Merge branch '5.20/scsi-queue' into 6.0/scsi-fixes
[platform/kernel/linux-starfive.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69
70 #include <linux/uaccess.h>
71 #include <asm/unistd.h>
72 #include <asm/mmu_context.h>
73
74 static void __unhash_process(struct task_struct *p, bool group_dead)
75 {
76         nr_threads--;
77         detach_pid(p, PIDTYPE_PID);
78         if (group_dead) {
79                 detach_pid(p, PIDTYPE_TGID);
80                 detach_pid(p, PIDTYPE_PGID);
81                 detach_pid(p, PIDTYPE_SID);
82
83                 list_del_rcu(&p->tasks);
84                 list_del_init(&p->sibling);
85                 __this_cpu_dec(process_counts);
86         }
87         list_del_rcu(&p->thread_group);
88         list_del_rcu(&p->thread_node);
89 }
90
91 /*
92  * This function expects the tasklist_lock write-locked.
93  */
94 static void __exit_signal(struct task_struct *tsk)
95 {
96         struct signal_struct *sig = tsk->signal;
97         bool group_dead = thread_group_leader(tsk);
98         struct sighand_struct *sighand;
99         struct tty_struct *tty;
100         u64 utime, stime;
101
102         sighand = rcu_dereference_check(tsk->sighand,
103                                         lockdep_tasklist_lock_is_held());
104         spin_lock(&sighand->siglock);
105
106 #ifdef CONFIG_POSIX_TIMERS
107         posix_cpu_timers_exit(tsk);
108         if (group_dead)
109                 posix_cpu_timers_exit_group(tsk);
110 #endif
111
112         if (group_dead) {
113                 tty = sig->tty;
114                 sig->tty = NULL;
115         } else {
116                 /*
117                  * If there is any task waiting for the group exit
118                  * then notify it:
119                  */
120                 if (sig->notify_count > 0 && !--sig->notify_count)
121                         wake_up_process(sig->group_exec_task);
122
123                 if (tsk == sig->curr_target)
124                         sig->curr_target = next_thread(tsk);
125         }
126
127         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
128                               sizeof(unsigned long long));
129
130         /*
131          * Accumulate here the counters for all threads as they die. We could
132          * skip the group leader because it is the last user of signal_struct,
133          * but we want to avoid the race with thread_group_cputime() which can
134          * see the empty ->thread_head list.
135          */
136         task_cputime(tsk, &utime, &stime);
137         write_seqlock(&sig->stats_lock);
138         sig->utime += utime;
139         sig->stime += stime;
140         sig->gtime += task_gtime(tsk);
141         sig->min_flt += tsk->min_flt;
142         sig->maj_flt += tsk->maj_flt;
143         sig->nvcsw += tsk->nvcsw;
144         sig->nivcsw += tsk->nivcsw;
145         sig->inblock += task_io_get_inblock(tsk);
146         sig->oublock += task_io_get_oublock(tsk);
147         task_io_accounting_add(&sig->ioac, &tsk->ioac);
148         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
149         sig->nr_threads--;
150         __unhash_process(tsk, group_dead);
151         write_sequnlock(&sig->stats_lock);
152
153         /*
154          * Do this under ->siglock, we can race with another thread
155          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
156          */
157         flush_sigqueue(&tsk->pending);
158         tsk->sighand = NULL;
159         spin_unlock(&sighand->siglock);
160
161         __cleanup_sighand(sighand);
162         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
163         if (group_dead) {
164                 flush_sigqueue(&sig->shared_pending);
165                 tty_kref_put(tty);
166         }
167 }
168
169 static void delayed_put_task_struct(struct rcu_head *rhp)
170 {
171         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
172
173         kprobe_flush_task(tsk);
174         rethook_flush_task(tsk);
175         perf_event_delayed_put(tsk);
176         trace_sched_process_free(tsk);
177         put_task_struct(tsk);
178 }
179
180 void put_task_struct_rcu_user(struct task_struct *task)
181 {
182         if (refcount_dec_and_test(&task->rcu_users))
183                 call_rcu(&task->rcu, delayed_put_task_struct);
184 }
185
186 void release_task(struct task_struct *p)
187 {
188         struct task_struct *leader;
189         struct pid *thread_pid;
190         int zap_leader;
191 repeat:
192         /* don't need to get the RCU readlock here - the process is dead and
193          * can't be modifying its own credentials. But shut RCU-lockdep up */
194         rcu_read_lock();
195         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
196         rcu_read_unlock();
197
198         cgroup_release(p);
199
200         write_lock_irq(&tasklist_lock);
201         ptrace_release_task(p);
202         thread_pid = get_pid(p->thread_pid);
203         __exit_signal(p);
204
205         /*
206          * If we are the last non-leader member of the thread
207          * group, and the leader is zombie, then notify the
208          * group leader's parent process. (if it wants notification.)
209          */
210         zap_leader = 0;
211         leader = p->group_leader;
212         if (leader != p && thread_group_empty(leader)
213                         && leader->exit_state == EXIT_ZOMBIE) {
214                 /*
215                  * If we were the last child thread and the leader has
216                  * exited already, and the leader's parent ignores SIGCHLD,
217                  * then we are the one who should release the leader.
218                  */
219                 zap_leader = do_notify_parent(leader, leader->exit_signal);
220                 if (zap_leader)
221                         leader->exit_state = EXIT_DEAD;
222         }
223
224         write_unlock_irq(&tasklist_lock);
225         seccomp_filter_release(p);
226         proc_flush_pid(thread_pid);
227         put_pid(thread_pid);
228         release_thread(p);
229         put_task_struct_rcu_user(p);
230
231         p = leader;
232         if (unlikely(zap_leader))
233                 goto repeat;
234 }
235
236 int rcuwait_wake_up(struct rcuwait *w)
237 {
238         int ret = 0;
239         struct task_struct *task;
240
241         rcu_read_lock();
242
243         /*
244          * Order condition vs @task, such that everything prior to the load
245          * of @task is visible. This is the condition as to why the user called
246          * rcuwait_wake() in the first place. Pairs with set_current_state()
247          * barrier (A) in rcuwait_wait_event().
248          *
249          *    WAIT                WAKE
250          *    [S] tsk = current   [S] cond = true
251          *        MB (A)              MB (B)
252          *    [L] cond            [L] tsk
253          */
254         smp_mb(); /* (B) */
255
256         task = rcu_dereference(w->task);
257         if (task)
258                 ret = wake_up_process(task);
259         rcu_read_unlock();
260
261         return ret;
262 }
263 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
264
265 /*
266  * Determine if a process group is "orphaned", according to the POSIX
267  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
268  * by terminal-generated stop signals.  Newly orphaned process groups are
269  * to receive a SIGHUP and a SIGCONT.
270  *
271  * "I ask you, have you ever known what it is to be an orphan?"
