kernel: exit: cleanup release_thread()
[platform/kernel/linux-starfive.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69
70 #include <linux/uaccess.h>
71 #include <asm/unistd.h>
72 #include <asm/mmu_context.h>
73
74 static void __unhash_process(struct task_struct *p, bool group_dead)
75 {
76         nr_threads--;
77         detach_pid(p, PIDTYPE_PID);
78         if (group_dead) {
79                 detach_pid(p, PIDTYPE_TGID);
80                 detach_pid(p, PIDTYPE_PGID);
81                 detach_pid(p, PIDTYPE_SID);
82
83                 list_del_rcu(&p->tasks);
84                 list_del_init(&p->sibling);
85                 __this_cpu_dec(process_counts);
86         }
87         list_del_rcu(&p->thread_group);
88         list_del_rcu(&p->thread_node);
89 }
90
91 /*
92  * This function expects the tasklist_lock write-locked.
93  */
94 static void __exit_signal(struct task_struct *tsk)
95 {
96         struct signal_struct *sig = tsk->signal;
97         bool group_dead = thread_group_leader(tsk);
98         struct sighand_struct *sighand;
99         struct tty_struct *tty;
100         u64 utime, stime;
101
102         sighand = rcu_dereference_check(tsk->sighand,
103                                         lockdep_tasklist_lock_is_held());
104         spin_lock(&sighand->siglock);
105
106 #ifdef CONFIG_POSIX_TIMERS
107         posix_cpu_timers_exit(tsk);
108         if (group_dead)
109                 posix_cpu_timers_exit_group(tsk);
110 #endif
111
112         if (group_dead) {
113                 tty = sig->tty;
114                 sig->tty = NULL;
115         } else {
116                 /*
117                  * If there is any task waiting for the group exit
118                  * then notify it:
119                  */
120                 if (sig->notify_count > 0 && !--sig->notify_count)
121                         wake_up_process(sig->group_exec_task);
122
123                 if (tsk == sig->curr_target)
124                         sig->curr_target = next_thread(tsk);
125         }
126
127         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
128                               sizeof(unsigned long long));
129
130         /*
131          * Accumulate here the counters for all threads as they die. We could
132          * skip the group leader because it is the last user of signal_struct,
133          * but we want to avoid the race with thread_group_cputime() which can
134          * see the empty ->thread_head list.
135          */
136         task_cputime(tsk, &utime, &stime);
137         write_seqlock(&sig->stats_lock);
138         sig->utime += utime;
139         sig->stime += stime;
140         sig->gtime += task_gtime(tsk);
141         sig->min_flt += tsk->min_flt;
142         sig->maj_flt += tsk->maj_flt;
143         sig->nvcsw += tsk->nvcsw;
144         sig->nivcsw += tsk->nivcsw;
145         sig->inblock += task_io_get_inblock(tsk);
146         sig->oublock += task_io_get_oublock(tsk);
147         task_io_accounting_add(&sig->ioac, &tsk->ioac);
148         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
149         sig->nr_threads--;
150         __unhash_process(tsk, group_dead);
151         write_sequnlock(&sig->stats_lock);
152
153         /*
154          * Do this under ->siglock, we can race with another thread
155          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
156          */
157         flush_sigqueue(&tsk->pending);
158         tsk->sighand = NULL;
159         spin_unlock(&sighand->siglock);
160
161         __cleanup_sighand(sighand);
162         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
163         if (group_dead) {
164                 flush_sigqueue(&sig->shared_pending);
165                 tty_kref_put(tty);
166         }
167 }
168
169 static void delayed_put_task_struct(struct rcu_head *rhp)
170 {
171         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
172
173         kprobe_flush_task(tsk);
174         rethook_flush_task(tsk);
175         perf_event_delayed_put(tsk);
176         trace_sched_process_free(tsk);
177         put_task_struct(tsk);
178 }
179
180 void put_task_struct_rcu_user(struct task_struct *task)
181 {
182         if (refcount_dec_and_test(&task->rcu_users))
183                 call_rcu(&task->rcu, delayed_put_task_struct);
184 }
185
186 void __weak release_thread(struct task_struct *dead_task)
187 {
188 }
189
190 void release_task(struct task_struct *p)
191 {
192         struct task_struct *leader;
193         struct pid *thread_pid;
194         int zap_leader;
195 repeat:
196         /* don't need to get the RCU readlock here - the process is dead and
197          * can't be modifying its own credentials. But shut RCU-lockdep up */
198         rcu_read_lock();
199         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
200         rcu_read_unlock();
201
202         cgroup_release(p);
203
204         write_lock_irq(&tasklist_lock);
205         ptrace_release_task(p);
206         thread_pid = get_pid(p->thread_pid);
207         __exit_signal(p);
208
209         /*
210          * If we are the last non-leader member of the thread
211          * group, and the leader is zombie, then notify the
212          * group leader's parent process. (if it wants notification.)
213          */
214         zap_leader = 0;
215         leader = p->group_leader;
216         if (leader != p && thread_group_empty(leader)
217                         && leader->exit_state == EXIT_ZOMBIE) {
218                 /*
219                  * If we were the last child thread and the leader has
220                  * exited already, and the leader's parent ignores SIGCHLD,
221                  * then we are the one who should release the leader.
222                  */
223                 zap_leader = do_notify_parent(leader, leader->exit_signal);
224                 if (zap_leader)
225                         leader->exit_state = EXIT_DEAD;
226         }
227
228         write_unlock_irq(&tasklist_lock);
229         seccomp_filter_release(p);
230         proc_flush_pid(thread_pid);
231         put_pid(thread_pid);
232         release_thread(p);
233         put_task_struct_rcu_user(p);
234
235         p = leader;
236         if (unlikely(zap_leader))
237                 goto repeat;
238 }
239
240 int rcuwait_wake_up(struct rcuwait *w)
241 {
242         int ret = 0;
243         struct task_struct *task;
244
245         rcu_read_lock();
246
247         /*
248          * Order condition vs @task, such that everything prior to the load
249          * of @task is visible. This is the condition as to why the user called
250          * rcuwait_wake() in the first place. Pairs with set_current_state()
251          * barrier (A) in rcuwait_wait_event().
252          *
253          *    WAIT                WAKE
254          *    [S] tsk = current   [S] cond = true
255          *        MB (A)              MB (B)
256          *    [L] cond            [L] tsk
257          */
258         smp_mb(); /* (B) */
259
260         task = rcu_dereference(w->task);
261         if (task)
262                 ret = wake_up_process(task);
263         rcu_read_unlock();
264
265         return ret;
266 }
267 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
268
269 /*
270  * Determine if a process group is "orphaned", according to the POSIX
271  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
272  * by terminal-generated stop signals.  Newly orphaned process groups are
273  * to receive a SIGHUP and a SIGCONT.
