1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
70 #include <linux/uaccess.h>
71 #include <asm/unistd.h>
72 #include <asm/mmu_context.h>
74 static void __unhash_process(struct task_struct *p, bool group_dead)
77 detach_pid(p, PIDTYPE_PID);
79 detach_pid(p, PIDTYPE_TGID);
80 detach_pid(p, PIDTYPE_PGID);
81 detach_pid(p, PIDTYPE_SID);
83 list_del_rcu(&p->tasks);
84 list_del_init(&p->sibling);
85 __this_cpu_dec(process_counts);
87 list_del_rcu(&p->thread_group);
88 list_del_rcu(&p->thread_node);
92 * This function expects the tasklist_lock write-locked.
94 static void __exit_signal(struct task_struct *tsk)
96 struct signal_struct *sig = tsk->signal;
97 bool group_dead = thread_group_leader(tsk);
98 struct sighand_struct *sighand;
99 struct tty_struct *tty;
102 sighand = rcu_dereference_check(tsk->sighand,
103 lockdep_tasklist_lock_is_held());
104 spin_lock(&sighand->siglock);
106 #ifdef CONFIG_POSIX_TIMERS
107 posix_cpu_timers_exit(tsk);
109 posix_cpu_timers_exit_group(tsk);
117 * If there is any task waiting for the group exit
120 if (sig->notify_count > 0 && !--sig->notify_count)
121 wake_up_process(sig->group_exec_task);
123 if (tsk == sig->curr_target)
124 sig->curr_target = next_thread(tsk);
127 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
128 sizeof(unsigned long long));
131 * Accumulate here the counters for all threads as they die. We could
132 * skip the group leader because it is the last user of signal_struct,
133 * but we want to avoid the race with thread_group_cputime() which can
134 * see the empty ->thread_head list.
136 task_cputime(tsk, &utime, &stime);
137 write_seqlock(&sig->stats_lock);
140 sig->gtime += task_gtime(tsk);
141 sig->min_flt += tsk->min_flt;
142 sig->maj_flt += tsk->maj_flt;
143 sig->nvcsw += tsk->nvcsw;
144 sig->nivcsw += tsk->nivcsw;
145 sig->inblock += task_io_get_inblock(tsk);
146 sig->oublock += task_io_get_oublock(tsk);
147 task_io_accounting_add(&sig->ioac, &tsk->ioac);
148 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
150 __unhash_process(tsk, group_dead);
151 write_sequnlock(&sig->stats_lock);
154 * Do this under ->siglock, we can race with another thread
155 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
157 flush_sigqueue(&tsk->pending);
159 spin_unlock(&sighand->siglock);
161 __cleanup_sighand(sighand);
162 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
164 flush_sigqueue(&sig->shared_pending);
169 static void delayed_put_task_struct(struct rcu_head *rhp)
171 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
173 kprobe_flush_task(tsk);
174 rethook_flush_task(tsk);
175 perf_event_delayed_put(tsk);
176 trace_sched_process_free(tsk);
177 put_task_struct(tsk);
180 void put_task_struct_rcu_user(struct task_struct *task)
182 if (refcount_dec_and_test(&task->rcu_users))
183 call_rcu(&task->rcu, delayed_put_task_struct);
186 void __weak release_thread(struct task_struct *dead_task)
190 void release_task(struct task_struct *p)
192 struct task_struct *leader;
193 struct pid *thread_pid;
196 /* don't need to get the RCU readlock here - the process is dead and
197 * can't be modifying its own credentials. But shut RCU-lockdep up */
199 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
204 write_lock_irq(&tasklist_lock);
205 ptrace_release_task(p);
206 thread_pid = get_pid(p->thread_pid);
210 * If we are the last non-leader member of the thread
211 * group, and the leader is zombie, then notify the
212 * group leader's parent process. (if it wants notification.)
215 leader = p->group_leader;
216 if (leader != p && thread_group_empty(leader)
217 && leader->exit_state == EXIT_ZOMBIE) {
219 * If we were the last child thread and the leader has
220 * exited already, and the leader's parent ignores SIGCHLD,
221 * then we are the one who should release the leader.
223 zap_leader = do_notify_parent(leader, leader->exit_signal);
225 leader->exit_state = EXIT_DEAD;
228 write_unlock_irq(&tasklist_lock);
229 seccomp_filter_release(p);
230 proc_flush_pid(thread_pid);
233 put_task_struct_rcu_user(p);
236 if (unlikely(zap_leader))
240 int rcuwait_wake_up(struct rcuwait *w)
243 struct task_struct *task;
248 * Order condition vs @task, such that everything prior to the load
249 * of @task is visible. This is the condition as to why the user called
250 * rcuwait_wake() in the first place. Pairs with set_current_state()
251 * barrier (A) in rcuwait_wait_event().
