media: gpio-ir-tx: fix transmit with long spaces on Orange Pi PC
[platform/kernel/linux-starfive.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 #include <linux/io_uring.h>
66 #include <linux/kprobes.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74         nr_threads--;
75         detach_pid(p, PIDTYPE_PID);
76         if (group_dead) {
77                 detach_pid(p, PIDTYPE_TGID);
78                 detach_pid(p, PIDTYPE_PGID);
79                 detach_pid(p, PIDTYPE_SID);
80
81                 list_del_rcu(&p->tasks);
82                 list_del_init(&p->sibling);
83                 __this_cpu_dec(process_counts);
84         }
85         list_del_rcu(&p->thread_group);
86         list_del_rcu(&p->thread_node);
87 }
88
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94         struct signal_struct *sig = tsk->signal;
95         bool group_dead = thread_group_leader(tsk);
96         struct sighand_struct *sighand;
97         struct tty_struct *tty;
98         u64 utime, stime;
99
100         sighand = rcu_dereference_check(tsk->sighand,
101                                         lockdep_tasklist_lock_is_held());
102         spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105         posix_cpu_timers_exit(tsk);
106         if (group_dead)
107                 posix_cpu_timers_exit_group(tsk);
108 #endif
109
110         if (group_dead) {
111                 tty = sig->tty;
112                 sig->tty = NULL;
113         } else {
114                 /*
115                  * If there is any task waiting for the group exit
116                  * then notify it:
117                  */
118                 if (sig->notify_count > 0 && !--sig->notify_count)
119                         wake_up_process(sig->group_exec_task);
120
121                 if (tsk == sig->curr_target)
122                         sig->curr_target = next_thread(tsk);
123         }
124
125         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126                               sizeof(unsigned long long));
127
128         /*
129          * Accumulate here the counters for all threads as they die. We could
130          * skip the group leader because it is the last user of signal_struct,
131          * but we want to avoid the race with thread_group_cputime() which can
132          * see the empty ->thread_head list.
133          */
134         task_cputime(tsk, &utime, &stime);
135         write_seqlock(&sig->stats_lock);
136         sig->utime += utime;
137         sig->stime += stime;
138         sig->gtime += task_gtime(tsk);
139         sig->min_flt += tsk->min_flt;
140         sig->maj_flt += tsk->maj_flt;
141         sig->nvcsw += tsk->nvcsw;
142         sig->nivcsw += tsk->nivcsw;
143         sig->inblock += task_io_get_inblock(tsk);
144         sig->oublock += task_io_get_oublock(tsk);
145         task_io_accounting_add(&sig->ioac, &tsk->ioac);
146         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147         sig->nr_threads--;
148         __unhash_process(tsk, group_dead);
149         write_sequnlock(&sig->stats_lock);
150
151         /*
152          * Do this under ->siglock, we can race with another thread
153          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154          */
155         flush_sigqueue(&tsk->pending);
156         tsk->sighand = NULL;
157         spin_unlock(&sighand->siglock);
158
159         __cleanup_sighand(sighand);
160         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161         if (group_dead) {
162                 flush_sigqueue(&sig->shared_pending);
163                 tty_kref_put(tty);
164         }
165 }
166
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170
171         kprobe_flush_task(tsk);
172         perf_event_delayed_put(tsk);
173         trace_sched_process_free(tsk);
174         put_task_struct(tsk);
175 }
176
177 void put_task_struct_rcu_user(struct task_struct *task)
178 {
179         if (refcount_dec_and_test(&task->rcu_users))
180                 call_rcu(&task->rcu, delayed_put_task_struct);
181 }
182
183 void release_task(struct task_struct *p)
184 {
185         struct task_struct *leader;
186         struct pid *thread_pid;
187         int zap_leader;
188 repeat:
189         /* don't need to get the RCU readlock here - the process is dead and
190          * can't be modifying its own credentials. But shut RCU-lockdep up */
191         rcu_read_lock();
192         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
193         rcu_read_unlock();
194
195         cgroup_release(p);
196
197         write_lock_irq(&tasklist_lock);
198         ptrace_release_task(p);
199         thread_pid = get_pid(p->thread_pid);
200         __exit_signal(p);
201
202         /*
203          * If we are the last non-leader member of the thread
204          * group, and the leader is zombie, then notify the
205          * group leader's parent process. (if it wants notification.)