274  *
275  * "I ask you, have you ever known what it is to be an orphan?"
276  */
277 static int will_become_orphaned_pgrp(struct pid *pgrp,
278                                         struct task_struct *ignored_task)
279 {
280         struct task_struct *p;
281
282         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
283                 if ((p == ignored_task) ||
284                     (p->exit_state && thread_group_empty(p)) ||
285                     is_global_init(p->real_parent))
286                         continue;
287
288                 if (task_pgrp(p->real_parent) != pgrp &&
289                     task_session(p->real_parent) == task_session(p))
290                         return 0;
291         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
292
293         return 1;
294 }
295
296 int is_current_pgrp_orphaned(void)
297 {
298         int retval;
299
300         read_lock(&tasklist_lock);
301         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
302         read_unlock(&tasklist_lock);
303
304         return retval;
305 }
306
307 static bool has_stopped_jobs(struct pid *pgrp)
308 {
309         struct task_struct *p;
310
311         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
312                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
313                         return true;
314         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
315
316         return false;
317 }
318
319 /*
320  * Check to see if any process groups have become orphaned as
321  * a result of our exiting, and if they have any stopped jobs,
322  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
323  */
324 static void
325 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
326 {
327         struct pid *pgrp = task_pgrp(tsk);
328         struct task_struct *ignored_task = tsk;
329
330         if (!parent)
331                 /* exit: our father is in a different pgrp than
332                  * we are and we were the only connection outside.
333                  */
334                 parent = tsk->real_parent;
335         else
336                 /* reparent: our child is in a different pgrp than
337                  * we are, and it was the only connection outside.
338                  */
339                 ignored_task = NULL;
340
341         if (task_pgrp(parent) != pgrp &&
342             task_session(parent) == task_session(tsk) &&
343             will_become_orphaned_pgrp(pgrp, ignored_task) &&
344             has_stopped_jobs(pgrp)) {
345                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
346                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
347         }
348 }
349
350 static void coredump_task_exit(struct task_struct *tsk)
351 {
352         struct core_state *core_state;
353
354         /*
355          * Serialize with any possible pending coredump.
356          * We must hold siglock around checking core_state
357          * and setting PF_POSTCOREDUMP.  The core-inducing thread
358          * will increment ->nr_threads for each thread in the
359          * group without PF_POSTCOREDUMP set.
360          */
361         spin_lock_irq(&tsk->sighand->siglock);
362         tsk->flags |= PF_POSTCOREDUMP;
363         core_state = tsk->signal->core_state;
364         spin_unlock_irq(&tsk->sighand->siglock);
365         if (core_state) {
366                 struct core_thread self;
367
368                 self.task = current;
369                 if (self.task->flags & PF_SIGNALED)
370                         self.next = xchg(&core_state->dumper.next, &self);
371                 else
372                         self.task = NULL;
373                 /*
374                  * Implies mb(), the result of xchg() must be visible
375                  * to core_state->dumper.
376                  */
377                 if (atomic_dec_and_test(&core_state->nr_threads))
378                         complete(&core_state->startup);
379
380                 for (;;) {
381                         set_current_state(TASK_UNINTERRUPTIBLE);
382                         if (!self.task) /* see coredump_finish() */
383                                 break;
384                         freezable_schedule();
385                 }
386                 __set_current_state(TASK_RUNNING);
387         }
388 }
389
390 #ifdef CONFIG_MEMCG
391 /*
392  * A task is exiting.   If it owned this mm, find a new owner for the mm.
393  */
394 void mm_update_next_owner(struct mm_struct *mm)
395 {
396         struct task_struct *c, *g, *p = current;
397
398 retry:
399         /*
400          * If the exiting or execing task is not the owner, it's
401          * someone else's problem.
402          */
403         if (mm->owner != p)
404                 return;
405         /*
406          * The current owner is exiting/execing and there are no other
407          * candidates.  Do not leave the mm pointing to a possibly
408          * freed task structure.
409          */
410         if (atomic_read(&mm->mm_users) <= 1) {
411                 WRITE_ONCE(mm->owner, NULL);
412                 return;
413         }
414
415         read_lock(&tasklist_lock);
416         /*
417          * Search in the children
418          */
419         list_for_each_entry(c, &p->children, sibling) {
420                 if (c->mm == mm)
421                         goto assign_new_owner;
422         }
423
424         /*
425          * Search in the siblings
426          */
427         list_for_each_entry(c, &p->real_parent->children, sibling) {
428                 if (c->mm == mm)
429                         goto assign_new_owner;
430         }
431
432         /*
433          * Search through everything else, we should not get here often.
434          */
435         for_each_process(g) {
436                 if (g->flags & PF_KTHREAD)
437                         continue;
438                 for_each_thread(g, c) {
439                         if (c->mm == mm)
440                                 goto assign_new_owner;
441                         if (c->mm)
442                                 break;
443                 }
444         }
445         read_unlock(&tasklist_lock);
446         /*
447          * We found no owner yet mm_users > 1: this implies that we are
448          * most likely racing with swapoff (try_to_unuse()) or /proc or
449          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
450          */
451         WRITE_ONCE(mm->owner, NULL);
452         return;
453
454 assign_new_owner:
455         BUG_ON(c == p);
456         get_task_struct(c);
457         /*
458          * The task_lock protects c->mm from changing.
459          * We always want mm->owner->mm == mm
460          */
461         task_lock(c);
462         /*
463          * Delay read_unlock() till we have the task_lock()
464          * to ensure that c does not slip away underneath us
465          */
466         read_unlock(&tasklist_lock);
467         if (c->mm != mm) {
468                 task_unlock(c);
469                 put_task_struct(c);
470                 goto retry;
471         }
472         WRITE_ONCE(mm->owner, c);
473         task_unlock(c);
474         put_task_struct(c);
475 }
476 #endif /* CONFIG_MEMCG */
477
478 /*
479  * Turn us into a lazy TLB process if we
480  * aren't already..
481  */
482 static void exit_mm(void)
483 {
484         struct mm_struct *mm = current->mm;
485
486         exit_mm_release(current, mm);
487         if (!mm)
488                 return;
489         sync_mm_rss(mm);
490         mmap_read_lock(mm);
491         mmgrab(mm);
492         BUG_ON(mm != current->active_mm);
493         /* more a memory barrier than a real lock */
494         task_lock(current);
495         /*
496          * When a thread stops operating on an address space, the loop
497          * in membarrier_private_expedited() may not observe that
498          * tsk->mm, and the loop in membarrier_global_expedited() may
499          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
500          * rq->membarrier_state, so those would not issue an IPI.
501          * Membarrier requires a memory barrier after accessing
502          * user-space memory, before clearing tsk->mm or the
503          * rq->membarrier_state.