254 * [S] tsk = current [S] cond = true
260 task = rcu_dereference(w->task);
262 ret = wake_up_process(task);
267 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
270 * Determine if a process group is "orphaned", according to the POSIX
271 * definition in 2.2.2.52. Orphaned process groups are not to be affected
272 * by terminal-generated stop signals. Newly orphaned process groups are
273 * to receive a SIGHUP and a SIGCONT.
275 * "I ask you, have you ever known what it is to be an orphan?"
277 static int will_become_orphaned_pgrp(struct pid *pgrp,
278 struct task_struct *ignored_task)
280 struct task_struct *p;
282 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
283 if ((p == ignored_task) ||
284 (p->exit_state && thread_group_empty(p)) ||
285 is_global_init(p->real_parent))
288 if (task_pgrp(p->real_parent) != pgrp &&
289 task_session(p->real_parent) == task_session(p))
291 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
296 int is_current_pgrp_orphaned(void)
300 read_lock(&tasklist_lock);
301 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
302 read_unlock(&tasklist_lock);
307 static bool has_stopped_jobs(struct pid *pgrp)
309 struct task_struct *p;
311 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
312 if (p->signal->flags & SIGNAL_STOP_STOPPED)
314 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
320 * Check to see if any process groups have become orphaned as
321 * a result of our exiting, and if they have any stopped jobs,
322 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
325 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
327 struct pid *pgrp = task_pgrp(tsk);
328 struct task_struct *ignored_task = tsk;
331 /* exit: our father is in a different pgrp than
332 * we are and we were the only connection outside.
334 parent = tsk->real_parent;
336 /* reparent: our child is in a different pgrp than
337 * we are, and it was the only connection outside.
341 if (task_pgrp(parent) != pgrp &&
342 task_session(parent) == task_session(tsk) &&
343 will_become_orphaned_pgrp(pgrp, ignored_task) &&
344 has_stopped_jobs(pgrp)) {
345 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
346 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
350 static void coredump_task_exit(struct task_struct *tsk)
352 struct core_state *core_state;
355 * Serialize with any possible pending coredump.
356 * We must hold siglock around checking core_state
357 * and setting PF_POSTCOREDUMP. The core-inducing thread
358 * will increment ->nr_threads for each thread in the
359 * group without PF_POSTCOREDUMP set.
361 spin_lock_irq(&tsk->sighand->siglock);
362 tsk->flags |= PF_POSTCOREDUMP;
363 core_state = tsk->signal->core_state;
364 spin_unlock_irq(&tsk->sighand->siglock);
366 struct core_thread self;
369 if (self.task->flags & PF_SIGNALED)
370 self.next = xchg(&core_state->dumper.next, &self);
374 * Implies mb(), the result of xchg() must be visible
375 * to core_state->dumper.
377 if (atomic_dec_and_test(&core_state->nr_threads))
378 complete(&core_state->startup);
381 set_current_state(TASK_UNINTERRUPTIBLE);
382 if (!self.task) /* see coredump_finish() */
384 freezable_schedule();
386 __set_current_state(TASK_RUNNING);
392 * A task is exiting. If it owned this mm, find a new owner for the mm.
394 void mm_update_next_owner(struct mm_struct *mm)
396 struct task_struct *c, *g, *p = current;
400 * If the exiting or execing task is not the owner, it's
401 * someone else's problem.
406 * The current owner is exiting/execing and there are no other
407 * candidates. Do not leave the mm pointing to a possibly
408 * freed task structure.
410 if (atomic_read(&mm->mm_users) <= 1) {
411 WRITE_ONCE(mm->owner, NULL);
415 read_lock(&tasklist_lock);
417 * Search in the children
419 list_for_each_entry(c, &p->children, sibling) {
421 goto assign_new_owner;
425 * Search in the siblings
427 list_for_each_entry(c, &p->real_parent->children, sibling) {
429 goto assign_new_owner;
433 * Search through everything else, we should not get here often.
435 for_each_process(g) {
436 if (g->flags & PF_KTHREAD)
438 for_each_thread(g, c) {
440 goto assign_new_owner;
445 read_unlock(&tasklist_lock);
447 * We found no owner yet mm_users > 1: this implies that we are
448 * most likely racing with swapoff (try_to_unuse()) or /proc or
449 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
451 WRITE_ONCE(mm->owner, NULL);
458 * The task_lock protects c->mm from changing.
459 * We always want mm->owner->mm == mm
463 * Delay read_unlock() till we have the task_lock()
464 * to ensure that c does not slip away underneath us
466 read_unlock(&tasklist_lock);
472 WRITE_ONCE(mm->owner, c);
476 #endif /* CONFIG_MEMCG */
479 * Turn us into a lazy TLB process if we
482 static void exit_mm(void)
484 struct mm_struct *mm = current->mm;
486 exit_mm_release(current, mm);
492 BUG_ON(mm != current->active_mm);
493 /* more a memory barrier than a real lock */
496 * When a thread stops operating on an address space, the loop
497 * in membarrier_private_expedited() may not observe that
498 * tsk->mm, and the loop in membarrier_global_expedited() may
499 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
500 * rq->membarrier_state, so those would not issue an IPI.