272  */
273 static int will_become_orphaned_pgrp(struct pid *pgrp,
274                                         struct task_struct *ignored_task)
275 {
276         struct task_struct *p;
277
278         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
279                 if ((p == ignored_task) ||
280                     (p->exit_state && thread_group_empty(p)) ||
281                     is_global_init(p->real_parent))
282                         continue;
283
284                 if (task_pgrp(p->real_parent) != pgrp &&
285                     task_session(p->real_parent) == task_session(p))
286                         return 0;
287         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
288
289         return 1;
290 }
291
292 int is_current_pgrp_orphaned(void)
293 {
294         int retval;
295
296         read_lock(&tasklist_lock);
297         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
298         read_unlock(&tasklist_lock);
299
300         return retval;
301 }
302
303 static bool has_stopped_jobs(struct pid *pgrp)
304 {
305         struct task_struct *p;
306
307         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
308                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
309                         return true;
310         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
311
312         return false;
313 }
314
315 /*
316  * Check to see if any process groups have become orphaned as
317  * a result of our exiting, and if they have any stopped jobs,
318  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
319  */
320 static void
321 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
322 {
323         struct pid *pgrp = task_pgrp(tsk);
324         struct task_struct *ignored_task = tsk;
325
326         if (!parent)
327                 /* exit: our father is in a different pgrp than
328                  * we are and we were the only connection outside.
329                  */
330                 parent = tsk->real_parent;
331         else
332                 /* reparent: our child is in a different pgrp than
333                  * we are, and it was the only connection outside.
334                  */
335                 ignored_task = NULL;
336
337         if (task_pgrp(parent) != pgrp &&
338             task_session(parent) == task_session(tsk) &&
339             will_become_orphaned_pgrp(pgrp, ignored_task) &&
340             has_stopped_jobs(pgrp)) {
341                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
342                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
343         }
344 }
345
346 static void coredump_task_exit(struct task_struct *tsk)
347 {
348         struct core_state *core_state;
349
350         /*
351          * Serialize with any possible pending coredump.
352          * We must hold siglock around checking core_state
353          * and setting PF_POSTCOREDUMP.  The core-inducing thread
354          * will increment ->nr_threads for each thread in the
355          * group without PF_POSTCOREDUMP set.
356          */
357         spin_lock_irq(&tsk->sighand->siglock);
358         tsk->flags |= PF_POSTCOREDUMP;
359         core_state = tsk->signal->core_state;
360         spin_unlock_irq(&tsk->sighand->siglock);
361         if (core_state) {
362                 struct core_thread self;
363
364                 self.task = current;
365                 if (self.task->flags & PF_SIGNALED)
366                         self.next = xchg(&core_state->dumper.next, &self);
367                 else
368                         self.task = NULL;
369                 /*
370                  * Implies mb(), the result of xchg() must be visible
371                  * to core_state->dumper.
372                  */
373                 if (atomic_dec_and_test(&core_state->nr_threads))
374                         complete(&core_state->startup);
375
376                 for (;;) {
377                         set_current_state(TASK_UNINTERRUPTIBLE);
378                         if (!self.task) /* see coredump_finish() */
379                                 break;
380                         freezable_schedule();
381                 }
382                 __set_current_state(TASK_RUNNING);
383         }
384 }
385
386 #ifdef CONFIG_MEMCG
387 /*
388  * A task is exiting.   If it owned this mm, find a new owner for the mm.
389  */
390 void mm_update_next_owner(struct mm_struct *mm)
391 {
392         struct task_struct *c, *g, *p = current;
393
394 retry:
395         /*
396          * If the exiting or execing task is not the owner, it's
397          * someone else's problem.
398          */
399         if (mm->owner != p)
400                 return;
401         /*
402          * The current owner is exiting/execing and there are no other
403          * candidates.  Do not leave the mm pointing to a possibly
404          * freed task structure.
405          */
406         if (atomic_read(&mm->mm_users) <= 1) {
407                 WRITE_ONCE(mm->owner, NULL);
408                 return;
409         }
410
411         read_lock(&tasklist_lock);
412         /*
413          * Search in the children
414          */
415         list_for_each_entry(c, &p->children, sibling) {
416                 if (c->mm == mm)
417                         goto assign_new_owner;
418         }
419
420         /*
421          * Search in the siblings
422          */
423         list_for_each_entry(c, &p->real_parent->children, sibling) {
424                 if (c->mm == mm)
425                         goto assign_new_owner;
426         }
427
428         /*
429          * Search through everything else, we should not get here often.
430          */
431         for_each_process(g) {
432                 if (g->flags & PF_KTHREAD)
433                         continue;
434                 for_each_thread(g, c) {
435                         if (c->mm == mm)
436                                 goto assign_new_owner;
437                         if (c->mm)
438                                 break;
439                 }
440         }
441         read_unlock(&tasklist_lock);
442         /*
443          * We found no owner yet mm_users > 1: this implies that we are
444          * most likely racing with swapoff (try_to_unuse()) or /proc or
445          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
446          */
447         WRITE_ONCE(mm->owner, NULL);
448         return;
449
450 assign_new_owner:
451         BUG_ON(c == p);
452         get_task_struct(c);
453         /*
454          * The task_lock protects c->mm from changing.
455          * We always want mm->owner->mm == mm
456          */
457         task_lock(c);
458         /*
459          * Delay read_unlock() till we have the task_lock()
460          * to ensure that c does not slip away underneath us
461          */
462         read_unlock(&tasklist_lock);
463         if (c->mm != mm) {
464                 task_unlock(c);
465                 put_task_struct(c);
466                 goto retry;
467         }
468         WRITE_ONCE(mm->owner, c);
469         task_unlock(c);
470         put_task_struct(c);
471 }
472 #endif /* CONFIG_MEMCG */
473
474 /*
475  * Turn us into a lazy TLB process if we
476  * aren't already..
477  */
478 static void exit_mm(void)
479 {
480         struct mm_struct *mm = current->mm;
481
482         exit_mm_release(current, mm);
483         if (!mm)
484                 return;
485         sync_mm_rss(mm);
486         mmap_read_lock(mm);
487         mmgrab(mm);
488         BUG_ON(mm != current->active_mm);
489         /* more a memory barrier than a real lock */
490         task_lock(current);
491         /*
492          * When a thread stops operating on an address space, the loop
493          * in membarrier_private_expedited() may not observe that
494          * tsk->mm, and the loop in membarrier_global_expedited() may
495          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
496          * rq->membarrier_state, so those would not issue an IPI.
497          * Membarrier requires a memory barrier after accessing
498          * user-space memory, before clearing tsk->mm or the
499          * rq->membarrier_state.
