Merge branch 'regulator-5.7' into regulator-next
[platform/kernel/linux-rpi.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74         nr_threads--;
75         detach_pid(p, PIDTYPE_PID);
76         if (group_dead) {
77                 detach_pid(p, PIDTYPE_TGID);
78                 detach_pid(p, PIDTYPE_PGID);
79                 detach_pid(p, PIDTYPE_SID);
80
81                 list_del_rcu(&p->tasks);
82                 list_del_init(&p->sibling);
83                 __this_cpu_dec(process_counts);
84         }
85         list_del_rcu(&p->thread_group);
86         list_del_rcu(&p->thread_node);
87 }
88
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94         struct signal_struct *sig = tsk->signal;
95         bool group_dead = thread_group_leader(tsk);
96         struct sighand_struct *sighand;
97         struct tty_struct *uninitialized_var(tty);
98         u64 utime, stime;
99
100         sighand = rcu_dereference_check(tsk->sighand,
101                                         lockdep_tasklist_lock_is_held());
102         spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105         posix_cpu_timers_exit(tsk);
106         if (group_dead) {
107                 posix_cpu_timers_exit_group(tsk);
108         } else {
109                 /*
110                  * This can only happen if the caller is de_thread().
111                  * FIXME: this is the temporary hack, we should teach
112                  * posix-cpu-timers to handle this case correctly.
113                  */
114                 if (unlikely(has_group_leader_pid(tsk)))
115                         posix_cpu_timers_exit_group(tsk);
116         }
117 #endif
118
119         if (group_dead) {
120                 tty = sig->tty;
121                 sig->tty = NULL;
122         } else {
123                 /*
124                  * If there is any task waiting for the group exit
125                  * then notify it:
126                  */
127                 if (sig->notify_count > 0 && !--sig->notify_count)
128                         wake_up_process(sig->group_exit_task);
129
130                 if (tsk == sig->curr_target)
131                         sig->curr_target = next_thread(tsk);
132         }
133
134         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135                               sizeof(unsigned long long));
136
137         /*
138          * Accumulate here the counters for all threads as they die. We could
139          * skip the group leader because it is the last user of signal_struct,
140          * but we want to avoid the race with thread_group_cputime() which can
141          * see the empty ->thread_head list.
142          */
143         task_cputime(tsk, &utime, &stime);
144         write_seqlock(&sig->stats_lock);
145         sig->utime += utime;
146         sig->stime += stime;
147         sig->gtime += task_gtime(tsk);
148         sig->min_flt += tsk->min_flt;
149         sig->maj_flt += tsk->maj_flt;
150         sig->nvcsw += tsk->nvcsw;
151         sig->nivcsw += tsk->nivcsw;
152         sig->inblock += task_io_get_inblock(tsk);
153         sig->oublock += task_io_get_oublock(tsk);
154         task_io_accounting_add(&sig->ioac, &tsk->ioac);
155         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156         sig->nr_threads--;
157         __unhash_process(tsk, group_dead);
158         write_sequnlock(&sig->stats_lock);
159
160         /*
161          * Do this under ->siglock, we can race with another thread
162          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163          */
164         flush_sigqueue(&tsk->pending);
165         tsk->sighand = NULL;
166         spin_unlock(&sighand->siglock);
167
168         __cleanup_sighand(sighand);
169         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170         if (group_dead) {
171                 flush_sigqueue(&sig->shared_pending);
172                 tty_kref_put(tty);
173         }
174 }
175
176 static void delayed_put_task_struct(struct rcu_head *rhp)
177 {
178         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179
180         perf_event_delayed_put(tsk);
181         trace_sched_process_free(tsk);
182         put_task_struct(tsk);
183 }
184
185 void put_task_struct_rcu_user(struct task_struct *task)
186 {
187         if (refcount_dec_and_test(&task->rcu_users))
188                 call_rcu(&task->rcu, delayed_put_task_struct);
189 }
190
191 void release_task(struct task_struct *p)
192 {
193         struct task_struct *leader;
194         int zap_leader;
195 repeat:
196         /* don't need to get the RCU readlock here - the process is dead and
197          * can't be modifying its own credentials. But shut RCU-lockdep up */
198         rcu_read_lock();
199         atomic_dec(&__task_cred(p)->user->processes);
200         rcu_read_unlock();
201
202         proc_flush_task(p);
203         cgroup_release(p);
204
205         write_lock_irq(&tasklist_lock);
206         ptrace_release_task(p);
207         __exit_signal(p);
208
209         /*
210          * If we are the last non-leader member of the thread
211          * group, and the leader is zombie, then notify the
212          * group leader's parent process. (if it wants notification.)
213          */
214         zap_leader = 0;
215         leader = p->group_leader;
216         if (leader != p && thread_group_empty(leader)
217                         && leader->exit_state == EXIT_ZOMBIE) {
218                 /*
219                  * If we were the last child thread and the leader has
220                  * exited already, and the leader's parent ignores SIGCHLD,
221                  * then we are the one who should release the leader.
222                  */
223                 zap_leader = do_notify_parent(leader, leader->exit_signal);
224                 if (zap_leader)
225                         leader->exit_state = EXIT_DEAD;
226         }
227
228         write_unlock_irq(&tasklist_lock);
229         release_thread(p);
230         put_task_struct_rcu_user(p);
231
232         p = leader;
233         if (unlikely(zap_leader))
234                 goto repeat;
235 }
236
237 void rcuwait_wake_up(struct rcuwait *w)
238 {
239         struct task_struct *task;
240
241         rcu_read_lock();
242
243         /*
244          * Order condition vs @task, such that everything prior to the load
245          * of @task is visible. This is the condition as to why the user called
246          * rcuwait_trywake() in the first place. Pairs with set_current_state()
247          * barrier (A) in rcuwait_wait_event().
248          *
249          *    WAIT                WAKE
250          *    [S] tsk = current   [S] cond = true
251          *        MB (A)              MB (B)
252          *    [L] cond            [L] tsk
253          */
254         smp_mb(); /* (B) */
255
256         task = rcu_dereference(w->task);
257         if (task)
258                 wake_up_process(task);
259         rcu_read_unlock();
260 }
261
262 /*
263  * Determine if a process group is "orphaned", according to the POSIX
264  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
265  * by terminal-generated stop signals.  Newly orphaned process groups are
266  * to receive a SIGHUP and a SIGCONT.
