drm/edid/firmware: Add built-in edid/1280x720.bin firmware
[platform/kernel/linux-starfive.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71
72 #include <linux/uaccess.h>
73 #include <asm/unistd.h>
74 #include <asm/mmu_context.h>
75
76 /*
77  * The default value should be high enough to not crash a system that randomly
78  * crashes its kernel from time to time, but low enough to at least not permit
79  * overflowing 32-bit refcounts or the ldsem writer count.
80  */
81 static unsigned int oops_limit = 10000;
82
83 #ifdef CONFIG_SYSCTL
84 static struct ctl_table kern_exit_table[] = {
85         {
86                 .procname       = "oops_limit",
87                 .data           = &oops_limit,
88                 .maxlen         = sizeof(oops_limit),
89                 .mode           = 0644,
90                 .proc_handler   = proc_douintvec,
91         },
92         { }
93 };
94
95 static __init int kernel_exit_sysctls_init(void)
96 {
97         register_sysctl_init("kernel", kern_exit_table);
98         return 0;
99 }
100 late_initcall(kernel_exit_sysctls_init);
101 #endif
102
103 static atomic_t oops_count = ATOMIC_INIT(0);
104
105 #ifdef CONFIG_SYSFS
106 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
107                                char *page)
108 {
109         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
110 }
111
112 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
113
114 static __init int kernel_exit_sysfs_init(void)
115 {
116         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
117         return 0;
118 }
119 late_initcall(kernel_exit_sysfs_init);
120 #endif
121
122 static void __unhash_process(struct task_struct *p, bool group_dead)
123 {
124         nr_threads--;
125         detach_pid(p, PIDTYPE_PID);
126         if (group_dead) {
127                 detach_pid(p, PIDTYPE_TGID);
128                 detach_pid(p, PIDTYPE_PGID);
129                 detach_pid(p, PIDTYPE_SID);
130
131                 list_del_rcu(&p->tasks);
132                 list_del_init(&p->sibling);
133                 __this_cpu_dec(process_counts);
134         }
135         list_del_rcu(&p->thread_group);
136         list_del_rcu(&p->thread_node);
137 }
138
139 /*
140  * This function expects the tasklist_lock write-locked.
141  */
142 static void __exit_signal(struct task_struct *tsk)
143 {
144         struct signal_struct *sig = tsk->signal;
145         bool group_dead = thread_group_leader(tsk);
146         struct sighand_struct *sighand;
147         struct tty_struct *tty;
148         u64 utime, stime;
149
150         sighand = rcu_dereference_check(tsk->sighand,
151                                         lockdep_tasklist_lock_is_held());
152         spin_lock(&sighand->siglock);
153
154 #ifdef CONFIG_POSIX_TIMERS
155         posix_cpu_timers_exit(tsk);
156         if (group_dead)
157                 posix_cpu_timers_exit_group(tsk);
158 #endif
159
160         if (group_dead) {
161                 tty = sig->tty;
162                 sig->tty = NULL;
163         } else {
164                 /*
165                  * If there is any task waiting for the group exit
166                  * then notify it:
167                  */
168                 if (sig->notify_count > 0 && !--sig->notify_count)
169                         wake_up_process(sig->group_exec_task);
170
171                 if (tsk == sig->curr_target)
172                         sig->curr_target = next_thread(tsk);
173         }
174
175         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
176                               sizeof(unsigned long long));
177
178         /*
179          * Accumulate here the counters for all threads as they die. We could
180          * skip the group leader because it is the last user of signal_struct,
181          * but we want to avoid the race with thread_group_cputime() which can
182          * see the empty ->thread_head list.
183          */
184         task_cputime(tsk, &utime, &stime);
185         write_seqlock(&sig->stats_lock);
186         sig->utime += utime;
187         sig->stime += stime;
188         sig->gtime += task_gtime(tsk);
189         sig->min_flt += tsk->min_flt;
190         sig->maj_flt += tsk->maj_flt;
191         sig->nvcsw += tsk->nvcsw;
192         sig->nivcsw += tsk->nivcsw;
193         sig->inblock += task_io_get_inblock(tsk);
194         sig->oublock += task_io_get_oublock(tsk);
195         task_io_accounting_add(&sig->ioac, &tsk->ioac);
196         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
197         sig->nr_threads--;
198         __unhash_process(tsk, group_dead);
199         write_sequnlock(&sig->stats_lock);
200
201         /*
202          * Do this under ->siglock, we can race with another thread
203          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
204          */
205         flush_sigqueue(&tsk->pending);
206         tsk->sighand = NULL;
207         spin_unlock(&sighand->siglock);
208
209         __cleanup_sighand(sighand);
210         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
211         if (group_dead) {
212                 flush_sigqueue(&sig->shared_pending);
213                 tty_kref_put(tty);
214         }
215 }
216
217 static void delayed_put_task_struct(struct rcu_head *rhp)
218 {
219         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
220
221         kprobe_flush_task(tsk);
222         rethook_flush_task(tsk);
223         perf_event_delayed_put(tsk);
224         trace_sched_process_free(tsk);
225         put_task_struct(tsk);
226 }
227
228 void put_task_struct_rcu_user(struct task_struct *task)
229 {
230         if (refcount_dec_and_test(&task->rcu_users))
231                 call_rcu(&task->rcu, delayed_put_task_struct);
232 }
233
234 void __weak release_thread(struct task_struct *dead_task)
235 {
236 }
237
238 void release_task(struct task_struct *p)
239 {
240         struct task_struct *leader;
241         struct pid *thread_pid;
242         int zap_leader;
243 repeat:
244         /* don't need to get the RCU readlock here - the process is dead and
245          * can't be modifying its own credentials. But shut RCU-lockdep up */
246         rcu_read_lock();
247         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
248         rcu_read_unlock();
249
250         cgroup_release(p);
251
252         write_lock_irq(&tasklist_lock);
253         ptrace_release_task(p);
254         thread_pid = get_pid(p->thread_pid);
255         __exit_signal(p);
256
257         /*
258          * If we are the last non-leader member of the thread
259          * group, and the leader is zombie, then notify the
260          * group leader's parent process. (if it wants notification.)
261          */
262         zap_leader = 0;
263         leader = p->group_leader;
264         if (leader != p && thread_group_empty(leader)
265                         && leader->exit_state == EXIT_ZOMBIE) {
266                 /*
267                  * If we were the last child thread and the leader has
268                  * exited already, and the leader's parent ignores SIGCHLD,
269                  * then we are the one who should release the leader.
270                  */
271                 zap_leader = do_notify_parent(leader, leader->exit_signal);
272                 if (zap_leader)
273                         leader->exit_state = EXIT_DEAD;
274         }
275
276         write_unlock_irq(&tasklist_lock);
277         seccomp_filter_release(p);
278         proc_flush_pid(thread_pid);
279         put_pid(thread_pid);
280         release_thread(p);
281         put_task_struct_rcu_user(p);
282
283         p = leader;
284         if (unlikely(zap_leader))
285                 goto repeat;
286 }
287
288 int rcuwait_wake_up(struct rcuwait *w)
289 {
290         int ret = 0;
291         struct task_struct *task;
292
293         rcu_read_lock();
294
295         /*
296          * Order condition vs @task, such that everything prior to the load
297          * of @task is visible. This is the condition as to why the user called
298          * rcuwait_wake() in the first place. Pairs with set_current_state()
299          * barrier (A) in rcuwait_wait_event().