501 * Membarrier requires a memory barrier after accessing
502 * user-space memory, before clearing tsk->mm or the
503 * rq->membarrier_state.
505 smp_mb__after_spinlock();
508 membarrier_update_current_mm(NULL);
509 enter_lazy_tlb(mm, current);
511 task_unlock(current);
512 mmap_read_unlock(mm);
513 mm_update_next_owner(mm);
515 if (test_thread_flag(TIF_MEMDIE))
519 static struct task_struct *find_alive_thread(struct task_struct *p)
521 struct task_struct *t;
523 for_each_thread(p, t) {
524 if (!(t->flags & PF_EXITING))
530 static struct task_struct *find_child_reaper(struct task_struct *father,
531 struct list_head *dead)
532 __releases(&tasklist_lock)
533 __acquires(&tasklist_lock)
535 struct pid_namespace *pid_ns = task_active_pid_ns(father);
536 struct task_struct *reaper = pid_ns->child_reaper;
537 struct task_struct *p, *n;
539 if (likely(reaper != father))
542 reaper = find_alive_thread(father);
544 pid_ns->child_reaper = reaper;
548 write_unlock_irq(&tasklist_lock);
550 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
551 list_del_init(&p->ptrace_entry);
555 zap_pid_ns_processes(pid_ns);
556 write_lock_irq(&tasklist_lock);
562 * When we die, we re-parent all our children, and try to:
563 * 1. give them to another thread in our thread group, if such a member exists
564 * 2. give it to the first ancestor process which prctl'd itself as a
565 * child_subreaper for its children (like a service manager)
566 * 3. give it to the init process (PID 1) in our pid namespace
568 static struct task_struct *find_new_reaper(struct task_struct *father,
569 struct task_struct *child_reaper)
571 struct task_struct *thread, *reaper;
573 thread = find_alive_thread(father);
577 if (father->signal->has_child_subreaper) {
578 unsigned int ns_level = task_pid(father)->level;
580 * Find the first ->is_child_subreaper ancestor in our pid_ns.
581 * We can't check reaper != child_reaper to ensure we do not
582 * cross the namespaces, the exiting parent could be injected
583 * by setns() + fork().
584 * We check pid->level, this is slightly more efficient than
585 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
587 for (reaper = father->real_parent;
588 task_pid(reaper)->level == ns_level;
589 reaper = reaper->real_parent) {
590 if (reaper == &init_task)
592 if (!reaper->signal->is_child_subreaper)
594 thread = find_alive_thread(reaper);
604 * Any that need to be release_task'd are put on the @dead list.
606 static void reparent_leader(struct task_struct *father, struct task_struct *p,
607 struct list_head *dead)
609 if (unlikely(p->exit_state == EXIT_DEAD))
612 /* We don't want people slaying init. */
613 p->exit_signal = SIGCHLD;
615 /* If it has exited notify the new parent about this child's death. */
617 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
618 if (do_notify_parent(p, p->exit_signal)) {
619 p->exit_state = EXIT_DEAD;
620 list_add(&p->ptrace_entry, dead);
624 kill_orphaned_pgrp(p, father);
628 * This does two things:
630 * A. Make init inherit all the child processes
631 * B. Check to see if any process groups have become orphaned
632 * as a result of our exiting, and if they have any stopped
633 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
635 static void forget_original_parent(struct task_struct *father,
636 struct list_head *dead)
638 struct task_struct *p, *t, *reaper;
640 if (unlikely(!list_empty(&father->ptraced)))
641 exit_ptrace(father, dead);
643 /* Can drop and reacquire tasklist_lock */
644 reaper = find_child_reaper(father, dead);
645 if (list_empty(&father->children))
648 reaper = find_new_reaper(father, reaper);
649 list_for_each_entry(p, &father->children, sibling) {
650 for_each_thread(p, t) {
651 RCU_INIT_POINTER(t->real_parent, reaper);
652 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
653 if (likely(!t->ptrace))
654 t->parent = t->real_parent;
655 if (t->pdeath_signal)
656 group_send_sig_info(t->pdeath_signal,
661 * If this is a threaded reparent there is no need to
662 * notify anyone anything has happened.
664 if (!same_thread_group(reaper, father))
665 reparent_leader(father, p, dead);
667 list_splice_tail_init(&father->children, &reaper->children);
671 * Send signals to all our closest relatives so that they know
672 * to properly mourn us..
