Merge tag 'block-6.6-2023-10-27' of git://git.kernel.dk/linux
[platform/kernel/linux-starfive.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72
73 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
75 #include <asm/mmu_context.h>
76
77 /*
78  * The default value should be high enough to not crash a system that randomly
79  * crashes its kernel from time to time, but low enough to at least not permit
80  * overflowing 32-bit refcounts or the ldsem writer count.
81  */
82 static unsigned int oops_limit = 10000;
83
84 #ifdef CONFIG_SYSCTL
85 static struct ctl_table kern_exit_table[] = {
86         {
87                 .procname       = "oops_limit",
88                 .data           = &oops_limit,
89                 .maxlen         = sizeof(oops_limit),
90                 .mode           = 0644,
91                 .proc_handler   = proc_douintvec,
92         },
93         { }
94 };
95
96 static __init int kernel_exit_sysctls_init(void)
97 {
98         register_sysctl_init("kernel", kern_exit_table);
99         return 0;
100 }
101 late_initcall(kernel_exit_sysctls_init);
102 #endif
103
104 static atomic_t oops_count = ATOMIC_INIT(0);
105
106 #ifdef CONFIG_SYSFS
107 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
108                                char *page)
109 {
110         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
111 }
112
113 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
114
115 static __init int kernel_exit_sysfs_init(void)
116 {
117         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
118         return 0;
119 }
120 late_initcall(kernel_exit_sysfs_init);
121 #endif
122
123 static void __unhash_process(struct task_struct *p, bool group_dead)
124 {
125         nr_threads--;
126         detach_pid(p, PIDTYPE_PID);
127         if (group_dead) {
128                 detach_pid(p, PIDTYPE_TGID);
129                 detach_pid(p, PIDTYPE_PGID);
130                 detach_pid(p, PIDTYPE_SID);
131
132                 list_del_rcu(&p->tasks);
133                 list_del_init(&p->sibling);
134                 __this_cpu_dec(process_counts);
135         }
136         list_del_rcu(&p->thread_group);
137         list_del_rcu(&p->thread_node);
138 }
139
140 /*
141  * This function expects the tasklist_lock write-locked.
142  */
143 static void __exit_signal(struct task_struct *tsk)
144 {
145         struct signal_struct *sig = tsk->signal;
146         bool group_dead = thread_group_leader(tsk);
147         struct sighand_struct *sighand;
148         struct tty_struct *tty;
149         u64 utime, stime;
150
151         sighand = rcu_dereference_check(tsk->sighand,
152                                         lockdep_tasklist_lock_is_held());
153         spin_lock(&sighand->siglock);
154
155 #ifdef CONFIG_POSIX_TIMERS
156         posix_cpu_timers_exit(tsk);
157         if (group_dead)
158                 posix_cpu_timers_exit_group(tsk);
159 #endif
160
161         if (group_dead) {
162                 tty = sig->tty;
163                 sig->tty = NULL;
164         } else {
165                 /*
166                  * If there is any task waiting for the group exit
167                  * then notify it:
168                  */
169                 if (sig->notify_count > 0 && !--sig->notify_count)
170                         wake_up_process(sig->group_exec_task);
171
172                 if (tsk == sig->curr_target)
173                         sig->curr_target = next_thread(tsk);
174         }
175
176         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
177                               sizeof(unsigned long long));
178
179         /*
180          * Accumulate here the counters for all threads as they die. We could
181          * skip the group leader because it is the last user of signal_struct,
182          * but we want to avoid the race with thread_group_cputime() which can
183          * see the empty ->thread_head list.
184          */
185         task_cputime(tsk, &utime, &stime);
186         write_seqlock(&sig->stats_lock);
187         sig->utime += utime;
188         sig->stime += stime;
189         sig->gtime += task_gtime(tsk);
190         sig->min_flt += tsk->min_flt;
191         sig->maj_flt += tsk->maj_flt;
192         sig->nvcsw += tsk->nvcsw;
193         sig->nivcsw += tsk->nivcsw;
194         sig->inblock += task_io_get_inblock(tsk);
195         sig->oublock += task_io_get_oublock(tsk);
196         task_io_accounting_add(&sig->ioac, &tsk->ioac);
197         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
198         sig->nr_threads--;
199         __unhash_process(tsk, group_dead);
200         write_sequnlock(&sig->stats_lock);
201
202         /*
203          * Do this under ->siglock, we can race with another thread
204          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
205          */
206         flush_sigqueue(&tsk->pending);
207         tsk->sighand = NULL;
208         spin_unlock(&sighand->siglock);
209
210         __cleanup_sighand(sighand);
211         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
212         if (group_dead) {
213                 flush_sigqueue(&sig->shared_pending);
214                 tty_kref_put(tty);
215         }
216 }
217
218 static void delayed_put_task_struct(struct rcu_head *rhp)
219 {
220         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
221
222         kprobe_flush_task(tsk);
223         rethook_flush_task(tsk);
224         perf_event_delayed_put(tsk);
225         trace_sched_process_free(tsk);
226         put_task_struct(tsk);
227 }
228
229 void put_task_struct_rcu_user(struct task_struct *task)
230 {
231         if (refcount_dec_and_test(&task->rcu_users))
232                 call_rcu(&task->rcu, delayed_put_task_struct);
233 }
234
235 void __weak release_thread(struct task_struct *dead_task)
236 {
237 }
238
239 void release_task(struct task_struct *p)
240 {
241         struct task_struct *leader;
242         struct pid *thread_pid;
243         int zap_leader;
244 repeat:
245         /* don't need to get the RCU readlock here - the process is dead and
246          * can't be modifying its own credentials. But shut RCU-lockdep up */
247         rcu_read_lock();
248         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
249         rcu_read_unlock();
250
251         cgroup_release(p);
252
253         write_lock_irq(&tasklist_lock);
254         ptrace_release_task(p);
255         thread_pid = get_pid(p->thread_pid);
256         __exit_signal(p);
257
258         /*
259          * If we are the last non-leader member of the thread
260          * group, and the leader is zombie, then notify the
261          * group leader's parent process. (if it wants notification.)
262          */
263         zap_leader = 0;
264         leader = p->group_leader;
265         if (leader != p && thread_group_empty(leader)
266                         && leader->exit_state == EXIT_ZOMBIE) {
267                 /*
268                  * If we were the last child thread and the leader has
269                  * exited already, and the leader's parent ignores SIGCHLD,
270                  * then we are the one who should release the leader.
271                  */
272                 zap_leader = do_notify_parent(leader, leader->exit_signal);
273                 if (zap_leader)
274                         leader->exit_state = EXIT_DEAD;
275         }
276
277         write_unlock_irq(&tasklist_lock);
278         seccomp_filter_release(p);
279         proc_flush_pid(thread_pid);
280         put_pid(thread_pid);
281         release_thread(p);
282         put_task_struct_rcu_user(p);
283
284         p = leader;
285         if (unlikely(zap_leader))
286                 goto repeat;
287 }
288
289 int rcuwait_wake_up(struct rcuwait *w)
290 {
291         int ret = 0;
292         struct task_struct *task;
293
294         rcu_read_lock();
295
296         /*
297          * Order condition vs @task, such that everything prior to the load
298          * of @task is visible. This is the condition as to why the user called
299          * rcuwait_wake() in the first place. Pairs with set_current_state()
300          * barrier (A) in rcuwait_wait_event().