500          */
501         smp_mb__after_spinlock();
502         local_irq_disable();
503         current->mm = NULL;
504         membarrier_update_current_mm(NULL);
505         enter_lazy_tlb(mm, current);
506         local_irq_enable();
507         task_unlock(current);
508         mmap_read_unlock(mm);
509         mm_update_next_owner(mm);
510         mmput(mm);
511         if (test_thread_flag(TIF_MEMDIE))
512                 exit_oom_victim();
513 }
514
515 static struct task_struct *find_alive_thread(struct task_struct *p)
516 {
517         struct task_struct *t;
518
519         for_each_thread(p, t) {
520                 if (!(t->flags & PF_EXITING))
521                         return t;
522         }
523         return NULL;
524 }
525
526 static struct task_struct *find_child_reaper(struct task_struct *father,
527                                                 struct list_head *dead)
528         __releases(&tasklist_lock)
529         __acquires(&tasklist_lock)
530 {
531         struct pid_namespace *pid_ns = task_active_pid_ns(father);
532         struct task_struct *reaper = pid_ns->child_reaper;
533         struct task_struct *p, *n;
534
535         if (likely(reaper != father))
536                 return reaper;
537
538         reaper = find_alive_thread(father);
539         if (reaper) {
540                 pid_ns->child_reaper = reaper;
541                 return reaper;
542         }
543
544         write_unlock_irq(&tasklist_lock);
545
546         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
547                 list_del_init(&p->ptrace_entry);
548                 release_task(p);
549         }
550
551         zap_pid_ns_processes(pid_ns);
552         write_lock_irq(&tasklist_lock);
553
554         return father;
555 }
556
557 /*
558  * When we die, we re-parent all our children, and try to:
559  * 1. give them to another thread in our thread group, if such a member exists
560  * 2. give it to the first ancestor process which prctl'd itself as a
561  *    child_subreaper for its children (like a service manager)
562  * 3. give it to the init process (PID 1) in our pid namespace
563  */
564 static struct task_struct *find_new_reaper(struct task_struct *father,
565                                            struct task_struct *child_reaper)
566 {
567         struct task_struct *thread, *reaper;
568
569         thread = find_alive_thread(father);
570         if (thread)
571                 return thread;
572
573         if (father->signal->has_child_subreaper) {
574                 unsigned int ns_level = task_pid(father)->level;
575                 /*
576                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
577                  * We can't check reaper != child_reaper to ensure we do not
578                  * cross the namespaces, the exiting parent could be injected
579                  * by setns() + fork().
580                  * We check pid->level, this is slightly more efficient than
581                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
582                  */
583                 for (reaper = father->real_parent;
584                      task_pid(reaper)->level == ns_level;
585                      reaper = reaper->real_parent) {
586                         if (reaper == &init_task)
587                                 break;
588                         if (!reaper->signal->is_child_subreaper)
589                                 continue;
590                         thread = find_alive_thread(reaper);
591                         if (thread)
592                                 return thread;
593                 }
594         }
595
596         return child_reaper;
597 }
598
599 /*
600 * Any that need to be release_task'd are put on the @dead list.
601  */
602 static void reparent_leader(struct task_struct *father, struct task_struct *p,
603                                 struct list_head *dead)
604 {
605         if (unlikely(p->exit_state == EXIT_DEAD))
606                 return;
607
608         /* We don't want people slaying init. */
609         p->exit_signal = SIGCHLD;
610
611         /* If it has exited notify the new parent about this child's death. */
612         if (!p->ptrace &&
613             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
614                 if (do_notify_parent(p, p->exit_signal)) {
615                         p->exit_state = EXIT_DEAD;
616                         list_add(&p->ptrace_entry, dead);
617                 }
618         }
619
620         kill_orphaned_pgrp(p, father);
621 }
622
623 /*
624  * This does two things:
625  *
626  * A.  Make init inherit all the child processes
627  * B.  Check to see if any process groups have become orphaned
628  *      as a result of our exiting, and if they have any stopped
629  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
630  */
631 static void forget_original_parent(struct task_struct *father,
632                                         struct list_head *dead)
633 {
634         struct task_struct *p, *t, *reaper;
635
636         if (unlikely(!list_empty(&father->ptraced)))
637                 exit_ptrace(father, dead);
638
639         /* Can drop and reacquire tasklist_lock */
640         reaper = find_child_reaper(father, dead);
641         if (list_empty(&father->children))
642                 return;
643
644         reaper = find_new_reaper(father, reaper);
645         list_for_each_entry(p, &father->children, sibling) {
646                 for_each_thread(p, t) {
647                         RCU_INIT_POINTER(t->real_parent, reaper);
648                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
649                         if (likely(!t->ptrace))
650                                 t->parent = t->real_parent;
651                         if (t->pdeath_signal)
652                                 group_send_sig_info(t->pdeath_signal,
653                                                     SEND_SIG_NOINFO, t,
654                                                     PIDTYPE_TGID);
655                 }
656                 /*
657                  * If this is a threaded reparent there is no need to
658                  * notify anyone anything has happened.
659                  */
660                 if (!same_thread_group(reaper, father))
661                         reparent_leader(father, p, dead);
662         }
663         list_splice_tail_init(&father->children, &reaper->children);
664 }
665
666 /*
667  * Send signals to all our closest relatives so that they know
668  * to properly mourn us..
669  */
670 static void exit_notify(struct task_struct *tsk, int group_dead)
671 {
672         bool autoreap;
673         struct task_struct *p, *n;
674         LIST_HEAD(dead);
675
676         write_lock_irq(&tasklist_lock);
677         forget_original_parent(tsk, &dead);
678
679         if (group_dead)
680                 kill_orphaned_pgrp(tsk->group_leader, NULL);
681
682         tsk->exit_state = EXIT_ZOMBIE;
683         if (unlikely(tsk->ptrace)) {
684                 int sig = thread_group_leader(tsk) &&
685                                 thread_group_empty(tsk) &&
686                                 !ptrace_reparented(tsk) ?