300          *
301          *    WAIT                WAKE
302          *    [S] tsk = current   [S] cond = true
303          *        MB (A)              MB (B)
304          *    [L] cond            [L] tsk
305          */
306         smp_mb(); /* (B) */
307
308         task = rcu_dereference(w->task);
309         if (task)
310                 ret = wake_up_process(task);
311         rcu_read_unlock();
312
313         return ret;
314 }
315 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
316
317 /*
318  * Determine if a process group is "orphaned", according to the POSIX
319  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
320  * by terminal-generated stop signals.  Newly orphaned process groups are
321  * to receive a SIGHUP and a SIGCONT.
322  *
323  * "I ask you, have you ever known what it is to be an orphan?"
324  */
325 static int will_become_orphaned_pgrp(struct pid *pgrp,
326                                         struct task_struct *ignored_task)
327 {
328         struct task_struct *p;
329
330         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
331                 if ((p == ignored_task) ||
332                     (p->exit_state && thread_group_empty(p)) ||
333                     is_global_init(p->real_parent))
334                         continue;
335
336                 if (task_pgrp(p->real_parent) != pgrp &&
337                     task_session(p->real_parent) == task_session(p))
338                         return 0;
339         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
340
341         return 1;
342 }
343
344 int is_current_pgrp_orphaned(void)
345 {
346         int retval;
347
348         read_lock(&tasklist_lock);
349         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
350         read_unlock(&tasklist_lock);
351
352         return retval;
353 }
354
355 static bool has_stopped_jobs(struct pid *pgrp)
356 {
357         struct task_struct *p;
358
359         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
360                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
361                         return true;
362         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
363
364         return false;
365 }
366
367 /*
368  * Check to see if any process groups have become orphaned as
369  * a result of our exiting, and if they have any stopped jobs,
370  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
371  */
372 static void
373 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
374 {
375         struct pid *pgrp = task_pgrp(tsk);
376         struct task_struct *ignored_task = tsk;
377
378         if (!parent)
379                 /* exit: our father is in a different pgrp than
380                  * we are and we were the only connection outside.
381                  */
382                 parent = tsk->real_parent;
383         else
384                 /* reparent: our child is in a different pgrp than
385                  * we are, and it was the only connection outside.
386                  */
387                 ignored_task = NULL;
388
389         if (task_pgrp(parent) != pgrp &&
390             task_session(parent) == task_session(tsk) &&
391             will_become_orphaned_pgrp(pgrp, ignored_task) &&
392             has_stopped_jobs(pgrp)) {
393                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
394                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
395         }
396 }
397
398 static void coredump_task_exit(struct task_struct *tsk)
399 {
400         struct core_state *core_state;
401
402         /*
403          * Serialize with any possible pending coredump.
404          * We must hold siglock around checking core_state
405          * and setting PF_POSTCOREDUMP.  The core-inducing thread
406          * will increment ->nr_threads for each thread in the
407          * group without PF_POSTCOREDUMP set.
408          */
409         spin_lock_irq(&tsk->sighand->siglock);
410         tsk->flags |= PF_POSTCOREDUMP;
411         core_state = tsk->signal->core_state;
412         spin_unlock_irq(&tsk->sighand->siglock);
413         if (core_state) {
414                 struct core_thread self;
415
416                 self.task = current;
417                 if (self.task->flags & PF_SIGNALED)
418                         self.next = xchg(&core_state->dumper.next, &self);
419                 else
420                         self.task = NULL;
421                 /*
422                  * Implies mb(), the result of xchg() must be visible
423                  * to core_state->dumper.
424                  */
425                 if (atomic_dec_and_test(&core_state->nr_threads))
426                         complete(&core_state->startup);
427
428                 for (;;) {
429                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
430                         if (!self.task) /* see coredump_finish() */
431                                 break;
432                         schedule();
433                 }
434                 __set_current_state(TASK_RUNNING);
435         }
436 }
437
438 #ifdef CONFIG_MEMCG
439 /*
440  * A task is exiting.   If it owned this mm, find a new owner for the mm.
441  */
442 void mm_update_next_owner(struct mm_struct *mm)
443 {
444         struct task_struct *c, *g, *p = current;
445
446 retry:
447         /*
448          * If the exiting or execing task is not the owner, it's
449          * someone else's problem.
450          */
451         if (mm->owner != p)
452                 return;
453         /*
454          * The current owner is exiting/execing and there are no other
455          * candidates.  Do not leave the mm pointing to a possibly
456          * freed task structure.
457          */
458         if (atomic_read(&mm->mm_users) <= 1) {
459                 WRITE_ONCE(mm->owner, NULL);
460                 return;
461         }
462
463         read_lock(&tasklist_lock);
464         /*
465          * Search in the children
466          */
467         list_for_each_entry(c, &p->children, sibling) {
468                 if (c->mm == mm)
469                         goto assign_new_owner;
470         }
471
472         /*
473          * Search in the siblings
474          */
475         list_for_each_entry(c, &p->real_parent->children, sibling) {
476                 if (c->mm == mm)
477                         goto assign_new_owner;
478         }
479
480         /*
481          * Search through everything else, we should not get here often.
482          */
483         for_each_process(g) {
484                 if (g->flags & PF_KTHREAD)
485                         continue;
486                 for_each_thread(g, c) {
487                         if (c->mm == mm)
488                                 goto assign_new_owner;
489                         if (c->mm)
490                                 break;
491                 }
492         }
493         read_unlock(&tasklist_lock);
494         /*
495          * We found no owner yet mm_users > 1: this implies that we are
496          * most likely racing with swapoff (try_to_unuse()) or /proc or
497          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
498          */
499         WRITE_ONCE(mm->owner, NULL);
500         return;
501
502 assign_new_owner:
503         BUG_ON(c == p);
504         get_task_struct(c);
505         /*
506          * The task_lock protects c->mm from changing.
507          * We always want mm->owner->mm == mm
508          */
509         task_lock(c);
510         /*
511          * Delay read_unlock() till we have the task_lock()
512          * to ensure that c does not slip away underneath us
513          */
514         read_unlock(&tasklist_lock);
515         if (c->mm != mm) {
516                 task_unlock(c);
517                 put_task_struct(c);
518                 goto retry;
519         }
520         WRITE_ONCE(mm->owner, c);
521         lru_gen_migrate_mm(mm);
522         task_unlock(c);
523         put_task_struct(c);
524 }
525 #endif /* CONFIG_MEMCG */
526
527 /*
528  * Turn us into a lazy TLB process if we
529  * aren't already..
530  */
531 static void exit_mm(void)
532 {
533         struct mm_struct *mm = current->mm;
534
535         exit_mm_release(current, mm);
536         if (!mm)
537                 return;
538         sync_mm_rss(mm);
539         mmap_read_lock(mm);
540         mmgrab(mm);
541         BUG_ON(mm != current->active_mm);
542         /* more a memory barrier than a real lock */
543         task_lock(current);
544         /*
545          * When a thread stops operating on an address space, the loop
546          * in membarrier_private_expedited() may not observe that
547          * tsk->mm, and the loop in membarrier_global_expedited() may
548          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
549          * rq->membarrier_state, so those would not issue an IPI.
