Merge remote-tracking branch 'stable/linux-5.10.y' into rpi-5.10.y
[platform/kernel/linux-rpi.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74         nr_threads--;
75         detach_pid(p, PIDTYPE_PID);
76         if (group_dead) {
77                 detach_pid(p, PIDTYPE_TGID);
78                 detach_pid(p, PIDTYPE_PGID);
79                 detach_pid(p, PIDTYPE_SID);
80
81                 list_del_rcu(&p->tasks);
82                 list_del_init(&p->sibling);
83                 __this_cpu_dec(process_counts);
84         }
85         list_del_rcu(&p->thread_group);
86         list_del_rcu(&p->thread_node);
87 }
88
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94         struct signal_struct *sig = tsk->signal;
95         bool group_dead = thread_group_leader(tsk);
96         struct sighand_struct *sighand;
97         struct tty_struct *tty;
98         u64 utime, stime;
99
100         sighand = rcu_dereference_check(tsk->sighand,
101                                         lockdep_tasklist_lock_is_held());
102         spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105         posix_cpu_timers_exit(tsk);
106         if (group_dead)
107                 posix_cpu_timers_exit_group(tsk);
108 #endif
109
110         if (group_dead) {
111                 tty = sig->tty;
112                 sig->tty = NULL;
113         } else {
114                 /*
115                  * If there is any task waiting for the group exit
116                  * then notify it:
117                  */
118                 if (sig->notify_count > 0 && !--sig->notify_count)
119                         wake_up_process(sig->group_exit_task);
120
121                 if (tsk == sig->curr_target)
122                         sig->curr_target = next_thread(tsk);
123         }
124
125         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126                               sizeof(unsigned long long));
127
128         /*
129          * Accumulate here the counters for all threads as they die. We could
130          * skip the group leader because it is the last user of signal_struct,
131          * but we want to avoid the race with thread_group_cputime() which can
132          * see the empty ->thread_head list.
133          */
134         task_cputime(tsk, &utime, &stime);
135         write_seqlock(&sig->stats_lock);
136         sig->utime += utime;
137         sig->stime += stime;
138         sig->gtime += task_gtime(tsk);
139         sig->min_flt += tsk->min_flt;
140         sig->maj_flt += tsk->maj_flt;
141         sig->nvcsw += tsk->nvcsw;
142         sig->nivcsw += tsk->nivcsw;
143         sig->inblock += task_io_get_inblock(tsk);
144         sig->oublock += task_io_get_oublock(tsk);
145         task_io_accounting_add(&sig->ioac, &tsk->ioac);
146         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147         sig->nr_threads--;
148         __unhash_process(tsk, group_dead);
149         write_sequnlock(&sig->stats_lock);
150
151         /*
152          * Do this under ->siglock, we can race with another thread
153          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154          */
155         flush_sigqueue(&tsk->pending);
156         tsk->sighand = NULL;
157         spin_unlock(&sighand->siglock);
158
159         __cleanup_sighand(sighand);
160         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161         if (group_dead) {
162                 flush_sigqueue(&sig->shared_pending);
163                 tty_kref_put(tty);
164         }
165 }
166
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170
171         perf_event_delayed_put(tsk);
172         trace_sched_process_free(tsk);
173         put_task_struct(tsk);
174 }
175
176 void put_task_struct_rcu_user(struct task_struct *task)
177 {
178         if (refcount_dec_and_test(&task->rcu_users))
179                 call_rcu(&task->rcu, delayed_put_task_struct);
180 }
181
182 void release_task(struct task_struct *p)
183 {
184         struct task_struct *leader;
185         struct pid *thread_pid;
186         int zap_leader;
187 repeat:
188         /* don't need to get the RCU readlock here - the process is dead and
189          * can't be modifying its own credentials. But shut RCU-lockdep up */
190         rcu_read_lock();
191         atomic_dec(&__task_cred(p)->user->processes);
192         rcu_read_unlock();
193
194         cgroup_release(p);
195
196         write_lock_irq(&tasklist_lock);
197         ptrace_release_task(p);
198         thread_pid = get_pid(p->thread_pid);
199         __exit_signal(p);
200
201         /*
202          * If we are the last non-leader member of the thread
203          * group, and the leader is zombie, then notify the
204          * group leader's parent process. (if it wants notification.)
205          */
206         zap_leader = 0;
207         leader = p->group_leader;
208         if (leader != p && thread_group_empty(leader)
209                         && leader->exit_state == EXIT_ZOMBIE) {
210                 /*
211                  * If we were the last child thread and the leader has
212                  * exited already, and the leader's parent ignores SIGCHLD,
213                  * then we are the one who should release the leader.
214                  */
215                 zap_leader = do_notify_parent(leader, leader->exit_signal);
216                 if (zap_leader)
217                         leader->exit_state = EXIT_DEAD;
218         }
219
220         write_unlock_irq(&tasklist_lock);
221         seccomp_filter_release(p);
222         proc_flush_pid(thread_pid);
223         put_pid(thread_pid);
224         release_thread(p);
225         put_task_struct_rcu_user(p);
226
227         p = leader;
228         if (unlikely(zap_leader))
229                 goto repeat;
230 }
231
232 int rcuwait_wake_up(struct rcuwait *w)
233 {
234         int ret = 0;
235         struct task_struct *task;
236
237         rcu_read_lock();
238
239         /*
240          * Order condition vs @task, such that everything prior to the load
241          * of @task is visible. This is the condition as to why the user called
242          * rcuwait_wake() in the first place. Pairs with set_current_state()
243          * barrier (A) in rcuwait_wait_event().
244          *
245          *    WAIT                WAKE
246          *    [S] tsk = current   [S] cond = true
247          *        MB (A)              MB (B)
248          *    [L] cond            [L] tsk
249          */
250         smp_mb(); /* (B) */
251
252         task = rcu_dereference(w->task);
253         if (task)
254                 ret = wake_up_process(task);
255         rcu_read_unlock();
256
257         return ret;
258 }
259 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
260
261 /*
262  * Determine if a process group is "orphaned", according to the POSIX
263  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
264  * by terminal-generated stop signals.  Newly orphaned process groups are
265  * to receive a SIGHUP and a SIGCONT.
266  *
267  * "I ask you, have you ever known what it is to be an orphan?"