687                         tsk->exit_signal : SIGCHLD;
688                 autoreap = do_notify_parent(tsk, sig);
689         } else if (thread_group_leader(tsk)) {
690                 autoreap = thread_group_empty(tsk) &&
691                         do_notify_parent(tsk, tsk->exit_signal);
692         } else {
693                 autoreap = true;
694         }
695
696         if (autoreap) {
697                 tsk->exit_state = EXIT_DEAD;
698                 list_add(&tsk->ptrace_entry, &dead);
699         }
700
701         /* mt-exec, de_thread() is waiting for group leader */
702         if (unlikely(tsk->signal->notify_count < 0))
703                 wake_up_process(tsk->signal->group_exec_task);
704         write_unlock_irq(&tasklist_lock);
705
706         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
707                 list_del_init(&p->ptrace_entry);
708                 release_task(p);
709         }
710 }
711
712 #ifdef CONFIG_DEBUG_STACK_USAGE
713 static void check_stack_usage(void)
714 {
715         static DEFINE_SPINLOCK(low_water_lock);
716         static int lowest_to_date = THREAD_SIZE;
717         unsigned long free;
718
719         free = stack_not_used(current);
720
721         if (free >= lowest_to_date)
722                 return;
723
724         spin_lock(&low_water_lock);
725         if (free < lowest_to_date) {
726                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
727                         current->comm, task_pid_nr(current), free);
728                 lowest_to_date = free;
729         }
730         spin_unlock(&low_water_lock);
731 }
732 #else
733 static inline void check_stack_usage(void) {}
734 #endif
735
736 void __noreturn do_exit(long code)
737 {
738         struct task_struct *tsk = current;
739         int group_dead;
740
741         WARN_ON(tsk->plug);
742
743         kcov_task_exit(tsk);
744
745         coredump_task_exit(tsk);
746         ptrace_event(PTRACE_EVENT_EXIT, code);
747
748         validate_creds_for_do_exit(tsk);
749
750         io_uring_files_cancel();
751         exit_signals(tsk);  /* sets PF_EXITING */
752
753         /* sync mm's RSS info before statistics gathering */
754         if (tsk->mm)
755                 sync_mm_rss(tsk->mm);
756         acct_update_integrals(tsk);
757         group_dead = atomic_dec_and_test(&tsk->signal->live);
758         if (group_dead) {
759                 /*
760                  * If the last thread of global init has exited, panic
761                  * immediately to get a useable coredump.
762                  */
763                 if (unlikely(is_global_init(tsk)))
764                         panic("Attempted to kill init! exitcode=0x%08x\n",
765                                 tsk->signal->group_exit_code ?: (int)code);
766
767 #ifdef CONFIG_POSIX_TIMERS
768                 hrtimer_cancel(&tsk->signal->real_timer);
769                 exit_itimers(tsk);
770 #endif
771                 if (tsk->mm)
772                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
773         }
774         acct_collect(code, group_dead);
775         if (group_dead)
776                 tty_audit_exit();
777         audit_free(tsk);
778
779         tsk->exit_code = code;
780         taskstats_exit(tsk, group_dead);
781
782         exit_mm();
783
784         if (group_dead)
785                 acct_process();
786         trace_sched_process_exit(tsk);
787
788         exit_sem(tsk);
789         exit_shm(tsk);
790         exit_files(tsk);
791         exit_fs(tsk);
792         if (group_dead)
793                 disassociate_ctty(1);
794         exit_task_namespaces(tsk);
795         exit_task_work(tsk);
796         exit_thread(tsk);
797
798         /*
799          * Flush inherited counters to the parent - before the parent
800          * gets woken up by child-exit notifications.
801          *
802          * because of cgroup mode, must be called before cgroup_exit()
803          */
804         perf_event_exit_task(tsk);
805
806         sched_autogroup_exit_task(tsk);
807         cgroup_exit(tsk);
808
809         /*
810          * FIXME: do that only when needed, using sched_exit tracepoint
811          */
812         flush_ptrace_hw_breakpoint(tsk);
813
814         exit_tasks_rcu_start();
815         exit_notify(tsk, group_dead);
816         proc_exit_connector(tsk);
817         mpol_put_task_policy(tsk);
818 #ifdef CONFIG_FUTEX
819         if (unlikely(current->pi_state_cache))
820                 kfree(current->pi_state_cache);
821 #endif
822         /*
823          * Make sure we are holding no locks:
824          */
825         debug_check_no_locks_held();
826
827         if (tsk->io_context)
828                 exit_io_context(tsk);
829
830         if (tsk->splice_pipe)
831                 free_pipe_info(tsk->splice_pipe);
832
833         if (tsk->task_frag.page)
834                 put_page(tsk->task_frag.page);
835
836         validate_creds_for_do_exit(tsk);
837         exit_task_stack_account(tsk);
838
839         check_stack_usage();
840         preempt_disable();
841         if (tsk->nr_dirtied)
842                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
843         exit_rcu();
844         exit_tasks_rcu_finish();
845
846         lockdep_free_task(tsk);
847         do_task_dead();
848 }
849
850 void __noreturn make_task_dead(int signr)
851 {
852         /*
853          * Take the task off the cpu after something catastrophic has
854          * happened.
855          *
856          * We can get here from a kernel oops, sometimes with preemption off.
857          * Start by checking for critical errors.
858          * Then fix up important state like USER_DS and preemption.
859          * Then do everything else.
860          */
861         struct task_struct *tsk = current;
862
863         if (unlikely(in_interrupt()))
864                 panic("Aiee, killing interrupt handler!");
865         if (unlikely(!tsk->pid))
866                 panic("Attempted to kill the idle task!");
867
868         if (unlikely(in_atomic())) {
869                 pr_info("note: %s[%d] exited with preempt_count %d\n",
870                         current->comm, task_pid_nr(current),
871                         preempt_count());
872                 preempt_count_set(PREEMPT_ENABLED);
873         }
874
875         /*
876          * We're taking recursive faults here in make_task_dead. Safest is to just
877          * leave this task alone and wait for reboot.
878          */
879         if (unlikely(tsk->flags & PF_EXITING)) {
880                 pr_alert("Fixing recursive fault but reboot is needed!\n");
881                 futex_exit_recursive(tsk);
882                 tsk->exit_state = EXIT_DEAD;
883                 refcount_inc(&tsk->rcu_users);
884                 do_task_dead();
885         }
886
887         do_exit(signr);
888 }
889
890 SYSCALL_DEFINE1(exit, int, error_code)
891 {
892         do_exit((error_code&0xff)<<8);
893 }
894
895 /*
896  * Take down every thread in the group.  This is called by fatal signals
897  * as well as by sys_exit_group (below).
898  */
899 void __noreturn
900 do_group_exit(int exit_code)
901 {
902         struct signal_struct *sig = current->signal;
903
904         if (sig->flags & SIGNAL_GROUP_EXIT)
905                 exit_code = sig->group_exit_code;
906         else if (sig->group_exec_task)
907                 exit_code = 0;
908         else if (!thread_group_empty(current)) {
909                 struct sighand_struct *const sighand = current->sighand;
910
911                 spin_lock_irq(&sighand->siglock);
912                 if (sig->flags & SIGNAL_GROUP_EXIT)
913                         /* Another thread got here before we took the lock.  */
914                         exit_code = sig->group_exit_code;
915                 else if (sig->group_exec_task)
916                         exit_code = 0;
917                 else {
918                         sig->group_exit_code = exit_code;
919                         sig->flags = SIGNAL_GROUP_EXIT;
920                         zap_other_threads(current);
921                 }
922                 spin_unlock_irq(&sighand->siglock);
923         }
924
925         do_exit(exit_code);
926         /* NOTREACHED */
927 }
928
929 /*
930  * this kills every thread in the thread group. Note that any externally
931  * wait4()-ing process will get the correct exit code - even if this
932  * thread is not the thread group leader.