301          *
302          *    WAIT                WAKE
303          *    [S] tsk = current   [S] cond = true
304          *        MB (A)              MB (B)
305          *    [L] cond            [L] tsk
306          */
307         smp_mb(); /* (B) */
308
309         task = rcu_dereference(w->task);
310         if (task)
311                 ret = wake_up_process(task);
312         rcu_read_unlock();
313
314         return ret;
315 }
316 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
317
318 /*
319  * Determine if a process group is "orphaned", according to the POSIX
320  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
321  * by terminal-generated stop signals.  Newly orphaned process groups are
322  * to receive a SIGHUP and a SIGCONT.
323  *
324  * "I ask you, have you ever known what it is to be an orphan?"
325  */
326 static int will_become_orphaned_pgrp(struct pid *pgrp,
327                                         struct task_struct *ignored_task)
328 {
329         struct task_struct *p;
330
331         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332                 if ((p == ignored_task) ||
333                     (p->exit_state && thread_group_empty(p)) ||
334                     is_global_init(p->real_parent))
335                         continue;
336
337                 if (task_pgrp(p->real_parent) != pgrp &&
338                     task_session(p->real_parent) == task_session(p))
339                         return 0;
340         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
341
342         return 1;
343 }
344
345 int is_current_pgrp_orphaned(void)
346 {
347         int retval;
348
349         read_lock(&tasklist_lock);
350         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
351         read_unlock(&tasklist_lock);
352
353         return retval;
354 }
355
356 static bool has_stopped_jobs(struct pid *pgrp)
357 {
358         struct task_struct *p;
359
360         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
361                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
362                         return true;
363         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
364
365         return false;
366 }
367
368 /*
369  * Check to see if any process groups have become orphaned as
370  * a result of our exiting, and if they have any stopped jobs,
371  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
372  */
373 static void
374 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
375 {
376         struct pid *pgrp = task_pgrp(tsk);
377         struct task_struct *ignored_task = tsk;
378
379         if (!parent)
380                 /* exit: our father is in a different pgrp than
381                  * we are and we were the only connection outside.
382                  */
383                 parent = tsk->real_parent;
384         else
385                 /* reparent: our child is in a different pgrp than
386                  * we are, and it was the only connection outside.
387                  */
388                 ignored_task = NULL;
389
390         if (task_pgrp(parent) != pgrp &&
391             task_session(parent) == task_session(tsk) &&
392             will_become_orphaned_pgrp(pgrp, ignored_task) &&
393             has_stopped_jobs(pgrp)) {
394                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
395                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
396         }
397 }
398
399 static void coredump_task_exit(struct task_struct *tsk)
400 {
401         struct core_state *core_state;
402
403         /*
404          * Serialize with any possible pending coredump.
405          * We must hold siglock around checking core_state
406          * and setting PF_POSTCOREDUMP.  The core-inducing thread
407          * will increment ->nr_threads for each thread in the
408          * group without PF_POSTCOREDUMP set.
409          */
410         spin_lock_irq(&tsk->sighand->siglock);
411         tsk->flags |= PF_POSTCOREDUMP;
412         core_state = tsk->signal->core_state;
413         spin_unlock_irq(&tsk->sighand->siglock);
414
415         /* The vhost_worker does not particpate in coredumps */
416         if (core_state &&
417             ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
418                 struct core_thread self;
419
420                 self.task = current;
421                 if (self.task->flags & PF_SIGNALED)
422                         self.next = xchg(&core_state->dumper.next, &self);
423                 else
424                         self.task = NULL;
425                 /*
426                  * Implies mb(), the result of xchg() must be visible
427                  * to core_state->dumper.
428                  */
429                 if (atomic_dec_and_test(&core_state->nr_threads))
430                         complete(&core_state->startup);
431
432                 for (;;) {
433                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
434                         if (!self.task) /* see coredump_finish() */
435                                 break;
436                         schedule();
437                 }
438                 __set_current_state(TASK_RUNNING);
439         }
440 }
441
442 #ifdef CONFIG_MEMCG
443 /*
444  * A task is exiting.   If it owned this mm, find a new owner for the mm.
445  */
446 void mm_update_next_owner(struct mm_struct *mm)
447 {
448         struct task_struct *c, *g, *p = current;
449
450 retry:
451         /*
452          * If the exiting or execing task is not the owner, it's
453          * someone else's problem.
454          */
455         if (mm->owner != p)
456                 return;
457         /*
458          * The current owner is exiting/execing and there are no other
459          * candidates.  Do not leave the mm pointing to a possibly
460          * freed task structure.
461          */
462         if (atomic_read(&mm->mm_users) <= 1) {
463                 WRITE_ONCE(mm->owner, NULL);
464                 return;
465         }
466
467         read_lock(&tasklist_lock);
468         /*
469          * Search in the children
470          */
471         list_for_each_entry(c, &p->children, sibling) {
472                 if (c->mm == mm)
473                         goto assign_new_owner;
474         }
475
476         /*
477          * Search in the siblings
478          */
479         list_for_each_entry(c, &p->real_parent->children, sibling) {
480                 if (c->mm == mm)
481                         goto assign_new_owner;
482         }
483
484         /*
485          * Search through everything else, we should not get here often.
486          */
487         for_each_process(g) {
488                 if (g->flags & PF_KTHREAD)
489                         continue;
490                 for_each_thread(g, c) {
491                         if (c->mm == mm)
492                                 goto assign_new_owner;
493                         if (c->mm)
494                                 break;
495                 }
496         }
497         read_unlock(&tasklist_lock);
498         /*
499          * We found no owner yet mm_users > 1: this implies that we are
500          * most likely racing with swapoff (try_to_unuse()) or /proc or
501          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
502          */
503         WRITE_ONCE(mm->owner, NULL);
504         return;
505
506 assign_new_owner:
507         BUG_ON(c == p);
508         get_task_struct(c);
509         /*
510          * The task_lock protects c->mm from changing.
511          * We always want mm->owner->mm == mm
512          */
513         task_lock(c);
514         /*
515          * Delay read_unlock() till we have the task_lock()
516          * to ensure that c does not slip away underneath us
517          */
518         read_unlock(&tasklist_lock);
519         if (c->mm != mm) {
520                 task_unlock(c);
521                 put_task_struct(c);
522                 goto retry;
523         }
524         WRITE_ONCE(mm->owner, c);
525         lru_gen_migrate_mm(mm);
526         task_unlock(c);
527         put_task_struct(c);
528 }
529 #endif /* CONFIG_MEMCG */
530
531 /*
532  * Turn us into a lazy TLB process if we
533  * aren't already..
534  */
535 static void exit_mm(void)
536 {
537         struct mm_struct *mm = current->mm;
538
539         exit_mm_release(current, mm);
540         if (!mm)
541                 return;
542         sync_mm_rss(mm);
543         mmap_read_lock(mm);
544         mmgrab_lazy_tlb(mm);
545         BUG_ON(mm != current->active_mm);
546         /* more a memory barrier than a real lock */
547         task_lock(current);
548         /*
549          * When a thread stops operating on an address space, the loop
550          * in membarrier_private_expedited() may not observe that
551          * tsk->mm, and the loop in membarrier_global_expedited() may
552          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
553          * rq->membarrier_state, so those would not issue an IPI.