504          */
505         smp_mb__after_spinlock();
506         local_irq_disable();
507         current->mm = NULL;
508         membarrier_update_current_mm(NULL);
509         enter_lazy_tlb(mm, current);
510         local_irq_enable();
511         task_unlock(current);
512         mmap_read_unlock(mm);
513         mm_update_next_owner(mm);
514         mmput(mm);
515         if (test_thread_flag(TIF_MEMDIE))
516                 exit_oom_victim();
517 }
518
519 static struct task_struct *find_alive_thread(struct task_struct *p)
520 {
521         struct task_struct *t;
522
523         for_each_thread(p, t) {
524                 if (!(t->flags & PF_EXITING))
525                         return t;
526         }
527         return NULL;
528 }
529
530 static struct task_struct *find_child_reaper(struct task_struct *father,
531                                                 struct list_head *dead)
532         __releases(&tasklist_lock)
533         __acquires(&tasklist_lock)
534 {
535         struct pid_namespace *pid_ns = task_active_pid_ns(father);
536         struct task_struct *reaper = pid_ns->child_reaper;
537         struct task_struct *p, *n;
538
539         if (likely(reaper != father))
540                 return reaper;
541
542         reaper = find_alive_thread(father);
543         if (reaper) {
544                 pid_ns->child_reaper = reaper;
545                 return reaper;
546         }
547
548         write_unlock_irq(&tasklist_lock);
549
550         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
551                 list_del_init(&p->ptrace_entry);
552                 release_task(p);
553         }
554
555         zap_pid_ns_processes(pid_ns);
556         write_lock_irq(&tasklist_lock);
557
558         return father;
559 }
560
561 /*
562  * When we die, we re-parent all our children, and try to:
563  * 1. give them to another thread in our thread group, if such a member exists
564  * 2. give it to the first ancestor process which prctl'd itself as a
565  *    child_subreaper for its children (like a service manager)
566  * 3. give it to the init process (PID 1) in our pid namespace
567  */
568 static struct task_struct *find_new_reaper(struct task_struct *father,
569                                            struct task_struct *child_reaper)
570 {
571         struct task_struct *thread, *reaper;
572
573         thread = find_alive_thread(father);
574         if (thread)
575                 return thread;
576
577         if (father->signal->has_child_subreaper) {
578                 unsigned int ns_level = task_pid(father)->level;
579                 /*
580                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
581                  * We can't check reaper != child_reaper to ensure we do not
582                  * cross the namespaces, the exiting parent could be injected
583                  * by setns() + fork().
584                  * We check pid->level, this is slightly more efficient than
585                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
586                  */
587                 for (reaper = father->real_parent;
588                      task_pid(reaper)->level == ns_level;
589                      reaper = reaper->real_parent) {
590                         if (reaper == &init_task)
591                                 break;
592                         if (!reaper->signal->is_child_subreaper)
593                                 continue;
594                         thread = find_alive_thread(reaper);
595                         if (thread)
596                                 return thread;
597                 }
598         }
599
600         return child_reaper;
601 }
602
603 /*
604 * Any that need to be release_task'd are put on the @dead list.
605  */
606 static void reparent_leader(struct task_struct *father, struct task_struct *p,
607                                 struct list_head *dead)
608 {
609         if (unlikely(p->exit_state == EXIT_DEAD))
610                 return;
611
612         /* We don't want people slaying init. */
613         p->exit_signal = SIGCHLD;
614
615         /* If it has exited notify the new parent about this child's death. */
616         if (!p->ptrace &&
617             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
618                 if (do_notify_parent(p, p->exit_signal)) {
619                         p->exit_state = EXIT_DEAD;
620                         list_add(&p->ptrace_entry, dead);
621                 }
622         }
623
624         kill_orphaned_pgrp(p, father);
625 }
626
627 /*
628  * This does two things:
629  *
630  * A.  Make init inherit all the child processes
631  * B.  Check to see if any process groups have become orphaned
632  *      as a result of our exiting, and if they have any stopped
633  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
634  */
635 static void forget_original_parent(struct task_struct *father,
636                                         struct list_head *dead)
637 {
638         struct task_struct *p, *t, *reaper;
639
640         if (unlikely(!list_empty(&father->ptraced)))
641                 exit_ptrace(father, dead);
642
643         /* Can drop and reacquire tasklist_lock */
644         reaper = find_child_reaper(father, dead);
645         if (list_empty(&father->children))
646                 return;
647
648         reaper = find_new_reaper(father, reaper);
649         list_for_each_entry(p, &father->children, sibling) {
650                 for_each_thread(p, t) {
651                         RCU_INIT_POINTER(t->real_parent, reaper);
652                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
653                         if (likely(!t->ptrace))
654                                 t->parent = t->real_parent;
655                         if (t->pdeath_signal)
656                                 group_send_sig_info(t->pdeath_signal,
657                                                     SEND_SIG_NOINFO, t,
658                                                     PIDTYPE_TGID);
659                 }
660                 /*
661                  * If this is a threaded reparent there is no need to
662                  * notify anyone anything has happened.
663                  */
664                 if (!same_thread_group(reaper, father))
665                         reparent_leader(father, p, dead);
666         }
667         list_splice_tail_init(&father->children, &reaper->children);
668 }
669
670 /*
671  * Send signals to all our closest relatives so that they know
672  * to properly mourn us..
673  */
674 static void exit_notify(struct task_struct *tsk, int group_dead)
675 {
676         bool autoreap;
677         struct task_struct *p, *n;
678         LIST_HEAD(dead);
679
680         write_lock_irq(&tasklist_lock);
681         forget_original_parent(tsk, &dead);
682
683         if (group_dead)
684                 kill_orphaned_pgrp(tsk->group_leader, NULL);
685
686         tsk->exit_state = EXIT_ZOMBIE;
687         if (unlikely(tsk->ptrace)) {
688                 int sig = thread_group_leader(tsk) &&
689                                 thread_group_empty(tsk) &&
690                                 !ptrace_reparented(tsk) ?