550          * Membarrier requires a memory barrier after accessing
551          * user-space memory, before clearing tsk->mm or the
552          * rq->membarrier_state.
553          */
554         smp_mb__after_spinlock();
555         local_irq_disable();
556         current->mm = NULL;
557         membarrier_update_current_mm(NULL);
558         enter_lazy_tlb(mm, current);
559         local_irq_enable();
560         task_unlock(current);
561         mmap_read_unlock(mm);
562         mm_update_next_owner(mm);
563         mmput(mm);
564         if (test_thread_flag(TIF_MEMDIE))
565                 exit_oom_victim();
566 }
567
568 static struct task_struct *find_alive_thread(struct task_struct *p)
569 {
570         struct task_struct *t;
571
572         for_each_thread(p, t) {
573                 if (!(t->flags & PF_EXITING))
574                         return t;
575         }
576         return NULL;
577 }
578
579 static struct task_struct *find_child_reaper(struct task_struct *father,
580                                                 struct list_head *dead)
581         __releases(&tasklist_lock)
582         __acquires(&tasklist_lock)
583 {
584         struct pid_namespace *pid_ns = task_active_pid_ns(father);
585         struct task_struct *reaper = pid_ns->child_reaper;
586         struct task_struct *p, *n;
587
588         if (likely(reaper != father))
589                 return reaper;
590
591         reaper = find_alive_thread(father);
592         if (reaper) {
593                 pid_ns->child_reaper = reaper;
594                 return reaper;
595         }
596
597         write_unlock_irq(&tasklist_lock);
598
599         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
600                 list_del_init(&p->ptrace_entry);
601                 release_task(p);
602         }
603
604         zap_pid_ns_processes(pid_ns);
605         write_lock_irq(&tasklist_lock);
606
607         return father;
608 }
609
610 /*
611  * When we die, we re-parent all our children, and try to:
612  * 1. give them to another thread in our thread group, if such a member exists
613  * 2. give it to the first ancestor process which prctl'd itself as a
614  *    child_subreaper for its children (like a service manager)
615  * 3. give it to the init process (PID 1) in our pid namespace
616  */
617 static struct task_struct *find_new_reaper(struct task_struct *father,
618                                            struct task_struct *child_reaper)
619 {
620         struct task_struct *thread, *reaper;
621
622         thread = find_alive_thread(father);
623         if (thread)
624                 return thread;
625
626         if (father->signal->has_child_subreaper) {
627                 unsigned int ns_level = task_pid(father)->level;
628                 /*
629                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
630                  * We can't check reaper != child_reaper to ensure we do not
631                  * cross the namespaces, the exiting parent could be injected
632                  * by setns() + fork().
633                  * We check pid->level, this is slightly more efficient than
634                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
635                  */
636                 for (reaper = father->real_parent;
637                      task_pid(reaper)->level == ns_level;
638                      reaper = reaper->real_parent) {
639                         if (reaper == &init_task)
640                                 break;
641                         if (!reaper->signal->is_child_subreaper)
642                                 continue;
643                         thread = find_alive_thread(reaper);
644                         if (thread)
645                                 return thread;
646                 }
647         }
648
649         return child_reaper;
650 }
651
652 /*
653 * Any that need to be release_task'd are put on the @dead list.
654  */
655 static void reparent_leader(struct task_struct *father, struct task_struct *p,
656                                 struct list_head *dead)
657 {
658         if (unlikely(p->exit_state == EXIT_DEAD))
659                 return;
660
661         /* We don't want people slaying init. */
662         p->exit_signal = SIGCHLD;
663
664         /* If it has exited notify the new parent about this child's death. */
665         if (!p->ptrace &&
666             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
667                 if (do_notify_parent(p, p->exit_signal)) {
668                         p->exit_state = EXIT_DEAD;
669                         list_add(&p->ptrace_entry, dead);
670                 }
671         }
672
673         kill_orphaned_pgrp(p, father);
674 }
675
676 /*
677  * This does two things:
678  *
679  * A.  Make init inherit all the child processes
680  * B.  Check to see if any process groups have become orphaned
681  *      as a result of our exiting, and if they have any stopped
682  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
683  */
684 static void forget_original_parent(struct task_struct *father,
685                                         struct list_head *dead)
686 {
687         struct task_struct *p, *t, *reaper;
688
689         if (unlikely(!list_empty(&father->ptraced)))
690                 exit_ptrace(father, dead);
691
692         /* Can drop and reacquire tasklist_lock */
693         reaper = find_child_reaper(father, dead);
694         if (list_empty(&father->children))
695                 return;
696
697         reaper = find_new_reaper(father, reaper);
698         list_for_each_entry(p, &father->children, sibling) {
699                 for_each_thread(p, t) {
700                         RCU_INIT_POINTER(t->real_parent, reaper);
701                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
702                         if (likely(!t->ptrace))
703                                 t->parent = t->real_parent;
704                         if (t->pdeath_signal)
705                                 group_send_sig_info(t->pdeath_signal,
706                                                     SEND_SIG_NOINFO, t,
707                                                     PIDTYPE_TGID);
708                 }
709                 /*
710                  * If this is a threaded reparent there is no need to
711                  * notify anyone anything has happened.
712                  */
713                 if (!same_thread_group(reaper, father))
714                         reparent_leader(father, p, dead);
715         }
716         list_splice_tail_init(&father->children, &reaper->children);
717 }
718
719 /*
720  * Send signals to all our closest relatives so that they know
721  * to properly mourn us..
722  */
723 static void exit_notify(struct task_struct *tsk, int group_dead)
724 {
725         bool autoreap;
726         struct task_struct *p, *n;
727         LIST_HEAD(dead);
728
729         write_lock_irq(&tasklist_lock);
730         forget_original_parent(tsk, &dead);
731
732         if (group_dead)
733                 kill_orphaned_pgrp(tsk->group_leader, NULL);
734
735         tsk->exit_state = EXIT_ZOMBIE;
736         if (unlikely(tsk->ptrace)) {
737                 int sig = thread_group_leader(tsk) &&
738                                 thread_group_empty(tsk) &&
739                                 !ptrace_reparented(tsk) ?