933  */
934 SYSCALL_DEFINE1(exit_group, int, error_code)
935 {
936         do_group_exit((error_code & 0xff) << 8);
937         /* NOTREACHED */
938         return 0;
939 }
940
941 struct waitid_info {
942         pid_t pid;
943         uid_t uid;
944         int status;
945         int cause;
946 };
947
948 struct wait_opts {
949         enum pid_type           wo_type;
950         int                     wo_flags;
951         struct pid              *wo_pid;
952
953         struct waitid_info      *wo_info;
954         int                     wo_stat;
955         struct rusage           *wo_rusage;
956
957         wait_queue_entry_t              child_wait;
958         int                     notask_error;
959 };
960
961 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
962 {
963         return  wo->wo_type == PIDTYPE_MAX ||
964                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
965 }
966
967 static int
968 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
969 {
970         if (!eligible_pid(wo, p))
971                 return 0;
972
973         /*
974          * Wait for all children (clone and not) if __WALL is set or
975          * if it is traced by us.
976          */
977         if (ptrace || (wo->wo_flags & __WALL))
978                 return 1;
979
980         /*
981          * Otherwise, wait for clone children *only* if __WCLONE is set;
982          * otherwise, wait for non-clone children *only*.
983          *
984          * Note: a "clone" child here is one that reports to its parent
985          * using a signal other than SIGCHLD, or a non-leader thread which
986          * we can only see if it is traced by us.
987          */
988         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
989                 return 0;
990
991         return 1;
992 }
993
994 /*
995  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
996  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
997  * the lock and this task is uninteresting.  If we return nonzero, we have
998  * released the lock and the system call should return.
999  */
1000 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1001 {
1002         int state, status;
1003         pid_t pid = task_pid_vnr(p);
1004         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1005         struct waitid_info *infop;
1006
1007         if (!likely(wo->wo_flags & WEXITED))
1008                 return 0;
1009
1010         if (unlikely(wo->wo_flags & WNOWAIT)) {
1011                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1012                         ? p->signal->group_exit_code : p->exit_code;
1013                 get_task_struct(p);
1014                 read_unlock(&tasklist_lock);
1015                 sched_annotate_sleep();
1016                 if (wo->wo_rusage)
1017                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1018                 put_task_struct(p);
1019                 goto out_info;
1020         }
1021         /*
1022          * Move the task's state to DEAD/TRACE, only one thread can do this.
1023          */
1024         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1025                 EXIT_TRACE : EXIT_DEAD;
1026         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1027                 return 0;
1028         /*
1029          * We own this thread, nobody else can reap it.
1030          */
1031         read_unlock(&tasklist_lock);
1032         sched_annotate_sleep();
1033
1034         /*
1035          * Check thread_group_leader() to exclude the traced sub-threads.
1036          */
1037         if (state == EXIT_DEAD && thread_group_leader(p)) {
1038                 struct signal_struct *sig = p->signal;
1039                 struct signal_struct *psig = current->signal;
1040                 unsigned long maxrss;
1041                 u64 tgutime, tgstime;
1042
1043                 /*
1044                  * The resource counters for the group leader are in its
1045                  * own task_struct.  Those for dead threads in the group
1046                  * are in its signal_struct, as are those for the child
1047                  * processes it has previously reaped.  All these
1048                  * accumulate in the parent's signal_struct c* fields.
1049                  *
1050                  * We don't bother to take a lock here to protect these
1051                  * p->signal fields because the whole thread group is dead
1052                  * and nobody can change them.
1053                  *
1054                  * psig->stats_lock also protects us from our sub-threads
1055                  * which can reap other children at the same time. Until
1056                  * we change k_getrusage()-like users to rely on this lock
1057                  * we have to take ->siglock as well.
1058                  *
1059                  * We use thread_group_cputime_adjusted() to get times for
1060                  * the thread group, which consolidates times for all threads
1061                  * in the group including the group leader.
1062                  */
1063                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1064                 spin_lock_irq(&current->sighand->siglock);
1065                 write_seqlock(&psig->stats_lock);
1066                 psig->cutime += tgutime + sig->cutime;
1067                 psig->cstime += tgstime + sig->cstime;
1068                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1069                 psig->cmin_flt +=
1070                         p->min_flt + sig->min_flt + sig->cmin_flt;
1071                 psig->cmaj_flt +=
1072                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1073                 psig->cnvcsw +=
1074                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1075                 psig->cnivcsw +=
1076                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1077                 psig->cinblock +=
1078                         task_io_get_inblock(p) +
1079                         sig->inblock + sig->cinblock;
1080                 psig->coublock +=
1081                         task_io_get_oublock(p) +
1082                         sig->oublock + sig->coublock;
1083                 maxrss = max(sig->maxrss, sig->cmaxrss);
1084                 if (psig->cmaxrss < maxrss)
1085                         psig->cmaxrss = maxrss;
1086                 task_io_accounting_add(&psig->ioac, &p->ioac);
1087                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1088                 write_sequnlock(&psig->stats_lock);
1089                 spin_unlock_irq(&current->sighand->siglock);
1090         }
1091
1092         if (wo->wo_rusage)
1093                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1094         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1095                 ? p->signal->group_exit_code : p->exit_code;
1096         wo->wo_stat = status;
1097
1098         if (state == EXIT_TRACE) {
1099                 write_lock_irq(&tasklist_lock);
1100                 /* We dropped tasklist, ptracer could die and untrace */
1101                 ptrace_unlink(p);
1102
1103                 /* If parent wants a zombie, don't release it now */
1104                 state = EXIT_ZOMBIE;
1105                 if (do_notify_parent(p, p->exit_signal))
1106                         state = EXIT_DEAD;
1107                 p->exit_state = state;
1108                 write_unlock_irq(&tasklist_lock);
1109         }
1110         if (state == EXIT_DEAD)
1111                 release_task(p);
1112
1113 out_info:
1114         infop = wo->wo_info;
1115         if (infop) {
1116                 if ((status & 0x7f) == 0) {
1117                         infop->cause = CLD_EXITED;
1118                         infop->status = status >> 8;
1119                 } else {
1120                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1121                         infop->status = status & 0x7f;
1122                 }
1123                 infop->pid = pid;
1124                 infop->uid = uid;
1125         }
1126
1127         return pid;
1128 }
1129
1130 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1131 {
1132         if (ptrace) {
1133                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1134                         return &p->exit_code;
1135         } else {
1136                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1137                         return &p->signal->group_exit_code;
1138         }
1139         return NULL;
1140 }
1141
1142 /**
1143  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1144  * @wo: wait options
1145  * @ptrace: is the wait for ptrace
1146  * @p: task to wait for
1147  *
1148  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1149  *
1150  * CONTEXT:
1151  * read_lock(&tasklist_lock), which is released if return value is
1152  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1153  *
1154  * RETURNS:
1155  * 0 if wait condition didn't exist and search for other wait conditions
1156  * should continue.  Non-zero return, -errno on failure and @p's pid on
1157  * success, implies that tasklist_lock is released and wait condition
1158  * search should terminate.