691                         tsk->exit_signal : SIGCHLD;
692                 autoreap = do_notify_parent(tsk, sig);
693         } else if (thread_group_leader(tsk)) {
694                 autoreap = thread_group_empty(tsk) &&
695                         do_notify_parent(tsk, tsk->exit_signal);
696         } else {
697                 autoreap = true;
698         }
699
700         if (autoreap) {
701                 tsk->exit_state = EXIT_DEAD;
702                 list_add(&tsk->ptrace_entry, &dead);
703         }
704
705         /* mt-exec, de_thread() is waiting for group leader */
706         if (unlikely(tsk->signal->notify_count < 0))
707                 wake_up_process(tsk->signal->group_exec_task);
708         write_unlock_irq(&tasklist_lock);
709
710         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
711                 list_del_init(&p->ptrace_entry);
712                 release_task(p);
713         }
714 }
715
716 #ifdef CONFIG_DEBUG_STACK_USAGE
717 static void check_stack_usage(void)
718 {
719         static DEFINE_SPINLOCK(low_water_lock);
720         static int lowest_to_date = THREAD_SIZE;
721         unsigned long free;
722
723         free = stack_not_used(current);
724
725         if (free >= lowest_to_date)
726                 return;
727
728         spin_lock(&low_water_lock);
729         if (free < lowest_to_date) {
730                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
731                         current->comm, task_pid_nr(current), free);
732                 lowest_to_date = free;
733         }
734         spin_unlock(&low_water_lock);
735 }
736 #else
737 static inline void check_stack_usage(void) {}
738 #endif
739
740 void __noreturn do_exit(long code)
741 {
742         struct task_struct *tsk = current;
743         int group_dead;
744
745         WARN_ON(tsk->plug);
746
747         kcov_task_exit(tsk);
748
749         coredump_task_exit(tsk);
750         ptrace_event(PTRACE_EVENT_EXIT, code);
751
752         validate_creds_for_do_exit(tsk);
753
754         io_uring_files_cancel();
755         exit_signals(tsk);  /* sets PF_EXITING */
756
757         /* sync mm's RSS info before statistics gathering */
758         if (tsk->mm)
759                 sync_mm_rss(tsk->mm);
760         acct_update_integrals(tsk);
761         group_dead = atomic_dec_and_test(&tsk->signal->live);
762         if (group_dead) {
763                 /*
764                  * If the last thread of global init has exited, panic
765                  * immediately to get a useable coredump.
766                  */
767                 if (unlikely(is_global_init(tsk)))
768                         panic("Attempted to kill init! exitcode=0x%08x\n",
769                                 tsk->signal->group_exit_code ?: (int)code);
770
771 #ifdef CONFIG_POSIX_TIMERS
772                 hrtimer_cancel(&tsk->signal->real_timer);
773                 exit_itimers(tsk);
774 #endif
775                 if (tsk->mm)
776                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
777         }
778         acct_collect(code, group_dead);
779         if (group_dead)
780                 tty_audit_exit();
781         audit_free(tsk);
782
783         tsk->exit_code = code;
784         taskstats_exit(tsk, group_dead);
785
786         exit_mm();
787
788         if (group_dead)
789                 acct_process();
790         trace_sched_process_exit(tsk);
791
792         exit_sem(tsk);
793         exit_shm(tsk);
794         exit_files(tsk);
795         exit_fs(tsk);
796         if (group_dead)
797                 disassociate_ctty(1);
798         exit_task_namespaces(tsk);
799         exit_task_work(tsk);
800         exit_thread(tsk);
801
802         /*
803          * Flush inherited counters to the parent - before the parent
804          * gets woken up by child-exit notifications.
805          *
806          * because of cgroup mode, must be called before cgroup_exit()
807          */
808         perf_event_exit_task(tsk);
809
810         sched_autogroup_exit_task(tsk);
811         cgroup_exit(tsk);
812
813         /*
814          * FIXME: do that only when needed, using sched_exit tracepoint
815          */
816         flush_ptrace_hw_breakpoint(tsk);
817
818         exit_tasks_rcu_start();
819         exit_notify(tsk, group_dead);
820         proc_exit_connector(tsk);
821         mpol_put_task_policy(tsk);
822 #ifdef CONFIG_FUTEX
823         if (unlikely(current->pi_state_cache))
824                 kfree(current->pi_state_cache);
825 #endif
826         /*
827          * Make sure we are holding no locks:
828          */
829         debug_check_no_locks_held();
830
831         if (tsk->io_context)
832                 exit_io_context(tsk);
833
834         if (tsk->splice_pipe)
835                 free_pipe_info(tsk->splice_pipe);
836
837         if (tsk->task_frag.page)
838                 put_page(tsk->task_frag.page);
839
840         validate_creds_for_do_exit(tsk);
841         exit_task_stack_account(tsk);
842
843         check_stack_usage();
844         preempt_disable();
845         if (tsk->nr_dirtied)
846                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
847         exit_rcu();
848         exit_tasks_rcu_finish();
849
850         lockdep_free_task(tsk);
851         do_task_dead();
852 }
853
854 void __noreturn make_task_dead(int signr)
855 {
856         /*
857          * Take the task off the cpu after something catastrophic has
858          * happened.
859          *
860          * We can get here from a kernel oops, sometimes with preemption off.
861          * Start by checking for critical errors.
862          * Then fix up important state like USER_DS and preemption.
863          * Then do everything else.
864          */
865         struct task_struct *tsk = current;
866
867         if (unlikely(in_interrupt()))
868                 panic("Aiee, killing interrupt handler!");
869         if (unlikely(!tsk->pid))
870                 panic("Attempted to kill the idle task!");
871
872         if (unlikely(in_atomic())) {
873                 pr_info("note: %s[%d] exited with preempt_count %d\n",
874                         current->comm, task_pid_nr(current),
875                         preempt_count());
876                 preempt_count_set(PREEMPT_ENABLED);
877         }
878
879         /*
880          * We're taking recursive faults here in make_task_dead. Safest is to just
881          * leave this task alone and wait for reboot.
882          */
883         if (unlikely(tsk->flags & PF_EXITING)) {
884                 pr_alert("Fixing recursive fault but reboot is needed!\n");
885                 futex_exit_recursive(tsk);
886                 tsk->exit_state = EXIT_DEAD;
887                 refcount_inc(&tsk->rcu_users);
888                 do_task_dead();
889         }
890
891         do_exit(signr);
892 }
893
894 SYSCALL_DEFINE1(exit, int, error_code)
895 {
896         do_exit((error_code&0xff)<<8);
897 }
898
899 /*
900  * Take down every thread in the group.  This is called by fatal signals
901  * as well as by sys_exit_group (below).
902  */
903 void __noreturn
904 do_group_exit(int exit_code)
905 {
906         struct signal_struct *sig = current->signal;
907
908         if (sig->flags & SIGNAL_GROUP_EXIT)
909                 exit_code = sig->group_exit_code;
910         else if (sig->group_exec_task)
911                 exit_code = 0;
912         else if (!thread_group_empty(current)) {
913                 struct sighand_struct *const sighand = current->sighand;
914
915                 spin_lock_irq(&sighand->siglock);
916                 if (sig->flags & SIGNAL_GROUP_EXIT)
917                         /* Another thread got here before we took the lock.  */
918                         exit_code = sig->group_exit_code;
919                 else if (sig->group_exec_task)
920                         exit_code = 0;
921                 else {
922                         sig->group_exit_code = exit_code;
923                         sig->flags = SIGNAL_GROUP_EXIT;
924                         zap_other_threads(current);
925                 }
926                 spin_unlock_irq(&sighand->siglock);
927         }
928
929         do_exit(exit_code);
930         /* NOTREACHED */
931 }
932
933 /*
934  * this kills every thread in the thread group. Note that any externally
935  * wait4()-ing process will get the correct exit code - even if this
936  * thread is not the thread group leader.