268  */
269 static int will_become_orphaned_pgrp(struct pid *pgrp,
270                                         struct task_struct *ignored_task)
271 {
272         struct task_struct *p;
273
274         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275                 if ((p == ignored_task) ||
276                     (p->exit_state && thread_group_empty(p)) ||
277                     is_global_init(p->real_parent))
278                         continue;
279
280                 if (task_pgrp(p->real_parent) != pgrp &&
281                     task_session(p->real_parent) == task_session(p))
282                         return 0;
283         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284
285         return 1;
286 }
287
288 int is_current_pgrp_orphaned(void)
289 {
290         int retval;
291
292         read_lock(&tasklist_lock);
293         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
294         read_unlock(&tasklist_lock);
295
296         return retval;
297 }
298
299 static bool has_stopped_jobs(struct pid *pgrp)
300 {
301         struct task_struct *p;
302
303         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
304                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
305                         return true;
306         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
307
308         return false;
309 }
310
311 /*
312  * Check to see if any process groups have become orphaned as
313  * a result of our exiting, and if they have any stopped jobs,
314  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
315  */
316 static void
317 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
318 {
319         struct pid *pgrp = task_pgrp(tsk);
320         struct task_struct *ignored_task = tsk;
321
322         if (!parent)
323                 /* exit: our father is in a different pgrp than
324                  * we are and we were the only connection outside.
325                  */
326                 parent = tsk->real_parent;
327         else
328                 /* reparent: our child is in a different pgrp than
329                  * we are, and it was the only connection outside.
330                  */
331                 ignored_task = NULL;
332
333         if (task_pgrp(parent) != pgrp &&
334             task_session(parent) == task_session(tsk) &&
335             will_become_orphaned_pgrp(pgrp, ignored_task) &&
336             has_stopped_jobs(pgrp)) {
337                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
338                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
339         }
340 }
341
342 #ifdef CONFIG_MEMCG
343 /*
344  * A task is exiting.   If it owned this mm, find a new owner for the mm.
345  */
346 void mm_update_next_owner(struct mm_struct *mm)
347 {
348         struct task_struct *c, *g, *p = current;
349
350 retry:
351         /*
352          * If the exiting or execing task is not the owner, it's
353          * someone else's problem.
354          */
355         if (mm->owner != p)
356                 return;
357         /*
358          * The current owner is exiting/execing and there are no other
359          * candidates.  Do not leave the mm pointing to a possibly
360          * freed task structure.
361          */
362         if (atomic_read(&mm->mm_users) <= 1) {
363                 WRITE_ONCE(mm->owner, NULL);
364                 return;
365         }
366
367         read_lock(&tasklist_lock);
368         /*
369          * Search in the children
370          */
371         list_for_each_entry(c, &p->children, sibling) {
372                 if (c->mm == mm)
373                         goto assign_new_owner;
374         }
375
376         /*
377          * Search in the siblings
378          */
379         list_for_each_entry(c, &p->real_parent->children, sibling) {
380                 if (c->mm == mm)
381                         goto assign_new_owner;
382         }
383
384         /*
385          * Search through everything else, we should not get here often.
386          */
387         for_each_process(g) {
388                 if (g->flags & PF_KTHREAD)
389                         continue;
390                 for_each_thread(g, c) {
391                         if (c->mm == mm)
392                                 goto assign_new_owner;
393                         if (c->mm)
394                                 break;
395                 }
396         }
397         read_unlock(&tasklist_lock);
398         /*
399          * We found no owner yet mm_users > 1: this implies that we are
400          * most likely racing with swapoff (try_to_unuse()) or /proc or
401          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
402          */
403         WRITE_ONCE(mm->owner, NULL);
404         return;
405
406 assign_new_owner:
407         BUG_ON(c == p);
408         get_task_struct(c);
409         /*
410          * The task_lock protects c->mm from changing.
411          * We always want mm->owner->mm == mm
412          */
413         task_lock(c);
414         /*
415          * Delay read_unlock() till we have the task_lock()
416          * to ensure that c does not slip away underneath us
417          */
418         read_unlock(&tasklist_lock);
419         if (c->mm != mm) {
420                 task_unlock(c);
421                 put_task_struct(c);
422                 goto retry;
423         }
424         WRITE_ONCE(mm->owner, c);
425         task_unlock(c);
426         put_task_struct(c);
427 }
428 #endif /* CONFIG_MEMCG */
429
430 /*
431  * Turn us into a lazy TLB process if we
432  * aren't already..
433  */
434 static void exit_mm(void)
435 {
436         struct mm_struct *mm = current->mm;
437         struct core_state *core_state;
438
439         exit_mm_release(current, mm);
440         if (!mm)
441                 return;
442         sync_mm_rss(mm);
443         /*
444          * Serialize with any possible pending coredump.
445          * We must hold mmap_lock around checking core_state
446          * and clearing tsk->mm.  The core-inducing thread
447          * will increment ->nr_threads for each thread in the
448          * group with ->mm != NULL.
449          */
450         mmap_read_lock(mm);
451         core_state = mm->core_state;
452         if (core_state) {
453                 struct core_thread self;
454
455                 mmap_read_unlock(mm);
456
457                 self.task = current;
458                 if (self.task->flags & PF_SIGNALED)
459                         self.next = xchg(&core_state->dumper.next, &self);
460                 else
461                         self.task = NULL;
462                 /*
463                  * Implies mb(), the result of xchg() must be visible
464                  * to core_state->dumper.