1159  */
1160 static int wait_task_stopped(struct wait_opts *wo,
1161                                 int ptrace, struct task_struct *p)
1162 {
1163         struct waitid_info *infop;
1164         int exit_code, *p_code, why;
1165         uid_t uid = 0; /* unneeded, required by compiler */
1166         pid_t pid;
1167
1168         /*
1169          * Traditionally we see ptrace'd stopped tasks regardless of options.
1170          */
1171         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1172                 return 0;
1173
1174         if (!task_stopped_code(p, ptrace))
1175                 return 0;
1176
1177         exit_code = 0;
1178         spin_lock_irq(&p->sighand->siglock);
1179
1180         p_code = task_stopped_code(p, ptrace);
1181         if (unlikely(!p_code))
1182                 goto unlock_sig;
1183
1184         exit_code = *p_code;
1185         if (!exit_code)
1186                 goto unlock_sig;
1187
1188         if (!unlikely(wo->wo_flags & WNOWAIT))
1189                 *p_code = 0;
1190
1191         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1192 unlock_sig:
1193         spin_unlock_irq(&p->sighand->siglock);
1194         if (!exit_code)
1195                 return 0;
1196
1197         /*
1198          * Now we are pretty sure this task is interesting.
1199          * Make sure it doesn't get reaped out from under us while we
1200          * give up the lock and then examine it below.  We don't want to
1201          * keep holding onto the tasklist_lock while we call getrusage and
1202          * possibly take page faults for user memory.
1203          */
1204         get_task_struct(p);
1205         pid = task_pid_vnr(p);
1206         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1207         read_unlock(&tasklist_lock);
1208         sched_annotate_sleep();
1209         if (wo->wo_rusage)
1210                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1211         put_task_struct(p);
1212
1213         if (likely(!(wo->wo_flags & WNOWAIT)))
1214                 wo->wo_stat = (exit_code << 8) | 0x7f;
1215
1216         infop = wo->wo_info;
1217         if (infop) {
1218                 infop->cause = why;
1219                 infop->status = exit_code;
1220                 infop->pid = pid;
1221                 infop->uid = uid;
1222         }
1223         return pid;
1224 }
1225
1226 /*
1227  * Handle do_wait work for one task in a live, non-stopped state.
1228  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1229  * the lock and this task is uninteresting.  If we return nonzero, we have
1230  * released the lock and the system call should return.
1231  */
1232 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1233 {
1234         struct waitid_info *infop;
1235         pid_t pid;
1236         uid_t uid;
1237
1238         if (!unlikely(wo->wo_flags & WCONTINUED))
1239                 return 0;
1240
1241         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1242                 return 0;
1243
1244         spin_lock_irq(&p->sighand->siglock);
1245         /* Re-check with the lock held.  */
1246         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1247                 spin_unlock_irq(&p->sighand->siglock);
1248                 return 0;
1249         }
1250         if (!unlikely(wo->wo_flags & WNOWAIT))
1251                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1252         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1253         spin_unlock_irq(&p->sighand->siglock);
1254
1255         pid = task_pid_vnr(p);
1256         get_task_struct(p);
1257         read_unlock(&tasklist_lock);
1258         sched_annotate_sleep();
1259         if (wo->wo_rusage)
1260                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1261         put_task_struct(p);
1262
1263         infop = wo->wo_info;
1264         if (!infop) {
1265                 wo->wo_stat = 0xffff;
1266         } else {
1267                 infop->cause = CLD_CONTINUED;
1268                 infop->pid = pid;
1269                 infop->uid = uid;
1270                 infop->status = SIGCONT;
1271         }
1272         return pid;
1273 }
1274
1275 /*
1276  * Consider @p for a wait by @parent.
1277  *
1278  * -ECHILD should be in ->notask_error before the first call.
1279  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1280  * Returns zero if the search for a child should continue;
1281  * then ->notask_error is 0 if @p is an eligible child,
1282  * or still -ECHILD.
1283  */
1284 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1285                                 struct task_struct *p)
1286 {
1287         /*
1288          * We can race with wait_task_zombie() from another thread.
1289          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1290          * can't confuse the checks below.
1291          */
1292         int exit_state = READ_ONCE(p->exit_state);
1293         int ret;
1294
1295         if (unlikely(exit_state == EXIT_DEAD))
1296                 return 0;
1297
1298         ret = eligible_child(wo, ptrace, p);
1299         if (!ret)
1300                 return ret;
1301
1302         if (unlikely(exit_state == EXIT_TRACE)) {
1303                 /*
1304                  * ptrace == 0 means we are the natural parent. In this case
1305                  * we should clear notask_error, debugger will notify us.
1306                  */
1307                 if (likely(!ptrace))
1308                         wo->notask_error = 0;
1309                 return 0;
1310         }
1311
1312         if (likely(!ptrace) && unlikely(p->ptrace)) {
1313                 /*
1314                  * If it is traced by its real parent's group, just pretend
1315                  * the caller is ptrace_do_wait() and reap this child if it
1316                  * is zombie.
1317                  *
1318                  * This also hides group stop state from real parent; otherwise
1319                  * a single stop can be reported twice as group and ptrace stop.
1320                  * If a ptracer wants to distinguish these two events for its
1321                  * own children it should create a separate process which takes
1322                  * the role of real parent.
1323                  */
1324                 if (!ptrace_reparented(p))
1325                         ptrace = 1;
1326         }
1327
1328         /* slay zombie? */
1329         if (exit_state == EXIT_ZOMBIE) {
1330                 /* we don't reap group leaders with subthreads */
1331                 if (!delay_group_leader(p)) {
1332                         /*
1333                          * A zombie ptracee is only visible to its ptracer.
1334                          * Notification and reaping will be cascaded to the
1335                          * real parent when the ptracer detaches.
1336                          */
1337                         if (unlikely(ptrace) || likely(!p->ptrace))
1338                                 return wait_task_zombie(wo, p);
1339                 }
1340
1341                 /*
1342                  * Allow access to stopped/continued state via zombie by
1343                  * falling through.  Clearing of notask_error is complex.
1344                  *
1345                  * When !@ptrace:
1346                  *
1347                  * If WEXITED is set, notask_error should naturally be
1348                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1349                  * so, if there are live subthreads, there are events to
1350                  * wait for.  If all subthreads are dead, it's still safe
1351                  * to clear - this function will be called again in finite
1352                  * amount time once all the subthreads are released and
1353                  * will then return without clearing.
1354                  *
1355                  * When @ptrace:
1356                  *
1357                  * Stopped state is per-task and thus can't change once the
1358                  * target task dies.  Only continued and exited can happen.