674 static void exit_notify(struct task_struct *tsk, int group_dead)
677 struct task_struct *p, *n;
680 write_lock_irq(&tasklist_lock);
681 forget_original_parent(tsk, &dead);
684 kill_orphaned_pgrp(tsk->group_leader, NULL);
686 tsk->exit_state = EXIT_ZOMBIE;
687 if (unlikely(tsk->ptrace)) {
688 int sig = thread_group_leader(tsk) &&
689 thread_group_empty(tsk) &&
690 !ptrace_reparented(tsk) ?
691 tsk->exit_signal : SIGCHLD;
692 autoreap = do_notify_parent(tsk, sig);
693 } else if (thread_group_leader(tsk)) {
694 autoreap = thread_group_empty(tsk) &&
695 do_notify_parent(tsk, tsk->exit_signal);
701 tsk->exit_state = EXIT_DEAD;
702 list_add(&tsk->ptrace_entry, &dead);
705 /* mt-exec, de_thread() is waiting for group leader */
706 if (unlikely(tsk->signal->notify_count < 0))
707 wake_up_process(tsk->signal->group_exec_task);
708 write_unlock_irq(&tasklist_lock);
710 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
711 list_del_init(&p->ptrace_entry);
716 #ifdef CONFIG_DEBUG_STACK_USAGE
717 static void check_stack_usage(void)
719 static DEFINE_SPINLOCK(low_water_lock);
720 static int lowest_to_date = THREAD_SIZE;
723 free = stack_not_used(current);
725 if (free >= lowest_to_date)
728 spin_lock(&low_water_lock);
729 if (free < lowest_to_date) {
730 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
731 current->comm, task_pid_nr(current), free);
732 lowest_to_date = free;
734 spin_unlock(&low_water_lock);
737 static inline void check_stack_usage(void) {}
740 void __noreturn do_exit(long code)
742 struct task_struct *tsk = current;
749 coredump_task_exit(tsk);
750 ptrace_event(PTRACE_EVENT_EXIT, code);
752 validate_creds_for_do_exit(tsk);
754 io_uring_files_cancel();
755 exit_signals(tsk); /* sets PF_EXITING */
757 /* sync mm's RSS info before statistics gathering */
759 sync_mm_rss(tsk->mm);
760 acct_update_integrals(tsk);
761 group_dead = atomic_dec_and_test(&tsk->signal->live);
764 * If the last thread of global init has exited, panic
765 * immediately to get a useable coredump.
767 if (unlikely(is_global_init(tsk)))
768 panic("Attempted to kill init! exitcode=0x%08x\n",
769 tsk->signal->group_exit_code ?: (int)code);
771 #ifdef CONFIG_POSIX_TIMERS
772 hrtimer_cancel(&tsk->signal->real_timer);
776 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
778 acct_collect(code, group_dead);
783 tsk->exit_code = code;
784 taskstats_exit(tsk, group_dead);
790 trace_sched_process_exit(tsk);
797 disassociate_ctty(1);
798 exit_task_namespaces(tsk);
803 * Flush inherited counters to the parent - before the parent
804 * gets woken up by child-exit notifications.
806 * because of cgroup mode, must be called before cgroup_exit()
808 perf_event_exit_task(tsk);
810 sched_autogroup_exit_task(tsk);
814 * FIXME: do that only when needed, using sched_exit tracepoint
816 flush_ptrace_hw_breakpoint(tsk);
818 exit_tasks_rcu_start();
819 exit_notify(tsk, group_dead);
820 proc_exit_connector(tsk);
821 mpol_put_task_policy(tsk);
823 if (unlikely(current->pi_state_cache))
824 kfree(current->pi_state_cache);
827 * Make sure we are holding no locks:
829 debug_check_no_locks_held();
832 exit_io_context(tsk);
834 if (tsk->splice_pipe)
835 free_pipe_info(tsk->splice_pipe);
837 if (tsk->task_frag.page)
838 put_page(tsk->task_frag.page);
840 validate_creds_for_do_exit(tsk);
841 exit_task_stack_account(tsk);
846 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
848 exit_tasks_rcu_finish();
850 lockdep_free_task(tsk);
854 void __noreturn make_task_dead(int signr)
857 * Take the task off the cpu after something catastrophic has
860 * We can get here from a kernel oops, sometimes with preemption off.
861 * Start by checking for critical errors.
862 * Then fix up important state like USER_DS and preemption.
863 * Then do everything else.
865 struct task_struct *tsk = current;
867 if (unlikely(in_interrupt()))
868 panic("Aiee, killing interrupt handler!");
869 if (unlikely(!tsk->pid))
870 panic("Attempted to kill the idle task!");
872 if (unlikely(in_atomic())) {
873 pr_info("note: %s[%d] exited with preempt_count %d\n",
874 current->comm, task_pid_nr(current),
876 preempt_count_set(PREEMPT_ENABLED);
880 * We're taking recursive faults here in make_task_dead. Safest is to just
881 * leave this task alone and wait for reboot.