465                  */
466                 if (atomic_dec_and_test(&core_state->nr_threads))
467                         complete(&core_state->startup);
468
469                 for (;;) {
470                         set_current_state(TASK_UNINTERRUPTIBLE);
471                         if (!self.task) /* see coredump_finish() */
472                                 break;
473                         freezable_schedule();
474                 }
475                 __set_current_state(TASK_RUNNING);
476                 mmap_read_lock(mm);
477         }
478         mmgrab(mm);
479         BUG_ON(mm != current->active_mm);
480         /* more a memory barrier than a real lock */
481         task_lock(current);
482         current->mm = NULL;
483         mmap_read_unlock(mm);
484         enter_lazy_tlb(mm, current);
485         task_unlock(current);
486         mm_update_next_owner(mm);
487         mmput(mm);
488         if (test_thread_flag(TIF_MEMDIE))
489                 exit_oom_victim();
490 }
491
492 static struct task_struct *find_alive_thread(struct task_struct *p)
493 {
494         struct task_struct *t;
495
496         for_each_thread(p, t) {
497                 if (!(t->flags & PF_EXITING))
498                         return t;
499         }
500         return NULL;
501 }
502
503 static struct task_struct *find_child_reaper(struct task_struct *father,
504                                                 struct list_head *dead)
505         __releases(&tasklist_lock)
506         __acquires(&tasklist_lock)
507 {
508         struct pid_namespace *pid_ns = task_active_pid_ns(father);
509         struct task_struct *reaper = pid_ns->child_reaper;
510         struct task_struct *p, *n;
511
512         if (likely(reaper != father))
513                 return reaper;
514
515         reaper = find_alive_thread(father);
516         if (reaper) {
517                 pid_ns->child_reaper = reaper;
518                 return reaper;
519         }
520
521         write_unlock_irq(&tasklist_lock);
522
523         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
524                 list_del_init(&p->ptrace_entry);
525                 release_task(p);
526         }
527
528         zap_pid_ns_processes(pid_ns);
529         write_lock_irq(&tasklist_lock);
530
531         return father;
532 }
533
534 /*
535  * When we die, we re-parent all our children, and try to:
536  * 1. give them to another thread in our thread group, if such a member exists
537  * 2. give it to the first ancestor process which prctl'd itself as a
538  *    child_subreaper for its children (like a service manager)
539  * 3. give it to the init process (PID 1) in our pid namespace
540  */
541 static struct task_struct *find_new_reaper(struct task_struct *father,
542                                            struct task_struct *child_reaper)
543 {
544         struct task_struct *thread, *reaper;
545
546         thread = find_alive_thread(father);
547         if (thread)
548                 return thread;
549
550         if (father->signal->has_child_subreaper) {
551                 unsigned int ns_level = task_pid(father)->level;
552                 /*
553                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
554                  * We can't check reaper != child_reaper to ensure we do not
555                  * cross the namespaces, the exiting parent could be injected
556                  * by setns() + fork().
557                  * We check pid->level, this is slightly more efficient than
558                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
559                  */
560                 for (reaper = father->real_parent;
561                      task_pid(reaper)->level == ns_level;
562                      reaper = reaper->real_parent) {
563                         if (reaper == &init_task)
564                                 break;
565                         if (!reaper->signal->is_child_subreaper)
566                                 continue;
567                         thread = find_alive_thread(reaper);
568                         if (thread)
569                                 return thread;
570                 }
571         }
572
573         return child_reaper;
574 }
575
576 /*
577 * Any that need to be release_task'd are put on the @dead list.
578  */
579 static void reparent_leader(struct task_struct *father, struct task_struct *p,
580                                 struct list_head *dead)
581 {
582         if (unlikely(p->exit_state == EXIT_DEAD))
583                 return;
584
585         /* We don't want people slaying init. */
586         p->exit_signal = SIGCHLD;
587
588         /* If it has exited notify the new parent about this child's death. */
589         if (!p->ptrace &&
590             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
591                 if (do_notify_parent(p, p->exit_signal)) {
592                         p->exit_state = EXIT_DEAD;
593                         list_add(&p->ptrace_entry, dead);
594                 }
595         }
596
597         kill_orphaned_pgrp(p, father);
598 }
599
600 /*
601  * This does two things:
602  *
603  * A.  Make init inherit all the child processes
604  * B.  Check to see if any process groups have become orphaned
605  *      as a result of our exiting, and if they have any stopped
606  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
607  */
608 static void forget_original_parent(struct task_struct *father,
609                                         struct list_head *dead)
610 {
611         struct task_struct *p, *t, *reaper;
612
613         if (unlikely(!list_empty(&father->ptraced)))
614                 exit_ptrace(father, dead);
615
616         /* Can drop and reacquire tasklist_lock */
617         reaper = find_child_reaper(father, dead);
618         if (list_empty(&father->children))
619                 return;
620
621         reaper = find_new_reaper(father, reaper);
622         list_for_each_entry(p, &father->children, sibling) {
623                 for_each_thread(p, t) {
624                         RCU_INIT_POINTER(t->real_parent, reaper);
625                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
626                         if (likely(!t->ptrace))
627                                 t->parent = t->real_parent;
628                         if (t->pdeath_signal)
629                                 group_send_sig_info(t->pdeath_signal,
630                                                     SEND_SIG_NOINFO, t,
631                                                     PIDTYPE_TGID);
632                 }
633                 /*
634                  * If this is a threaded reparent there is no need to
635                  * notify anyone anything has happened.
636                  */
637                 if (!same_thread_group(reaper, father))
638                         reparent_leader(father, p, dead);
639         }
640         list_splice_tail_init(&father->children, &reaper->children);
641 }
642
643 /*
644  * Send signals to all our closest relatives so that they know
645  * to properly mourn us..
646  */
647 static void exit_notify(struct task_struct *tsk, int group_dead)
648 {
649         bool autoreap;
650         struct task_struct *p, *n;
651         LIST_HEAD(dead);
652
653         write_lock_irq(&tasklist_lock);
654         forget_original_parent(tsk, &dead);
655
656         if (group_dead)
657                 kill_orphaned_pgrp(tsk->group_leader, NULL);
658
659         tsk->exit_state = EXIT_ZOMBIE;
660         if (unlikely(tsk->ptrace)) {
661                 int sig = thread_group_leader(tsk) &&
662                                 thread_group_empty(tsk) &&
663                                 !ptrace_reparented(tsk) ?
664                         tsk->exit_signal : SIGCHLD;
665                 autoreap = do_notify_parent(tsk, sig);
666         } else if (thread_group_leader(tsk)) {
667                 autoreap = thread_group_empty(tsk) &&
668                         do_notify_parent(tsk, tsk->exit_signal);
669         } else {
670                 autoreap = true;
671         }
672
673         if (autoreap) {
674                 tsk->exit_state = EXIT_DEAD;
675                 list_add(&tsk->ptrace_entry, &dead);
676         }
677
678         /* mt-exec, de_thread() is waiting for group leader */
679         if (unlikely(tsk->signal->notify_count < 0))
680                 wake_up_process(tsk->signal->group_exit_task);
681         write_unlock_irq(&tasklist_lock);
682
683         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
684                 list_del_init(&p->ptrace_entry);
685                 release_task(p);
686         }
687 }
688
689 #ifdef CONFIG_DEBUG_STACK_USAGE
690 static void check_stack_usage(void)
691 {
692         static DEFINE_SPINLOCK(low_water_lock);
693         static int lowest_to_date = THREAD_SIZE;
694         unsigned long free;
695
696         free = stack_not_used(current);
697
698         if (free >= lowest_to_date)
699                 return;
700
701         spin_lock(&low_water_lock);
702         if (free < lowest_to_date) {
703                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
704                         current->comm, task_pid_nr(current), free);
705                 lowest_to_date = free;
706         }
707         spin_unlock(&low_water_lock);
708 }
709 #else
710 static inline void check_stack_usage(void) {}
711 #endif
712
713 void __noreturn do_exit(long code)
714 {
715         struct task_struct *tsk = current;
716         int group_dead;
717
718         /*
719          * We can get here from a kernel oops, sometimes with preemption off.