1359                  * Clear notask_error if WCONTINUED | WEXITED.
1360                  */
1361                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1362                         wo->notask_error = 0;
1363         } else {
1364                 /*
1365                  * @p is alive and it's gonna stop, continue or exit, so
1366                  * there always is something to wait for.
1367                  */
1368                 wo->notask_error = 0;
1369         }
1370
1371         /*
1372          * Wait for stopped.  Depending on @ptrace, different stopped state
1373          * is used and the two don't interact with each other.
1374          */
1375         ret = wait_task_stopped(wo, ptrace, p);
1376         if (ret)
1377                 return ret;
1378
1379         /*
1380          * Wait for continued.  There's only one continued state and the
1381          * ptracer can consume it which can confuse the real parent.  Don't
1382          * use WCONTINUED from ptracer.  You don't need or want it.
1383          */
1384         return wait_task_continued(wo, p);
1385 }
1386
1387 /*
1388  * Do the work of do_wait() for one thread in the group, @tsk.
1389  *
1390  * -ECHILD should be in ->notask_error before the first call.
1391  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1392  * Returns zero if the search for a child should continue; then
1393  * ->notask_error is 0 if there were any eligible children,
1394  * or still -ECHILD.
1395  */
1396 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1397 {
1398         struct task_struct *p;
1399
1400         list_for_each_entry(p, &tsk->children, sibling) {
1401                 int ret = wait_consider_task(wo, 0, p);
1402
1403                 if (ret)
1404                         return ret;
1405         }
1406
1407         return 0;
1408 }
1409
1410 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1411 {
1412         struct task_struct *p;
1413
1414         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1415                 int ret = wait_consider_task(wo, 1, p);
1416
1417                 if (ret)
1418                         return ret;
1419         }
1420
1421         return 0;
1422 }
1423
1424 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1425                                 int sync, void *key)
1426 {
1427         struct wait_opts *wo = container_of(wait, struct wait_opts,
1428                                                 child_wait);
1429         struct task_struct *p = key;
1430
1431         if (!eligible_pid(wo, p))
1432                 return 0;
1433
1434         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1435                 return 0;
1436
1437         return default_wake_function(wait, mode, sync, key);
1438 }
1439
1440 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1441 {
1442         __wake_up_sync_key(&parent->signal->wait_chldexit,
1443                            TASK_INTERRUPTIBLE, p);
1444 }
1445
1446 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1447                                  struct task_struct *target)
1448 {
1449         struct task_struct *parent =
1450                 !ptrace ? target->real_parent : target->parent;
1451
1452         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1453                                      same_thread_group(current, parent));
1454 }
1455
1456 /*
1457  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1458  * and tracee lists to find the target task.
1459  */
1460 static int do_wait_pid(struct wait_opts *wo)
1461 {
1462         bool ptrace;
1463         struct task_struct *target;
1464         int retval;
1465
1466         ptrace = false;
1467         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1468         if (target && is_effectively_child(wo, ptrace, target)) {
1469                 retval = wait_consider_task(wo, ptrace, target);
1470                 if (retval)
1471                         return retval;
1472         }
1473
1474         ptrace = true;
1475         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1476         if (target && target->ptrace &&
1477             is_effectively_child(wo, ptrace, target)) {
1478                 retval = wait_consider_task(wo, ptrace, target);
1479                 if (retval)
1480                         return retval;
1481         }
1482
1483         return 0;
1484 }
1485
1486 static long do_wait(struct wait_opts *wo)
1487 {
1488         int retval;
1489
1490         trace_sched_process_wait(wo->wo_pid);
1491
1492         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1493         wo->child_wait.private = current;
1494         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1495 repeat:
1496         /*
1497          * If there is nothing that can match our criteria, just get out.
1498          * We will clear ->notask_error to zero if we see any child that
1499          * might later match our criteria, even if we are not able to reap
1500          * it yet.
1501          */
1502         wo->notask_error = -ECHILD;
1503         if ((wo->wo_type < PIDTYPE_MAX) &&
1504            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1505                 goto notask;
1506
1507         set_current_state(TASK_INTERRUPTIBLE);
1508         read_lock(&tasklist_lock);
1509
1510         if (wo->wo_type == PIDTYPE_PID) {
1511                 retval = do_wait_pid(wo);
1512                 if (retval)
1513                         goto end;
1514         } else {
1515                 struct task_struct *tsk = current;
1516
1517                 do {
1518                         retval = do_wait_thread(wo, tsk);
1519                         if (retval)
1520                                 goto end;
1521
1522                         retval = ptrace_do_wait(wo, tsk);
1523                         if (retval)
1524                                 goto end;
1525
1526                         if (wo->wo_flags & __WNOTHREAD)
1527                                 break;
1528                 } while_each_thread(current, tsk);
1529         }
1530         read_unlock(&tasklist_lock);
1531
1532 notask:
1533         retval = wo->notask_error;
1534         if (!retval && !(wo->wo_flags & WNOHANG)) {
1535                 retval = -ERESTARTSYS;
1536                 if (!signal_pending(current)) {
1537                         schedule();
1538                         goto repeat;
1539                 }
1540         }
1541 end:
1542         __set_current_state(TASK_RUNNING);
1543         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1544         return retval;
1545 }
1546
1547 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1548                           int options, struct rusage *ru)
1549 {
1550         struct wait_opts wo;
1551         struct pid *pid = NULL;
1552         enum pid_type type;
1553         long ret;
1554         unsigned int f_flags = 0;
1555
1556         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1557                         __WNOTHREAD|__WCLONE|__WALL))
1558                 return -EINVAL;
1559         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1560                 return -EINVAL;
1561
1562         switch (which) {
1563         case P_ALL:
1564                 type = PIDTYPE_MAX;
1565                 break;
1566         case P_PID:
1567                 type = PIDTYPE_PID;
1568                 if (upid <= 0)
1569                         return -EINVAL;
1570
1571                 pid = find_get_pid(upid);
1572                 break;
1573         case P_PGID:
1574                 type = PIDTYPE_PGID;
1575                 if (upid < 0)
1576                         return -EINVAL;
1577
1578                 if (upid)
1579                         pid = find_get_pid(upid);
1580                 else
1581                         pid = get_task_pid(current, PIDTYPE_PGID);
1582                 break;
1583         case P_PIDFD:
1584                 type = PIDTYPE_PID;