883 if (unlikely(tsk->flags & PF_EXITING)) {
884 pr_alert("Fixing recursive fault but reboot is needed!\n");
885 futex_exit_recursive(tsk);
886 tsk->exit_state = EXIT_DEAD;
887 refcount_inc(&tsk->rcu_users);
894 SYSCALL_DEFINE1(exit, int, error_code)
896 do_exit((error_code&0xff)<<8);
900 * Take down every thread in the group. This is called by fatal signals
901 * as well as by sys_exit_group (below).
904 do_group_exit(int exit_code)
906 struct signal_struct *sig = current->signal;
908 if (sig->flags & SIGNAL_GROUP_EXIT)
909 exit_code = sig->group_exit_code;
910 else if (sig->group_exec_task)
912 else if (!thread_group_empty(current)) {
913 struct sighand_struct *const sighand = current->sighand;
915 spin_lock_irq(&sighand->siglock);
916 if (sig->flags & SIGNAL_GROUP_EXIT)
917 /* Another thread got here before we took the lock. */
918 exit_code = sig->group_exit_code;
919 else if (sig->group_exec_task)
922 sig->group_exit_code = exit_code;
923 sig->flags = SIGNAL_GROUP_EXIT;
924 zap_other_threads(current);
926 spin_unlock_irq(&sighand->siglock);
934 * this kills every thread in the thread group. Note that any externally
935 * wait4()-ing process will get the correct exit code - even if this
936 * thread is not the thread group leader.
938 SYSCALL_DEFINE1(exit_group, int, error_code)
940 do_group_exit((error_code & 0xff) << 8);
953 enum pid_type wo_type;
957 struct waitid_info *wo_info;
959 struct rusage *wo_rusage;
961 wait_queue_entry_t child_wait;
965 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
967 return wo->wo_type == PIDTYPE_MAX ||
968 task_pid_type(p, wo->wo_type) == wo->wo_pid;
972 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
974 if (!eligible_pid(wo, p))
978 * Wait for all children (clone and not) if __WALL is set or
979 * if it is traced by us.
981 if (ptrace || (wo->wo_flags & __WALL))
985 * Otherwise, wait for clone children *only* if __WCLONE is set;
986 * otherwise, wait for non-clone children *only*.
988 * Note: a "clone" child here is one that reports to its parent
989 * using a signal other than SIGCHLD, or a non-leader thread which
990 * we can only see if it is traced by us.
992 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
999 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1000 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1001 * the lock and this task is uninteresting. If we return nonzero, we have
1002 * released the lock and the system call should return.
1004 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1007 pid_t pid = task_pid_vnr(p);
1008 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1009 struct waitid_info *infop;
1011 if (!likely(wo->wo_flags & WEXITED))
1014 if (unlikely(wo->wo_flags & WNOWAIT)) {
1015 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1016 ? p->signal->group_exit_code : p->exit_code;
1018 read_unlock(&tasklist_lock);
1019 sched_annotate_sleep();
1021 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1026 * Move the task's state to DEAD/TRACE, only one thread can do this.
1028 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1029 EXIT_TRACE : EXIT_DEAD;
1030 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1033 * We own this thread, nobody else can reap it.
1035 read_unlock(&tasklist_lock);
1036 sched_annotate_sleep();
1039 * Check thread_group_leader() to exclude the traced sub-threads.
1041 if (state == EXIT_DEAD && thread_group_leader(p)) {
1042 struct signal_struct *sig = p->signal;
1043 struct signal_struct *psig = current->signal;
1044 unsigned long maxrss;
1045 u64 tgutime, tgstime;
1048 * The resource counters for the group leader are in its
1049 * own task_struct. Those for dead threads in the group
1050 * are in its signal_struct, as are those for the child
1051 * processes it has previously reaped. All these
1052 * accumulate in the parent's signal_struct c* fields.
1054 * We don't bother to take a lock here to protect these
1055 * p->signal fields because the whole thread group is dead
1056 * and nobody can change them.
1058 * psig->stats_lock also protects us from our sub-threads
1059 * which can reap other children at the same time. Until
1060 * we change k_getrusage()-like users to rely on this lock
1061 * we have to take ->siglock as well.
1063 * We use thread_group_cputime_adjusted() to get times for
1064 * the thread group, which consolidates times for all threads
1065 * in the group including the group leader.