740                         tsk->exit_signal : SIGCHLD;
741                 autoreap = do_notify_parent(tsk, sig);
742         } else if (thread_group_leader(tsk)) {
743                 autoreap = thread_group_empty(tsk) &&
744                         do_notify_parent(tsk, tsk->exit_signal);
745         } else {
746                 autoreap = true;
747         }
748
749         if (autoreap) {
750                 tsk->exit_state = EXIT_DEAD;
751                 list_add(&tsk->ptrace_entry, &dead);
752         }
753
754         /* mt-exec, de_thread() is waiting for group leader */
755         if (unlikely(tsk->signal->notify_count < 0))
756                 wake_up_process(tsk->signal->group_exec_task);
757         write_unlock_irq(&tasklist_lock);
758
759         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
760                 list_del_init(&p->ptrace_entry);
761                 release_task(p);
762         }
763 }
764
765 #ifdef CONFIG_DEBUG_STACK_USAGE
766 static void check_stack_usage(void)
767 {
768         static DEFINE_SPINLOCK(low_water_lock);
769         static int lowest_to_date = THREAD_SIZE;
770         unsigned long free;
771
772         free = stack_not_used(current);
773
774         if (free >= lowest_to_date)
775                 return;
776
777         spin_lock(&low_water_lock);
778         if (free < lowest_to_date) {
779                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
780                         current->comm, task_pid_nr(current), free);
781                 lowest_to_date = free;
782         }
783         spin_unlock(&low_water_lock);
784 }
785 #else
786 static inline void check_stack_usage(void) {}
787 #endif
788
789 static void synchronize_group_exit(struct task_struct *tsk, long code)
790 {
791         struct sighand_struct *sighand = tsk->sighand;
792         struct signal_struct *signal = tsk->signal;
793
794         spin_lock_irq(&sighand->siglock);
795         signal->quick_threads--;
796         if ((signal->quick_threads == 0) &&
797             !(signal->flags & SIGNAL_GROUP_EXIT)) {
798                 signal->flags = SIGNAL_GROUP_EXIT;
799                 signal->group_exit_code = code;
800                 signal->group_stop_count = 0;
801         }
802         spin_unlock_irq(&sighand->siglock);
803 }
804
805 void __noreturn do_exit(long code)
806 {
807         struct task_struct *tsk = current;
808         int group_dead;
809
810         WARN_ON(irqs_disabled());
811
812         synchronize_group_exit(tsk, code);
813
814         WARN_ON(tsk->plug);
815
816         kcov_task_exit(tsk);
817         kmsan_task_exit(tsk);
818
819         coredump_task_exit(tsk);
820         ptrace_event(PTRACE_EVENT_EXIT, code);
821
822         validate_creds_for_do_exit(tsk);
823
824         io_uring_files_cancel();
825         exit_signals(tsk);  /* sets PF_EXITING */
826
827         /* sync mm's RSS info before statistics gathering */
828         if (tsk->mm)
829                 sync_mm_rss(tsk->mm);
830         acct_update_integrals(tsk);
831         group_dead = atomic_dec_and_test(&tsk->signal->live);
832         if (group_dead) {
833                 /*
834                  * If the last thread of global init has exited, panic
835                  * immediately to get a useable coredump.
836                  */
837                 if (unlikely(is_global_init(tsk)))
838                         panic("Attempted to kill init! exitcode=0x%08x\n",
839                                 tsk->signal->group_exit_code ?: (int)code);
840
841 #ifdef CONFIG_POSIX_TIMERS
842                 hrtimer_cancel(&tsk->signal->real_timer);
843                 exit_itimers(tsk);
844 #endif
845                 if (tsk->mm)
846                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
847         }
848         acct_collect(code, group_dead);
849         if (group_dead)
850                 tty_audit_exit();
851         audit_free(tsk);
852
853         tsk->exit_code = code;
854         taskstats_exit(tsk, group_dead);
855
856         exit_mm();
857
858         if (group_dead)
859                 acct_process();
860         trace_sched_process_exit(tsk);
861
862         exit_sem(tsk);
863         exit_shm(tsk);
864         exit_files(tsk);
865         exit_fs(tsk);
866         if (group_dead)
867                 disassociate_ctty(1);
868         exit_task_namespaces(tsk);
869         exit_task_work(tsk);
870         exit_thread(tsk);
871
872         /*
873          * Flush inherited counters to the parent - before the parent
874          * gets woken up by child-exit notifications.
875          *
876          * because of cgroup mode, must be called before cgroup_exit()
877          */
878         perf_event_exit_task(tsk);
879
880         sched_autogroup_exit_task(tsk);
881         cgroup_exit(tsk);
882
883         /*
884          * FIXME: do that only when needed, using sched_exit tracepoint
885          */
886         flush_ptrace_hw_breakpoint(tsk);
887
888         exit_tasks_rcu_start();
889         exit_notify(tsk, group_dead);
890         proc_exit_connector(tsk);
891         mpol_put_task_policy(tsk);
892 #ifdef CONFIG_FUTEX
893         if (unlikely(current->pi_state_cache))
894                 kfree(current->pi_state_cache);
895 #endif
896         /*
897          * Make sure we are holding no locks:
898          */
899         debug_check_no_locks_held();
900
901         if (tsk->io_context)
902                 exit_io_context(tsk);
903
904         if (tsk->splice_pipe)
905                 free_pipe_info(tsk->splice_pipe);
906
907         if (tsk->task_frag.page)
908                 put_page(tsk->task_frag.page);
909
910         validate_creds_for_do_exit(tsk);
911         exit_task_stack_account(tsk);
912
913         check_stack_usage();
914         preempt_disable();
915         if (tsk->nr_dirtied)
916                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
917         exit_rcu();
918         exit_tasks_rcu_finish();
919
920         lockdep_free_task(tsk);
921         do_task_dead();
922 }
923
924 void __noreturn make_task_dead(int signr)
925 {
926         /*
927          * Take the task off the cpu after something catastrophic has
928          * happened.
929          *
930          * We can get here from a kernel oops, sometimes with preemption off.
931          * Start by checking for critical errors.
932          * Then fix up important state like USER_DS and preemption.
933          * Then do everything else.
934          */
935         struct task_struct *tsk = current;
936         unsigned int limit;
937
938         if (unlikely(in_interrupt()))
939                 panic("Aiee, killing interrupt handler!");
940         if (unlikely(!tsk->pid))
941                 panic("Attempted to kill the idle task!");
942
943         if (unlikely(irqs_disabled())) {
944                 pr_info("note: %s[%d] exited with irqs disabled\n",
945                         current->comm, task_pid_nr(current));
946                 local_irq_enable();
947         }
948         if (unlikely(in_atomic())) {
949                 pr_info("note: %s[%d] exited with preempt_count %d\n",
950                         current->comm, task_pid_nr(current),
951                         preempt_count());
952                 preempt_count_set(PREEMPT_ENABLED);
953         }
954
955         /*
956          * Every time the system oopses, if the oops happens while a reference
957          * to an object was held, the reference leaks.
958          * If the oops doesn't also leak memory, repeated oopsing can cause
959          * reference counters to wrap around (if they're not using refcount_t).
960          * This means that repeated oopsing can make unexploitable-looking bugs
961          * exploitable through repeated oopsing.
962          * To make sure this can't happen, place an upper bound on how often the
963          * kernel may oops without panic().
964          */
965         limit = READ_ONCE(oops_limit);
966         if (atomic_inc_return(&oops_count) >= limit && limit)
967                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
968
969         /*
970          * We're taking recursive faults here in make_task_dead. Safest is to just
971          * leave this task alone and wait for reboot.
972          */
973         if (unlikely(tsk->flags & PF_EXITING)) {
974                 pr_alert("Fixing recursive fault but reboot is needed!\n");
975                 futex_exit_recursive(tsk);
976                 tsk->exit_state = EXIT_DEAD;
977                 refcount_inc(&tsk->rcu_users);
978                 do_task_dead();
979         }
980
981         do_exit(signr);
982 }
983
984 SYSCALL_DEFINE1(exit, int, error_code)
985 {
986         do_exit((error_code&0xff)<<8);
987 }
988
989 /*
990  * Take down every thread in the group.  This is called by fatal signals
991  * as well as by sys_exit_group (below).