554          * Membarrier requires a memory barrier after accessing
555          * user-space memory, before clearing tsk->mm or the
556          * rq->membarrier_state.
557          */
558         smp_mb__after_spinlock();
559         local_irq_disable();
560         current->mm = NULL;
561         membarrier_update_current_mm(NULL);
562         enter_lazy_tlb(mm, current);
563         local_irq_enable();
564         task_unlock(current);
565         mmap_read_unlock(mm);
566         mm_update_next_owner(mm);
567         mmput(mm);
568         if (test_thread_flag(TIF_MEMDIE))
569                 exit_oom_victim();
570 }
571
572 static struct task_struct *find_alive_thread(struct task_struct *p)
573 {
574         struct task_struct *t;
575
576         for_each_thread(p, t) {
577                 if (!(t->flags & PF_EXITING))
578                         return t;
579         }
580         return NULL;
581 }
582
583 static struct task_struct *find_child_reaper(struct task_struct *father,
584                                                 struct list_head *dead)
585         __releases(&tasklist_lock)
586         __acquires(&tasklist_lock)
587 {
588         struct pid_namespace *pid_ns = task_active_pid_ns(father);
589         struct task_struct *reaper = pid_ns->child_reaper;
590         struct task_struct *p, *n;
591
592         if (likely(reaper != father))
593                 return reaper;
594
595         reaper = find_alive_thread(father);
596         if (reaper) {
597                 pid_ns->child_reaper = reaper;
598                 return reaper;
599         }
600
601         write_unlock_irq(&tasklist_lock);
602
603         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
604                 list_del_init(&p->ptrace_entry);
605                 release_task(p);
606         }
607
608         zap_pid_ns_processes(pid_ns);
609         write_lock_irq(&tasklist_lock);
610
611         return father;
612 }
613
614 /*
615  * When we die, we re-parent all our children, and try to:
616  * 1. give them to another thread in our thread group, if such a member exists
617  * 2. give it to the first ancestor process which prctl'd itself as a
618  *    child_subreaper for its children (like a service manager)
619  * 3. give it to the init process (PID 1) in our pid namespace
620  */
621 static struct task_struct *find_new_reaper(struct task_struct *father,
622                                            struct task_struct *child_reaper)
623 {
624         struct task_struct *thread, *reaper;
625
626         thread = find_alive_thread(father);
627         if (thread)
628                 return thread;
629
630         if (father->signal->has_child_subreaper) {
631                 unsigned int ns_level = task_pid(father)->level;
632                 /*
633                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
634                  * We can't check reaper != child_reaper to ensure we do not
635                  * cross the namespaces, the exiting parent could be injected
636                  * by setns() + fork().
637                  * We check pid->level, this is slightly more efficient than
638                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
639                  */
640                 for (reaper = father->real_parent;
641                      task_pid(reaper)->level == ns_level;
642                      reaper = reaper->real_parent) {
643                         if (reaper == &init_task)
644                                 break;
645                         if (!reaper->signal->is_child_subreaper)
646                                 continue;
647                         thread = find_alive_thread(reaper);
648                         if (thread)
649                                 return thread;
650                 }
651         }
652
653         return child_reaper;
654 }
655
656 /*
657 * Any that need to be release_task'd are put on the @dead list.
658  */
659 static void reparent_leader(struct task_struct *father, struct task_struct *p,
660                                 struct list_head *dead)
661 {
662         if (unlikely(p->exit_state == EXIT_DEAD))
663                 return;
664
665         /* We don't want people slaying init. */
666         p->exit_signal = SIGCHLD;
667
668         /* If it has exited notify the new parent about this child's death. */
669         if (!p->ptrace &&
670             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
671                 if (do_notify_parent(p, p->exit_signal)) {
672                         p->exit_state = EXIT_DEAD;
673                         list_add(&p->ptrace_entry, dead);
674                 }
675         }
676
677         kill_orphaned_pgrp(p, father);
678 }
679
680 /*
681  * This does two things:
682  *
683  * A.  Make init inherit all the child processes
684  * B.  Check to see if any process groups have become orphaned
685  *      as a result of our exiting, and if they have any stopped
686  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
687  */
688 static void forget_original_parent(struct task_struct *father,
689                                         struct list_head *dead)
690 {
691         struct task_struct *p, *t, *reaper;
692
693         if (unlikely(!list_empty(&father->ptraced)))
694                 exit_ptrace(father, dead);
695
696         /* Can drop and reacquire tasklist_lock */
697         reaper = find_child_reaper(father, dead);
698         if (list_empty(&father->children))
699                 return;
700
701         reaper = find_new_reaper(father, reaper);
702         list_for_each_entry(p, &father->children, sibling) {
703                 for_each_thread(p, t) {
704                         RCU_INIT_POINTER(t->real_parent, reaper);
705                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
706                         if (likely(!t->ptrace))
707                                 t->parent = t->real_parent;
708                         if (t->pdeath_signal)
709                                 group_send_sig_info(t->pdeath_signal,
710                                                     SEND_SIG_NOINFO, t,
711                                                     PIDTYPE_TGID);
712                 }
713                 /*
714                  * If this is a threaded reparent there is no need to
715                  * notify anyone anything has happened.
716                  */
717                 if (!same_thread_group(reaper, father))
718                         reparent_leader(father, p, dead);
719         }
720         list_splice_tail_init(&father->children, &reaper->children);
721 }
722
723 /*
724  * Send signals to all our closest relatives so that they know
725  * to properly mourn us..
726  */
727 static void exit_notify(struct task_struct *tsk, int group_dead)
728 {
729         bool autoreap;
730         struct task_struct *p, *n;
731         LIST_HEAD(dead);
732
733         write_lock_irq(&tasklist_lock);
734         forget_original_parent(tsk, &dead);
735
736         if (group_dead)
737                 kill_orphaned_pgrp(tsk->group_leader, NULL);
738
739         tsk->exit_state = EXIT_ZOMBIE;
740         if (unlikely(tsk->ptrace)) {
741                 int sig = thread_group_leader(tsk) &&
742                                 thread_group_empty(tsk) &&
743                                 !ptrace_reparented(tsk) ?