267  *
268  * "I ask you, have you ever known what it is to be an orphan?"
269  */
270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271                                         struct task_struct *ignored_task)
272 {
273         struct task_struct *p;
274
275         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276                 if ((p == ignored_task) ||
277                     (p->exit_state && thread_group_empty(p)) ||
278                     is_global_init(p->real_parent))
279                         continue;
280
281                 if (task_pgrp(p->real_parent) != pgrp &&
282                     task_session(p->real_parent) == task_session(p))
283                         return 0;
284         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285
286         return 1;
287 }
288
289 int is_current_pgrp_orphaned(void)
290 {
291         int retval;
292
293         read_lock(&tasklist_lock);
294         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295         read_unlock(&tasklist_lock);
296
297         return retval;
298 }
299
300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302         struct task_struct *p;
303
304         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
306                         return true;
307         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308
309         return false;
310 }
311
312 /*
313  * Check to see if any process groups have become orphaned as
314  * a result of our exiting, and if they have any stopped jobs,
315  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316  */
317 static void
318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320         struct pid *pgrp = task_pgrp(tsk);
321         struct task_struct *ignored_task = tsk;
322
323         if (!parent)
324                 /* exit: our father is in a different pgrp than
325                  * we are and we were the only connection outside.
326                  */
327                 parent = tsk->real_parent;
328         else
329                 /* reparent: our child is in a different pgrp than
330                  * we are, and it was the only connection outside.
331                  */
332                 ignored_task = NULL;
333
334         if (task_pgrp(parent) != pgrp &&
335             task_session(parent) == task_session(tsk) &&
336             will_become_orphaned_pgrp(pgrp, ignored_task) &&
337             has_stopped_jobs(pgrp)) {
338                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340         }
341 }
342
343 #ifdef CONFIG_MEMCG
344 /*
345  * A task is exiting.   If it owned this mm, find a new owner for the mm.
346  */
347 void mm_update_next_owner(struct mm_struct *mm)
348 {
349         struct task_struct *c, *g, *p = current;
350
351 retry:
352         /*
353          * If the exiting or execing task is not the owner, it's
354          * someone else's problem.
355          */
356         if (mm->owner != p)
357                 return;
358         /*
359          * The current owner is exiting/execing and there are no other
360          * candidates.  Do not leave the mm pointing to a possibly
361          * freed task structure.
362          */
363         if (atomic_read(&mm->mm_users) <= 1) {
364                 WRITE_ONCE(mm->owner, NULL);
365                 return;
366         }
367
368         read_lock(&tasklist_lock);
369         /*
370          * Search in the children
371          */
372         list_for_each_entry(c, &p->children, sibling) {
373                 if (c->mm == mm)
374                         goto assign_new_owner;
375         }
376
377         /*
378          * Search in the siblings
379          */
380         list_for_each_entry(c, &p->real_parent->children, sibling) {
381                 if (c->mm == mm)
382                         goto assign_new_owner;
383         }
384
385         /*
386          * Search through everything else, we should not get here often.
387          */
388         for_each_process(g) {
389                 if (g->flags & PF_KTHREAD)
390                         continue;
391                 for_each_thread(g, c) {
392                         if (c->mm == mm)
393                                 goto assign_new_owner;
394                         if (c->mm)
395                                 break;
396                 }
397         }
398         read_unlock(&tasklist_lock);
399         /*
400          * We found no owner yet mm_users > 1: this implies that we are
401          * most likely racing with swapoff (try_to_unuse()) or /proc or
402          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
403          */
404         WRITE_ONCE(mm->owner, NULL);
405         return;
406
407 assign_new_owner:
408         BUG_ON(c == p);
409         get_task_struct(c);
410         /*
411          * The task_lock protects c->mm from changing.
412          * We always want mm->owner->mm == mm
413          */
414         task_lock(c);
415         /*
416          * Delay read_unlock() till we have the task_lock()
417          * to ensure that c does not slip away underneath us
418          */
419         read_unlock(&tasklist_lock);
420         if (c->mm != mm) {
421                 task_unlock(c);
422                 put_task_struct(c);
423                 goto retry;
424         }
425         WRITE_ONCE(mm->owner, c);
426         task_unlock(c);
427         put_task_struct(c);
428 }
429 #endif /* CONFIG_MEMCG */
430
431 /*
432  * Turn us into a lazy TLB process if we
433  * aren't already..
434  */
435 static void exit_mm(void)
436 {
437         struct mm_struct *mm = current->mm;
438         struct core_state *core_state;
439
440         exit_mm_release(current, mm);
441         if (!mm)
442                 return;
443         sync_mm_rss(mm);
444         /*
445          * Serialize with any possible pending coredump.
446          * We must hold mmap_sem around checking core_state
447          * and clearing tsk->mm.  The core-inducing thread
448          * will increment ->nr_threads for each thread in the
449          * group with ->mm != NULL.
450          */
451         down_read(&mm->mmap_sem);
452         core_state = mm->core_state;
453         if (core_state) {
454                 struct core_thread self;
455
456                 up_read(&mm->mmap_sem);
457
458                 self.task = current;
459                 self.next = xchg(&core_state->dumper.next, &self);
460                 /*
461                  * Implies mb(), the result of xchg() must be visible
462                  * to core_state->dumper.