992  */
993 void __noreturn
994 do_group_exit(int exit_code)
995 {
996         struct signal_struct *sig = current->signal;
997
998         if (sig->flags & SIGNAL_GROUP_EXIT)
999                 exit_code = sig->group_exit_code;
1000         else if (sig->group_exec_task)
1001                 exit_code = 0;
1002         else {
1003                 struct sighand_struct *const sighand = current->sighand;
1004
1005                 spin_lock_irq(&sighand->siglock);
1006                 if (sig->flags & SIGNAL_GROUP_EXIT)
1007                         /* Another thread got here before we took the lock.  */
1008                         exit_code = sig->group_exit_code;
1009                 else if (sig->group_exec_task)
1010                         exit_code = 0;
1011                 else {
1012                         sig->group_exit_code = exit_code;
1013                         sig->flags = SIGNAL_GROUP_EXIT;
1014                         zap_other_threads(current);
1015                 }
1016                 spin_unlock_irq(&sighand->siglock);
1017         }
1018
1019         do_exit(exit_code);
1020         /* NOTREACHED */
1021 }
1022
1023 /*
1024  * this kills every thread in the thread group. Note that any externally
1025  * wait4()-ing process will get the correct exit code - even if this
1026  * thread is not the thread group leader.
1027  */
1028 SYSCALL_DEFINE1(exit_group, int, error_code)
1029 {
1030         do_group_exit((error_code & 0xff) << 8);
1031         /* NOTREACHED */
1032         return 0;
1033 }
1034
1035 struct waitid_info {
1036         pid_t pid;
1037         uid_t uid;
1038         int status;
1039         int cause;
1040 };
1041
1042 struct wait_opts {
1043         enum pid_type           wo_type;
1044         int                     wo_flags;
1045         struct pid              *wo_pid;
1046
1047         struct waitid_info      *wo_info;
1048         int                     wo_stat;
1049         struct rusage           *wo_rusage;
1050
1051         wait_queue_entry_t              child_wait;
1052         int                     notask_error;
1053 };
1054
1055 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1056 {
1057         return  wo->wo_type == PIDTYPE_MAX ||
1058                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1059 }
1060
1061 static int
1062 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1063 {
1064         if (!eligible_pid(wo, p))
1065                 return 0;
1066
1067         /*
1068          * Wait for all children (clone and not) if __WALL is set or
1069          * if it is traced by us.
1070          */
1071         if (ptrace || (wo->wo_flags & __WALL))
1072                 return 1;
1073
1074         /*
1075          * Otherwise, wait for clone children *only* if __WCLONE is set;
1076          * otherwise, wait for non-clone children *only*.
1077          *
1078          * Note: a "clone" child here is one that reports to its parent
1079          * using a signal other than SIGCHLD, or a non-leader thread which
1080          * we can only see if it is traced by us.
1081          */
1082         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1083                 return 0;
1084
1085         return 1;
1086 }
1087
1088 /*
1089  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1090  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1091  * the lock and this task is uninteresting.  If we return nonzero, we have
1092  * released the lock and the system call should return.
1093  */
1094 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1095 {
1096         int state, status;
1097         pid_t pid = task_pid_vnr(p);
1098         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1099         struct waitid_info *infop;
1100
1101         if (!likely(wo->wo_flags & WEXITED))
1102                 return 0;
1103
1104         if (unlikely(wo->wo_flags & WNOWAIT)) {
1105                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1106                         ? p->signal->group_exit_code : p->exit_code;
1107                 get_task_struct(p);
1108                 read_unlock(&tasklist_lock);
1109                 sched_annotate_sleep();
1110                 if (wo->wo_rusage)
1111                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1112                 put_task_struct(p);
1113                 goto out_info;
1114         }
1115         /*
1116          * Move the task's state to DEAD/TRACE, only one thread can do this.
1117          */
1118         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1119                 EXIT_TRACE : EXIT_DEAD;
1120         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1121                 return 0;
1122         /*
1123          * We own this thread, nobody else can reap it.
1124          */
1125         read_unlock(&tasklist_lock);
1126         sched_annotate_sleep();
1127
1128         /*
1129          * Check thread_group_leader() to exclude the traced sub-threads.
1130          */
1131         if (state == EXIT_DEAD && thread_group_leader(p)) {
1132                 struct signal_struct *sig = p->signal;
1133                 struct signal_struct *psig = current->signal;
1134                 unsigned long maxrss;
1135                 u64 tgutime, tgstime;
1136
1137                 /*
1138                  * The resource counters for the group leader are in its
1139                  * own task_struct.  Those for dead threads in the group
1140                  * are in its signal_struct, as are those for the child
1141                  * processes it has previously reaped.  All these
1142                  * accumulate in the parent's signal_struct c* fields.
1143                  *
1144                  * We don't bother to take a lock here to protect these
1145                  * p->signal fields because the whole thread group is dead
1146                  * and nobody can change them.
1147                  *
1148                  * psig->stats_lock also protects us from our sub-threads
1149                  * which can reap other children at the same time. Until
1150                  * we change k_getrusage()-like users to rely on this lock
1151                  * we have to take ->siglock as well.
1152                  *
1153                  * We use thread_group_cputime_adjusted() to get times for
1154                  * the thread group, which consolidates times for all threads
1155                  * in the group including the group leader.
1156                  */
1157                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1158                 spin_lock_irq(&current->sighand->siglock);
1159                 write_seqlock(&psig->stats_lock);
1160                 psig->cutime += tgutime + sig->cutime;
1161                 psig->cstime += tgstime + sig->cstime;
1162                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1163                 psig->cmin_flt +=
1164                         p->min_flt + sig->min_flt + sig->cmin_flt;
1165                 psig->cmaj_flt +=
1166                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1167                 psig->cnvcsw +=
1168                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1169                 psig->cnivcsw +=
1170                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1171                 psig->cinblock +=
1172                         task_io_get_inblock(p) +
1173                         sig->inblock + sig->cinblock;
1174                 psig->coublock +=
1175                         task_io_get_oublock(p) +
1176                         sig->oublock + sig->coublock;
1177                 maxrss = max(sig->maxrss, sig->cmaxrss);
1178                 if (psig->cmaxrss < maxrss)
1179                         psig->cmaxrss = maxrss;
1180                 task_io_accounting_add(&psig->ioac, &p->ioac);
1181                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1182                 write_sequnlock(&psig->stats_lock);
1183                 spin_unlock_irq(&current->sighand->siglock);
1184         }
1185
1186         if (wo->wo_rusage)
1187                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1188         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1189                 ? p->signal->group_exit_code : p->exit_code;
1190         wo->wo_stat = status;
1191
1192         if (state == EXIT_TRACE) {
1193                 write_lock_irq(&tasklist_lock);
1194                 /* We dropped tasklist, ptracer could die and untrace */
1195                 ptrace_unlink(p);
1196
1197                 /* If parent wants a zombie, don't release it now */
1198                 state = EXIT_ZOMBIE;
1199                 if (do_notify_parent(p, p->exit_signal))
1200                         state = EXIT_DEAD;
1201                 p->exit_state = state;
1202                 write_unlock_irq(&tasklist_lock);
1203         }
1204         if (state == EXIT_DEAD)
1205                 release_task(p);
1206
1207 out_info:
1208         infop = wo->wo_info;
1209         if (infop) {
1210                 if ((status & 0x7f) == 0) {
1211                         infop->cause = CLD_EXITED;
1212                         infop->status = status >> 8;
1213                 } else {
1214                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1215                         infop->status = status & 0x7f;
1216                 }
1217                 infop->pid = pid;
1218                 infop->uid = uid;
1219         }
1220
1221         return pid;
1222 }
1223
1224 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1225 {
1226         if (ptrace) {
1227                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1228                         return &p->exit_code;
1229         } else {
1230                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1231                         return &p->signal->group_exit_code;
1232         }
1233         return NULL;
1234 }
1235
1236 /**
1237  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1238  * @wo: wait options
1239  * @ptrace: is the wait for ptrace
1240  * @p: task to wait for
1241  *
1242  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1243  *
1244  * CONTEXT:
1245  * read_lock(&tasklist_lock), which is released if return value is
1246  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1247  *
1248  * RETURNS:
1249  * 0 if wait condition didn't exist and search for other wait conditions
1250  * should continue.  Non-zero return, -errno on failure and @p's pid on
1251  * success, implies that tasklist_lock is released and wait condition
1252  * search should terminate.