206          */
207         zap_leader = 0;
208         leader = p->group_leader;
209         if (leader != p && thread_group_empty(leader)
210                         && leader->exit_state == EXIT_ZOMBIE) {
211                 /*
212                  * If we were the last child thread and the leader has
213                  * exited already, and the leader's parent ignores SIGCHLD,
214                  * then we are the one who should release the leader.
215                  */
216                 zap_leader = do_notify_parent(leader, leader->exit_signal);
217                 if (zap_leader)
218                         leader->exit_state = EXIT_DEAD;
219         }
220
221         write_unlock_irq(&tasklist_lock);
222         seccomp_filter_release(p);
223         proc_flush_pid(thread_pid);
224         put_pid(thread_pid);
225         release_thread(p);
226         put_task_struct_rcu_user(p);
227
228         p = leader;
229         if (unlikely(zap_leader))
230                 goto repeat;
231 }
232
233 int rcuwait_wake_up(struct rcuwait *w)
234 {
235         int ret = 0;
236         struct task_struct *task;
237
238         rcu_read_lock();
239
240         /*
241          * Order condition vs @task, such that everything prior to the load
242          * of @task is visible. This is the condition as to why the user called
243          * rcuwait_wake() in the first place. Pairs with set_current_state()
244          * barrier (A) in rcuwait_wait_event().
245          *
246          *    WAIT                WAKE
247          *    [S] tsk = current   [S] cond = true
248          *        MB (A)              MB (B)
249          *    [L] cond            [L] tsk
250          */
251         smp_mb(); /* (B) */
252
253         task = rcu_dereference(w->task);
254         if (task)
255                 ret = wake_up_process(task);
256         rcu_read_unlock();
257
258         return ret;
259 }
260 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
261
262 /*
263  * Determine if a process group is "orphaned", according to the POSIX
264  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
265  * by terminal-generated stop signals.  Newly orphaned process groups are
266  * to receive a SIGHUP and a SIGCONT.
267  *
268  * "I ask you, have you ever known what it is to be an orphan?"
269  */
270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271                                         struct task_struct *ignored_task)
272 {
273         struct task_struct *p;
274
275         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276                 if ((p == ignored_task) ||
277                     (p->exit_state && thread_group_empty(p)) ||
278                     is_global_init(p->real_parent))
279                         continue;
280
281                 if (task_pgrp(p->real_parent) != pgrp &&
282                     task_session(p->real_parent) == task_session(p))
283                         return 0;
284         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285
286         return 1;
287 }
288
289 int is_current_pgrp_orphaned(void)
290 {
291         int retval;
292
293         read_lock(&tasklist_lock);
294         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295         read_unlock(&tasklist_lock);
296
297         return retval;
298 }
299
300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302         struct task_struct *p;
303
304         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
306                         return true;
307         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308
309         return false;
310 }
311
312 /*
313  * Check to see if any process groups have become orphaned as
314  * a result of our exiting, and if they have any stopped jobs,
315  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316  */
317 static void
318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320         struct pid *pgrp = task_pgrp(tsk);
321         struct task_struct *ignored_task = tsk;
322
323         if (!parent)
324                 /* exit: our father is in a different pgrp than
325                  * we are and we were the only connection outside.
326                  */
327                 parent = tsk->real_parent;
328         else
329                 /* reparent: our child is in a different pgrp than
330                  * we are, and it was the only connection outside.
331                  */
332                 ignored_task = NULL;
333
334         if (task_pgrp(parent) != pgrp &&
335             task_session(parent) == task_session(tsk) &&
336             will_become_orphaned_pgrp(pgrp, ignored_task) &&
337             has_stopped_jobs(pgrp)) {
338                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340         }
341 }
342
343 static void coredump_task_exit(struct task_struct *tsk)
344 {
345         struct core_state *core_state;
346
347         /*
348          * Serialize with any possible pending coredump.
349          * We must hold siglock around checking core_state
350          * and setting PF_POSTCOREDUMP.  The core-inducing thread
351          * will increment ->nr_threads for each thread in the
352          * group without PF_POSTCOREDUMP set.
353          */
354         spin_lock_irq(&tsk->sighand->siglock);
355         tsk->flags |= PF_POSTCOREDUMP;
356         core_state = tsk->signal->core_state;
357         spin_unlock_irq(&tsk->sighand->siglock);
358         if (core_state) {
359                 struct core_thread self;
360
361                 self.task = current;
362                 if (self.task->flags & PF_SIGNALED)
363                         self.next = xchg(&core_state->dumper.next, &self);
364                 else
365                         self.task = NULL;
366                 /*
367                  * Implies mb(), the result of xchg() must be visible
368                  * to core_state->dumper.