744                         tsk->exit_signal : SIGCHLD;
745                 autoreap = do_notify_parent(tsk, sig);
746         } else if (thread_group_leader(tsk)) {
747                 autoreap = thread_group_empty(tsk) &&
748                         do_notify_parent(tsk, tsk->exit_signal);
749         } else {
750                 autoreap = true;
751         }
752
753         if (autoreap) {
754                 tsk->exit_state = EXIT_DEAD;
755                 list_add(&tsk->ptrace_entry, &dead);
756         }
757
758         /* mt-exec, de_thread() is waiting for group leader */
759         if (unlikely(tsk->signal->notify_count < 0))
760                 wake_up_process(tsk->signal->group_exec_task);
761         write_unlock_irq(&tasklist_lock);
762
763         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
764                 list_del_init(&p->ptrace_entry);
765                 release_task(p);
766         }
767 }
768
769 #ifdef CONFIG_DEBUG_STACK_USAGE
770 static void check_stack_usage(void)
771 {
772         static DEFINE_SPINLOCK(low_water_lock);
773         static int lowest_to_date = THREAD_SIZE;
774         unsigned long free;
775
776         free = stack_not_used(current);
777
778         if (free >= lowest_to_date)
779                 return;
780
781         spin_lock(&low_water_lock);
782         if (free < lowest_to_date) {
783                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
784                         current->comm, task_pid_nr(current), free);
785                 lowest_to_date = free;
786         }
787         spin_unlock(&low_water_lock);
788 }
789 #else
790 static inline void check_stack_usage(void) {}
791 #endif
792
793 static void synchronize_group_exit(struct task_struct *tsk, long code)
794 {
795         struct sighand_struct *sighand = tsk->sighand;
796         struct signal_struct *signal = tsk->signal;
797
798         spin_lock_irq(&sighand->siglock);
799         signal->quick_threads--;
800         if ((signal->quick_threads == 0) &&
801             !(signal->flags & SIGNAL_GROUP_EXIT)) {
802                 signal->flags = SIGNAL_GROUP_EXIT;
803                 signal->group_exit_code = code;
804                 signal->group_stop_count = 0;
805         }
806         spin_unlock_irq(&sighand->siglock);
807 }
808
809 void __noreturn do_exit(long code)
810 {
811         struct task_struct *tsk = current;
812         int group_dead;
813
814         WARN_ON(irqs_disabled());
815
816         synchronize_group_exit(tsk, code);
817
818         WARN_ON(tsk->plug);
819
820         kcov_task_exit(tsk);
821         kmsan_task_exit(tsk);
822
823         coredump_task_exit(tsk);
824         ptrace_event(PTRACE_EVENT_EXIT, code);
825         user_events_exit(tsk);
826
827         validate_creds_for_do_exit(tsk);
828
829         io_uring_files_cancel();
830         exit_signals(tsk);  /* sets PF_EXITING */
831
832         /* sync mm's RSS info before statistics gathering */
833         if (tsk->mm)
834                 sync_mm_rss(tsk->mm);
835         acct_update_integrals(tsk);
836         group_dead = atomic_dec_and_test(&tsk->signal->live);
837         if (group_dead) {
838                 /*
839                  * If the last thread of global init has exited, panic
840                  * immediately to get a useable coredump.
841                  */
842                 if (unlikely(is_global_init(tsk)))
843                         panic("Attempted to kill init! exitcode=0x%08x\n",
844                                 tsk->signal->group_exit_code ?: (int)code);
845
846 #ifdef CONFIG_POSIX_TIMERS
847                 hrtimer_cancel(&tsk->signal->real_timer);
848                 exit_itimers(tsk);
849 #endif
850                 if (tsk->mm)
851                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
852         }
853         acct_collect(code, group_dead);
854         if (group_dead)
855                 tty_audit_exit();
856         audit_free(tsk);
857
858         tsk->exit_code = code;
859         taskstats_exit(tsk, group_dead);
860
861         exit_mm();
862
863         if (group_dead)
864                 acct_process();
865         trace_sched_process_exit(tsk);
866
867         exit_sem(tsk);
868         exit_shm(tsk);
869         exit_files(tsk);
870         exit_fs(tsk);
871         if (group_dead)
872                 disassociate_ctty(1);
873         exit_task_namespaces(tsk);
874         exit_task_work(tsk);
875         exit_thread(tsk);
876
877         /*
878          * Flush inherited counters to the parent - before the parent
879          * gets woken up by child-exit notifications.
880          *
881          * because of cgroup mode, must be called before cgroup_exit()
882          */
883         perf_event_exit_task(tsk);
884
885         sched_autogroup_exit_task(tsk);
886         cgroup_exit(tsk);
887
888         /*
889          * FIXME: do that only when needed, using sched_exit tracepoint
890          */
891         flush_ptrace_hw_breakpoint(tsk);
892
893         exit_tasks_rcu_start();
894         exit_notify(tsk, group_dead);
895         proc_exit_connector(tsk);
896         mpol_put_task_policy(tsk);
897 #ifdef CONFIG_FUTEX
898         if (unlikely(current->pi_state_cache))
899                 kfree(current->pi_state_cache);
900 #endif
901         /*
902          * Make sure we are holding no locks:
903          */
904         debug_check_no_locks_held();
905
906         if (tsk->io_context)
907                 exit_io_context(tsk);
908
909         if (tsk->splice_pipe)
910                 free_pipe_info(tsk->splice_pipe);
911
912         if (tsk->task_frag.page)
913                 put_page(tsk->task_frag.page);
914
915         validate_creds_for_do_exit(tsk);
916         exit_task_stack_account(tsk);
917
918         check_stack_usage();
919         preempt_disable();
920         if (tsk->nr_dirtied)
921                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
922         exit_rcu();
923         exit_tasks_rcu_finish();
924
925         lockdep_free_task(tsk);
926         do_task_dead();
927 }
928
929 void __noreturn make_task_dead(int signr)
930 {
931         /*
932          * Take the task off the cpu after something catastrophic has
933          * happened.
934          *
935          * We can get here from a kernel oops, sometimes with preemption off.
936          * Start by checking for critical errors.
937          * Then fix up important state like USER_DS and preemption.
938          * Then do everything else.
939          */
940         struct task_struct *tsk = current;
941         unsigned int limit;
942
943         if (unlikely(in_interrupt()))
944                 panic("Aiee, killing interrupt handler!");
945         if (unlikely(!tsk->pid))
946                 panic("Attempted to kill the idle task!");
947
948         if (unlikely(irqs_disabled())) {
949                 pr_info("note: %s[%d] exited with irqs disabled\n",
950                         current->comm, task_pid_nr(current));
951                 local_irq_enable();
952         }
953         if (unlikely(in_atomic())) {
954                 pr_info("note: %s[%d] exited with preempt_count %d\n",
955                         current->comm, task_pid_nr(current),
956                         preempt_count());
957                 preempt_count_set(PREEMPT_ENABLED);
958         }
959
960         /*
961          * Every time the system oopses, if the oops happens while a reference
962          * to an object was held, the reference leaks.
963          * If the oops doesn't also leak memory, repeated oopsing can cause
964          * reference counters to wrap around (if they're not using refcount_t).
965          * This means that repeated oopsing can make unexploitable-looking bugs
966          * exploitable through repeated oopsing.
967          * To make sure this can't happen, place an upper bound on how often the
968          * kernel may oops without panic().
969          */
970         limit = READ_ONCE(oops_limit);
971         if (atomic_inc_return(&oops_count) >= limit && limit)
972                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
973
974         /*
975          * We're taking recursive faults here in make_task_dead. Safest is to just
976          * leave this task alone and wait for reboot.
977          */
978         if (unlikely(tsk->flags & PF_EXITING)) {
979                 pr_alert("Fixing recursive fault but reboot is needed!\n");
980                 futex_exit_recursive(tsk);
981                 tsk->exit_state = EXIT_DEAD;
982                 refcount_inc(&tsk->rcu_users);
983                 do_task_dead();
984         }
985
986         do_exit(signr);
987 }
988
989 SYSCALL_DEFINE1(exit, int, error_code)
990 {
991         do_exit((error_code&0xff)<<8);
992 }
993
994 /*
995  * Take down every thread in the group.  This is called by fatal signals
996  * as well as by sys_exit_group (below).