1067 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1068 spin_lock_irq(¤t->sighand->siglock);
1069 write_seqlock(&psig->stats_lock);
1070 psig->cutime += tgutime + sig->cutime;
1071 psig->cstime += tgstime + sig->cstime;
1072 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1074 p->min_flt + sig->min_flt + sig->cmin_flt;
1076 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1078 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1080 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1082 task_io_get_inblock(p) +
1083 sig->inblock + sig->cinblock;
1085 task_io_get_oublock(p) +
1086 sig->oublock + sig->coublock;
1087 maxrss = max(sig->maxrss, sig->cmaxrss);
1088 if (psig->cmaxrss < maxrss)
1089 psig->cmaxrss = maxrss;
1090 task_io_accounting_add(&psig->ioac, &p->ioac);
1091 task_io_accounting_add(&psig->ioac, &sig->ioac);
1092 write_sequnlock(&psig->stats_lock);
1093 spin_unlock_irq(¤t->sighand->siglock);
1097 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1098 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1099 ? p->signal->group_exit_code : p->exit_code;
1100 wo->wo_stat = status;
1102 if (state == EXIT_TRACE) {
1103 write_lock_irq(&tasklist_lock);
1104 /* We dropped tasklist, ptracer could die and untrace */
1107 /* If parent wants a zombie, don't release it now */
1108 state = EXIT_ZOMBIE;
1109 if (do_notify_parent(p, p->exit_signal))
1111 p->exit_state = state;
1112 write_unlock_irq(&tasklist_lock);
1114 if (state == EXIT_DEAD)
1118 infop = wo->wo_info;
1120 if ((status & 0x7f) == 0) {
1121 infop->cause = CLD_EXITED;
1122 infop->status = status >> 8;
1124 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1125 infop->status = status & 0x7f;
1134 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1137 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1138 return &p->exit_code;
1140 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1141 return &p->signal->group_exit_code;
1147 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1149 * @ptrace: is the wait for ptrace
1150 * @p: task to wait for
1152 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1155 * read_lock(&tasklist_lock), which is released if return value is
1156 * non-zero. Also, grabs and releases @p->sighand->siglock.
1159 * 0 if wait condition didn't exist and search for other wait conditions
1160 * should continue. Non-zero return, -errno on failure and @p's pid on
1161 * success, implies that tasklist_lock is released and wait condition
1162 * search should terminate.
1164 static int wait_task_stopped(struct wait_opts *wo,
1165 int ptrace, struct task_struct *p)
1167 struct waitid_info *infop;
1168 int exit_code, *p_code, why;
1169 uid_t uid = 0; /* unneeded, required by compiler */
1173 * Traditionally we see ptrace'd stopped tasks regardless of options.
1175 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1178 if (!task_stopped_code(p, ptrace))
1182 spin_lock_irq(&p->sighand->siglock);
1184 p_code = task_stopped_code(p, ptrace);
1185 if (unlikely(!p_code))
1188 exit_code = *p_code;
1192 if (!unlikely(wo->wo_flags & WNOWAIT))
1195 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1197 spin_unlock_irq(&p->sighand->siglock);
1202 * Now we are pretty sure this task is interesting.
1203 * Make sure it doesn't get reaped out from under us while we
1204 * give up the lock and then examine it below. We don't want to
1205 * keep holding onto the tasklist_lock while we call getrusage and
1206 * possibly take page faults for user memory.
1209 pid = task_pid_vnr(p);
1210 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1211 read_unlock(&tasklist_lock);
1212 sched_annotate_sleep();
1214 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1217 if (likely(!(wo->wo_flags & WNOWAIT)))
1218 wo->wo_stat = (exit_code << 8) | 0x7f;
1220 infop = wo->wo_info;
1223 infop->status = exit_code;
1231 * Handle do_wait work for one task in a live, non-stopped state.
1232 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1233 * the lock and this task is uninteresting. If we return nonzero, we have
1234 * released the lock and the system call should return.
1236 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1238 struct waitid_info *infop;
1242 if (!unlikely(wo->wo_flags & WCONTINUED))
1245 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1248 spin_lock_irq(&p->sighand->siglock);
1249 /* Re-check with the lock held. */
1250 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1251 spin_unlock_irq(&p->sighand->siglock);
1254 if (!unlikely(wo->wo_flags & WNOWAIT))
1255 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1256 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1257 spin_unlock_irq(&p->sighand->siglock);
1259 pid = task_pid_vnr(p);
1261 read_unlock(&tasklist_lock);
1262 sched_annotate_sleep();
1264 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1267 infop = wo->wo_info;
1269 wo->wo_stat = 0xffff;
1271 infop->cause = CLD_CONTINUED;
1274 infop->status = SIGCONT;
1280 * Consider @p for a wait by @parent.
1282 * -ECHILD should be in ->notask_error before the first call.
1283 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1284 * Returns zero if the search for a child should continue;
1285 * then ->notask_error is 0 if @p is an eligible child,
1288 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1289 struct task_struct *p)
1292 * We can race with wait_task_zombie() from another thread.
1293 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1294 * can't confuse the checks below.
1296 int exit_state = READ_ONCE(p->exit_state);
1299 if (unlikely(exit_state == EXIT_DEAD))
1302 ret = eligible_child(wo, ptrace, p);
1306 if (unlikely(exit_state == EXIT_TRACE)) {
1308 * ptrace == 0 means we are the natural parent. In this case
1309 * we should clear notask_error, debugger will notify us.