369                  */
370                 if (atomic_dec_and_test(&core_state->nr_threads))
371                         complete(&core_state->startup);
372
373                 for (;;) {
374                         set_current_state(TASK_UNINTERRUPTIBLE);
375                         if (!self.task) /* see coredump_finish() */
376                                 break;
377                         freezable_schedule();
378                 }
379                 __set_current_state(TASK_RUNNING);
380         }
381 }
382
383 #ifdef CONFIG_MEMCG
384 /*
385  * A task is exiting.   If it owned this mm, find a new owner for the mm.
386  */
387 void mm_update_next_owner(struct mm_struct *mm)
388 {
389         struct task_struct *c, *g, *p = current;
390
391 retry:
392         /*
393          * If the exiting or execing task is not the owner, it's
394          * someone else's problem.
395          */
396         if (mm->owner != p)
397                 return;
398         /*
399          * The current owner is exiting/execing and there are no other
400          * candidates.  Do not leave the mm pointing to a possibly
401          * freed task structure.
402          */
403         if (atomic_read(&mm->mm_users) <= 1) {
404                 WRITE_ONCE(mm->owner, NULL);
405                 return;
406         }
407
408         read_lock(&tasklist_lock);
409         /*
410          * Search in the children
411          */
412         list_for_each_entry(c, &p->children, sibling) {
413                 if (c->mm == mm)
414                         goto assign_new_owner;
415         }
416
417         /*
418          * Search in the siblings
419          */
420         list_for_each_entry(c, &p->real_parent->children, sibling) {
421                 if (c->mm == mm)
422                         goto assign_new_owner;
423         }
424
425         /*
426          * Search through everything else, we should not get here often.
427          */
428         for_each_process(g) {
429                 if (g->flags & PF_KTHREAD)
430                         continue;
431                 for_each_thread(g, c) {
432                         if (c->mm == mm)
433                                 goto assign_new_owner;
434                         if (c->mm)
435                                 break;
436                 }
437         }
438         read_unlock(&tasklist_lock);
439         /*
440          * We found no owner yet mm_users > 1: this implies that we are
441          * most likely racing with swapoff (try_to_unuse()) or /proc or
442          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
443          */
444         WRITE_ONCE(mm->owner, NULL);
445         return;
446
447 assign_new_owner:
448         BUG_ON(c == p);
449         get_task_struct(c);
450         /*
451          * The task_lock protects c->mm from changing.
452          * We always want mm->owner->mm == mm
453          */
454         task_lock(c);
455         /*
456          * Delay read_unlock() till we have the task_lock()
457          * to ensure that c does not slip away underneath us
458          */
459         read_unlock(&tasklist_lock);
460         if (c->mm != mm) {
461                 task_unlock(c);
462                 put_task_struct(c);
463                 goto retry;
464         }
465         WRITE_ONCE(mm->owner, c);
466         task_unlock(c);
467         put_task_struct(c);
468 }
469 #endif /* CONFIG_MEMCG */
470
471 /*
472  * Turn us into a lazy TLB process if we
473  * aren't already..
474  */
475 static void exit_mm(void)
476 {
477         struct mm_struct *mm = current->mm;
478
479         exit_mm_release(current, mm);
480         if (!mm)
481                 return;
482         sync_mm_rss(mm);
483         mmap_read_lock(mm);
484         mmgrab(mm);
485         BUG_ON(mm != current->active_mm);
486         /* more a memory barrier than a real lock */
487         task_lock(current);
488         /*
489          * When a thread stops operating on an address space, the loop
490          * in membarrier_private_expedited() may not observe that
491          * tsk->mm, and the loop in membarrier_global_expedited() may
492          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
493          * rq->membarrier_state, so those would not issue an IPI.
494          * Membarrier requires a memory barrier after accessing
495          * user-space memory, before clearing tsk->mm or the
496          * rq->membarrier_state.