997  */
998 void __noreturn
999 do_group_exit(int exit_code)
1000 {
1001         struct signal_struct *sig = current->signal;
1002
1003         if (sig->flags & SIGNAL_GROUP_EXIT)
1004                 exit_code = sig->group_exit_code;
1005         else if (sig->group_exec_task)
1006                 exit_code = 0;
1007         else {
1008                 struct sighand_struct *const sighand = current->sighand;
1009
1010                 spin_lock_irq(&sighand->siglock);
1011                 if (sig->flags & SIGNAL_GROUP_EXIT)
1012                         /* Another thread got here before we took the lock.  */
1013                         exit_code = sig->group_exit_code;
1014                 else if (sig->group_exec_task)
1015                         exit_code = 0;
1016                 else {
1017                         sig->group_exit_code = exit_code;
1018                         sig->flags = SIGNAL_GROUP_EXIT;
1019                         zap_other_threads(current);
1020                 }
1021                 spin_unlock_irq(&sighand->siglock);
1022         }
1023
1024         do_exit(exit_code);
1025         /* NOTREACHED */
1026 }
1027
1028 /*
1029  * this kills every thread in the thread group. Note that any externally
1030  * wait4()-ing process will get the correct exit code - even if this
1031  * thread is not the thread group leader.
1032  */
1033 SYSCALL_DEFINE1(exit_group, int, error_code)
1034 {
1035         do_group_exit((error_code & 0xff) << 8);
1036         /* NOTREACHED */
1037         return 0;
1038 }
1039
1040 struct waitid_info {
1041         pid_t pid;
1042         uid_t uid;
1043         int status;
1044         int cause;
1045 };
1046
1047 struct wait_opts {
1048         enum pid_type           wo_type;
1049         int                     wo_flags;
1050         struct pid              *wo_pid;
1051
1052         struct waitid_info      *wo_info;
1053         int                     wo_stat;
1054         struct rusage           *wo_rusage;
1055
1056         wait_queue_entry_t              child_wait;
1057         int                     notask_error;
1058 };
1059
1060 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1061 {
1062         return  wo->wo_type == PIDTYPE_MAX ||
1063                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1064 }
1065
1066 static int
1067 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1068 {
1069         if (!eligible_pid(wo, p))
1070                 return 0;
1071
1072         /*
1073          * Wait for all children (clone and not) if __WALL is set or
1074          * if it is traced by us.
1075          */
1076         if (ptrace || (wo->wo_flags & __WALL))
1077                 return 1;
1078
1079         /*
1080          * Otherwise, wait for clone children *only* if __WCLONE is set;
1081          * otherwise, wait for non-clone children *only*.
1082          *
1083          * Note: a "clone" child here is one that reports to its parent
1084          * using a signal other than SIGCHLD, or a non-leader thread which
1085          * we can only see if it is traced by us.
1086          */
1087         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1088                 return 0;
1089
1090         return 1;
1091 }
1092
1093 /*
1094  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1095  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1096  * the lock and this task is uninteresting.  If we return nonzero, we have
1097  * released the lock and the system call should return.
1098  */
1099 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1100 {
1101         int state, status;
1102         pid_t pid = task_pid_vnr(p);
1103         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1104         struct waitid_info *infop;
1105
1106         if (!likely(wo->wo_flags & WEXITED))
1107                 return 0;
1108
1109         if (unlikely(wo->wo_flags & WNOWAIT)) {
1110                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1111                         ? p->signal->group_exit_code : p->exit_code;
1112                 get_task_struct(p);
1113                 read_unlock(&tasklist_lock);
1114                 sched_annotate_sleep();
1115                 if (wo->wo_rusage)
1116                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1117                 put_task_struct(p);
1118                 goto out_info;
1119         }
1120         /*
1121          * Move the task's state to DEAD/TRACE, only one thread can do this.
1122          */
1123         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1124                 EXIT_TRACE : EXIT_DEAD;
1125         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1126                 return 0;
1127         /*
1128          * We own this thread, nobody else can reap it.
1129          */
1130         read_unlock(&tasklist_lock);
1131         sched_annotate_sleep();
1132
1133         /*
1134          * Check thread_group_leader() to exclude the traced sub-threads.
1135          */
1136         if (state == EXIT_DEAD && thread_group_leader(p)) {
1137                 struct signal_struct *sig = p->signal;
1138                 struct signal_struct *psig = current->signal;
1139                 unsigned long maxrss;
1140                 u64 tgutime, tgstime;
1141
1142                 /*
1143                  * The resource counters for the group leader are in its
1144                  * own task_struct.  Those for dead threads in the group
1145                  * are in its signal_struct, as are those for the child
1146                  * processes it has previously reaped.  All these
1147                  * accumulate in the parent's signal_struct c* fields.
1148                  *
1149                  * We don't bother to take a lock here to protect these
1150                  * p->signal fields because the whole thread group is dead
1151                  * and nobody can change them.
1152                  *
1153                  * psig->stats_lock also protects us from our sub-threads
1154                  * which can reap other children at the same time. Until
1155                  * we change k_getrusage()-like users to rely on this lock
1156                  * we have to take ->siglock as well.
1157                  *
1158                  * We use thread_group_cputime_adjusted() to get times for
1159                  * the thread group, which consolidates times for all threads
1160                  * in the group including the group leader.
1161                  */
1162                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1163                 spin_lock_irq(&current->sighand->siglock);
1164                 write_seqlock(&psig->stats_lock);
1165                 psig->cutime += tgutime + sig->cutime;
1166                 psig->cstime += tgstime + sig->cstime;
1167                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1168                 psig->cmin_flt +=
1169                         p->min_flt + sig->min_flt + sig->cmin_flt;
1170                 psig->cmaj_flt +=
1171                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1172                 psig->cnvcsw +=
1173                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1174                 psig->cnivcsw +=
1175                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1176                 psig->cinblock +=
1177                         task_io_get_inblock(p) +
1178                         sig->inblock + sig->cinblock;
1179                 psig->coublock +=
1180                         task_io_get_oublock(p) +
1181                         sig->oublock + sig->coublock;
1182                 maxrss = max(sig->maxrss, sig->cmaxrss);
1183                 if (psig->cmaxrss < maxrss)
1184                         psig->cmaxrss = maxrss;
1185                 task_io_accounting_add(&psig->ioac, &p->ioac);
1186                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1187                 write_sequnlock(&psig->stats_lock);
1188                 spin_unlock_irq(&current->sighand->siglock);
1189         }
1190
1191         if (wo->wo_rusage)
1192                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1193         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1194                 ? p->signal->group_exit_code : p->exit_code;
1195         wo->wo_stat = status;
1196
1197         if (state == EXIT_TRACE) {
1198                 write_lock_irq(&tasklist_lock);
1199                 /* We dropped tasklist, ptracer could die and untrace */
1200                 ptrace_unlink(p);
1201
1202                 /* If parent wants a zombie, don't release it now */
1203                 state = EXIT_ZOMBIE;
1204                 if (do_notify_parent(p, p->exit_signal))
1205                         state = EXIT_DEAD;
1206                 p->exit_state = state;
1207                 write_unlock_irq(&tasklist_lock);
1208         }
1209         if (state == EXIT_DEAD)
1210                 release_task(p);
1211
1212 out_info:
1213         infop = wo->wo_info;
1214         if (infop) {
1215                 if ((status & 0x7f) == 0) {
1216                         infop->cause = CLD_EXITED;
1217                         infop->status = status >> 8;
1218                 } else {
1219                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1220                         infop->status = status & 0x7f;
1221                 }
1222                 infop->pid = pid;
1223                 infop->uid = uid;
1224         }
1225
1226         return pid;
1227 }
1228
1229 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1230 {
1231         if (ptrace) {
1232                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1233                         return &p->exit_code;
1234         } else {
1235                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1236                         return &p->signal->group_exit_code;
1237         }
1238         return NULL;
1239 }
1240
1241 /**
1242  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1243  * @wo: wait options
1244  * @ptrace: is the wait for ptrace
1245  * @p: task to wait for
1246  *
1247  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1248  *
1249  * CONTEXT:
1250  * read_lock(&tasklist_lock), which is released if return value is
1251  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1252  *
1253  * RETURNS:
1254  * 0 if wait condition didn't exist and search for other wait conditions
1255  * should continue.  Non-zero return, -errno on failure and @p's pid on
1256  * success, implies that tasklist_lock is released and wait condition
1257  * search should terminate.