463                  */
464                 if (atomic_dec_and_test(&core_state->nr_threads))
465                         complete(&core_state->startup);
466
467                 for (;;) {
468                         set_current_state(TASK_UNINTERRUPTIBLE);
469                         if (!self.task) /* see coredump_finish() */
470                                 break;
471                         freezable_schedule();
472                 }
473                 __set_current_state(TASK_RUNNING);
474                 down_read(&mm->mmap_sem);
475         }
476         mmgrab(mm);
477         BUG_ON(mm != current->active_mm);
478         /* more a memory barrier than a real lock */
479         task_lock(current);
480         current->mm = NULL;
481         up_read(&mm->mmap_sem);
482         enter_lazy_tlb(mm, current);
483         task_unlock(current);
484         mm_update_next_owner(mm);
485         mmput(mm);
486         if (test_thread_flag(TIF_MEMDIE))
487                 exit_oom_victim();
488 }
489
490 static struct task_struct *find_alive_thread(struct task_struct *p)
491 {
492         struct task_struct *t;
493
494         for_each_thread(p, t) {
495                 if (!(t->flags & PF_EXITING))
496                         return t;
497         }
498         return NULL;
499 }
500
501 static struct task_struct *find_child_reaper(struct task_struct *father,
502                                                 struct list_head *dead)
503         __releases(&tasklist_lock)
504         __acquires(&tasklist_lock)
505 {
506         struct pid_namespace *pid_ns = task_active_pid_ns(father);
507         struct task_struct *reaper = pid_ns->child_reaper;
508         struct task_struct *p, *n;
509
510         if (likely(reaper != father))
511                 return reaper;
512
513         reaper = find_alive_thread(father);
514         if (reaper) {
515                 pid_ns->child_reaper = reaper;
516                 return reaper;
517         }
518
519         write_unlock_irq(&tasklist_lock);
520
521         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
522                 list_del_init(&p->ptrace_entry);
523                 release_task(p);
524         }
525
526         zap_pid_ns_processes(pid_ns);
527         write_lock_irq(&tasklist_lock);
528
529         return father;
530 }
531
532 /*
533  * When we die, we re-parent all our children, and try to:
534  * 1. give them to another thread in our thread group, if such a member exists
535  * 2. give it to the first ancestor process which prctl'd itself as a
536  *    child_subreaper for its children (like a service manager)
537  * 3. give it to the init process (PID 1) in our pid namespace
538  */
539 static struct task_struct *find_new_reaper(struct task_struct *father,
540                                            struct task_struct *child_reaper)
541 {
542         struct task_struct *thread, *reaper;
543
544         thread = find_alive_thread(father);
545         if (thread)
546                 return thread;
547
548         if (father->signal->has_child_subreaper) {
549                 unsigned int ns_level = task_pid(father)->level;
550                 /*
551                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
552                  * We can't check reaper != child_reaper to ensure we do not
553                  * cross the namespaces, the exiting parent could be injected
554                  * by setns() + fork().
555                  * We check pid->level, this is slightly more efficient than
556                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
557                  */
558                 for (reaper = father->real_parent;
559                      task_pid(reaper)->level == ns_level;
560                      reaper = reaper->real_parent) {
561                         if (reaper == &init_task)
562                                 break;
563                         if (!reaper->signal->is_child_subreaper)
564                                 continue;
565                         thread = find_alive_thread(reaper);
566                         if (thread)
567                                 return thread;
568                 }
569         }
570
571         return child_reaper;
572 }
573
574 /*
575 * Any that need to be release_task'd are put on the @dead list.
576  */
577 static void reparent_leader(struct task_struct *father, struct task_struct *p,
578                                 struct list_head *dead)
579 {
580         if (unlikely(p->exit_state == EXIT_DEAD))
581                 return;
582
583         /* We don't want people slaying init. */
584         p->exit_signal = SIGCHLD;
585
586         /* If it has exited notify the new parent about this child's death. */
587         if (!p->ptrace &&
588             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
589                 if (do_notify_parent(p, p->exit_signal)) {
590                         p->exit_state = EXIT_DEAD;
591                         list_add(&p->ptrace_entry, dead);
592                 }
593         }
594
595         kill_orphaned_pgrp(p, father);
596 }
597
598 /*
599  * This does two things:
600  *
601  * A.  Make init inherit all the child processes
602  * B.  Check to see if any process groups have become orphaned
603  *      as a result of our exiting, and if they have any stopped
604  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
605  */
606 static void forget_original_parent(struct task_struct *father,
607                                         struct list_head *dead)
608 {
609         struct task_struct *p, *t, *reaper;
610
611         if (unlikely(!list_empty(&father->ptraced)))
612                 exit_ptrace(father, dead);
613
614         /* Can drop and reacquire tasklist_lock */
615         reaper = find_child_reaper(father, dead);
616         if (list_empty(&father->children))
617                 return;
618
619         reaper = find_new_reaper(father, reaper);
620         list_for_each_entry(p, &father->children, sibling) {
621                 for_each_thread(p, t) {
622                         RCU_INIT_POINTER(t->real_parent, reaper);
623                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
624                         if (likely(!t->ptrace))
625                                 t->parent = t->real_parent;
626                         if (t->pdeath_signal)
627                                 group_send_sig_info(t->pdeath_signal,
628                                                     SEND_SIG_NOINFO, t,
629                                                     PIDTYPE_TGID);
630                 }
631                 /*
632                  * If this is a threaded reparent there is no need to
633                  * notify anyone anything has happened.
634                  */
635                 if (!same_thread_group(reaper, father))
636                         reparent_leader(father, p, dead);
637         }
638         list_splice_tail_init(&father->children, &reaper->children);
639 }
640
641 /*
642  * Send signals to all our closest relatives so that they know
643  * to properly mourn us..
644  */
645 static void exit_notify(struct task_struct *tsk, int group_dead)
646 {
647         bool autoreap;
648         struct task_struct *p, *n;
649         LIST_HEAD(dead);
650
651         write_lock_irq(&tasklist_lock);
652         forget_original_parent(tsk, &dead);
653
654         if (group_dead)
655                 kill_orphaned_pgrp(tsk->group_leader, NULL);
656
657         tsk->exit_state = EXIT_ZOMBIE;
658         if (unlikely(tsk->ptrace)) {
659                 int sig = thread_group_leader(tsk) &&
660                                 thread_group_empty(tsk) &&
661                                 !ptrace_reparented(tsk) ?