497          */
498         smp_mb__after_spinlock();
499         local_irq_disable();
500         current->mm = NULL;
501         membarrier_update_current_mm(NULL);
502         enter_lazy_tlb(mm, current);
503         local_irq_enable();
504         task_unlock(current);
505         mmap_read_unlock(mm);
506         mm_update_next_owner(mm);
507         mmput(mm);
508         if (test_thread_flag(TIF_MEMDIE))
509                 exit_oom_victim();
510 }
511
512 static struct task_struct *find_alive_thread(struct task_struct *p)
513 {
514         struct task_struct *t;
515
516         for_each_thread(p, t) {
517                 if (!(t->flags & PF_EXITING))
518                         return t;
519         }
520         return NULL;
521 }
522
523 static struct task_struct *find_child_reaper(struct task_struct *father,
524                                                 struct list_head *dead)
525         __releases(&tasklist_lock)
526         __acquires(&tasklist_lock)
527 {
528         struct pid_namespace *pid_ns = task_active_pid_ns(father);
529         struct task_struct *reaper = pid_ns->child_reaper;
530         struct task_struct *p, *n;
531
532         if (likely(reaper != father))
533                 return reaper;
534
535         reaper = find_alive_thread(father);
536         if (reaper) {
537                 pid_ns->child_reaper = reaper;
538                 return reaper;
539         }
540
541         write_unlock_irq(&tasklist_lock);
542
543         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
544                 list_del_init(&p->ptrace_entry);
545                 release_task(p);
546         }
547
548         zap_pid_ns_processes(pid_ns);
549         write_lock_irq(&tasklist_lock);
550
551         return father;
552 }
553
554 /*
555  * When we die, we re-parent all our children, and try to:
556  * 1. give them to another thread in our thread group, if such a member exists
557  * 2. give it to the first ancestor process which prctl'd itself as a
558  *    child_subreaper for its children (like a service manager)
559  * 3. give it to the init process (PID 1) in our pid namespace
560  */
561 static struct task_struct *find_new_reaper(struct task_struct *father,
562                                            struct task_struct *child_reaper)
563 {
564         struct task_struct *thread, *reaper;
565
566         thread = find_alive_thread(father);
567         if (thread)
568                 return thread;
569
570         if (father->signal->has_child_subreaper) {
571                 unsigned int ns_level = task_pid(father)->level;
572                 /*
573                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
574                  * We can't check reaper != child_reaper to ensure we do not
575                  * cross the namespaces, the exiting parent could be injected
576                  * by setns() + fork().
577                  * We check pid->level, this is slightly more efficient than
578                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
579                  */
580                 for (reaper = father->real_parent;
581                      task_pid(reaper)->level == ns_level;
582                      reaper = reaper->real_parent) {
583                         if (reaper == &init_task)
584                                 break;
585                         if (!reaper->signal->is_child_subreaper)
586                                 continue;
587                         thread = find_alive_thread(reaper);
588                         if (thread)
589                                 return thread;
590                 }
591         }
592
593         return child_reaper;
594 }
595
596 /*
597 * Any that need to be release_task'd are put on the @dead list.
598  */
599 static void reparent_leader(struct task_struct *father, struct task_struct *p,
600                                 struct list_head *dead)
601 {
602         if (unlikely(p->exit_state == EXIT_DEAD))
603                 return;
604
605         /* We don't want people slaying init. */
606         p->exit_signal = SIGCHLD;
607
608         /* If it has exited notify the new parent about this child's death. */
609         if (!p->ptrace &&
610             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
611                 if (do_notify_parent(p, p->exit_signal)) {
612                         p->exit_state = EXIT_DEAD;
613                         list_add(&p->ptrace_entry, dead);
614                 }
615         }
616
617         kill_orphaned_pgrp(p, father);
618 }
619
620 /*
621  * This does two things:
622  *
623  * A.  Make init inherit all the child processes
624  * B.  Check to see if any process groups have become orphaned
625  *      as a result of our exiting, and if they have any stopped
626  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
627  */
628 static void forget_original_parent(struct task_struct *father,
629                                         struct list_head *dead)
630 {
631         struct task_struct *p, *t, *reaper;
632
633         if (unlikely(!list_empty(&father->ptraced)))
634                 exit_ptrace(father, dead);
635
636         /* Can drop and reacquire tasklist_lock */
637         reaper = find_child_reaper(father, dead);
638         if (list_empty(&father->children))
639                 return;
640
641         reaper = find_new_reaper(father, reaper);
642         list_for_each_entry(p, &father->children, sibling) {
643                 for_each_thread(p, t) {
644                         RCU_INIT_POINTER(t->real_parent, reaper);
645                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
646                         if (likely(!t->ptrace))
647                                 t->parent = t->real_parent;
648                         if (t->pdeath_signal)
649                                 group_send_sig_info(t->pdeath_signal,
650                                                     SEND_SIG_NOINFO, t,
651                                                     PIDTYPE_TGID);
652                 }
653                 /*
654                  * If this is a threaded reparent there is no need to
655                  * notify anyone anything has happened.
