
1545                                 retval = wait_task_stopped(p, ret == 2,
1546                                                            (options & WNOWAIT),
1547                                                            infop,
1548                                                            stat_addr, ru);
1549                                 if (retval == -EAGAIN)
1550                                         goto repeat;
1551                                 if (retval != 0) /* He released the lock.  */
1552                                         goto end;
1553                                 break;
1554                         default:
1555                         // case EXIT_DEAD:
1556                                 if (p->exit_state == EXIT_DEAD)
1557                                         continue;
1558                         // case EXIT_ZOMBIE:
1559                                 if (p->exit_state == EXIT_ZOMBIE) {
1560                                         /*
1561                                          * Eligible but we cannot release
1562                                          * it yet:
1563                                          */
1564                                         if (ret == 2)
1565                                                 goto check_continued;
1566                                         if (!likely(options & WEXITED))
1567                                                 continue;
1568                                         retval = wait_task_zombie(
1569                                                 p, (options & WNOWAIT),
1570                                                 infop, stat_addr, ru);
1571                                         /* He released the lock.  */
1572                                         if (retval != 0)
1573                                                 goto end;
1574                                         break;
1575                                 }
1576 check_continued:
1577                                 /*
1578                                  * It's running now, so it might later
1579                                  * exit, stop, or stop and then continue.
1580                                  */
1581                                 flag = 1;
1582                                 if (!unlikely(options & WCONTINUED))
1583                                         continue;
1584                                 retval = wait_task_continued(
1585                                         p, (options & WNOWAIT),
1586                                         infop, stat_addr, ru);
1587                                 if (retval != 0) /* He released the lock.  */
1588                                         goto end;
1589                                 break;
1590                         }
1591                 }
1592                 if (!flag) {
1593                         list_for_each(_p, &tsk->ptrace_children) {
1594                                 p = list_entry(_p, struct task_struct,
1595                                                 ptrace_list);
1596                                 if (!eligible_child(pid, options, p))
1597                                         continue;
1598                                 flag = 1;
1599                                 break;
1600                         }
1601                 }
1602                 if (options & __WNOTHREAD)
1603                         break;
1604                 tsk = next_thread(tsk);
1605                 BUG_ON(tsk->signal != current->signal);
1606         } while (tsk != current);
1607
1608         read_unlock(&tasklist_lock);
1609         if (flag) {
1610                 retval = 0;
1611                 if (options & WNOHANG)
1612                         goto end;
1613                 retval = -ERESTARTSYS;
1614                 if (signal_pending(current))
1615                         goto end;
1616                 schedule();
1617                 goto repeat;
1618         }
1619         retval = -ECHILD;
1620         if (unlikely(denied) && !allowed)
1621                 retval = denied;
1622 end:
1623         current->state = TASK_RUNNING;
1624         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1625         if (infop) {
1626                 if (retval > 0)
1627                 retval = 0;
1628                 else {
1629                         /*
1630                          * For a WNOHANG return, clear out all the fields
1631                          * we would set so the user can easily tell the
1632                          * difference.
1633                          */
1634                         if (!retval)
1635                                 retval = put_user(0, &infop->si_signo);
1636                         if (!retval)
1637                                 retval = put_user(0, &infop->si_errno);
1638                         if (!retval)
1639                                 retval = put_user(0, &infop->si_code);
1640                         if (!retval)
1641                                 retval = put_user(0, &infop->si_pid);
1642                         if (!retval)
1643                                 retval = put_user(0, &infop->si_uid);
1644                         if (!retval)
1645                                 retval = put_user(0, &infop->si_status);
1646                 }
1647         }
1648         return retval;
1649 }
1650
1651 asmlinkage long sys_waitid(int which, pid_t pid,
1652                            struct siginfo __user *infop, int options,
1653                            struct rusage __user *ru)
1654 {
1655         long ret;
1656
1657         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1658                 return -EINVAL;
1659         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1660                 return -EINVAL;
1661
1662         switch (which) {
1663         case P_ALL:
1664                 pid = -1;
1665                 break;
1666         case P_PID:
1667                 if (pid <= 0)
1668                         return -EINVAL;
1669                 break;
1670         case P_PGID:
1671                 if (pid <= 0)
1672                         return -EINVAL;
1673                 pid = -pid;
1674                 break;
1675         default:
1676                 return -EINVAL;
1677         }
1678
1679         ret = do_wait(pid, options, infop, NULL, ru);
1680
1681         /* avoid REGPARM breakage on x86: */
1682         prevent_tail_call(ret);
1683         return ret;
1684 }
1685
1686 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1687                           int options, struct rusage __user *ru)
1688 {
1689         long ret;
1690
1691         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1692                         __WNOTHREAD|__WCLONE|__WALL))
1693                 return -EINVAL;
1694         ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1695
1696         /* avoid REGPARM breakage on x86: */
1697         prevent_tail_call(ret);
1698         return ret;
1699 }
1700
1701 #ifdef __ARCH_WANT_SYS_WAITPID
1702
1703 /*
1704  * sys_waitpid() remains for compatibility. waitpid() should be
1705  * implemented by calling sys_wait4() from libc.a.
1706  */
1707 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1708 {
1709         return sys_wait4(pid, stat_addr, options, NULL);
1710 }
1711
1712 #endif