720          * Start by checking for critical errors.
721          * Then fix up important state like USER_DS and preemption.
722          * Then do everything else.
723          */
724
725         WARN_ON(blk_needs_flush_plug(tsk));
726
727         if (unlikely(in_interrupt()))
728                 panic("Aiee, killing interrupt handler!");
729         if (unlikely(!tsk->pid))
730                 panic("Attempted to kill the idle task!");
731
732         /*
733          * If do_exit is called because this processes oopsed, it's possible
734          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
735          * continuing. Amongst other possible reasons, this is to prevent
736          * mm_release()->clear_child_tid() from writing to a user-controlled
737          * kernel address.
738          */
739         force_uaccess_begin();
740
741         if (unlikely(in_atomic())) {
742                 pr_info("note: %s[%d] exited with preempt_count %d\n",
743                         current->comm, task_pid_nr(current),
744                         preempt_count());
745                 preempt_count_set(PREEMPT_ENABLED);
746         }
747
748         profile_task_exit(tsk);
749         kcov_task_exit(tsk);
750
751         ptrace_event(PTRACE_EVENT_EXIT, code);
752
753         validate_creds_for_do_exit(tsk);
754
755         /*
756          * We're taking recursive faults here in do_exit. Safest is to just
757          * leave this task alone and wait for reboot.
758          */
759         if (unlikely(tsk->flags & PF_EXITING)) {
760                 pr_alert("Fixing recursive fault but reboot is needed!\n");
761                 futex_exit_recursive(tsk);
762                 set_current_state(TASK_UNINTERRUPTIBLE);
763                 schedule();
764         }
765
766         io_uring_files_cancel(tsk->files);
767         exit_signals(tsk);  /* sets PF_EXITING */
768
769         /* sync mm's RSS info before statistics gathering */
770         if (tsk->mm)
771                 sync_mm_rss(tsk->mm);
772         acct_update_integrals(tsk);
773         group_dead = atomic_dec_and_test(&tsk->signal->live);
774         if (group_dead) {
775                 /*
776                  * If the last thread of global init has exited, panic
777                  * immediately to get a useable coredump.
778                  */
779                 if (unlikely(is_global_init(tsk)))
780                         panic("Attempted to kill init! exitcode=0x%08x\n",
781                                 tsk->signal->group_exit_code ?: (int)code);
782
783 #ifdef CONFIG_POSIX_TIMERS
784                 hrtimer_cancel(&tsk->signal->real_timer);
785                 exit_itimers(tsk->signal);
786 #endif
787                 if (tsk->mm)
788                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
789         }
790         acct_collect(code, group_dead);
791         if (group_dead)
792                 tty_audit_exit();
793         audit_free(tsk);
794
795         tsk->exit_code = code;
796         taskstats_exit(tsk, group_dead);
797
798         exit_mm();
799
800         if (group_dead)
801                 acct_process();
802         trace_sched_process_exit(tsk);
803
804         exit_sem(tsk);
805         exit_shm(tsk);
806         exit_files(tsk);
807         exit_fs(tsk);
808         if (group_dead)
809                 disassociate_ctty(1);
810         exit_task_namespaces(tsk);
811         exit_task_work(tsk);
812         exit_thread(tsk);
813
814         /*
815          * Flush inherited counters to the parent - before the parent
816          * gets woken up by child-exit notifications.
817          *
818          * because of cgroup mode, must be called before cgroup_exit()
819          */
820         perf_event_exit_task(tsk);
821
822         sched_autogroup_exit_task(tsk);
823         cgroup_exit(tsk);
824
825         /*
826          * FIXME: do that only when needed, using sched_exit tracepoint
827          */
828         flush_ptrace_hw_breakpoint(tsk);
829
830         exit_tasks_rcu_start();
831         exit_notify(tsk, group_dead);
832         proc_exit_connector(tsk);
833         mpol_put_task_policy(tsk);
834 #ifdef CONFIG_FUTEX
835         if (unlikely(current->pi_state_cache))
836                 kfree(current->pi_state_cache);
837 #endif
838         /*
839          * Make sure we are holding no locks:
840          */
841         debug_check_no_locks_held();
842
843         if (tsk->io_context)
844                 exit_io_context(tsk);
845
846         if (tsk->splice_pipe)
847                 free_pipe_info(tsk->splice_pipe);
848
849         if (tsk->task_frag.page)
850                 put_page(tsk->task_frag.page);
851
852         validate_creds_for_do_exit(tsk);
853
854         check_stack_usage();
855         preempt_disable();
856         if (tsk->nr_dirtied)
857                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
858         exit_rcu();
859         exit_tasks_rcu_finish();
860
861         lockdep_free_task(tsk);
862         do_task_dead();
863 }
864 EXPORT_SYMBOL_GPL(do_exit);
865
866 void complete_and_exit(struct completion *comp, long code)
867 {
868         if (comp)
869                 complete(comp);
870
871         do_exit(code);
872 }
873 EXPORT_SYMBOL(complete_and_exit);
874
875 SYSCALL_DEFINE1(exit, int, error_code)
876 {
877         do_exit((error_code&0xff)<<8);
878 }
879
880 /*
881  * Take down every thread in the group.  This is called by fatal signals
882  * as well as by sys_exit_group (below).
883  */
884 void
885 do_group_exit(int exit_code)
886 {
887         struct signal_struct *sig = current->signal;
888
889         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
890
891         if (signal_group_exit(sig))
892                 exit_code = sig->group_exit_code;
893         else if (!thread_group_empty(current)) {
894                 struct sighand_struct *const sighand = current->sighand;
895
896                 spin_lock_irq(&sighand->siglock);
897                 if (signal_group_exit(sig))
898                         /* Another thread got here before we took the lock.  */
899                         exit_code = sig->group_exit_code;
900                 else {
901                         sig->group_exit_code = exit_code;
902                         sig->flags = SIGNAL_GROUP_EXIT;
903                         zap_other_threads(current);
904                 }
905                 spin_unlock_irq(&sighand->siglock);
906         }
907
908         do_exit(exit_code);
909         /* NOTREACHED */
910 }
911
912 /*
913  * this kills every thread in the thread group. Note that any externally
914  * wait4()-ing process will get the correct exit code - even if this
915  * thread is not the thread group leader.