656                  */
657                 if (!same_thread_group(reaper, father))
658                         reparent_leader(father, p, dead);
659         }
660         list_splice_tail_init(&father->children, &reaper->children);
661 }
662
663 /*
664  * Send signals to all our closest relatives so that they know
665  * to properly mourn us..
666  */
667 static void exit_notify(struct task_struct *tsk, int group_dead)
668 {
669         bool autoreap;
670         struct task_struct *p, *n;
671         LIST_HEAD(dead);
672
673         write_lock_irq(&tasklist_lock);
674         forget_original_parent(tsk, &dead);
675
676         if (group_dead)
677                 kill_orphaned_pgrp(tsk->group_leader, NULL);
678
679         tsk->exit_state = EXIT_ZOMBIE;
680         if (unlikely(tsk->ptrace)) {
681                 int sig = thread_group_leader(tsk) &&
682                                 thread_group_empty(tsk) &&
683                                 !ptrace_reparented(tsk) ?
684                         tsk->exit_signal : SIGCHLD;
685                 autoreap = do_notify_parent(tsk, sig);
686         } else if (thread_group_leader(tsk)) {
687                 autoreap = thread_group_empty(tsk) &&
688                         do_notify_parent(tsk, tsk->exit_signal);
689         } else {
690                 autoreap = true;
691         }
692
693         if (autoreap) {
694                 tsk->exit_state = EXIT_DEAD;
695                 list_add(&tsk->ptrace_entry, &dead);
696         }
697
698         /* mt-exec, de_thread() is waiting for group leader */
699         if (unlikely(tsk->signal->notify_count < 0))
700                 wake_up_process(tsk->signal->group_exec_task);
701         write_unlock_irq(&tasklist_lock);
702
703         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
704                 list_del_init(&p->ptrace_entry);
705                 release_task(p);
706         }
707 }
708
709 #ifdef CONFIG_DEBUG_STACK_USAGE
710 static void check_stack_usage(void)
711 {
712         static DEFINE_SPINLOCK(low_water_lock);
713         static int lowest_to_date = THREAD_SIZE;
714         unsigned long free;
715
716         free = stack_not_used(current);
717
718         if (free >= lowest_to_date)
719                 return;
720
721         spin_lock(&low_water_lock);
722         if (free < lowest_to_date) {
723                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
724                         current->comm, task_pid_nr(current), free);
725                 lowest_to_date = free;
726         }
727         spin_unlock(&low_water_lock);
728 }
729 #else
730 static inline void check_stack_usage(void) {}
731 #endif
732
733 void __noreturn do_exit(long code)
734 {
735         struct task_struct *tsk = current;
736         int group_dead;
737
738         WARN_ON(blk_needs_flush_plug(tsk));
739
740         /*
741          * If do_dead is called because this processes oopsed, it's possible
742          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
743          * continuing. Amongst other possible reasons, this is to prevent
744          * mm_release()->clear_child_tid() from writing to a user-controlled
745          * kernel address.
746          *
747          * On uptodate architectures force_uaccess_begin is a noop.  On
748          * architectures that still have set_fs/get_fs in addition to handling
749          * oopses handles kernel threads that run as set_fs(KERNEL_DS) by
750          * default.
751          */
752         force_uaccess_begin();
753
754         kcov_task_exit(tsk);
755
756         coredump_task_exit(tsk);
757         ptrace_event(PTRACE_EVENT_EXIT, code);
758
759         validate_creds_for_do_exit(tsk);
760
761         io_uring_files_cancel();
762         exit_signals(tsk);  /* sets PF_EXITING */
763
764         /* sync mm's RSS info before statistics gathering */
765         if (tsk->mm)
766                 sync_mm_rss(tsk->mm);
767         acct_update_integrals(tsk);
768         group_dead = atomic_dec_and_test(&tsk->signal->live);
769         if (group_dead) {
770                 /*
771                  * If the last thread of global init has exited, panic
772                  * immediately to get a useable coredump.