1585                 if (upid < 0)
1586                         return -EINVAL;
1587
1588                 pid = pidfd_get_pid(upid, &f_flags);
1589                 if (IS_ERR(pid))
1590                         return PTR_ERR(pid);
1591
1592                 break;
1593         default:
1594                 return -EINVAL;
1595         }
1596
1597         wo.wo_type      = type;
1598         wo.wo_pid       = pid;
1599         wo.wo_flags     = options;
1600         wo.wo_info      = infop;
1601         wo.wo_rusage    = ru;
1602         if (f_flags & O_NONBLOCK)
1603                 wo.wo_flags |= WNOHANG;
1604
1605         ret = do_wait(&wo);
1606         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1607                 ret = -EAGAIN;
1608
1609         put_pid(pid);
1610         return ret;
1611 }
1612
1613 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1614                 infop, int, options, struct rusage __user *, ru)
1615 {
1616         struct rusage r;
1617         struct waitid_info info = {.status = 0};
1618         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1619         int signo = 0;
1620
1621         if (err > 0) {
1622                 signo = SIGCHLD;
1623                 err = 0;
1624                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1625                         return -EFAULT;
1626         }
1627         if (!infop)
1628                 return err;
1629
1630         if (!user_write_access_begin(infop, sizeof(*infop)))
1631                 return -EFAULT;
1632
1633         unsafe_put_user(signo, &infop->si_signo, Efault);
1634         unsafe_put_user(0, &infop->si_errno, Efault);
1635         unsafe_put_user(info.cause, &infop->si_code, Efault);
1636         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1637         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1638         unsafe_put_user(info.status, &infop->si_status, Efault);
1639         user_write_access_end();
1640         return err;
1641 Efault:
1642         user_write_access_end();
1643         return -EFAULT;
1644 }
1645
1646 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1647                   struct rusage *ru)
1648 {
1649         struct wait_opts wo;
1650         struct pid *pid = NULL;
1651         enum pid_type type;
1652         long ret;
1653
1654         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1655                         __WNOTHREAD|__WCLONE|__WALL))
1656                 return -EINVAL;
1657
1658         /* -INT_MIN is not defined */
1659         if (upid == INT_MIN)
1660                 return -ESRCH;
1661
1662         if (upid == -1)
1663                 type = PIDTYPE_MAX;
1664         else if (upid < 0) {
1665                 type = PIDTYPE_PGID;
1666                 pid = find_get_pid(-upid);
1667         } else if (upid == 0) {
1668                 type = PIDTYPE_PGID;
1669                 pid = get_task_pid(current, PIDTYPE_PGID);
1670         } else /* upid > 0 */ {
1671                 type = PIDTYPE_PID;
1672                 pid = find_get_pid(upid);
1673         }
1674
1675         wo.wo_type      = type;
1676         wo.wo_pid       = pid;
1677         wo.wo_flags     = options | WEXITED;
1678         wo.wo_info      = NULL;
1679         wo.wo_stat      = 0;
1680         wo.wo_rusage    = ru;
1681         ret = do_wait(&wo);
1682         put_pid(pid);
1683         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1684                 ret = -EFAULT;
1685
1686         return ret;
1687 }
1688
1689 int kernel_wait(pid_t pid, int *stat)
1690 {
1691         struct wait_opts wo = {
1692                 .wo_type        = PIDTYPE_PID,
1693                 .wo_pid         = find_get_pid(pid),
1694                 .wo_flags       = WEXITED,
1695         };
1696         int ret;
1697
1698         ret = do_wait(&wo);
1699         if (ret > 0 && wo.wo_stat)
1700                 *stat = wo.wo_stat;
1701         put_pid(wo.wo_pid);
1702         return ret;
1703 }
1704
1705 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1706                 int, options, struct rusage __user *, ru)
1707 {
1708         struct rusage r;
1709         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1710
1711         if (err > 0) {
1712                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1713                         return -EFAULT;
1714         }
1715         return err;
1716 }
1717
1718 #ifdef __ARCH_WANT_SYS_WAITPID
1719
1720 /*
1721  * sys_waitpid() remains for compatibility. waitpid() should be
1722  * implemented by calling sys_wait4() from libc.a.
1723  */
1724 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1725 {
1726         return kernel_wait4(pid, stat_addr, options, NULL);
1727 }
1728
1729 #endif
1730
1731 #ifdef CONFIG_COMPAT
1732 COMPAT_SYSCALL_DEFINE4(wait4,
1733         compat_pid_t, pid,
1734         compat_uint_t __user *, stat_addr,
1735         int, options,
1736         struct compat_rusage __user *, ru)
1737 {
1738         struct rusage r;
1739         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1740         if (err > 0) {
1741                 if (ru && put_compat_rusage(&r, ru))
1742                         return -EFAULT;
1743         }
1744         return err;
1745 }
1746
1747 COMPAT_SYSCALL_DEFINE5(waitid,
1748                 int, which, compat_pid_t, pid,
1749                 struct compat_siginfo __user *, infop, int, options,
1750                 struct compat_rusage __user *, uru)
1751 {
1752         struct rusage ru;
1753         struct waitid_info info = {.status = 0};
1754         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1755         int signo = 0;
1756         if (err > 0) {
1757                 signo = SIGCHLD;
1758                 err = 0;
1759                 if (uru) {
1760                         /* kernel_waitid() overwrites everything in ru */
1761                         if (COMPAT_USE_64BIT_TIME)
1762                                 err = copy_to_user(uru, &ru, sizeof(ru));
1763                         else
1764                                 err = put_compat_rusage(&ru, uru);
1765                         if (err)
1766                                 return -EFAULT;
1767                 }
1768         }
1769
1770         if (!infop)
1771                 return err;
1772
1773         if (!user_write_access_begin(infop, sizeof(*infop)))
1774                 return -EFAULT;
1775
1776         unsafe_put_user(signo, &infop->si_signo, Efault);
1777         unsafe_put_user(0, &infop->si_errno, Efault);
1778         unsafe_put_user(info.cause, &infop->si_code, Efault);
1779         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1780         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1781         unsafe_put_user(info.status, &infop->si_status, Efault);
1782         user_write_access_end();
1783         return err;
1784 Efault:
1785         user_write_access_end();
1786         return -EFAULT;
1787 }
1788 #endif
1789
1790 /**
1791  * thread_group_exited - check that a thread group has exited
1792  * @pid: tgid of thread group to be checked.
1793  *
1794  * Test if the thread group represented by tgid has exited (all
1795  * threads are zombies, dead or completely gone).
1796  *
1797  * Return: true if the thread group has exited. false otherwise.
1798  */
1799 bool thread_group_exited(struct pid *pid)
1800 {
1801         struct task_struct *task;
1802         bool exited;
1803
1804         rcu_read_lock();
1805         task = pid_task(pid, PIDTYPE_PID);
1806         exited = !task ||
1807                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1808         rcu_read_unlock();
1809
1810         return exited;
1811 }
1812 EXPORT_SYMBOL(thread_group_exited);
1813
1814 __weak void abort(void)
1815 {
1816         BUG();
1817
1818         /* if that doesn't kill us, halt */
1819         panic("Oops failed to kill thread");
1820 }
1821 EXPORT_SYMBOL(abort);