937  */
938 SYSCALL_DEFINE1(exit_group, int, error_code)
939 {
940         do_group_exit((error_code & 0xff) << 8);
941         /* NOTREACHED */
942         return 0;
943 }
944
945 struct waitid_info {
946         pid_t pid;
947         uid_t uid;
948         int status;
949         int cause;
950 };
951
952 struct wait_opts {
953         enum pid_type           wo_type;
954         int                     wo_flags;
955         struct pid              *wo_pid;
956
957         struct waitid_info      *wo_info;
958         int                     wo_stat;
959         struct rusage           *wo_rusage;
960
961         wait_queue_entry_t              child_wait;
962         int                     notask_error;
963 };
964
965 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
966 {
967         return  wo->wo_type == PIDTYPE_MAX ||
968                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
969 }
970
971 static int
972 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
973 {
974         if (!eligible_pid(wo, p))
975                 return 0;
976
977         /*
978          * Wait for all children (clone and not) if __WALL is set or
979          * if it is traced by us.
980          */
981         if (ptrace || (wo->wo_flags & __WALL))
982                 return 1;
983
984         /*
985          * Otherwise, wait for clone children *only* if __WCLONE is set;
986          * otherwise, wait for non-clone children *only*.
987          *
988          * Note: a "clone" child here is one that reports to its parent
989          * using a signal other than SIGCHLD, or a non-leader thread which
990          * we can only see if it is traced by us.
991          */
992         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
993                 return 0;
994
995         return 1;
996 }
997
998 /*
999  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1000  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1001  * the lock and this task is uninteresting.  If we return nonzero, we have
1002  * released the lock and the system call should return.
1003  */
1004 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1005 {
1006         int state, status;
1007         pid_t pid = task_pid_vnr(p);
1008         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1009         struct waitid_info *infop;
1010
1011         if (!likely(wo->wo_flags & WEXITED))
1012                 return 0;
1013
1014         if (unlikely(wo->wo_flags & WNOWAIT)) {
1015                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1016                         ? p->signal->group_exit_code : p->exit_code;
1017                 get_task_struct(p);
1018                 read_unlock(&tasklist_lock);
1019                 sched_annotate_sleep();
1020                 if (wo->wo_rusage)
1021                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1022                 put_task_struct(p);
1023                 goto out_info;
1024         }
1025         /*
1026          * Move the task's state to DEAD/TRACE, only one thread can do this.
1027          */
1028         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1029                 EXIT_TRACE : EXIT_DEAD;
1030         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1031                 return 0;
1032         /*
1033          * We own this thread, nobody else can reap it.
1034          */
1035         read_unlock(&tasklist_lock);
1036         sched_annotate_sleep();
1037
1038         /*
1039          * Check thread_group_leader() to exclude the traced sub-threads.
1040          */
1041         if (state == EXIT_DEAD && thread_group_leader(p)) {
1042                 struct signal_struct *sig = p->signal;
1043                 struct signal_struct *psig = current->signal;
1044                 unsigned long maxrss;
1045                 u64 tgutime, tgstime;
1046
1047                 /*
1048                  * The resource counters for the group leader are in its
1049                  * own task_struct.  Those for dead threads in the group
1050                  * are in its signal_struct, as are those for the child
1051                  * processes it has previously reaped.  All these
1052                  * accumulate in the parent's signal_struct c* fields.
1053                  *
1054                  * We don't bother to take a lock here to protect these
1055                  * p->signal fields because the whole thread group is dead
1056                  * and nobody can change them.
1057                  *
1058                  * psig->stats_lock also protects us from our sub-threads
1059                  * which can reap other children at the same time. Until
1060                  * we change k_getrusage()-like users to rely on this lock
1061                  * we have to take ->siglock as well.
1062                  *
1063                  * We use thread_group_cputime_adjusted() to get times for
1064                  * the thread group, which consolidates times for all threads
1065                  * in the group including the group leader.
1066                  */
1067                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1068                 spin_lock_irq(&current->sighand->siglock);
1069                 write_seqlock(&psig->stats_lock);
1070                 psig->cutime += tgutime + sig->cutime;
1071                 psig->cstime += tgstime + sig->cstime;
1072                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1073                 psig->cmin_flt +=
1074                         p->min_flt + sig->min_flt + sig->cmin_flt;
1075                 psig->cmaj_flt +=
1076                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1077                 psig->cnvcsw +=
1078                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1079                 psig->cnivcsw +=
1080                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1081                 psig->cinblock +=
1082                         task_io_get_inblock(p) +
1083                         sig->inblock + sig->cinblock;
1084                 psig->coublock +=
1085                         task_io_get_oublock(p) +
1086                         sig->oublock + sig->coublock;
1087                 maxrss = max(sig->maxrss, sig->cmaxrss);
1088                 if (psig->cmaxrss < maxrss)
1089                         psig->cmaxrss = maxrss;
1090                 task_io_accounting_add(&psig->ioac, &p->ioac);
1091                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1092                 write_sequnlock(&psig->stats_lock);
1093                 spin_unlock_irq(&current->sighand->siglock);
1094         }
1095
1096         if (wo->wo_rusage)
1097                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1098         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1099                 ? p->signal->group_exit_code : p->exit_code;
1100         wo->wo_stat = status;
1101
1102         if (state == EXIT_TRACE) {
1103                 write_lock_irq(&tasklist_lock);
1104                 /* We dropped tasklist, ptracer could die and untrace */
1105                 ptrace_unlink(p);
1106
1107                 /* If parent wants a zombie, don't release it now */
1108                 state = EXIT_ZOMBIE;
1109                 if (do_notify_parent(p, p->exit_signal))
1110                         state = EXIT_DEAD;
1111                 p->exit_state = state;
1112                 write_unlock_irq(&tasklist_lock);
1113         }
1114         if (state == EXIT_DEAD)
1115                 release_task(p);
1116
1117 out_info:
1118         infop = wo->wo_info;
1119         if (infop) {
1120                 if ((status & 0x7f) == 0) {
1121                         infop->cause = CLD_EXITED;
1122                         infop->status = status >> 8;
1123                 } else {
1124                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1125                         infop->status = status & 0x7f;
1126                 }
1127                 infop->pid = pid;
1128                 infop->uid = uid;
1129         }
1130
1131         return pid;
1132 }
1133
1134 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1135 {
1136         if (ptrace) {
1137                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1138                         return &p->exit_code;
1139         } else {
1140                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1141                         return &p->signal->group_exit_code;
1142         }
1143         return NULL;
1144 }
1145
1146 /**
1147  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1148  * @wo: wait options
1149  * @ptrace: is the wait for ptrace
1150  * @p: task to wait for
1151  *
1152  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1153  *
1154  * CONTEXT:
1155  * read_lock(&tasklist_lock), which is released if return value is
1156  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1157  *
1158  * RETURNS:
1159  * 0 if wait condition didn't exist and search for other wait conditions
1160  * should continue.  Non-zero return, -errno on failure and @p's pid on
1161  * success, implies that tasklist_lock is released and wait condition
1162  * search should terminate.