773                  */
774                 if (unlikely(is_global_init(tsk)))
775                         panic("Attempted to kill init! exitcode=0x%08x\n",
776                                 tsk->signal->group_exit_code ?: (int)code);
777
778 #ifdef CONFIG_POSIX_TIMERS
779                 hrtimer_cancel(&tsk->signal->real_timer);
780                 exit_itimers(tsk->signal);
781 #endif
782                 if (tsk->mm)
783                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
784         }
785         acct_collect(code, group_dead);
786         if (group_dead)
787                 tty_audit_exit();
788         audit_free(tsk);
789
790         tsk->exit_code = code;
791         taskstats_exit(tsk, group_dead);
792
793         exit_mm();
794
795         if (group_dead)
796                 acct_process();
797         trace_sched_process_exit(tsk);
798
799         exit_sem(tsk);
800         exit_shm(tsk);
801         exit_files(tsk);
802         exit_fs(tsk);
803         if (group_dead)
804                 disassociate_ctty(1);
805         exit_task_namespaces(tsk);
806         exit_task_work(tsk);
807         exit_thread(tsk);
808
809         /*
810          * Flush inherited counters to the parent - before the parent
811          * gets woken up by child-exit notifications.
812          *
813          * because of cgroup mode, must be called before cgroup_exit()
814          */
815         perf_event_exit_task(tsk);
816
817         sched_autogroup_exit_task(tsk);
818         cgroup_exit(tsk);
819
820         /*
821          * FIXME: do that only when needed, using sched_exit tracepoint
822          */
823         flush_ptrace_hw_breakpoint(tsk);
824
825         exit_tasks_rcu_start();
826         exit_notify(tsk, group_dead);
827         proc_exit_connector(tsk);
828         mpol_put_task_policy(tsk);
829 #ifdef CONFIG_FUTEX
830         if (unlikely(current->pi_state_cache))
831                 kfree(current->pi_state_cache);
832 #endif
833         /*
834          * Make sure we are holding no locks:
835          */
836         debug_check_no_locks_held();
837
838         if (tsk->io_context)
839                 exit_io_context(tsk);
840
841         if (tsk->splice_pipe)
842                 free_pipe_info(tsk->splice_pipe);
843
844         if (tsk->task_frag.page)
845                 put_page(tsk->task_frag.page);
846
847         validate_creds_for_do_exit(tsk);
848
849         check_stack_usage();
850         preempt_disable();
851         if (tsk->nr_dirtied)
852                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
853         exit_rcu();
854         exit_tasks_rcu_finish();
855
856         lockdep_free_task(tsk);
857         do_task_dead();
858 }
859
860 void __noreturn make_task_dead(int signr)
861 {
862         /*
863          * Take the task off the cpu after something catastrophic has
864          * happened.
865          *
866          * We can get here from a kernel oops, sometimes with preemption off.
867          * Start by checking for critical errors.
868          * Then fix up important state like USER_DS and preemption.
869          * Then do everything else.
870          */
871         struct task_struct *tsk = current;
872
873         if (unlikely(in_interrupt()))
874                 panic("Aiee, killing interrupt handler!");
875         if (unlikely(!tsk->pid))
876                 panic("Attempted to kill the idle task!");
877
878         if (unlikely(in_atomic())) {
879                 pr_info("note: %s[%d] exited with preempt_count %d\n",
880                         current->comm, task_pid_nr(current),
881                         preempt_count());
882                 preempt_count_set(PREEMPT_ENABLED);
883         }
884
885         /*
886          * We're taking recursive faults here in make_task_dead. Safest is to just
887          * leave this task alone and wait for reboot.
888          */
889         if (unlikely(tsk->flags & PF_EXITING)) {
890                 pr_alert("Fixing recursive fault but reboot is needed!\n");
891                 futex_exit_recursive(tsk);
892                 tsk->exit_state = EXIT_DEAD;
893                 refcount_inc(&tsk->rcu_users);
894                 do_task_dead();
895         }
896
897         do_exit(signr);
898 }
899
900 SYSCALL_DEFINE1(exit, int, error_code)
901 {
902         do_exit((error_code&0xff)<<8);
903 }
904
905 /*
906  * Take down every thread in the group.  This is called by fatal signals
907  * as well as by sys_exit_group (below).