916  */
917 SYSCALL_DEFINE1(exit_group, int, error_code)
918 {
919         do_group_exit((error_code & 0xff) << 8);
920         /* NOTREACHED */
921         return 0;
922 }
923
924 struct waitid_info {
925         pid_t pid;
926         uid_t uid;
927         int status;
928         int cause;
929 };
930
931 struct wait_opts {
932         enum pid_type           wo_type;
933         int                     wo_flags;
934         struct pid              *wo_pid;
935
936         struct waitid_info      *wo_info;
937         int                     wo_stat;
938         struct rusage           *wo_rusage;
939
940         wait_queue_entry_t              child_wait;
941         int                     notask_error;
942 };
943
944 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
945 {
946         return  wo->wo_type == PIDTYPE_MAX ||
947                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
948 }
949
950 static int
951 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
952 {
953         if (!eligible_pid(wo, p))
954                 return 0;
955
956         /*
957          * Wait for all children (clone and not) if __WALL is set or
958          * if it is traced by us.
959          */
960         if (ptrace || (wo->wo_flags & __WALL))
961                 return 1;
962
963         /*
964          * Otherwise, wait for clone children *only* if __WCLONE is set;
965          * otherwise, wait for non-clone children *only*.
966          *
967          * Note: a "clone" child here is one that reports to its parent
968          * using a signal other than SIGCHLD, or a non-leader thread which
969          * we can only see if it is traced by us.
970          */
971         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
972                 return 0;
973
974         return 1;
975 }
976
977 /*
978  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
979  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
980  * the lock and this task is uninteresting.  If we return nonzero, we have
981  * released the lock and the system call should return.
982  */
983 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
984 {
985         int state, status;
986         pid_t pid = task_pid_vnr(p);
987         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
988         struct waitid_info *infop;
989
990         if (!likely(wo->wo_flags & WEXITED))
991                 return 0;
992
993         if (unlikely(wo->wo_flags & WNOWAIT)) {
994                 status = p->exit_code;
995                 get_task_struct(p);
996                 read_unlock(&tasklist_lock);
997                 sched_annotate_sleep();
998                 if (wo->wo_rusage)
999                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1000                 put_task_struct(p);
1001                 goto out_info;
1002         }
1003         /*
1004          * Move the task's state to DEAD/TRACE, only one thread can do this.
1005          */
1006         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1007                 EXIT_TRACE : EXIT_DEAD;
1008         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1009                 return 0;
1010         /*
1011          * We own this thread, nobody else can reap it.
1012          */
1013         read_unlock(&tasklist_lock);
1014         sched_annotate_sleep();
1015
1016         /*
1017          * Check thread_group_leader() to exclude the traced sub-threads.
1018          */
1019         if (state == EXIT_DEAD && thread_group_leader(p)) {
1020                 struct signal_struct *sig = p->signal;
1021                 struct signal_struct *psig = current->signal;
1022                 unsigned long maxrss;
1023                 u64 tgutime, tgstime;
1024
1025                 /*
1026                  * The resource counters for the group leader are in its
1027                  * own task_struct.  Those for dead threads in the group
1028                  * are in its signal_struct, as are those for the child
1029                  * processes it has previously reaped.  All these
1030                  * accumulate in the parent's signal_struct c* fields.
1031                  *
1032                  * We don't bother to take a lock here to protect these
1033                  * p->signal fields because the whole thread group is dead
1034                  * and nobody can change them.
1035                  *
1036                  * psig->stats_lock also protects us from our sub-theads
1037                  * which can reap other children at the same time. Until
1038                  * we change k_getrusage()-like users to rely on this lock
1039                  * we have to take ->siglock as well.
1040                  *
1041                  * We use thread_group_cputime_adjusted() to get times for
1042                  * the thread group, which consolidates times for all threads
1043                  * in the group including the group leader.
1044                  */
1045                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1046                 spin_lock_irq(&current->sighand->siglock);
1047                 write_seqlock(&psig->stats_lock);
1048                 psig->cutime += tgutime + sig->cutime;
1049                 psig->cstime += tgstime + sig->cstime;
1050                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1051                 psig->cmin_flt +=
1052                         p->min_flt + sig->min_flt + sig->cmin_flt;
1053                 psig->cmaj_flt +=
1054                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1055                 psig->cnvcsw +=
1056                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1057                 psig->cnivcsw +=
1058                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1059                 psig->cinblock +=
1060                         task_io_get_inblock(p) +
1061                         sig->inblock + sig->cinblock;
1062                 psig->coublock +=
1063                         task_io_get_oublock(p) +
1064                         sig->oublock + sig->coublock;
1065                 maxrss = max(sig->maxrss, sig->cmaxrss);
1066                 if (psig->cmaxrss < maxrss)
1067                         psig->cmaxrss = maxrss;
1068                 task_io_accounting_add(&psig->ioac, &p->ioac);
1069                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1070                 write_sequnlock(&psig->stats_lock);
1071                 spin_unlock_irq(&current->sighand->siglock);
1072         }
1073
1074         if (wo->wo_rusage)
1075                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1076         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1077                 ? p->signal->group_exit_code : p->exit_code;
1078         wo->wo_stat = status;
1079
1080         if (state == EXIT_TRACE) {
1081                 write_lock_irq(&tasklist_lock);
1082                 /* We dropped tasklist, ptracer could die and untrace */
1083                 ptrace_unlink(p);
1084
1085                 /* If parent wants a zombie, don't release it now */
1086                 state = EXIT_ZOMBIE;
1087                 if (do_notify_parent(p, p->exit_signal))
1088                         state = EXIT_DEAD;
1089                 p->exit_state = state;
1090                 write_unlock_irq(&tasklist_lock);
1091         }
1092         if (state == EXIT_DEAD)
1093                 release_task(p);
1094
1095 out_info:
1096         infop = wo->wo_info;
1097         if (infop) {
1098                 if ((status & 0x7f) == 0) {
1099                         infop->cause = CLD_EXITED;
1100                         infop->status = status >> 8;
1101                 } else {
1102                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1103                         infop->status = status & 0x7f;
1104                 }
1105                 infop->pid = pid;
1106                 infop->uid = uid;
1107         }
1108
1109         return pid;
1110 }
1111
1112 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1113 {
1114         if (ptrace) {
1115                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1116                         return &p->exit_code;
1117         } else {
1118                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1119                         return &p->signal->group_exit_code;
1120         }
1121         return NULL;
1122 }
1123
1124 /**
1125  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1126  * @wo: wait options
1127  * @ptrace: is the wait for ptrace
1128  * @p: task to wait for
1129  *
1130  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1131  *
1132  * CONTEXT:
1133  * read_lock(&tasklist_lock), which is released if return value is
1134  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1135  *
1136  * RETURNS:
1137  * 0 if wait condition didn't exist and search for other wait conditions
1138  * should continue.  Non-zero return, -errno on failure and @p's pid on
1139  * success, implies that tasklist_lock is released and wait condition
1140  * search should terminate.