1258  */
1259 static int wait_task_stopped(struct wait_opts *wo,
1260                                 int ptrace, struct task_struct *p)
1261 {
1262         struct waitid_info *infop;
1263         int exit_code, *p_code, why;
1264         uid_t uid = 0; /* unneeded, required by compiler */
1265         pid_t pid;
1266
1267         /*
1268          * Traditionally we see ptrace'd stopped tasks regardless of options.
1269          */
1270         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1271                 return 0;
1272
1273         if (!task_stopped_code(p, ptrace))
1274                 return 0;
1275
1276         exit_code = 0;
1277         spin_lock_irq(&p->sighand->siglock);
1278
1279         p_code = task_stopped_code(p, ptrace);
1280         if (unlikely(!p_code))
1281                 goto unlock_sig;
1282
1283         exit_code = *p_code;
1284         if (!exit_code)
1285                 goto unlock_sig;
1286
1287         if (!unlikely(wo->wo_flags & WNOWAIT))
1288                 *p_code = 0;
1289
1290         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1291 unlock_sig:
1292         spin_unlock_irq(&p->sighand->siglock);
1293         if (!exit_code)
1294                 return 0;
1295
1296         /*
1297          * Now we are pretty sure this task is interesting.
1298          * Make sure it doesn't get reaped out from under us while we
1299          * give up the lock and then examine it below.  We don't want to
1300          * keep holding onto the tasklist_lock while we call getrusage and
1301          * possibly take page faults for user memory.
1302          */
1303         get_task_struct(p);
1304         pid = task_pid_vnr(p);
1305         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1306         read_unlock(&tasklist_lock);
1307         sched_annotate_sleep();
1308         if (wo->wo_rusage)
1309                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1310         put_task_struct(p);
1311
1312         if (likely(!(wo->wo_flags & WNOWAIT)))
1313                 wo->wo_stat = (exit_code << 8) | 0x7f;
1314
1315         infop = wo->wo_info;
1316         if (infop) {
1317                 infop->cause = why;
1318                 infop->status = exit_code;
1319                 infop->pid = pid;
1320                 infop->uid = uid;
1321         }
1322         return pid;
1323 }
1324
1325 /*
1326  * Handle do_wait work for one task in a live, non-stopped state.
1327  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1328  * the lock and this task is uninteresting.  If we return nonzero, we have
1329  * released the lock and the system call should return.
1330  */
1331 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1332 {
1333         struct waitid_info *infop;
1334         pid_t pid;
1335         uid_t uid;
1336
1337         if (!unlikely(wo->wo_flags & WCONTINUED))
1338                 return 0;
1339
1340         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1341                 return 0;
1342
1343         spin_lock_irq(&p->sighand->siglock);
1344         /* Re-check with the lock held.  */
1345         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1346                 spin_unlock_irq(&p->sighand->siglock);
1347                 return 0;
1348         }
1349         if (!unlikely(wo->wo_flags & WNOWAIT))
1350                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1351         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1352         spin_unlock_irq(&p->sighand->siglock);
1353
1354         pid = task_pid_vnr(p);
1355         get_task_struct(p);
1356         read_unlock(&tasklist_lock);
1357         sched_annotate_sleep();
1358         if (wo->wo_rusage)
1359                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1360         put_task_struct(p);
1361
1362         infop = wo->wo_info;
1363         if (!infop) {
1364                 wo->wo_stat = 0xffff;
1365         } else {
1366                 infop->cause = CLD_CONTINUED;
1367                 infop->pid = pid;
1368                 infop->uid = uid;
1369                 infop->status = SIGCONT;
1370         }
1371         return pid;
1372 }
1373
1374 /*
1375  * Consider @p for a wait by @parent.
1376  *
1377  * -ECHILD should be in ->notask_error before the first call.
1378  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1379  * Returns zero if the search for a child should continue;
1380  * then ->notask_error is 0 if @p is an eligible child,
1381  * or still -ECHILD.
1382  */
1383 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1384                                 struct task_struct *p)
1385 {
1386         /*
1387          * We can race with wait_task_zombie() from another thread.
1388          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1389          * can't confuse the checks below.
1390          */
1391         int exit_state = READ_ONCE(p->exit_state);
1392         int ret;
1393
1394         if (unlikely(exit_state == EXIT_DEAD))
1395                 return 0;
1396
1397         ret = eligible_child(wo, ptrace, p);
1398         if (!ret)
1399                 return ret;
1400
1401         if (unlikely(exit_state == EXIT_TRACE)) {
1402                 /*
1403                  * ptrace == 0 means we are the natural parent. In this case
1404                  * we should clear notask_error, debugger will notify us.
1405                  */
1406                 if (likely(!ptrace))
1407                         wo->notask_error = 0;
1408                 return 0;
1409         }
1410
1411         if (likely(!ptrace) && unlikely(p->ptrace)) {
1412                 /*
1413                  * If it is traced by its real parent's group, just pretend
1414                  * the caller is ptrace_do_wait() and reap this child if it
1415                  * is zombie.
1416                  *
1417                  * This also hides group stop state from real parent; otherwise
1418                  * a single stop can be reported twice as group and ptrace stop.
1419                  * If a ptracer wants to distinguish these two events for its
1420                  * own children it should create a separate process which takes
1421                  * the role of real parent.
1422                  */
1423                 if (!ptrace_reparented(p))
1424                         ptrace = 1;
1425         }
1426
1427         /* slay zombie? */
1428         if (exit_state == EXIT_ZOMBIE) {
1429                 /* we don't reap group leaders with subthreads */
1430                 if (!delay_group_leader(p)) {
1431                         /*
1432                          * A zombie ptracee is only visible to its ptracer.
1433                          * Notification and reaping will be cascaded to the
1434                          * real parent when the ptracer detaches.
1435                          */
1436                         if (unlikely(ptrace) || likely(!p->ptrace))
1437                                 return wait_task_zombie(wo, p);
1438                 }
1439
1440                 /*
1441                  * Allow access to stopped/continued state via zombie by
1442                  * falling through.  Clearing of notask_error is complex.