1253  */
1254 static int wait_task_stopped(struct wait_opts *wo,
1255                                 int ptrace, struct task_struct *p)
1256 {
1257         struct waitid_info *infop;
1258         int exit_code, *p_code, why;
1259         uid_t uid = 0; /* unneeded, required by compiler */
1260         pid_t pid;
1261
1262         /*
1263          * Traditionally we see ptrace'd stopped tasks regardless of options.
1264          */
1265         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1266                 return 0;
1267
1268         if (!task_stopped_code(p, ptrace))
1269                 return 0;
1270
1271         exit_code = 0;
1272         spin_lock_irq(&p->sighand->siglock);
1273
1274         p_code = task_stopped_code(p, ptrace);
1275         if (unlikely(!p_code))
1276                 goto unlock_sig;
1277
1278         exit_code = *p_code;
1279         if (!exit_code)
1280                 goto unlock_sig;
1281
1282         if (!unlikely(wo->wo_flags & WNOWAIT))
1283                 *p_code = 0;
1284
1285         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1286 unlock_sig:
1287         spin_unlock_irq(&p->sighand->siglock);
1288         if (!exit_code)
1289                 return 0;
1290
1291         /*
1292          * Now we are pretty sure this task is interesting.
1293          * Make sure it doesn't get reaped out from under us while we
1294          * give up the lock and then examine it below.  We don't want to
1295          * keep holding onto the tasklist_lock while we call getrusage and
1296          * possibly take page faults for user memory.
1297          */
1298         get_task_struct(p);
1299         pid = task_pid_vnr(p);
1300         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1301         read_unlock(&tasklist_lock);
1302         sched_annotate_sleep();
1303         if (wo->wo_rusage)
1304                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1305         put_task_struct(p);
1306
1307         if (likely(!(wo->wo_flags & WNOWAIT)))
1308                 wo->wo_stat = (exit_code << 8) | 0x7f;
1309
1310         infop = wo->wo_info;
1311         if (infop) {
1312                 infop->cause = why;
1313                 infop->status = exit_code;
1314                 infop->pid = pid;
1315                 infop->uid = uid;
1316         }
1317         return pid;
1318 }
1319
1320 /*
1321  * Handle do_wait work for one task in a live, non-stopped state.
1322  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1323  * the lock and this task is uninteresting.  If we return nonzero, we have
1324  * released the lock and the system call should return.
1325  */
1326 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1327 {
1328         struct waitid_info *infop;
1329         pid_t pid;
1330         uid_t uid;
1331
1332         if (!unlikely(wo->wo_flags & WCONTINUED))
1333                 return 0;
1334
1335         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1336                 return 0;
1337
1338         spin_lock_irq(&p->sighand->siglock);
1339         /* Re-check with the lock held.  */
1340         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1341                 spin_unlock_irq(&p->sighand->siglock);
1342                 return 0;
1343         }
1344         if (!unlikely(wo->wo_flags & WNOWAIT))
1345                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1346         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1347         spin_unlock_irq(&p->sighand->siglock);
1348
1349         pid = task_pid_vnr(p);
1350         get_task_struct(p);
1351         read_unlock(&tasklist_lock);
1352         sched_annotate_sleep();
1353         if (wo->wo_rusage)
1354                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1355         put_task_struct(p);
1356
1357         infop = wo->wo_info;
1358         if (!infop) {
1359                 wo->wo_stat = 0xffff;
1360         } else {
1361                 infop->cause = CLD_CONTINUED;
1362                 infop->pid = pid;
1363                 infop->uid = uid;
1364                 infop->status = SIGCONT;
1365         }
1366         return pid;
1367 }
1368
1369 /*
1370  * Consider @p for a wait by @parent.
1371  *
1372  * -ECHILD should be in ->notask_error before the first call.
1373  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1374  * Returns zero if the search for a child should continue;
1375  * then ->notask_error is 0 if @p is an eligible child,
1376  * or still -ECHILD.
1377  */
1378 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1379                                 struct task_struct *p)
1380 {
1381         /*
1382          * We can race with wait_task_zombie() from another thread.
1383          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1384          * can't confuse the checks below.
1385          */
1386         int exit_state = READ_ONCE(p->exit_state);
1387         int ret;
1388
1389         if (unlikely(exit_state == EXIT_DEAD))
1390                 return 0;
1391
1392         ret = eligible_child(wo, ptrace, p);
1393         if (!ret)
1394                 return ret;
1395
1396         if (unlikely(exit_state == EXIT_TRACE)) {
1397                 /*
1398                  * ptrace == 0 means we are the natural parent. In this case
1399                  * we should clear notask_error, debugger will notify us.
1400                  */
1401                 if (likely(!ptrace))
1402                         wo->notask_error = 0;
1403                 return 0;
1404         }
1405
1406         if (likely(!ptrace) && unlikely(p->ptrace)) {
1407                 /*
1408                  * If it is traced by its real parent's group, just pretend
1409                  * the caller is ptrace_do_wait() and reap this child if it
1410                  * is zombie.
1411                  *
1412                  * This also hides group stop state from real parent; otherwise
1413                  * a single stop can be reported twice as group and ptrace stop.
1414                  * If a ptracer wants to distinguish these two events for its
1415                  * own children it should create a separate process which takes
1416                  * the role of real parent.
1417                  */
1418                 if (!ptrace_reparented(p))
1419                         ptrace = 1;
1420         }
1421
1422         /* slay zombie? */
1423         if (exit_state == EXIT_ZOMBIE) {
1424                 /* we don't reap group leaders with subthreads */
1425                 if (!delay_group_leader(p)) {
1426                         /*
1427                          * A zombie ptracee is only visible to its ptracer.
1428                          * Notification and reaping will be cascaded to the
1429                          * real parent when the ptracer detaches.