1141  */
1142 static int wait_task_stopped(struct wait_opts *wo,
1143                                 int ptrace, struct task_struct *p)
1144 {
1145         struct waitid_info *infop;
1146         int exit_code, *p_code, why;
1147         uid_t uid = 0; /* unneeded, required by compiler */
1148         pid_t pid;
1149
1150         /*
1151          * Traditionally we see ptrace'd stopped tasks regardless of options.
1152          */
1153         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1154                 return 0;
1155
1156         if (!task_stopped_code(p, ptrace))
1157                 return 0;
1158
1159         exit_code = 0;
1160         spin_lock_irq(&p->sighand->siglock);
1161
1162         p_code = task_stopped_code(p, ptrace);
1163         if (unlikely(!p_code))
1164                 goto unlock_sig;
1165
1166         exit_code = *p_code;
1167         if (!exit_code)
1168                 goto unlock_sig;
1169
1170         if (!unlikely(wo->wo_flags & WNOWAIT))
1171                 *p_code = 0;
1172
1173         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1174 unlock_sig:
1175         spin_unlock_irq(&p->sighand->siglock);
1176         if (!exit_code)
1177                 return 0;
1178
1179         /*
1180          * Now we are pretty sure this task is interesting.
1181          * Make sure it doesn't get reaped out from under us while we
1182          * give up the lock and then examine it below.  We don't want to
1183          * keep holding onto the tasklist_lock while we call getrusage and
1184          * possibly take page faults for user memory.
1185          */
1186         get_task_struct(p);
1187         pid = task_pid_vnr(p);
1188         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1189         read_unlock(&tasklist_lock);
1190         sched_annotate_sleep();
1191         if (wo->wo_rusage)
1192                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1193         put_task_struct(p);
1194
1195         if (likely(!(wo->wo_flags & WNOWAIT)))
1196                 wo->wo_stat = (exit_code << 8) | 0x7f;
1197
1198         infop = wo->wo_info;
1199         if (infop) {
1200                 infop->cause = why;
1201                 infop->status = exit_code;
1202                 infop->pid = pid;
1203                 infop->uid = uid;
1204         }
1205         return pid;
1206 }
1207
1208 /*
1209  * Handle do_wait work for one task in a live, non-stopped state.
1210  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1211  * the lock and this task is uninteresting.  If we return nonzero, we have
1212  * released the lock and the system call should return.
1213  */
1214 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1215 {
1216         struct waitid_info *infop;
1217         pid_t pid;
1218         uid_t uid;
1219
1220         if (!unlikely(wo->wo_flags & WCONTINUED))
1221                 return 0;
1222
1223         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1224                 return 0;
1225
1226         spin_lock_irq(&p->sighand->siglock);
1227         /* Re-check with the lock held.  */
1228         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1229                 spin_unlock_irq(&p->sighand->siglock);
1230                 return 0;
1231         }
1232         if (!unlikely(wo->wo_flags & WNOWAIT))
1233                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1234         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1235         spin_unlock_irq(&p->sighand->siglock);
1236
1237         pid = task_pid_vnr(p);
1238         get_task_struct(p);
1239         read_unlock(&tasklist_lock);
1240         sched_annotate_sleep();
1241         if (wo->wo_rusage)
1242                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1243         put_task_struct(p);
1244
1245         infop = wo->wo_info;
1246         if (!infop) {
1247                 wo->wo_stat = 0xffff;
1248         } else {
1249                 infop->cause = CLD_CONTINUED;
1250                 infop->pid = pid;
1251                 infop->uid = uid;
1252                 infop->status = SIGCONT;
1253         }
1254         return pid;
1255 }
1256
1257 /*
1258  * Consider @p for a wait by @parent.
1259  *
1260  * -ECHILD should be in ->notask_error before the first call.
1261  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1262  * Returns zero if the search for a child should continue;
1263  * then ->notask_error is 0 if @p is an eligible child,
1264  * or still -ECHILD.
1265  */
1266 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1267                                 struct task_struct *p)
1268 {
1269         /*
1270          * We can race with wait_task_zombie() from another thread.
1271          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1272          * can't confuse the checks below.
1273          */
1274         int exit_state = READ_ONCE(p->exit_state);
1275         int ret;
1276
1277         if (unlikely(exit_state == EXIT_DEAD))
1278                 return 0;
1279
1280         ret = eligible_child(wo, ptrace, p);
1281         if (!ret)
1282                 return ret;
1283
1284         if (unlikely(exit_state == EXIT_TRACE)) {
1285                 /*
1286                  * ptrace == 0 means we are the natural parent. In this case
1287                  * we should clear notask_error, debugger will notify us.
1288                  */
1289                 if (likely(!ptrace))
1290                         wo->notask_error = 0;
1291                 return 0;
1292         }
1293
1294         if (likely(!ptrace) && unlikely(p->ptrace)) {
1295                 /*
1296                  * If it is traced by its real parent's group, just pretend
1297                  * the caller is ptrace_do_wait() and reap this child if it
1298                  * is zombie.
1299                  *
1300                  * This also hides group stop state from real parent; otherwise
1301                  * a single stop can be reported twice as group and ptrace stop.
1302                  * If a ptracer wants to distinguish these two events for its
1303                  * own children it should create a separate process which takes
1304                  * the role of real parent.
1305                  */
1306                 if (!ptrace_reparented(p))
1307                         ptrace = 1;
1308         }
1309
1310         /* slay zombie? */
1311         if (exit_state == EXIT_ZOMBIE) {
1312                 /* we don't reap group leaders with subthreads */
1313                 if (!delay_group_leader(p)) {
1314                         /*
1315                          * A zombie ptracee is only visible to its ptracer.
1316                          * Notification and reaping will be cascaded to the
1317                          * real parent when the ptracer detaches.
1318                          */
1319                         if (unlikely(ptrace) || likely(!p->ptrace))
1320                                 return wait_task_zombie(wo, p);
1321                 }
1322
1323                 /*
1324                  * Allow access to stopped/continued state via zombie by
1325                  * falling through.  Clearing of notask_error is complex.