1443                  *
1444                  * When !@ptrace:
1445                  *
1446                  * If WEXITED is set, notask_error should naturally be
1447                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1448                  * so, if there are live subthreads, there are events to
1449                  * wait for.  If all subthreads are dead, it's still safe
1450                  * to clear - this function will be called again in finite
1451                  * amount time once all the subthreads are released and
1452                  * will then return without clearing.
1453                  *
1454                  * When @ptrace:
1455                  *
1456                  * Stopped state is per-task and thus can't change once the
1457                  * target task dies.  Only continued and exited can happen.
1458                  * Clear notask_error if WCONTINUED | WEXITED.
1459                  */
1460                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1461                         wo->notask_error = 0;
1462         } else {
1463                 /*
1464                  * @p is alive and it's gonna stop, continue or exit, so
1465                  * there always is something to wait for.
1466                  */
1467                 wo->notask_error = 0;
1468         }
1469
1470         /*
1471          * Wait for stopped.  Depending on @ptrace, different stopped state
1472          * is used and the two don't interact with each other.
1473          */
1474         ret = wait_task_stopped(wo, ptrace, p);
1475         if (ret)
1476                 return ret;
1477
1478         /*
1479          * Wait for continued.  There's only one continued state and the
1480          * ptracer can consume it which can confuse the real parent.  Don't
1481          * use WCONTINUED from ptracer.  You don't need or want it.
1482          */
1483         return wait_task_continued(wo, p);
1484 }
1485
1486 /*
1487  * Do the work of do_wait() for one thread in the group, @tsk.
1488  *
1489  * -ECHILD should be in ->notask_error before the first call.
1490  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1491  * Returns zero if the search for a child should continue; then
1492  * ->notask_error is 0 if there were any eligible children,
1493  * or still -ECHILD.
1494  */
1495 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1496 {
1497         struct task_struct *p;
1498
1499         list_for_each_entry(p, &tsk->children, sibling) {
1500                 int ret = wait_consider_task(wo, 0, p);
1501
1502                 if (ret)
1503                         return ret;
1504         }
1505
1506         return 0;
1507 }
1508
1509 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1510 {
1511         struct task_struct *p;
1512
1513         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1514                 int ret = wait_consider_task(wo, 1, p);
1515
1516                 if (ret)
1517                         return ret;
1518         }
1519
1520         return 0;
1521 }
1522
1523 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1524                                 int sync, void *key)
1525 {
1526         struct wait_opts *wo = container_of(wait, struct wait_opts,
1527                                                 child_wait);
1528         struct task_struct *p = key;
1529
1530         if (!eligible_pid(wo, p))
1531                 return 0;
1532
1533         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1534                 return 0;
1535
1536         return default_wake_function(wait, mode, sync, key);
1537 }
1538
1539 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1540 {
1541         __wake_up_sync_key(&parent->signal->wait_chldexit,
1542                            TASK_INTERRUPTIBLE, p);
1543 }
1544
1545 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1546                                  struct task_struct *target)
1547 {
1548         struct task_struct *parent =
1549                 !ptrace ? target->real_parent : target->parent;
1550
1551         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1552                                      same_thread_group(current, parent));
1553 }
1554
1555 /*
1556  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1557  * and tracee lists to find the target task.
1558  */
1559 static int do_wait_pid(struct wait_opts *wo)
1560 {
1561         bool ptrace;
1562         struct task_struct *target;
1563         int retval;
1564
1565         ptrace = false;
1566         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1567         if (target && is_effectively_child(wo, ptrace, target)) {
1568                 retval = wait_consider_task(wo, ptrace, target);
1569                 if (retval)
1570                         return retval;
1571         }
1572
1573         ptrace = true;
1574         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1575         if (target && target->ptrace &&
1576             is_effectively_child(wo, ptrace, target)) {
1577                 retval = wait_consider_task(wo, ptrace, target);
1578                 if (retval)
1579                         return retval;
1580         }
1581
1582         return 0;
1583 }
1584
1585 static long do_wait(struct wait_opts *wo)
1586 {
1587         int retval;
1588
1589         trace_sched_process_wait(wo->wo_pid);
1590
1591         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1592         wo->child_wait.private = current;
1593         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1594 repeat:
1595         /*
1596          * If there is nothing that can match our criteria, just get out.
1597          * We will clear ->notask_error to zero if we see any child that
1598          * might later match our criteria, even if we are not able to reap
1599          * it yet.
1600          */
1601         wo->notask_error = -ECHILD;
1602         if ((wo->wo_type < PIDTYPE_MAX) &&
1603            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1604                 goto notask;
1605
1606         set_current_state(TASK_INTERRUPTIBLE);
1607         read_lock(&tasklist_lock);
1608
1609         if (wo->wo_type == PIDTYPE_PID) {
1610                 retval = do_wait_pid(wo);
1611                 if (retval)
1612                         goto end;
1613         } else {
1614                 struct task_struct *tsk = current;
1615
1616                 do {
1617                         retval = do_wait_thread(wo, tsk);
1618                         if (retval)
1619                                 goto end;
1620
1621                         retval = ptrace_do_wait(wo, tsk);
1622                         if (retval)
1623                                 goto end;
1624
1625                         if (wo->wo_flags & __WNOTHREAD)
1626                                 break;
1627                 } while_each_thread(current, tsk);
1628         }
1629         read_unlock(&tasklist_lock);
1630
1631 notask:
1632         retval = wo->notask_error;
1633         if (!retval && !(wo->wo_flags & WNOHANG)) {
1634                 retval = -ERESTARTSYS;
1635                 if (!signal_pending(current)) {
1636                         schedule();
1637                         goto repeat;
1638                 }
1639         }
1640 end:
1641         __set_current_state(TASK_RUNNING);
1642         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1643         return retval;
1644 }
1645
1646 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1647                           int options, struct rusage *ru)
1648 {
1649         struct wait_opts wo;
1650         struct pid *pid = NULL;
1651         enum pid_type type;
1652         long ret;
1653         unsigned int f_flags = 0;
1654
1655         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1656                         __WNOTHREAD|__WCLONE|__WALL))
1657                 return -EINVAL;
1658         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1659                 return -EINVAL;
1660
1661         switch (which) {
1662         case P_ALL:
1663                 type = PIDTYPE_MAX;
1664                 break;
1665         case P_PID:
1666                 type = PIDTYPE_PID;
1667                 if (upid <= 0)
1668                         return -EINVAL;
1669
1670                 pid = find_get_pid(upid);
1671                 break;
1672         case P_PGID:
1673                 type = PIDTYPE_PGID;
1674                 if (upid < 0)
1675                         return -EINVAL;