1430                          */
1431                         if (unlikely(ptrace) || likely(!p->ptrace))
1432                                 return wait_task_zombie(wo, p);
1433                 }
1434
1435                 /*
1436                  * Allow access to stopped/continued state via zombie by
1437                  * falling through.  Clearing of notask_error is complex.
1438                  *
1439                  * When !@ptrace:
1440                  *
1441                  * If WEXITED is set, notask_error should naturally be
1442                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1443                  * so, if there are live subthreads, there are events to
1444                  * wait for.  If all subthreads are dead, it's still safe
1445                  * to clear - this function will be called again in finite
1446                  * amount time once all the subthreads are released and
1447                  * will then return without clearing.
1448                  *
1449                  * When @ptrace:
1450                  *
1451                  * Stopped state is per-task and thus can't change once the
1452                  * target task dies.  Only continued and exited can happen.
1453                  * Clear notask_error if WCONTINUED | WEXITED.
1454                  */
1455                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1456                         wo->notask_error = 0;
1457         } else {
1458                 /*
1459                  * @p is alive and it's gonna stop, continue or exit, so
1460                  * there always is something to wait for.
1461                  */
1462                 wo->notask_error = 0;
1463         }
1464
1465         /*
1466          * Wait for stopped.  Depending on @ptrace, different stopped state
1467          * is used and the two don't interact with each other.
1468          */
1469         ret = wait_task_stopped(wo, ptrace, p);
1470         if (ret)
1471                 return ret;
1472
1473         /*
1474          * Wait for continued.  There's only one continued state and the
1475          * ptracer can consume it which can confuse the real parent.  Don't
1476          * use WCONTINUED from ptracer.  You don't need or want it.
1477          */
1478         return wait_task_continued(wo, p);
1479 }
1480
1481 /*
1482  * Do the work of do_wait() for one thread in the group, @tsk.
1483  *
1484  * -ECHILD should be in ->notask_error before the first call.
1485  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1486  * Returns zero if the search for a child should continue; then
1487  * ->notask_error is 0 if there were any eligible children,
1488  * or still -ECHILD.
1489  */
1490 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1491 {
1492         struct task_struct *p;
1493
1494         list_for_each_entry(p, &tsk->children, sibling) {
1495                 int ret = wait_consider_task(wo, 0, p);
1496
1497                 if (ret)
1498                         return ret;
1499         }
1500
1501         return 0;
1502 }
1503
1504 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1505 {
1506         struct task_struct *p;
1507
1508         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1509                 int ret = wait_consider_task(wo, 1, p);
1510
1511                 if (ret)
1512                         return ret;
1513         }
1514
1515         return 0;
1516 }
1517
1518 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1519                                 int sync, void *key)
1520 {
1521         struct wait_opts *wo = container_of(wait, struct wait_opts,
1522                                                 child_wait);
1523         struct task_struct *p = key;
1524
1525         if (!eligible_pid(wo, p))
1526                 return 0;
1527
1528         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1529                 return 0;
1530
1531         return default_wake_function(wait, mode, sync, key);
1532 }
1533
1534 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1535 {
1536         __wake_up_sync_key(&parent->signal->wait_chldexit,
1537                            TASK_INTERRUPTIBLE, p);
1538 }
1539
1540 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1541                                  struct task_struct *target)
1542 {
1543         struct task_struct *parent =
1544                 !ptrace ? target->real_parent : target->parent;
1545
1546         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1547                                      same_thread_group(current, parent));
1548 }
1549
1550 /*
1551  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1552  * and tracee lists to find the target task.
1553  */
1554 static int do_wait_pid(struct wait_opts *wo)
1555 {
1556         bool ptrace;
1557         struct task_struct *target;
1558         int retval;
1559
1560         ptrace = false;
1561         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1562         if (target && is_effectively_child(wo, ptrace, target)) {
1563                 retval = wait_consider_task(wo, ptrace, target);
1564                 if (retval)
1565                         return retval;
1566         }
1567
1568         ptrace = true;
1569         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1570         if (target && target->ptrace &&
1571             is_effectively_child(wo, ptrace, target)) {
1572                 retval = wait_consider_task(wo, ptrace, target);
1573                 if (retval)
1574                         return retval;
1575         }
1576
1577         return 0;
1578 }
1579
1580 static long do_wait(struct wait_opts *wo)
1581 {
1582         int retval;
1583
1584         trace_sched_process_wait(wo->wo_pid);
1585
1586         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1587         wo->child_wait.private = current;
1588         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1589 repeat:
1590         /*
1591          * If there is nothing that can match our criteria, just get out.
1592          * We will clear ->notask_error to zero if we see any child that
1593          * might later match our criteria, even if we are not able to reap
1594          * it yet.
1595          */
1596         wo->notask_error = -ECHILD;
1597         if ((wo->wo_type < PIDTYPE_MAX) &&
1598            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1599                 goto notask;
1600
1601         set_current_state(TASK_INTERRUPTIBLE);
1602         read_lock(&tasklist_lock);
1603
1604         if (wo->wo_type == PIDTYPE_PID) {
1605                 retval = do_wait_pid(wo);
1606                 if (retval)
1607                         goto end;
1608         } else {
1609                 struct task_struct *tsk = current;
1610
1611                 do {
1612                         retval = do_wait_thread(wo, tsk);
1613                         if (retval)
1614                                 goto end;
1615
1616                         retval = ptrace_do_wait(wo, tsk);
1617                         if (retval)
1618                                 goto end;
1619
1620                         if (wo->wo_flags & __WNOTHREAD)
1621                                 break;
1622                 } while_each_thread(current, tsk);
1623         }
1624         read_unlock(&tasklist_lock);
1625
1626 notask:
1627         retval = wo->notask_error;
1628         if (!retval && !(wo->wo_flags & WNOHANG)) {
1629                 retval = -ERESTARTSYS;
1630                 if (!signal_pending(current)) {
1631                         schedule();
1632                         goto repeat;
1633                 }
1634         }
1635 end:
1636         __set_current_state(TASK_RUNNING);
1637         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1638         return retval;
1639 }
1640
1641 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1642                           int options, struct rusage *ru)
1643 {
1644         struct wait_opts wo;
1645         struct pid *pid = NULL;
1646         enum pid_type type;
1647         long ret;
1648         unsigned int f_flags = 0;
1649
1650         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1651                         __WNOTHREAD|__WCLONE|__WALL))
1652                 return -EINVAL;
1653         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1654                 return -EINVAL;
1655
1656         switch (which) {
1657         case P_ALL:
1658                 type = PIDTYPE_MAX;
1659                 break;
1660         case P_PID:
1661                 type = PIDTYPE_PID;
1662                 if (upid <= 0)
1663                         return -EINVAL;
1664
1665                 pid = find_get_pid(upid);
1666                 break;
1667         case P_PGID:
1668                 type = PIDTYPE_PGID;
1669                 if (upid < 0)
1670                         return -EINVAL;
1671
1672                 if (upid)
1673                         pid = find_get_pid(upid);
1674                 else
1675                         pid = get_task_pid(current, PIDTYPE_PGID);
1676                 break;
1677         case P_PIDFD:
1678                 type = PIDTYPE_PID;
1679                 if (upid < 0)
1680                         return -EINVAL;
1681
1682                 pid = pidfd_get_pid(upid, &f_flags);
1683                 if (IS_ERR(pid))
1684                         return PTR_ERR(pid);
1685
1686                 break;
1687         default:
1688                 return -EINVAL;
1689         }
1690
1691         wo.wo_type      = type;
1692         wo.wo_pid       = pid;
1693         wo.wo_flags     = options;
1694         wo.wo_info      = infop;
1695         wo.wo_rusage    = ru;
1696         if (f_flags & O_NONBLOCK)
1697                 wo.wo_flags |= WNOHANG;
1698
1699         ret = do_wait(&wo);
1700         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1701                 ret = -EAGAIN;
1702
1703         put_pid(pid);
1704         return ret;
1705 }
1706
1707 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1708                 infop, int, options, struct rusage __user *, ru)
1709 {
1710         struct rusage r;
1711         struct waitid_info info = {.status = 0};
1712         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1713         int signo = 0;
1714
1715         if (err > 0) {
1716                 signo = SIGCHLD;
1717                 err = 0;
1718                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1719                         return -EFAULT;
1720         }
1721         if (!infop)
1722                 return err;
1723
1724         if (!user_write_access_begin(infop, sizeof(*infop)))
1725                 return -EFAULT;
1726
1727         unsafe_put_user(signo, &infop->si_signo, Efault);
1728         unsafe_put_user(0, &infop->si_errno, Efault);
1729         unsafe_put_user(info.cause, &infop->si_code, Efault);
1730         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1731         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1732         unsafe_put_user(info.status, &infop->si_status, Efault);
1733         user_write_access_end();
1734         return err;
1735 Efault:
1736         user_write_access_end();
1737         return -EFAULT;
1738 }
1739
1740 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1741                   struct rusage *ru)
1742 {
1743         struct wait_opts wo;
1744         struct pid *pid = NULL;
1745         enum pid_type type;
1746         long ret;
1747
1748         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1749                         __WNOTHREAD|__WCLONE|__WALL))
1750                 return -EINVAL;
1751
1752         /* -INT_MIN is not defined */
1753         if (upid == INT_MIN)
1754                 return -ESRCH;
1755
1756         if (upid == -1)
1757                 type = PIDTYPE_MAX;
1758         else if (upid < 0) {
1759                 type = PIDTYPE_PGID;
1760                 pid = find_get_pid(-upid);
1761         } else if (upid == 0) {
1762                 type = PIDTYPE_PGID;
1763                 pid = get_task_pid(current, PIDTYPE_PGID);
1764         } else /* upid > 0 */ {
1765                 type = PIDTYPE_PID;
1766                 pid = find_get_pid(upid);
1767         }
1768
1769         wo.wo_type      = type;
1770         wo.wo_pid       = pid;
1771         wo.wo_flags     = options | WEXITED;
1772         wo.wo_info      = NULL;
1773         wo.wo_stat      = 0;
1774         wo.wo_rusage    = ru;
1775         ret = do_wait(&wo);
1776         put_pid(pid);
1777         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1778                 ret = -EFAULT;
1779
1780         return ret;
1781 }
1782
1783 int kernel_wait(pid_t pid, int *stat)
1784 {
1785         struct wait_opts wo = {
1786                 .wo_type        = PIDTYPE_PID,
1787                 .wo_pid         = find_get_pid(pid),
1788                 .wo_flags       = WEXITED,
1789         };
1790         int ret;
1791
1792         ret = do_wait(&wo);
1793         if (ret > 0 && wo.wo_stat)
1794                 *stat = wo.wo_stat;
1795         put_pid(wo.wo_pid);
1796         return ret;
1797 }
1798
1799 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1800                 int, options, struct rusage __user *, ru)
1801 {
1802         struct rusage r;
1803         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1804
1805         if (err > 0) {
1806                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1807                         return -EFAULT;
1808         }
1809         return err;
1810 }
1811
1812 #ifdef __ARCH_WANT_SYS_WAITPID
1813
1814 /*
1815  * sys_waitpid() remains for compatibility. waitpid() should be
1816  * implemented by calling sys_wait4() from libc.a.
1817  */
1818 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1819 {
1820         return kernel_wait4(pid, stat_addr, options, NULL);
1821 }
1822
1823 #endif
1824
1825 #ifdef CONFIG_COMPAT
1826 COMPAT_SYSCALL_DEFINE4(wait4,
1827         compat_pid_t, pid,
1828         compat_uint_t __user *, stat_addr,
1829         int, options,
1830         struct compat_rusage __user *, ru)
1831 {
1832         struct rusage r;
1833         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1834         if (err > 0) {
1835                 if (ru && put_compat_rusage(&r, ru))
1836                         return -EFAULT;
1837         }
1838         return err;
1839 }
1840
1841 COMPAT_SYSCALL_DEFINE5(waitid,
1842                 int, which, compat_pid_t, pid,
1843                 struct compat_siginfo __user *, infop, int, options,
1844                 struct compat_rusage __user *, uru)
1845 {
1846         struct rusage ru;
1847         struct waitid_info info = {.status = 0};
1848         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1849         int signo = 0;
1850         if (err > 0) {
1851                 signo = SIGCHLD;
1852                 err = 0;
1853                 if (uru) {
1854                         /* kernel_waitid() overwrites everything in ru */
1855                         if (COMPAT_USE_64BIT_TIME)
1856                                 err = copy_to_user(uru, &ru, sizeof(ru));
1857                         else
1858                                 err = put_compat_rusage(&ru, uru);
1859                         if (err)
1860                                 return -EFAULT;
1861                 }
1862         }
1863
1864         if (!infop)
1865                 return err;
1866
1867         if (!user_write_access_begin(infop, sizeof(*infop)))
1868                 return -EFAULT;
1869
1870         unsafe_put_user(signo, &infop->si_signo, Efault);
1871         unsafe_put_user(0, &infop->si_errno, Efault);
1872         unsafe_put_user(info.cause, &infop->si_code, Efault);
1873         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1874         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1875         unsafe_put_user(info.status, &infop->si_status, Efault);
1876         user_write_access_end();
1877         return err;
1878 Efault:
1879         user_write_access_end();
1880         return -EFAULT;
1881 }
1882 #endif
1883
1884 /**
1885  * thread_group_exited - check that a thread group has exited
1886  * @pid: tgid of thread group to be checked.
1887  *
1888  * Test if the thread group represented by tgid has exited (all
1889  * threads are zombies, dead or completely gone).
1890  *
1891  * Return: true if the thread group has exited. false otherwise.
1892  */
1893 bool thread_group_exited(struct pid *pid)
1894 {
1895         struct task_struct *task;
1896         bool exited;
1897
1898         rcu_read_lock();
1899         task = pid_task(pid, PIDTYPE_PID);
1900         exited = !task ||
1901                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1902         rcu_read_unlock();
1903
1904         return exited;
1905 }
1906 EXPORT_SYMBOL(thread_group_exited);
1907
1908 __weak void abort(void)
1909 {
1910         BUG();
1911
1912         /* if that doesn't kill us, halt */
1913         panic("Oops failed to kill thread");
1914 }
1915 EXPORT_SYMBOL(abort);