1326                  *
1327                  * When !@ptrace:
1328                  *
1329                  * If WEXITED is set, notask_error should naturally be
1330                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1331                  * so, if there are live subthreads, there are events to
1332                  * wait for.  If all subthreads are dead, it's still safe
1333                  * to clear - this function will be called again in finite
1334                  * amount time once all the subthreads are released and
1335                  * will then return without clearing.
1336                  *
1337                  * When @ptrace:
1338                  *
1339                  * Stopped state is per-task and thus can't change once the
1340                  * target task dies.  Only continued and exited can happen.
1341                  * Clear notask_error if WCONTINUED | WEXITED.
1342                  */
1343                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1344                         wo->notask_error = 0;
1345         } else {
1346                 /*
1347                  * @p is alive and it's gonna stop, continue or exit, so
1348                  * there always is something to wait for.
1349                  */
1350                 wo->notask_error = 0;
1351         }
1352
1353         /*
1354          * Wait for stopped.  Depending on @ptrace, different stopped state
1355          * is used and the two don't interact with each other.
1356          */
1357         ret = wait_task_stopped(wo, ptrace, p);
1358         if (ret)
1359                 return ret;
1360
1361         /*
1362          * Wait for continued.  There's only one continued state and the
1363          * ptracer can consume it which can confuse the real parent.  Don't
1364          * use WCONTINUED from ptracer.  You don't need or want it.
1365          */
1366         return wait_task_continued(wo, p);
1367 }
1368
1369 /*
1370  * Do the work of do_wait() for one thread in the group, @tsk.
1371  *
1372  * -ECHILD should be in ->notask_error before the first call.
1373  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1374  * Returns zero if the search for a child should continue; then
1375  * ->notask_error is 0 if there were any eligible children,
1376  * or still -ECHILD.
1377  */
1378 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1379 {
1380         struct task_struct *p;
1381
1382         list_for_each_entry(p, &tsk->children, sibling) {
1383                 int ret = wait_consider_task(wo, 0, p);
1384
1385                 if (ret)
1386                         return ret;
1387         }
1388
1389         return 0;
1390 }
1391
1392 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1393 {
1394         struct task_struct *p;
1395
1396         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1397                 int ret = wait_consider_task(wo, 1, p);
1398
1399                 if (ret)
1400                         return ret;
1401         }
1402
1403         return 0;
1404 }
1405
1406 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1407                                 int sync, void *key)
1408 {
1409         struct wait_opts *wo = container_of(wait, struct wait_opts,
1410                                                 child_wait);
1411         struct task_struct *p = key;
1412
1413         if (!eligible_pid(wo, p))
1414                 return 0;
1415
1416         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1417                 return 0;
1418
1419         return default_wake_function(wait, mode, sync, key);
1420 }
1421
1422 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1423 {
1424         __wake_up_sync_key(&parent->signal->wait_chldexit,
1425                            TASK_INTERRUPTIBLE, p);
1426 }
1427
1428 static long do_wait(struct wait_opts *wo)
1429 {
1430         struct task_struct *tsk;
1431         int retval;
1432
1433         trace_sched_process_wait(wo->wo_pid);
1434
1435         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1436         wo->child_wait.private = current;
1437         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1438 repeat:
1439         /*
1440          * If there is nothing that can match our criteria, just get out.
1441          * We will clear ->notask_error to zero if we see any child that
1442          * might later match our criteria, even if we are not able to reap
1443          * it yet.
1444          */
1445         wo->notask_error = -ECHILD;
1446         if ((wo->wo_type < PIDTYPE_MAX) &&
1447            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1448                 goto notask;
1449
1450         set_current_state(TASK_INTERRUPTIBLE);
1451         read_lock(&tasklist_lock);
1452         tsk = current;
1453         do {
1454                 retval = do_wait_thread(wo, tsk);
1455                 if (retval)
1456                         goto end;
1457
1458                 retval = ptrace_do_wait(wo, tsk);
1459                 if (retval)
1460                         goto end;
1461
1462                 if (wo->wo_flags & __WNOTHREAD)
1463                         break;
1464         } while_each_thread(current, tsk);
1465         read_unlock(&tasklist_lock);
1466
1467 notask:
1468         retval = wo->notask_error;
1469         if (!retval && !(wo->wo_flags & WNOHANG)) {
1470                 retval = -ERESTARTSYS;
1471                 if (!signal_pending(current)) {
1472                         schedule();
1473                         goto repeat;
1474                 }
1475         }
1476 end:
1477         __set_current_state(TASK_RUNNING);
1478         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1479         return retval;
1480 }
1481
1482 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1483                           int options, struct rusage *ru)
1484 {
1485         struct wait_opts wo;
1486         struct pid *pid = NULL;
1487         enum pid_type type;
1488         long ret;
1489         unsigned int f_flags = 0;
1490
1491         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1492                         __WNOTHREAD|__WCLONE|__WALL))
1493                 return -EINVAL;
1494         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1495                 return -EINVAL;
1496
1497         switch (which) {
1498         case P_ALL:
1499                 type = PIDTYPE_MAX;
1500                 break;
1501         case P_PID:
1502                 type = PIDTYPE_PID;
1503                 if (upid <= 0)
1504                         return -EINVAL;
1505
1506                 pid = find_get_pid(upid);
1507                 break;
1508         case P_PGID:
1509                 type = PIDTYPE_PGID;
1510                 if (upid < 0)
1511                         return -EINVAL;
1512
1513                 if (upid)
1514                         pid = find_get_pid(upid);
1515                 else
1516                         pid = get_task_pid(current, PIDTYPE_PGID);
1517                 break;
1518         case P_PIDFD:
1519                 type = PIDTYPE_PID;
1520                 if (upid < 0)
1521                         return -EINVAL;
1522
1523                 pid = pidfd_get_pid(upid, &f_flags);
1524                 if (IS_ERR(pid))
1525                         return PTR_ERR(pid);
1526
1527                 break;
1528         default:
1529                 return -EINVAL;
1530         }
1531
1532         wo.wo_type      = type;
1533         wo.wo_pid       = pid;