1311 if (likely(!ptrace))
1312 wo->notask_error = 0;
1316 if (likely(!ptrace) && unlikely(p->ptrace)) {
1318 * If it is traced by its real parent's group, just pretend
1319 * the caller is ptrace_do_wait() and reap this child if it
1322 * This also hides group stop state from real parent; otherwise
1323 * a single stop can be reported twice as group and ptrace stop.
1324 * If a ptracer wants to distinguish these two events for its
1325 * own children it should create a separate process which takes
1326 * the role of real parent.
1328 if (!ptrace_reparented(p))
1333 if (exit_state == EXIT_ZOMBIE) {
1334 /* we don't reap group leaders with subthreads */
1335 if (!delay_group_leader(p)) {
1337 * A zombie ptracee is only visible to its ptracer.
1338 * Notification and reaping will be cascaded to the
1339 * real parent when the ptracer detaches.
1341 if (unlikely(ptrace) || likely(!p->ptrace))
1342 return wait_task_zombie(wo, p);
1346 * Allow access to stopped/continued state via zombie by
1347 * falling through. Clearing of notask_error is complex.
1351 * If WEXITED is set, notask_error should naturally be
1352 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1353 * so, if there are live subthreads, there are events to
1354 * wait for. If all subthreads are dead, it's still safe
1355 * to clear - this function will be called again in finite
1356 * amount time once all the subthreads are released and
1357 * will then return without clearing.
1361 * Stopped state is per-task and thus can't change once the
1362 * target task dies. Only continued and exited can happen.
1363 * Clear notask_error if WCONTINUED | WEXITED.
1365 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1366 wo->notask_error = 0;
1369 * @p is alive and it's gonna stop, continue or exit, so
1370 * there always is something to wait for.
1372 wo->notask_error = 0;
1376 * Wait for stopped. Depending on @ptrace, different stopped state
1377 * is used and the two don't interact with each other.
1379 ret = wait_task_stopped(wo, ptrace, p);
1384 * Wait for continued. There's only one continued state and the
1385 * ptracer can consume it which can confuse the real parent. Don't
1386 * use WCONTINUED from ptracer. You don't need or want it.
1388 return wait_task_continued(wo, p);
1392 * Do the work of do_wait() for one thread in the group, @tsk.
1394 * -ECHILD should be in ->notask_error before the first call.
1395 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1396 * Returns zero if the search for a child should continue; then
1397 * ->notask_error is 0 if there were any eligible children,
1400 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1402 struct task_struct *p;
1404 list_for_each_entry(p, &tsk->children, sibling) {
1405 int ret = wait_consider_task(wo, 0, p);
1414 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1416 struct task_struct *p;
1418 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1419 int ret = wait_consider_task(wo, 1, p);
1428 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1429 int sync, void *key)
1431 struct wait_opts *wo = container_of(wait, struct wait_opts,
1433 struct task_struct *p = key;
1435 if (!eligible_pid(wo, p))
1438 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1441 return default_wake_function(wait, mode, sync, key);
1444 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1446 __wake_up_sync_key(&parent->signal->wait_chldexit,
1447 TASK_INTERRUPTIBLE, p);
1450 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1451 struct task_struct *target)
1453 struct task_struct *parent =
1454 !ptrace ? target->real_parent : target->parent;
1456 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1457 same_thread_group(current, parent));
1461 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1462 * and tracee lists to find the target task.
1464 static int do_wait_pid(struct wait_opts *wo)
1467 struct task_struct *target;
1471 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1472 if (target && is_effectively_child(wo, ptrace, target)) {
1473 retval = wait_consider_task(wo, ptrace, target);
1479 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1480 if (target && target->ptrace &&
1481 is_effectively_child(wo, ptrace, target)) {
1482 retval = wait_consider_task(wo, ptrace, target);
1490 static long do_wait(struct wait_opts *wo)
1494 trace_sched_process_wait(wo->wo_pid);
1496 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1497 wo->child_wait.private = current;
1498 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1501 * If there is nothing that can match our criteria, just get out.