1163  */
1164 static int wait_task_stopped(struct wait_opts *wo,
1165                                 int ptrace, struct task_struct *p)
1166 {
1167         struct waitid_info *infop;
1168         int exit_code, *p_code, why;
1169         uid_t uid = 0; /* unneeded, required by compiler */
1170         pid_t pid;
1171
1172         /*
1173          * Traditionally we see ptrace'd stopped tasks regardless of options.
1174          */
1175         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1176                 return 0;
1177
1178         if (!task_stopped_code(p, ptrace))
1179                 return 0;
1180
1181         exit_code = 0;
1182         spin_lock_irq(&p->sighand->siglock);
1183
1184         p_code = task_stopped_code(p, ptrace);
1185         if (unlikely(!p_code))
1186                 goto unlock_sig;
1187
1188         exit_code = *p_code;
1189         if (!exit_code)
1190                 goto unlock_sig;
1191
1192         if (!unlikely(wo->wo_flags & WNOWAIT))
1193                 *p_code = 0;
1194
1195         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1196 unlock_sig:
1197         spin_unlock_irq(&p->sighand->siglock);
1198         if (!exit_code)
1199                 return 0;
1200
1201         /*
1202          * Now we are pretty sure this task is interesting.
1203          * Make sure it doesn't get reaped out from under us while we
1204          * give up the lock and then examine it below.  We don't want to
1205          * keep holding onto the tasklist_lock while we call getrusage and
1206          * possibly take page faults for user memory.
1207          */
1208         get_task_struct(p);
1209         pid = task_pid_vnr(p);
1210         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1211         read_unlock(&tasklist_lock);
1212         sched_annotate_sleep();
1213         if (wo->wo_rusage)
1214                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1215         put_task_struct(p);
1216
1217         if (likely(!(wo->wo_flags & WNOWAIT)))
1218                 wo->wo_stat = (exit_code << 8) | 0x7f;
1219
1220         infop = wo->wo_info;
1221         if (infop) {
1222                 infop->cause = why;
1223                 infop->status = exit_code;
1224                 infop->pid = pid;
1225                 infop->uid = uid;
1226         }
1227         return pid;
1228 }
1229
1230 /*
1231  * Handle do_wait work for one task in a live, non-stopped state.
1232  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1233  * the lock and this task is uninteresting.  If we return nonzero, we have
1234  * released the lock and the system call should return.
1235  */
1236 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1237 {
1238         struct waitid_info *infop;
1239         pid_t pid;
1240         uid_t uid;
1241
1242         if (!unlikely(wo->wo_flags & WCONTINUED))
1243                 return 0;
1244
1245         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1246                 return 0;
1247
1248         spin_lock_irq(&p->sighand->siglock);
1249         /* Re-check with the lock held.  */
1250         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1251                 spin_unlock_irq(&p->sighand->siglock);
1252                 return 0;
1253         }
1254         if (!unlikely(wo->wo_flags & WNOWAIT))
1255                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1256         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1257         spin_unlock_irq(&p->sighand->siglock);
1258
1259         pid = task_pid_vnr(p);
1260         get_task_struct(p);
1261         read_unlock(&tasklist_lock);
1262         sched_annotate_sleep();
1263         if (wo->wo_rusage)
1264                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1265         put_task_struct(p);
1266
1267         infop = wo->wo_info;
1268         if (!infop) {
1269                 wo->wo_stat = 0xffff;
1270         } else {
1271                 infop->cause = CLD_CONTINUED;
1272                 infop->pid = pid;
1273                 infop->uid = uid;
1274                 infop->status = SIGCONT;
1275         }
1276         return pid;
1277 }
1278
1279 /*
1280  * Consider @p for a wait by @parent.
1281  *
1282  * -ECHILD should be in ->notask_error before the first call.
1283  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1284  * Returns zero if the search for a child should continue;
1285  * then ->notask_error is 0 if @p is an eligible child,
1286  * or still -ECHILD.
1287  */
1288 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1289                                 struct task_struct *p)
1290 {
1291         /*
1292          * We can race with wait_task_zombie() from another thread.
1293          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1294          * can't confuse the checks below.
1295          */
1296         int exit_state = READ_ONCE(p->exit_state);
1297         int ret;
1298
1299         if (unlikely(exit_state == EXIT_DEAD))
1300                 return 0;
1301
1302         ret = eligible_child(wo, ptrace, p);
1303         if (!ret)
1304                 return ret;
1305
1306         if (unlikely(exit_state == EXIT_TRACE)) {
1307                 /*
1308                  * ptrace == 0 means we are the natural parent. In this case
1309                  * we should clear notask_error, debugger will notify us.
1310                  */
1311                 if (likely(!ptrace))
1312                         wo->notask_error = 0;
1313                 return 0;
1314         }
1315
1316         if (likely(!ptrace) && unlikely(p->ptrace)) {
1317                 /*
1318                  * If it is traced by its real parent's group, just pretend
1319                  * the caller is ptrace_do_wait() and reap this child if it
1320                  * is zombie.
1321                  *
1322                  * This also hides group stop state from real parent; otherwise
1323                  * a single stop can be reported twice as group and ptrace stop.
1324                  * If a ptracer wants to distinguish these two events for its
1325                  * own children it should create a separate process which takes
1326                  * the role of real parent.
1327                  */
1328                 if (!ptrace_reparented(p))
1329                         ptrace = 1;
1330         }
1331
1332         /* slay zombie? */
1333         if (exit_state == EXIT_ZOMBIE) {
1334                 /* we don't reap group leaders with subthreads */
1335                 if (!delay_group_leader(p)) {
1336                         /*
1337                          * A zombie ptracee is only visible to its ptracer.
1338                          * Notification and reaping will be cascaded to the
1339                          * real parent when the ptracer detaches.
1340                          */
1341                         if (unlikely(ptrace) || likely(!p->ptrace))
1342                                 return wait_task_zombie(wo, p);
1343                 }
1344
1345                 /*
1346                  * Allow access to stopped/continued state via zombie by
1347                  * falling through.  Clearing of notask_error is complex.
1348                  *
1349                  * When !@ptrace:
1350                  *
1351                  * If WEXITED is set, notask_error should naturally be
1352                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1353                  * so, if there are live subthreads, there are events to
1354                  * wait for.  If all subthreads are dead, it's still safe
1355                  * to clear - this function will be called again in finite
1356                  * amount time once all the subthreads are released and
1357                  * will then return without clearing.