1534         wo.wo_flags     = options;
1535         wo.wo_info      = infop;
1536         wo.wo_rusage    = ru;
1537         if (f_flags & O_NONBLOCK)
1538                 wo.wo_flags |= WNOHANG;
1539
1540         ret = do_wait(&wo);
1541         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1542                 ret = -EAGAIN;
1543
1544         put_pid(pid);
1545         return ret;
1546 }
1547
1548 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1549                 infop, int, options, struct rusage __user *, ru)
1550 {
1551         struct rusage r;
1552         struct waitid_info info = {.status = 0};
1553         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1554         int signo = 0;
1555
1556         if (err > 0) {
1557                 signo = SIGCHLD;
1558                 err = 0;
1559                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1560                         return -EFAULT;
1561         }
1562         if (!infop)
1563                 return err;
1564
1565         if (!user_write_access_begin(infop, sizeof(*infop)))
1566                 return -EFAULT;
1567
1568         unsafe_put_user(signo, &infop->si_signo, Efault);
1569         unsafe_put_user(0, &infop->si_errno, Efault);
1570         unsafe_put_user(info.cause, &infop->si_code, Efault);
1571         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1572         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1573         unsafe_put_user(info.status, &infop->si_status, Efault);
1574         user_write_access_end();
1575         return err;
1576 Efault:
1577         user_write_access_end();
1578         return -EFAULT;
1579 }
1580
1581 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1582                   struct rusage *ru)
1583 {
1584         struct wait_opts wo;
1585         struct pid *pid = NULL;
1586         enum pid_type type;
1587         long ret;
1588
1589         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1590                         __WNOTHREAD|__WCLONE|__WALL))
1591                 return -EINVAL;
1592
1593         /* -INT_MIN is not defined */
1594         if (upid == INT_MIN)
1595                 return -ESRCH;
1596
1597         if (upid == -1)
1598                 type = PIDTYPE_MAX;
1599         else if (upid < 0) {
1600                 type = PIDTYPE_PGID;
1601                 pid = find_get_pid(-upid);
1602         } else if (upid == 0) {
1603                 type = PIDTYPE_PGID;
1604                 pid = get_task_pid(current, PIDTYPE_PGID);
1605         } else /* upid > 0 */ {
1606                 type = PIDTYPE_PID;
1607                 pid = find_get_pid(upid);
1608         }
1609
1610         wo.wo_type      = type;
1611         wo.wo_pid       = pid;
1612         wo.wo_flags     = options | WEXITED;
1613         wo.wo_info      = NULL;
1614         wo.wo_stat      = 0;
1615         wo.wo_rusage    = ru;
1616         ret = do_wait(&wo);
1617         put_pid(pid);
1618         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1619                 ret = -EFAULT;
1620
1621         return ret;
1622 }
1623
1624 int kernel_wait(pid_t pid, int *stat)
1625 {
1626         struct wait_opts wo = {
1627                 .wo_type        = PIDTYPE_PID,
1628                 .wo_pid         = find_get_pid(pid),
1629                 .wo_flags       = WEXITED,
1630         };
1631         int ret;
1632
1633         ret = do_wait(&wo);
1634         if (ret > 0 && wo.wo_stat)
1635                 *stat = wo.wo_stat;
1636         put_pid(wo.wo_pid);
1637         return ret;
1638 }
1639
1640 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1641                 int, options, struct rusage __user *, ru)
1642 {
1643         struct rusage r;
1644         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1645
1646         if (err > 0) {
1647                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1648                         return -EFAULT;
1649         }
1650         return err;
1651 }
1652
1653 #ifdef __ARCH_WANT_SYS_WAITPID
1654
1655 /*
1656  * sys_waitpid() remains for compatibility. waitpid() should be
1657  * implemented by calling sys_wait4() from libc.a.
1658  */
1659 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1660 {
1661         return kernel_wait4(pid, stat_addr, options, NULL);
1662 }
1663
1664 #endif
1665
1666 #ifdef CONFIG_COMPAT
1667 COMPAT_SYSCALL_DEFINE4(wait4,
1668         compat_pid_t, pid,
1669         compat_uint_t __user *, stat_addr,
1670         int, options,
1671         struct compat_rusage __user *, ru)
1672 {
1673         struct rusage r;
1674         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1675         if (err > 0) {
1676                 if (ru && put_compat_rusage(&r, ru))
1677                         return -EFAULT;
1678         }
1679         return err;
1680 }
1681
1682 COMPAT_SYSCALL_DEFINE5(waitid,
1683                 int, which, compat_pid_t, pid,
1684                 struct compat_siginfo __user *, infop, int, options,
1685                 struct compat_rusage __user *, uru)
1686 {
1687         struct rusage ru;
1688         struct waitid_info info = {.status = 0};
1689         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1690         int signo = 0;
1691         if (err > 0) {
1692                 signo = SIGCHLD;
1693                 err = 0;
1694                 if (uru) {
1695                         /* kernel_waitid() overwrites everything in ru */
1696                         if (COMPAT_USE_64BIT_TIME)
1697                                 err = copy_to_user(uru, &ru, sizeof(ru));
1698                         else
1699                                 err = put_compat_rusage(&ru, uru);
1700                         if (err)
1701                                 return -EFAULT;
1702                 }
1703         }
1704
1705         if (!infop)
1706                 return err;
1707
1708         if (!user_write_access_begin(infop, sizeof(*infop)))
1709                 return -EFAULT;
1710
1711         unsafe_put_user(signo, &infop->si_signo, Efault);
1712         unsafe_put_user(0, &infop->si_errno, Efault);
1713         unsafe_put_user(info.cause, &infop->si_code, Efault);
1714         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1715         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1716         unsafe_put_user(info.status, &infop->si_status, Efault);
1717         user_write_access_end();
1718         return err;
1719 Efault:
1720         user_write_access_end();
1721         return -EFAULT;
1722 }
1723 #endif
1724
1725 /**
1726  * thread_group_exited - check that a thread group has exited
1727  * @pid: tgid of thread group to be checked.
1728  *
1729  * Test if the thread group represented by tgid has exited (all
1730  * threads are zombies, dead or completely gone).
1731  *
1732  * Return: true if the thread group has exited. false otherwise.
1733  */
1734 bool thread_group_exited(struct pid *pid)
1735 {
1736         struct task_struct *task;
1737         bool exited;
1738
1739         rcu_read_lock();
1740         task = pid_task(pid, PIDTYPE_PID);
1741         exited = !task ||
1742                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1743         rcu_read_unlock();
1744
1745         return exited;
1746 }
1747 EXPORT_SYMBOL(thread_group_exited);
1748
1749 __weak void abort(void)
1750 {
1751         BUG();
1752
1753         /* if that doesn't kill us, halt */
1754         panic("Oops failed to kill thread");
1755 }
1756 EXPORT_SYMBOL(abort);