662                         tsk->exit_signal : SIGCHLD;
663                 autoreap = do_notify_parent(tsk, sig);
664         } else if (thread_group_leader(tsk)) {
665                 autoreap = thread_group_empty(tsk) &&
666                         do_notify_parent(tsk, tsk->exit_signal);
667         } else {
668                 autoreap = true;
669         }
670
671         if (autoreap) {
672                 tsk->exit_state = EXIT_DEAD;
673                 list_add(&tsk->ptrace_entry, &dead);
674         }
675
676         /* mt-exec, de_thread() is waiting for group leader */
677         if (unlikely(tsk->signal->notify_count < 0))
678                 wake_up_process(tsk->signal->group_exit_task);
679         write_unlock_irq(&tasklist_lock);
680
681         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
682                 list_del_init(&p->ptrace_entry);
683                 release_task(p);
684         }
685 }
686
687 #ifdef CONFIG_DEBUG_STACK_USAGE
688 static void check_stack_usage(void)
689 {
690         static DEFINE_SPINLOCK(low_water_lock);
691         static int lowest_to_date = THREAD_SIZE;
692         unsigned long free;
693
694         free = stack_not_used(current);
695
696         if (free >= lowest_to_date)
697                 return;
698
699         spin_lock(&low_water_lock);
700         if (free < lowest_to_date) {
701                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
702                         current->comm, task_pid_nr(current), free);
703                 lowest_to_date = free;
704         }
705         spin_unlock(&low_water_lock);
706 }
707 #else
708 static inline void check_stack_usage(void) {}
709 #endif
710
711 void __noreturn do_exit(long code)
712 {
713         struct task_struct *tsk = current;
714         int group_dead;
715
716         profile_task_exit(tsk);
717         kcov_task_exit(tsk);
718
719         WARN_ON(blk_needs_flush_plug(tsk));
720
721         if (unlikely(in_interrupt()))
722                 panic("Aiee, killing interrupt handler!");
723         if (unlikely(!tsk->pid))
724                 panic("Attempted to kill the idle task!");
725
726         /*
727          * If do_exit is called because this processes oopsed, it's possible
728          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
729          * continuing. Amongst other possible reasons, this is to prevent
730          * mm_release()->clear_child_tid() from writing to a user-controlled
731          * kernel address.
732          */
733         set_fs(USER_DS);
734
735         ptrace_event(PTRACE_EVENT_EXIT, code);
736
737         validate_creds_for_do_exit(tsk);
738
739         /*
740          * We're taking recursive faults here in do_exit. Safest is to just
741          * leave this task alone and wait for reboot.
742          */
743         if (unlikely(tsk->flags & PF_EXITING)) {
744                 pr_alert("Fixing recursive fault but reboot is needed!\n");
745                 futex_exit_recursive(tsk);
746                 set_current_state(TASK_UNINTERRUPTIBLE);
747                 schedule();
748         }
749
750         exit_signals(tsk);  /* sets PF_EXITING */
751
752         if (unlikely(in_atomic())) {
753                 pr_info("note: %s[%d] exited with preempt_count %d\n",
754                         current->comm, task_pid_nr(current),
755                         preempt_count());
756                 preempt_count_set(PREEMPT_ENABLED);
757         }
758
759         /* sync mm's RSS info before statistics gathering */
760         if (tsk->mm)
761                 sync_mm_rss(tsk->mm);
762         acct_update_integrals(tsk);
763         group_dead = atomic_dec_and_test(&tsk->signal->live);
764         if (group_dead) {
765                 /*
766                  * If the last thread of global init has exited, panic
767                  * immediately to get a useable coredump.
768                  */
769                 if (unlikely(is_global_init(tsk)))
770                         panic("Attempted to kill init! exitcode=0x%08x\n",
771                                 tsk->signal->group_exit_code ?: (int)code);
772
773 #ifdef CONFIG_POSIX_TIMERS
774                 hrtimer_cancel(&tsk->signal->real_timer);
775                 exit_itimers(tsk->signal);
776 #endif
777                 if (tsk->mm)
778                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
779         }
780         acct_collect(code, group_dead);
781         if (group_dead)
782                 tty_audit_exit();
783         audit_free(tsk);
784
785         tsk->exit_code = code;
786         taskstats_exit(tsk, group_dead);
787
788         exit_mm();
789
790         if (group_dead)
791                 acct_process();
792         trace_sched_process_exit(tsk);
793
794         exit_sem(tsk);
795         exit_shm(tsk);
796         exit_files(tsk);
797         exit_fs(tsk);
798         if (group_dead)
799                 disassociate_ctty(1);
800         exit_task_namespaces(tsk);
801         exit_task_work(tsk);
802         exit_thread(tsk);
803         exit_umh(tsk);
804
805         /*
806          * Flush inherited counters to the parent - before the parent
807          * gets woken up by child-exit notifications.
808          *
809          * because of cgroup mode, must be called before cgroup_exit()
810          */
811         perf_event_exit_task(tsk);
812
813         sched_autogroup_exit_task(tsk);
814         cgroup_exit(tsk);
815
816         /*
817          * FIXME: do that only when needed, using sched_exit tracepoint
818          */
819         flush_ptrace_hw_breakpoint(tsk);
820
821         exit_tasks_rcu_start();
822         exit_notify(tsk, group_dead);
823         proc_exit_connector(tsk);
824         mpol_put_task_policy(tsk);
825 #ifdef CONFIG_FUTEX
826         if (unlikely(current->pi_state_cache))
827                 kfree(current->pi_state_cache);
828 #endif
829         /*
830          * Make sure we are holding no locks:
831          */
832         debug_check_no_locks_held();
833
834         if (tsk->io_context)
835                 exit_io_context(tsk);
836
837         if (tsk->splice_pipe)
838                 free_pipe_info(tsk->splice_pipe);
839
840         if (tsk->task_frag.page)
841                 put_page(tsk->task_frag.page);
842
843         validate_creds_for_do_exit(tsk);
844
845         check_stack_usage();
846         preempt_disable();
847         if (tsk->nr_dirtied)
848                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
849         exit_rcu();
850         exit_tasks_rcu_finish();
851
852         lockdep_free_task(tsk);
853         do_task_dead();
854 }
855 EXPORT_SYMBOL_GPL(do_exit);
856
857 void complete_and_exit(struct completion *comp, long code)
858 {
859         if (comp)
860                 complete(comp);
861
862         do_exit(code);
863 }
864 EXPORT_SYMBOL(complete_and_exit);
865
866 SYSCALL_DEFINE1(exit, int, error_code)
867 {
868         do_exit((error_code&0xff)<<8);
869 }
870
871 /*
872  * Take down every thread in the group.  This is called by fatal signals
873  * as well as by sys_exit_group (below).
874  */
875 void
876 do_group_exit(int exit_code)
877 {
878         struct signal_struct *sig = current->signal;
879
880         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
881
882         if (signal_group_exit(sig))
883                 exit_code = sig->group_exit_code;
884         else if (!thread_group_empty(current)) {
885                 struct sighand_struct *const sighand = current->sighand;
886
887                 spin_lock_irq(&sighand->siglock);
888                 if (signal_group_exit(sig))
889                         /* Another thread got here before we took the lock.  */
890                         exit_code = sig->group_exit_code;
891                 else {
892                         sig->group_exit_code = exit_code;
893                         sig->flags = SIGNAL_GROUP_EXIT;
894                         zap_other_threads(current);
895                 }
896                 spin_unlock_irq(&sighand->siglock);
897         }
898
899         do_exit(exit_code);
900         /* NOTREACHED */
901 }
902
903 /*
904  * this kills every thread in the thread group. Note that any externally
905  * wait4()-ing process will get the correct exit code - even if this
906  * thread is not the thread group leader.