1358                  *
1359                  * When @ptrace:
1360                  *
1361                  * Stopped state is per-task and thus can't change once the
1362                  * target task dies.  Only continued and exited can happen.
1363                  * Clear notask_error if WCONTINUED | WEXITED.
1364                  */
1365                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1366                         wo->notask_error = 0;
1367         } else {
1368                 /*
1369                  * @p is alive and it's gonna stop, continue or exit, so
1370                  * there always is something to wait for.
1371                  */
1372                 wo->notask_error = 0;
1373         }
1374
1375         /*
1376          * Wait for stopped.  Depending on @ptrace, different stopped state
1377          * is used and the two don't interact with each other.
1378          */
1379         ret = wait_task_stopped(wo, ptrace, p);
1380         if (ret)
1381                 return ret;
1382
1383         /*
1384          * Wait for continued.  There's only one continued state and the
1385          * ptracer can consume it which can confuse the real parent.  Don't
1386          * use WCONTINUED from ptracer.  You don't need or want it.
1387          */
1388         return wait_task_continued(wo, p);
1389 }
1390
1391 /*
1392  * Do the work of do_wait() for one thread in the group, @tsk.
1393  *
1394  * -ECHILD should be in ->notask_error before the first call.
1395  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1396  * Returns zero if the search for a child should continue; then
1397  * ->notask_error is 0 if there were any eligible children,
1398  * or still -ECHILD.
1399  */
1400 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1401 {
1402         struct task_struct *p;
1403
1404         list_for_each_entry(p, &tsk->children, sibling) {
1405                 int ret = wait_consider_task(wo, 0, p);
1406
1407                 if (ret)
1408                         return ret;
1409         }
1410
1411         return 0;
1412 }
1413
1414 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1415 {
1416         struct task_struct *p;
1417
1418         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1419                 int ret = wait_consider_task(wo, 1, p);
1420
1421                 if (ret)
1422                         return ret;
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1429                                 int sync, void *key)
1430 {
1431         struct wait_opts *wo = container_of(wait, struct wait_opts,
1432                                                 child_wait);
1433         struct task_struct *p = key;
1434
1435         if (!eligible_pid(wo, p))
1436                 return 0;
1437
1438         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1439                 return 0;
1440
1441         return default_wake_function(wait, mode, sync, key);
1442 }
1443
1444 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1445 {
1446         __wake_up_sync_key(&parent->signal->wait_chldexit,
1447                            TASK_INTERRUPTIBLE, p);
1448 }
1449
1450 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1451                                  struct task_struct *target)
1452 {
1453         struct task_struct *parent =
1454                 !ptrace ? target->real_parent : target->parent;
1455
1456         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1457                                      same_thread_group(current, parent));
1458 }
1459
1460 /*
1461  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1462  * and tracee lists to find the target task.
1463  */
1464 static int do_wait_pid(struct wait_opts *wo)
1465 {
1466         bool ptrace;
1467         struct task_struct *target;
1468         int retval;
1469
1470         ptrace = false;
1471         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1472         if (target && is_effectively_child(wo, ptrace, target)) {
1473                 retval = wait_consider_task(wo, ptrace, target);
1474                 if (retval)
1475                         return retval;
1476         }
1477
1478         ptrace = true;
1479         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1480         if (target && target->ptrace &&
1481             is_effectively_child(wo, ptrace, target)) {
1482                 retval = wait_consider_task(wo, ptrace, target);
1483                 if (retval)
1484                         return retval;
1485         }
1486
1487         return 0;
1488 }
1489
1490 static long do_wait(struct wait_opts *wo)
1491 {
1492         int retval;
1493
1494         trace_sched_process_wait(wo->wo_pid);
1495
1496         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1497         wo->child_wait.private = current;
1498         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1499 repeat:
1500         /*
1501          * If there is nothing that can match our criteria, just get out.
1502          * We will clear ->notask_error to zero if we see any child that
1503          * might later match our criteria, even if we are not able to reap
1504          * it yet.
1505          */
1506         wo->notask_error = -ECHILD;
1507         if ((wo->wo_type < PIDTYPE_MAX) &&
1508            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1509                 goto notask;
1510
1511         set_current_state(TASK_INTERRUPTIBLE);
1512         read_lock(&tasklist_lock);
1513
1514         if (wo->wo_type == PIDTYPE_PID) {
1515                 retval = do_wait_pid(wo);
1516                 if (retval)
1517                         goto end;
1518         } else {
1519                 struct task_struct *tsk = current;
1520
1521                 do {
1522                         retval = do_wait_thread(wo, tsk);
1523                         if (retval)
1524                                 goto end;
1525
1526                         retval = ptrace_do_wait(wo, tsk);
1527                         if (retval)
1528                                 goto end;
1529
1530                         if (wo->wo_flags & __WNOTHREAD)
1531                                 break;
1532                 } while_each_thread(current, tsk);
1533         }
1534         read_unlock(&tasklist_lock);
1535
1536 notask:
1537         retval = wo->notask_error;
1538         if (!retval && !(wo->wo_flags & WNOHANG)) {
1539                 retval = -ERESTARTSYS;
1540                 if (!signal_pending(current)) {
1541                         schedule();
1542                         goto repeat;
1543                 }
1544         }
1545 end:
1546         __set_current_state(TASK_RUNNING);
1547         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1548         return retval;
1549 }
1550
1551 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1552                           int options, struct rusage *ru)
1553 {
1554         struct wait_opts wo;
1555         struct pid *pid = NULL;
1556         enum pid_type type;
1557         long ret;
1558         unsigned int f_flags = 0;
1559
1560         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1561                         __WNOTHREAD|__WCLONE|__WALL))
1562                 return -EINVAL;
1563         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1564                 return -EINVAL;
1565
1566         switch (which) {
1567         case P_ALL:
1568                 type = PIDTYPE_MAX;
1569                 break;
1570         case P_PID:
1571                 type = PIDTYPE_PID;
1572                 if (upid <= 0)
1573                         return -EINVAL;
1574
1575                 pid = find_get_pid(upid);
1576                 break;
1577         case P_PGID:
1578                 type = PIDTYPE_PGID;
1579                 if (upid < 0)
1580                         return -EINVAL;
1581
1582                 if (upid)
1583                         pid = find_get_pid(upid);
1584                 else
1585                         pid = get_task_pid(current, PIDTYPE_PGID);