1502 * We will clear ->notask_error to zero if we see any child that
1503 * might later match our criteria, even if we are not able to reap
1506 wo->notask_error = -ECHILD;
1507 if ((wo->wo_type < PIDTYPE_MAX) &&
1508 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1511 set_current_state(TASK_INTERRUPTIBLE);
1512 read_lock(&tasklist_lock);
1514 if (wo->wo_type == PIDTYPE_PID) {
1515 retval = do_wait_pid(wo);
1519 struct task_struct *tsk = current;
1522 retval = do_wait_thread(wo, tsk);
1526 retval = ptrace_do_wait(wo, tsk);
1530 if (wo->wo_flags & __WNOTHREAD)
1532 } while_each_thread(current, tsk);
1534 read_unlock(&tasklist_lock);
1537 retval = wo->notask_error;
1538 if (!retval && !(wo->wo_flags & WNOHANG)) {
1539 retval = -ERESTARTSYS;
1540 if (!signal_pending(current)) {
1546 __set_current_state(TASK_RUNNING);
1547 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1551 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1552 int options, struct rusage *ru)
1554 struct wait_opts wo;
1555 struct pid *pid = NULL;
1558 unsigned int f_flags = 0;
1560 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1561 __WNOTHREAD|__WCLONE|__WALL))
1563 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1575 pid = find_get_pid(upid);
1578 type = PIDTYPE_PGID;
1583 pid = find_get_pid(upid);
1585 pid = get_task_pid(current, PIDTYPE_PGID);
1592 pid = pidfd_get_pid(upid, &f_flags);
1594 return PTR_ERR(pid);
1603 wo.wo_flags = options;
1606 if (f_flags & O_NONBLOCK)
1607 wo.wo_flags |= WNOHANG;
1610 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1617 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1618 infop, int, options, struct rusage __user *, ru)
1621 struct waitid_info info = {.status = 0};
1622 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1628 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1634 if (!user_write_access_begin(infop, sizeof(*infop)))
1637 unsafe_put_user(signo, &infop->si_signo, Efault);
1638 unsafe_put_user(0, &infop->si_errno, Efault);
1639 unsafe_put_user(info.cause, &infop->si_code, Efault);
1640 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1641 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1642 unsafe_put_user(info.status, &infop->si_status, Efault);
1643 user_write_access_end();
1646 user_write_access_end();
1650 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1653 struct wait_opts wo;
1654 struct pid *pid = NULL;
1658 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1659 __WNOTHREAD|__WCLONE|__WALL))
1662 /* -INT_MIN is not defined */
1663 if (upid == INT_MIN)
1668 else if (upid < 0) {
1669 type = PIDTYPE_PGID;
1670 pid = find_get_pid(-upid);
1671 } else if (upid == 0) {
1672 type = PIDTYPE_PGID;
1673 pid = get_task_pid(current, PIDTYPE_PGID);
1674 } else /* upid > 0 */ {
1676 pid = find_get_pid(upid);
1681 wo.wo_flags = options | WEXITED;
1687 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1693 int kernel_wait(pid_t pid, int *stat)
1695 struct wait_opts wo = {
1696 .wo_type = PIDTYPE_PID,
1697 .wo_pid = find_get_pid(pid),
1698 .wo_flags = WEXITED,
1703 if (ret > 0 && wo.wo_stat)
1709 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1710 int, options, struct rusage __user *, ru)
1713 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1716 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1722 #ifdef __ARCH_WANT_SYS_WAITPID
1725 * sys_waitpid() remains for compatibility. waitpid() should be
1726 * implemented by calling sys_wait4() from libc.a.
1728 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1730 return kernel_wait4(pid, stat_addr, options, NULL);
1735 #ifdef CONFIG_COMPAT
1736 COMPAT_SYSCALL_DEFINE4(wait4,
1738 compat_uint_t __user *, stat_addr,
1740 struct compat_rusage __user *, ru)
1743 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1745 if (ru && put_compat_rusage(&r, ru))
1751 COMPAT_SYSCALL_DEFINE5(waitid,
1752 int, which, compat_pid_t, pid,
1753 struct compat_siginfo __user *, infop, int, options,
1754 struct compat_rusage __user *, uru)
1757 struct waitid_info info = {.status = 0};
1758 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1764 /* kernel_waitid() overwrites everything in ru */
1765 if (COMPAT_USE_64BIT_TIME)
1766 err = copy_to_user(uru, &ru, sizeof(ru));
1768 err = put_compat_rusage(&ru, uru);
1777 if (!user_write_access_begin(infop, sizeof(*infop)))
1780 unsafe_put_user(signo, &infop->si_signo, Efault);
1781 unsafe_put_user(0, &infop->si_errno, Efault);
1782 unsafe_put_user(info.cause, &infop->si_code, Efault);
1783 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1784 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1785 unsafe_put_user(info.status, &infop->si_status, Efault);
1786 user_write_access_end();
1789 user_write_access_end();
1795 * thread_group_exited - check that a thread group has exited
1796 * @pid: tgid of thread group to be checked.
1798 * Test if the thread group represented by tgid has exited (all
1799 * threads are zombies, dead or completely gone).
1801 * Return: true if the thread group has exited. false otherwise.
1803 bool thread_group_exited(struct pid *pid)
1805 struct task_struct *task;
1809 task = pid_task(pid, PIDTYPE_PID);
1811 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1816 EXPORT_SYMBOL(thread_group_exited);
1818 __weak void abort(void)
1822 /* if that doesn't kill us, halt */
1823 panic("Oops failed to kill thread");
1825 EXPORT_SYMBOL(abort);