907  */
908 SYSCALL_DEFINE1(exit_group, int, error_code)
909 {
910         do_group_exit((error_code & 0xff) << 8);
911         /* NOTREACHED */
912         return 0;
913 }
914
915 struct waitid_info {
916         pid_t pid;
917         uid_t uid;
918         int status;
919         int cause;
920 };
921
922 struct wait_opts {
923         enum pid_type           wo_type;
924         int                     wo_flags;
925         struct pid              *wo_pid;
926
927         struct waitid_info      *wo_info;
928         int                     wo_stat;
929         struct rusage           *wo_rusage;
930
931         wait_queue_entry_t              child_wait;
932         int                     notask_error;
933 };
934
935 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
936 {
937         return  wo->wo_type == PIDTYPE_MAX ||
938                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
939 }
940
941 static int
942 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
943 {
944         if (!eligible_pid(wo, p))
945                 return 0;
946
947         /*
948          * Wait for all children (clone and not) if __WALL is set or
949          * if it is traced by us.
950          */
951         if (ptrace || (wo->wo_flags & __WALL))
952                 return 1;
953
954         /*
955          * Otherwise, wait for clone children *only* if __WCLONE is set;
956          * otherwise, wait for non-clone children *only*.
957          *
958          * Note: a "clone" child here is one that reports to its parent
959          * using a signal other than SIGCHLD, or a non-leader thread which
960          * we can only see if it is traced by us.
961          */
962         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
963                 return 0;
964
965         return 1;
966 }
967
968 /*
969  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
970  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
971  * the lock and this task is uninteresting.  If we return nonzero, we have
972  * released the lock and the system call should return.
973  */
974 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
975 {
976         int state, status;
977         pid_t pid = task_pid_vnr(p);
978         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
979         struct waitid_info *infop;
980
981         if (!likely(wo->wo_flags & WEXITED))
982                 return 0;
983
984         if (unlikely(wo->wo_flags & WNOWAIT)) {
985                 status = p->exit_code;
986                 get_task_struct(p);
987                 read_unlock(&tasklist_lock);
988                 sched_annotate_sleep();
989                 if (wo->wo_rusage)
990                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
991                 put_task_struct(p);
992                 goto out_info;
993         }
994         /*
995          * Move the task's state to DEAD/TRACE, only one thread can do this.
996          */
997         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
998                 EXIT_TRACE : EXIT_DEAD;
999         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1000                 return 0;
1001         /*
1002          * We own this thread, nobody else can reap it.
1003          */
1004         read_unlock(&tasklist_lock);
1005         sched_annotate_sleep();
1006
1007         /*
1008          * Check thread_group_leader() to exclude the traced sub-threads.
1009          */
1010         if (state == EXIT_DEAD && thread_group_leader(p)) {
1011                 struct signal_struct *sig = p->signal;
1012                 struct signal_struct *psig = current->signal;
1013                 unsigned long maxrss;
1014                 u64 tgutime, tgstime;
1015
1016                 /*
1017                  * The resource counters for the group leader are in its
1018                  * own task_struct.  Those for dead threads in the group
1019                  * are in its signal_struct, as are those for the child
1020                  * processes it has previously reaped.  All these
1021                  * accumulate in the parent's signal_struct c* fields.
1022                  *
1023                  * We don't bother to take a lock here to protect these
1024                  * p->signal fields because the whole thread group is dead
1025                  * and nobody can change them.
1026                  *
1027                  * psig->stats_lock also protects us from our sub-theads
1028                  * which can reap other children at the same time. Until
1029                  * we change k_getrusage()-like users to rely on this lock
1030                  * we have to take ->siglock as well.
1031                  *
1032                  * We use thread_group_cputime_adjusted() to get times for
1033                  * the thread group, which consolidates times for all threads
1034                  * in the group including the group leader.
1035                  */
1036                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1037                 spin_lock_irq(&current->sighand->siglock);
1038                 write_seqlock(&psig->stats_lock);
1039                 psig->cutime += tgutime + sig->cutime;
1040                 psig->cstime += tgstime + sig->cstime;
1041                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1042                 psig->cmin_flt +=
1043                         p->min_flt + sig->min_flt + sig->cmin_flt;
1044                 psig->cmaj_flt +=
1045                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1046                 psig->cnvcsw +=
1047                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1048                 psig->cnivcsw +=
1049                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1050                 psig->cinblock +=
1051                         task_io_get_inblock(p) +
1052                         sig->inblock + sig->cinblock;
1053                 psig->coublock +=
1054                         task_io_get_oublock(p) +
1055                         sig->oublock + sig->coublock;
1056                 maxrss = max(sig->maxrss, sig->cmaxrss);
1057                 if (psig->cmaxrss < maxrss)
1058                         psig->cmaxrss = maxrss;
1059                 task_io_accounting_add(&psig->ioac, &p->ioac);
1060                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1061                 write_sequnlock(&psig->stats_lock);
1062                 spin_unlock_irq(&current->sighand->siglock);
1063         }
1064
1065         if (wo->wo_rusage)
1066                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1067         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1068                 ? p->signal->group_exit_code : p->exit_code;
1069         wo->wo_stat = status;
1070
1071         if (state == EXIT_TRACE) {
1072                 write_lock_irq(&tasklist_lock);
1073                 /* We dropped tasklist, ptracer could die and untrace */
1074                 ptrace_unlink(p);
1075
1076                 /* If parent wants a zombie, don't release it now */
1077                 state = EXIT_ZOMBIE;
1078                 if (do_notify_parent(p, p->exit_signal))
1079                         state = EXIT_DEAD;
1080                 p->exit_state = state;
1081                 write_unlock_irq(&tasklist_lock);
1082         }
1083         if (state == EXIT_DEAD)
1084                 release_task(p);
1085
1086 out_info:
1087         infop = wo->wo_info;
1088         if (infop) {
1089                 if ((status & 0x7f) == 0) {
1090                         infop->cause = CLD_EXITED;
1091                         infop->status = status >> 8;
1092                 } else {
1093                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1094                         infop->status = status & 0x7f;
1095                 }
1096                 infop->pid = pid;
1097                 infop->uid = uid;
1098         }
1099
1100         return pid;
1101 }
1102
1103 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1104 {
1105         if (ptrace) {
1106                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1107                         return &p->exit_code;
1108         } else {
1109                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1110                         return &p->signal->group_exit_code;
1111         }
1112         return NULL;
1113 }
1114
1115 /**
1116  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1117  * @wo: wait options
1118  * @ptrace: is the wait for ptrace
1119  * @p: task to wait for
1120  *
1121  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1122  *
1123  * CONTEXT:
1124  * read_lock(&tasklist_lock), which is released if return value is
1125  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1126  *
1127  * RETURNS:
1128  * 0 if wait condition didn't exist and search for other wait conditions
1129  * should continue.  Non-zero return, -errno on failure and @p's pid on
1130  * success, implies that tasklist_lock is released and wait condition
1131  * search should terminate.