1586                 break;
1587         case P_PIDFD:
1588                 type = PIDTYPE_PID;
1589                 if (upid < 0)
1590                         return -EINVAL;
1591
1592                 pid = pidfd_get_pid(upid, &f_flags);
1593                 if (IS_ERR(pid))
1594                         return PTR_ERR(pid);
1595
1596                 break;
1597         default:
1598                 return -EINVAL;
1599         }
1600
1601         wo.wo_type      = type;
1602         wo.wo_pid       = pid;
1603         wo.wo_flags     = options;
1604         wo.wo_info      = infop;
1605         wo.wo_rusage    = ru;
1606         if (f_flags & O_NONBLOCK)
1607                 wo.wo_flags |= WNOHANG;
1608
1609         ret = do_wait(&wo);
1610         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1611                 ret = -EAGAIN;
1612
1613         put_pid(pid);
1614         return ret;
1615 }
1616
1617 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1618                 infop, int, options, struct rusage __user *, ru)
1619 {
1620         struct rusage r;
1621         struct waitid_info info = {.status = 0};
1622         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1623         int signo = 0;
1624
1625         if (err > 0) {
1626                 signo = SIGCHLD;
1627                 err = 0;
1628                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1629                         return -EFAULT;
1630         }
1631         if (!infop)
1632                 return err;
1633
1634         if (!user_write_access_begin(infop, sizeof(*infop)))
1635                 return -EFAULT;
1636
1637         unsafe_put_user(signo, &infop->si_signo, Efault);
1638         unsafe_put_user(0, &infop->si_errno, Efault);
1639         unsafe_put_user(info.cause, &infop->si_code, Efault);
1640         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1641         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1642         unsafe_put_user(info.status, &infop->si_status, Efault);
1643         user_write_access_end();
1644         return err;
1645 Efault:
1646         user_write_access_end();
1647         return -EFAULT;
1648 }
1649
1650 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1651                   struct rusage *ru)
1652 {
1653         struct wait_opts wo;
1654         struct pid *pid = NULL;
1655         enum pid_type type;
1656         long ret;
1657
1658         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1659                         __WNOTHREAD|__WCLONE|__WALL))
1660                 return -EINVAL;
1661
1662         /* -INT_MIN is not defined */
1663         if (upid == INT_MIN)
1664                 return -ESRCH;
1665
1666         if (upid == -1)
1667                 type = PIDTYPE_MAX;
1668         else if (upid < 0) {
1669                 type = PIDTYPE_PGID;
1670                 pid = find_get_pid(-upid);
1671         } else if (upid == 0) {
1672                 type = PIDTYPE_PGID;
1673                 pid = get_task_pid(current, PIDTYPE_PGID);
1674         } else /* upid > 0 */ {
1675                 type = PIDTYPE_PID;
1676                 pid = find_get_pid(upid);
1677         }
1678
1679         wo.wo_type      = type;
1680         wo.wo_pid       = pid;
1681         wo.wo_flags     = options | WEXITED;
1682         wo.wo_info      = NULL;
1683         wo.wo_stat      = 0;
1684         wo.wo_rusage    = ru;
1685         ret = do_wait(&wo);
1686         put_pid(pid);
1687         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1688                 ret = -EFAULT;
1689
1690         return ret;
1691 }
1692
1693 int kernel_wait(pid_t pid, int *stat)
1694 {
1695         struct wait_opts wo = {
1696                 .wo_type        = PIDTYPE_PID,
1697                 .wo_pid         = find_get_pid(pid),
1698                 .wo_flags       = WEXITED,
1699         };
1700         int ret;
1701
1702         ret = do_wait(&wo);
1703         if (ret > 0 && wo.wo_stat)
1704                 *stat = wo.wo_stat;
1705         put_pid(wo.wo_pid);
1706         return ret;
1707 }
1708
1709 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1710                 int, options, struct rusage __user *, ru)
1711 {
1712         struct rusage r;
1713         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1714
1715         if (err > 0) {
1716                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1717                         return -EFAULT;
1718         }
1719         return err;
1720 }
1721
1722 #ifdef __ARCH_WANT_SYS_WAITPID
1723
1724 /*
1725  * sys_waitpid() remains for compatibility. waitpid() should be
1726  * implemented by calling sys_wait4() from libc.a.
1727  */
1728 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1729 {
1730         return kernel_wait4(pid, stat_addr, options, NULL);
1731 }
1732
1733 #endif
1734
1735 #ifdef CONFIG_COMPAT
1736 COMPAT_SYSCALL_DEFINE4(wait4,
1737         compat_pid_t, pid,
1738         compat_uint_t __user *, stat_addr,
1739         int, options,
1740         struct compat_rusage __user *, ru)
1741 {
1742         struct rusage r;
1743         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1744         if (err > 0) {
1745                 if (ru && put_compat_rusage(&r, ru))
1746                         return -EFAULT;
1747         }
1748         return err;
1749 }
1750
1751 COMPAT_SYSCALL_DEFINE5(waitid,
1752                 int, which, compat_pid_t, pid,
1753                 struct compat_siginfo __user *, infop, int, options,
1754                 struct compat_rusage __user *, uru)
1755 {
1756         struct rusage ru;
1757         struct waitid_info info = {.status = 0};
1758         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1759         int signo = 0;
1760         if (err > 0) {
1761                 signo = SIGCHLD;
1762                 err = 0;
1763                 if (uru) {
1764                         /* kernel_waitid() overwrites everything in ru */
1765                         if (COMPAT_USE_64BIT_TIME)
1766                                 err = copy_to_user(uru, &ru, sizeof(ru));
1767                         else
1768                                 err = put_compat_rusage(&ru, uru);
1769                         if (err)
1770                                 return -EFAULT;
1771                 }
1772         }
1773
1774         if (!infop)
1775                 return err;
1776
1777         if (!user_write_access_begin(infop, sizeof(*infop)))
1778                 return -EFAULT;
1779
1780         unsafe_put_user(signo, &infop->si_signo, Efault);
1781         unsafe_put_user(0, &infop->si_errno, Efault);
1782         unsafe_put_user(info.cause, &infop->si_code, Efault);
1783         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1784         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1785         unsafe_put_user(info.status, &infop->si_status, Efault);
1786         user_write_access_end();
1787         return err;
1788 Efault:
1789         user_write_access_end();
1790         return -EFAULT;
1791 }
1792 #endif
1793
1794 /**
1795  * thread_group_exited - check that a thread group has exited
1796  * @pid: tgid of thread group to be checked.
1797  *
1798  * Test if the thread group represented by tgid has exited (all
1799  * threads are zombies, dead or completely gone).
1800  *
1801  * Return: true if the thread group has exited. false otherwise.
1802  */
1803 bool thread_group_exited(struct pid *pid)
1804 {
1805         struct task_struct *task;
1806         bool exited;
1807
1808         rcu_read_lock();
1809         task = pid_task(pid, PIDTYPE_PID);
1810         exited = !task ||
1811                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1812         rcu_read_unlock();
1813
1814         return exited;
1815 }
1816 EXPORT_SYMBOL(thread_group_exited);
1817
1818 __weak void abort(void)
1819 {
1820         BUG();
1821
1822         /* if that doesn't kill us, halt */
1823         panic("Oops failed to kill thread");
1824 }
1825 EXPORT_SYMBOL(abort);