1676
1677                 if (upid)
1678                         pid = find_get_pid(upid);
1679                 else
1680                         pid = get_task_pid(current, PIDTYPE_PGID);
1681                 break;
1682         case P_PIDFD:
1683                 type = PIDTYPE_PID;
1684                 if (upid < 0)
1685                         return -EINVAL;
1686
1687                 pid = pidfd_get_pid(upid, &f_flags);
1688                 if (IS_ERR(pid))
1689                         return PTR_ERR(pid);
1690
1691                 break;
1692         default:
1693                 return -EINVAL;
1694         }
1695
1696         wo.wo_type      = type;
1697         wo.wo_pid       = pid;
1698         wo.wo_flags     = options;
1699         wo.wo_info      = infop;
1700         wo.wo_rusage    = ru;
1701         if (f_flags & O_NONBLOCK)
1702                 wo.wo_flags |= WNOHANG;
1703
1704         ret = do_wait(&wo);
1705         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1706                 ret = -EAGAIN;
1707
1708         put_pid(pid);
1709         return ret;
1710 }
1711
1712 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1713                 infop, int, options, struct rusage __user *, ru)
1714 {
1715         struct rusage r;
1716         struct waitid_info info = {.status = 0};
1717         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1718         int signo = 0;
1719
1720         if (err > 0) {
1721                 signo = SIGCHLD;
1722                 err = 0;
1723                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1724                         return -EFAULT;
1725         }
1726         if (!infop)
1727                 return err;
1728
1729         if (!user_write_access_begin(infop, sizeof(*infop)))
1730                 return -EFAULT;
1731
1732         unsafe_put_user(signo, &infop->si_signo, Efault);
1733         unsafe_put_user(0, &infop->si_errno, Efault);
1734         unsafe_put_user(info.cause, &infop->si_code, Efault);
1735         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1736         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1737         unsafe_put_user(info.status, &infop->si_status, Efault);
1738         user_write_access_end();
1739         return err;
1740 Efault:
1741         user_write_access_end();
1742         return -EFAULT;
1743 }
1744
1745 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1746                   struct rusage *ru)
1747 {
1748         struct wait_opts wo;
1749         struct pid *pid = NULL;
1750         enum pid_type type;
1751         long ret;
1752
1753         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1754                         __WNOTHREAD|__WCLONE|__WALL))
1755                 return -EINVAL;
1756
1757         /* -INT_MIN is not defined */
1758         if (upid == INT_MIN)
1759                 return -ESRCH;
1760
1761         if (upid == -1)
1762                 type = PIDTYPE_MAX;
1763         else if (upid < 0) {
1764                 type = PIDTYPE_PGID;
1765                 pid = find_get_pid(-upid);
1766         } else if (upid == 0) {
1767                 type = PIDTYPE_PGID;
1768                 pid = get_task_pid(current, PIDTYPE_PGID);
1769         } else /* upid > 0 */ {
1770                 type = PIDTYPE_PID;
1771                 pid = find_get_pid(upid);
1772         }
1773
1774         wo.wo_type      = type;
1775         wo.wo_pid       = pid;
1776         wo.wo_flags     = options | WEXITED;
1777         wo.wo_info      = NULL;
1778         wo.wo_stat      = 0;
1779         wo.wo_rusage    = ru;
1780         ret = do_wait(&wo);
1781         put_pid(pid);
1782         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1783                 ret = -EFAULT;
1784
1785         return ret;
1786 }
1787
1788 int kernel_wait(pid_t pid, int *stat)
1789 {
1790         struct wait_opts wo = {
1791                 .wo_type        = PIDTYPE_PID,
1792                 .wo_pid         = find_get_pid(pid),
1793                 .wo_flags       = WEXITED,
1794         };
1795         int ret;
1796
1797         ret = do_wait(&wo);
1798         if (ret > 0 && wo.wo_stat)
1799                 *stat = wo.wo_stat;
1800         put_pid(wo.wo_pid);
1801         return ret;
1802 }
1803
1804 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1805                 int, options, struct rusage __user *, ru)
1806 {
1807         struct rusage r;
1808         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1809
1810         if (err > 0) {
1811                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1812                         return -EFAULT;
1813         }
1814         return err;
1815 }
1816
1817 #ifdef __ARCH_WANT_SYS_WAITPID
1818
1819 /*
1820  * sys_waitpid() remains for compatibility. waitpid() should be
1821  * implemented by calling sys_wait4() from libc.a.
1822  */
1823 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1824 {
1825         return kernel_wait4(pid, stat_addr, options, NULL);
1826 }
1827
1828 #endif
1829
1830 #ifdef CONFIG_COMPAT
1831 COMPAT_SYSCALL_DEFINE4(wait4,
1832         compat_pid_t, pid,
1833         compat_uint_t __user *, stat_addr,
1834         int, options,
1835         struct compat_rusage __user *, ru)
1836 {
1837         struct rusage r;
1838         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1839         if (err > 0) {
1840                 if (ru && put_compat_rusage(&r, ru))
1841                         return -EFAULT;
1842         }
1843         return err;
1844 }
1845
1846 COMPAT_SYSCALL_DEFINE5(waitid,
1847                 int, which, compat_pid_t, pid,
1848                 struct compat_siginfo __user *, infop, int, options,
1849                 struct compat_rusage __user *, uru)
1850 {
1851         struct rusage ru;
1852         struct waitid_info info = {.status = 0};
1853         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1854         int signo = 0;
1855         if (err > 0) {
1856                 signo = SIGCHLD;
1857                 err = 0;
1858                 if (uru) {
1859                         /* kernel_waitid() overwrites everything in ru */
1860                         if (COMPAT_USE_64BIT_TIME)
1861                                 err = copy_to_user(uru, &ru, sizeof(ru));
1862                         else
1863                                 err = put_compat_rusage(&ru, uru);
1864                         if (err)
1865                                 return -EFAULT;
1866                 }
1867         }
1868
1869         if (!infop)
1870                 return err;
1871
1872         if (!user_write_access_begin(infop, sizeof(*infop)))
1873                 return -EFAULT;
1874
1875         unsafe_put_user(signo, &infop->si_signo, Efault);
1876         unsafe_put_user(0, &infop->si_errno, Efault);
1877         unsafe_put_user(info.cause, &infop->si_code, Efault);
1878         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1879         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1880         unsafe_put_user(info.status, &infop->si_status, Efault);
1881         user_write_access_end();
1882         return err;
1883 Efault:
1884         user_write_access_end();
1885         return -EFAULT;
1886 }
1887 #endif
1888
1889 /**
1890  * thread_group_exited - check that a thread group has exited
1891  * @pid: tgid of thread group to be checked.
1892  *
1893  * Test if the thread group represented by tgid has exited (all
1894  * threads are zombies, dead or completely gone).
1895  *
1896  * Return: true if the thread group has exited. false otherwise.
1897  */
1898 bool thread_group_exited(struct pid *pid)
1899 {
1900         struct task_struct *task;
1901         bool exited;
1902
1903         rcu_read_lock();
1904         task = pid_task(pid, PIDTYPE_PID);
1905         exited = !task ||
1906                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1907         rcu_read_unlock();
1908
1909         return exited;
1910 }
1911 EXPORT_SYMBOL(thread_group_exited);
1912
1913 /*
1914  * This needs to be __function_aligned as GCC implicitly makes any
1915  * implementation of abort() cold and drops alignment specified by
1916  * -falign-functions=N.
1917  *
1918  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1919  */
1920 __weak __function_aligned void abort(void)
1921 {
1922         BUG();
1923
1924         /* if that doesn't kill us, halt */
1925         panic("Oops failed to kill thread");
1926 }
1927 EXPORT_SYMBOL(abort);