1132  */
1133 static int wait_task_stopped(struct wait_opts *wo,
1134                                 int ptrace, struct task_struct *p)
1135 {
1136         struct waitid_info *infop;
1137         int exit_code, *p_code, why;
1138         uid_t uid = 0; /* unneeded, required by compiler */
1139         pid_t pid;
1140
1141         /*
1142          * Traditionally we see ptrace'd stopped tasks regardless of options.
1143          */
1144         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1145                 return 0;
1146
1147         if (!task_stopped_code(p, ptrace))
1148                 return 0;
1149
1150         exit_code = 0;
1151         spin_lock_irq(&p->sighand->siglock);
1152
1153         p_code = task_stopped_code(p, ptrace);
1154         if (unlikely(!p_code))
1155                 goto unlock_sig;
1156
1157         exit_code = *p_code;
1158         if (!exit_code)
1159                 goto unlock_sig;
1160
1161         if (!unlikely(wo->wo_flags & WNOWAIT))
1162                 *p_code = 0;
1163
1164         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1165 unlock_sig:
1166         spin_unlock_irq(&p->sighand->siglock);
1167         if (!exit_code)
1168                 return 0;
1169
1170         /*
1171          * Now we are pretty sure this task is interesting.
1172          * Make sure it doesn't get reaped out from under us while we
1173          * give up the lock and then examine it below.  We don't want to
1174          * keep holding onto the tasklist_lock while we call getrusage and
1175          * possibly take page faults for user memory.
1176          */
1177         get_task_struct(p);
1178         pid = task_pid_vnr(p);
1179         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1180         read_unlock(&tasklist_lock);
1181         sched_annotate_sleep();
1182         if (wo->wo_rusage)
1183                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1184         put_task_struct(p);
1185
1186         if (likely(!(wo->wo_flags & WNOWAIT)))
1187                 wo->wo_stat = (exit_code << 8) | 0x7f;
1188
1189         infop = wo->wo_info;
1190         if (infop) {
1191                 infop->cause = why;
1192                 infop->status = exit_code;
1193                 infop->pid = pid;
1194                 infop->uid = uid;
1195         }
1196         return pid;
1197 }
1198
1199 /*
1200  * Handle do_wait work for one task in a live, non-stopped state.
1201  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1202  * the lock and this task is uninteresting.  If we return nonzero, we have
1203  * released the lock and the system call should return.
1204  */
1205 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1206 {
1207         struct waitid_info *infop;
1208         pid_t pid;
1209         uid_t uid;
1210
1211         if (!unlikely(wo->wo_flags & WCONTINUED))
1212                 return 0;
1213
1214         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1215                 return 0;
1216
1217         spin_lock_irq(&p->sighand->siglock);
1218         /* Re-check with the lock held.  */
1219         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1220                 spin_unlock_irq(&p->sighand->siglock);
1221                 return 0;
1222         }
1223         if (!unlikely(wo->wo_flags & WNOWAIT))
1224                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1225         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1226         spin_unlock_irq(&p->sighand->siglock);
1227
1228         pid = task_pid_vnr(p);
1229         get_task_struct(p);
1230         read_unlock(&tasklist_lock);
1231         sched_annotate_sleep();
1232         if (wo->wo_rusage)
1233                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1234         put_task_struct(p);
1235
1236         infop = wo->wo_info;
1237         if (!infop) {
1238                 wo->wo_stat = 0xffff;
1239         } else {
1240                 infop->cause = CLD_CONTINUED;
1241                 infop->pid = pid;
1242                 infop->uid = uid;
1243                 infop->status = SIGCONT;
1244         }
1245         return pid;
1246 }
1247
1248 /*
1249  * Consider @p for a wait by @parent.
1250  *
1251  * -ECHILD should be in ->notask_error before the first call.
1252  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1253  * Returns zero if the search for a child should continue;
1254  * then ->notask_error is 0 if @p is an eligible child,
1255  * or still -ECHILD.
1256  */
1257 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1258                                 struct task_struct *p)
1259 {
1260         /*
1261          * We can race with wait_task_zombie() from another thread.
1262          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1263          * can't confuse the checks below.
1264          */
1265         int exit_state = READ_ONCE(p->exit_state);
1266         int ret;
1267
1268         if (unlikely(exit_state == EXIT_DEAD))
1269                 return 0;
1270
1271         ret = eligible_child(wo, ptrace, p);
1272         if (!ret)
1273                 return ret;
1274
1275         if (unlikely(exit_state == EXIT_TRACE)) {
1276                 /*
1277                  * ptrace == 0 means we are the natural parent. In this case
1278                  * we should clear notask_error, debugger will notify us.
1279                  */
1280                 if (likely(!ptrace))
1281                         wo->notask_error = 0;
1282                 return 0;
1283         }
1284
1285         if (likely(!ptrace) && unlikely(p->ptrace)) {
1286                 /*
1287                  * If it is traced by its real parent's group, just pretend
1288                  * the caller is ptrace_do_wait() and reap this child if it
1289                  * is zombie.
1290                  *
1291                  * This also hides group stop state from real parent; otherwise
1292                  * a single stop can be reported twice as group and ptrace stop.
1293                  * If a ptracer wants to distinguish these two events for its
1294                  * own children it should create a separate process which takes
1295                  * the role of real parent.
1296                  */
1297                 if (!ptrace_reparented(p))
1298                         ptrace = 1;
1299         }
1300
1301         /* slay zombie? */
1302         if (exit_state == EXIT_ZOMBIE) {
1303                 /* we don't reap group leaders with subthreads */
1304                 if (!delay_group_leader(p)) {
1305                         /*
1306                          * A zombie ptracee is only visible to its ptracer.
1307                          * Notification and reaping will be cascaded to the
1308                          * real parent when the ptracer detaches.
1309                          */
1310                         if (unlikely(ptrace) || likely(!p->ptrace))
1311                                 return wait_task_zombie(wo, p);
1312                 }
1313
1314                 /*
1315                  * Allow access to stopped/continued state via zombie by
1316                  * falling through.  Clearing of notask_error is complex.
1317                  *
1318                  * When !@ptrace:
1319                  *
1320                  * If WEXITED is set, notask_error should naturally be
1321                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1322                  * so, if there are live subthreads, there are events to
1323                  * wait for.  If all subthreads are dead, it's still safe
1324                  * to clear - this function will be called again in finite
1325                  * amount time once all the subthreads are released and
1326                  * will then return without clearing.
1327                  *
1328                  * When @ptrace:
1329                  *
1330                  * Stopped state is per-task and thus can't change once the
1331                  * target task dies.  Only continued and exited can happen.
1332                  * Clear notask_error if WCONTINUED | WEXITED.
1333                  */
1334                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1335                         wo->notask_error = 0;
1336         } else {
1337                 /*
1338                  * @p is alive and it's gonna stop, continue or exit, so
1339                  * there always is something to wait for.
1340                  */
1341                 wo->notask_error = 0;
1342         }
1343
1344         /*
1345          * Wait for stopped.  Depending on @ptrace, different stopped state
1346          * is used and the two don't interact with each other.
1347          */
1348         ret = wait_task_stopped(wo, ptrace, p);
1349         if (ret)
1350                 return ret;
1351
1352         /*
1353          * Wait for continued.  There's only one continued state and the
1354          * ptracer can consume it which can confuse the real parent.  Don't
1355          * use WCONTINUED from ptracer.  You don't need or want it.
1356          */
1357         return wait_task_continued(wo, p);
1358 }
1359
1360 /*
1361  * Do the work of do_wait() for one thread in the group, @tsk.
1362  *
1363  * -ECHILD should be in ->notask_error before the first call.
1364  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1365  * Returns zero if the search for a child should continue; then
1366  * ->notask_error is 0 if there were any eligible children,
1367  * or still -ECHILD.
1368  */
1369 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1370 {
1371         struct task_struct *p;
1372
1373         list_for_each_entry(p, &tsk->children, sibling) {
1374                 int ret = wait_consider_task(wo, 0, p);
1375
1376                 if (ret)
1377                         return ret;
1378         }
1379
1380         return 0;
1381 }
1382
1383 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1384 {
1385         struct task_struct *p;
1386
1387         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1388                 int ret = wait_consider_task(wo, 1, p);
1389
1390                 if (ret)
1391                         return ret;
1392         }
1393
1394         return 0;
1395 }
1396
1397 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1398                                 int sync, void *key)
1399 {
1400         struct wait_opts *wo = container_of(wait, struct wait_opts,
1401                                                 child_wait);
1402         struct task_struct *p = key;
1403
1404         if (!eligible_pid(wo, p))
1405                 return 0;
1406
1407         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1408                 return 0;
1409
1410         return default_wake_function(wait, mode, sync, key);
1411 }
1412
1413 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1414 {
1415         __wake_up_sync_key(&parent->signal->wait_chldexit,
1416                            TASK_INTERRUPTIBLE, p);
1417 }
1418
1419 static long do_wait(struct wait_opts *wo)
1420 {
1421         struct task_struct *tsk;
1422         int retval;
1423
1424         trace_sched_process_wait(wo->wo_pid);
1425
1426         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1427         wo->child_wait.private = current;
1428         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1429 repeat:
1430         /*
1431          * If there is nothing that can match our criteria, just get out.
1432          * We will clear ->notask_error to zero if we see any child that
1433          * might later match our criteria, even if we are not able to reap
1434          * it yet.
1435          */
1436         wo->notask_error = -ECHILD;
1437         if ((wo->wo_type < PIDTYPE_MAX) &&
1438            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1439                 goto notask;
1440
1441         set_current_state(TASK_INTERRUPTIBLE);
1442         read_lock(&tasklist_lock);
1443         tsk = current;
1444         do {
1445                 retval = do_wait_thread(wo, tsk);
1446                 if (retval)
1447                         goto end;
1448
1449                 retval = ptrace_do_wait(wo, tsk);
1450                 if (retval)
1451                         goto end;
1452
1453                 if (wo->wo_flags & __WNOTHREAD)
1454                         break;
1455         } while_each_thread(current, tsk);
1456         read_unlock(&tasklist_lock);
1457
1458 notask:
1459         retval = wo->notask_error;
1460         if (!retval && !(wo->wo_flags & WNOHANG)) {
1461                 retval = -ERESTARTSYS;
1462                 if (!signal_pending(current)) {
1463                         schedule();
1464                         goto repeat;
1465                 }
1466         }
1467 end:
1468         __set_current_state(TASK_RUNNING);
1469         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1470         return retval;
1471 }
1472
1473 static struct pid *pidfd_get_pid(unsigned int fd)
1474 {
1475         struct fd f;
1476         struct pid *pid;
1477
1478         f = fdget(fd);
1479         if (!f.file)
1480                 return ERR_PTR(-EBADF);
1481
1482         pid = pidfd_pid(f.file);
1483         if (!IS_ERR(pid))
1484                 get_pid(pid);
1485
1486         fdput(f);
1487         return pid;
1488 }
1489
1490 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1491                           int options, struct rusage *ru)
1492 {
1493         struct wait_opts wo;
1494         struct pid *pid = NULL;
1495         enum pid_type type;
1496         long ret;
1497
1498         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1499                         __WNOTHREAD|__WCLONE|__WALL))
1500                 return -EINVAL;
1501         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1502                 return -EINVAL;
1503
1504         switch (which) {
1505         case P_ALL:
1506                 type = PIDTYPE_MAX;
1507                 break;
1508         case P_PID:
1509                 type = PIDTYPE_PID;
1510                 if (upid <= 0)
1511                         return -EINVAL;
1512
1513                 pid = find_get_pid(upid);
1514                 break;
1515         case P_PGID:
1516                 type = PIDTYPE_PGID;
1517                 if (upid < 0)
1518                         return -EINVAL;
1519
1520                 if (upid)
1521                         pid = find_get_pid(upid);
1522                 else
1523                         pid = get_task_pid(current, PIDTYPE_PGID);
1524                 break;
1525         case P_PIDFD:
1526                 type = PIDTYPE_PID;
1527                 if (upid < 0)
1528                         return -EINVAL;
1529
1530                 pid = pidfd_get_pid(upid);
1531                 if (IS_ERR(pid))
1532                         return PTR_ERR(pid);
1533                 break;
1534         default:
1535                 return -EINVAL;
1536         }
1537
1538         wo.wo_type      = type;
1539         wo.wo_pid       = pid;
1540         wo.wo_flags     = options;
1541         wo.wo_info      = infop;
1542         wo.wo_rusage    = ru;
1543         ret = do_wait(&wo);
1544
1545         put_pid(pid);
1546         return ret;
1547 }
1548
1549 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1550                 infop, int, options, struct rusage __user *, ru)
1551 {
1552         struct rusage r;
1553         struct waitid_info info = {.status = 0};
1554         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1555         int signo = 0;
1556
1557         if (err > 0) {
1558                 signo = SIGCHLD;
1559                 err = 0;
1560                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1561                         return -EFAULT;
1562         }
1563         if (!infop)
1564                 return err;
1565
1566         if (!user_access_begin(infop, sizeof(*infop)))
1567                 return -EFAULT;
1568
1569         unsafe_put_user(signo, &infop->si_signo, Efault);
1570         unsafe_put_user(0, &infop->si_errno, Efault);
1571         unsafe_put_user(info.cause, &infop->si_code, Efault);
1572         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1573         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1574         unsafe_put_user(info.status, &infop->si_status, Efault);
1575         user_access_end();
1576         return err;
1577 Efault:
1578         user_access_end();
1579         return -EFAULT;
1580 }
1581
1582 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1583                   struct rusage *ru)
1584 {
1585         struct wait_opts wo;
1586         struct pid *pid = NULL;
1587         enum pid_type type;
1588         long ret;
1589
1590         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1591                         __WNOTHREAD|__WCLONE|__WALL))
1592                 return -EINVAL;
1593
1594         /* -INT_MIN is not defined */
1595         if (upid == INT_MIN)
1596                 return -ESRCH;
1597
1598         if (upid == -1)
1599                 type = PIDTYPE_MAX;
1600         else if (upid < 0) {
1601                 type = PIDTYPE_PGID;
1602                 pid = find_get_pid(-upid);
1603         } else if (upid == 0) {
1604                 type = PIDTYPE_PGID;
1605                 pid = get_task_pid(current, PIDTYPE_PGID);
1606         } else /* upid > 0 */ {
1607                 type = PIDTYPE_PID;
1608                 pid = find_get_pid(upid);
1609         }
1610
1611         wo.wo_type      = type;
1612         wo.wo_pid       = pid;
1613         wo.wo_flags     = options | WEXITED;
1614         wo.wo_info      = NULL;
1615         wo.wo_stat      = 0;
1616         wo.wo_rusage    = ru;
1617         ret = do_wait(&wo);
1618         put_pid(pid);
1619         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1620                 ret = -EFAULT;
1621
1622         return ret;
1623 }
1624
1625 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1626                 int, options, struct rusage __user *, ru)
1627 {
1628         struct rusage r;
1629         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1630
1631         if (err > 0) {
1632                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1633                         return -EFAULT;
1634         }
1635         return err;
1636 }
1637
1638 #ifdef __ARCH_WANT_SYS_WAITPID
1639
1640 /*
1641  * sys_waitpid() remains for compatibility. waitpid() should be
1642  * implemented by calling sys_wait4() from libc.a.
1643  */
1644 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1645 {
1646         return kernel_wait4(pid, stat_addr, options, NULL);
1647 }
1648
1649 #endif
1650
1651 #ifdef CONFIG_COMPAT
1652 COMPAT_SYSCALL_DEFINE4(wait4,
1653         compat_pid_t, pid,
1654         compat_uint_t __user *, stat_addr,
1655         int, options,
1656         struct compat_rusage __user *, ru)
1657 {
1658         struct rusage r;
1659         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1660         if (err > 0) {
1661                 if (ru && put_compat_rusage(&r, ru))
1662                         return -EFAULT;
1663         }
1664         return err;
1665 }
1666
1667 COMPAT_SYSCALL_DEFINE5(waitid,
1668                 int, which, compat_pid_t, pid,
1669                 struct compat_siginfo __user *, infop, int, options,
1670                 struct compat_rusage __user *, uru)
1671 {
1672         struct rusage ru;
1673         struct waitid_info info = {.status = 0};
1674         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1675         int signo = 0;
1676         if (err > 0) {
1677                 signo = SIGCHLD;
1678                 err = 0;
1679                 if (uru) {
1680                         /* kernel_waitid() overwrites everything in ru */
1681                         if (COMPAT_USE_64BIT_TIME)
1682                                 err = copy_to_user(uru, &ru, sizeof(ru));
1683                         else
1684                                 err = put_compat_rusage(&ru, uru);
1685                         if (err)
1686                                 return -EFAULT;
1687                 }
1688         }
1689
1690         if (!infop)
1691                 return err;
1692
1693         if (!user_access_begin(infop, sizeof(*infop)))
1694                 return -EFAULT;
1695
1696         unsafe_put_user(signo, &infop->si_signo, Efault);
1697         unsafe_put_user(0, &infop->si_errno, Efault);
1698         unsafe_put_user(info.cause, &infop->si_code, Efault);
1699         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1700         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1701         unsafe_put_user(info.status, &infop->si_status, Efault);
1702         user_access_end();
1703         return err;
1704 Efault:
1705         user_access_end();
1706         return -EFAULT;
1707 }
1708 #endif
1709
1710 __weak void abort(void)
1711 {
1712         BUG();
1713
1714         /* if that doesn't kill us, halt */
1715         panic("Oops failed to kill thread");
1716 }
1717 EXPORT_SYMBOL(abort);