908  */
909 void
910 do_group_exit(int exit_code)
911 {
912         struct signal_struct *sig = current->signal;
913
914         if (sig->flags & SIGNAL_GROUP_EXIT)
915                 exit_code = sig->group_exit_code;
916         else if (sig->group_exec_task)
917                 exit_code = 0;
918         else if (!thread_group_empty(current)) {
919                 struct sighand_struct *const sighand = current->sighand;
920
921                 spin_lock_irq(&sighand->siglock);
922                 if (sig->flags & SIGNAL_GROUP_EXIT)
923                         /* Another thread got here before we took the lock.  */
924                         exit_code = sig->group_exit_code;
925                 else if (sig->group_exec_task)
926                         exit_code = 0;
927                 else {
928                         sig->group_exit_code = exit_code;
929                         sig->flags = SIGNAL_GROUP_EXIT;
930                         zap_other_threads(current);
931                 }
932                 spin_unlock_irq(&sighand->siglock);
933         }
934
935         do_exit(exit_code);
936         /* NOTREACHED */
937 }
938
939 /*
940  * this kills every thread in the thread group. Note that any externally
941  * wait4()-ing process will get the correct exit code - even if this
942  * thread is not the thread group leader.
943  */
944 SYSCALL_DEFINE1(exit_group, int, error_code)
945 {
946         do_group_exit((error_code & 0xff) << 8);
947         /* NOTREACHED */
948         return 0;
949 }
950
951 struct waitid_info {
952         pid_t pid;
953         uid_t uid;
954         int status;
955         int cause;
956 };
957
958 struct wait_opts {
959         enum pid_type           wo_type;
960         int                     wo_flags;
961         struct pid              *wo_pid;
962
963         struct waitid_info      *wo_info;
964         int                     wo_stat;
965         struct rusage           *wo_rusage;
966
967         wait_queue_entry_t              child_wait;
968         int                     notask_error;
969 };
970
971 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
972 {
973         return  wo->wo_type == PIDTYPE_MAX ||
974                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
975 }
976
977 static int
978 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
979 {
980         if (!eligible_pid(wo, p))
981                 return 0;
982
983         /*
984          * Wait for all children (clone and not) if __WALL is set or
985          * if it is traced by us.
986          */
987         if (ptrace || (wo->wo_flags & __WALL))
988                 return 1;
989
990         /*
991          * Otherwise, wait for clone children *only* if __WCLONE is set;
992          * otherwise, wait for non-clone children *only*.
993          *
994          * Note: a "clone" child here is one that reports to its parent
995          * using a signal other than SIGCHLD, or a non-leader thread which
996          * we can only see if it is traced by us.
997          */
998         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
999                 return 0;
1000
1001         return 1;
1002 }
1003
1004 /*
1005  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1006  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1007  * the lock and this task is uninteresting.  If we return nonzero, we have
1008  * released the lock and the system call should return.
1009  */
1010 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1011 {
1012         int state, status;
1013         pid_t pid = task_pid_vnr(p);
1014         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1015         struct waitid_info *infop;
1016
1017         if (!likely(wo->wo_flags & WEXITED))
1018                 return 0;
1019
1020         if (unlikely(wo->wo_flags & WNOWAIT)) {
1021                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1022                         ? p->signal->group_exit_code : p->exit_code;
1023                 get_task_struct(p);
1024                 read_unlock(&tasklist_lock);
1025                 sched_annotate_sleep();
1026                 if (wo->wo_rusage)
1027                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1028                 put_task_struct(p);
1029                 goto out_info;
1030         }
1031         /*
1032          * Move the task's state to DEAD/TRACE, only one thread can do this.
1033          */
1034         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1035                 EXIT_TRACE : EXIT_DEAD;
1036         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1037                 return 0;
1038         /*
1039          * We own this thread, nobody else can reap it.
1040          */
1041         read_unlock(&tasklist_lock);
1042         sched_annotate_sleep();
1043
1044         /*
1045          * Check thread_group_leader() to exclude the traced sub-threads.
1046          */
1047         if (state == EXIT_DEAD && thread_group_leader(p)) {
1048                 struct signal_struct *sig = p->signal;
1049                 struct signal_struct *psig = current->signal;
1050                 unsigned long maxrss;
1051                 u64 tgutime, tgstime;
1052
1053                 /*
1054                  * The resource counters for the group leader are in its
1055                  * own task_struct.  Those for dead threads in the group
1056                  * are in its signal_struct, as are those for the child
1057                  * processes it has previously reaped.  All these
1058                  * accumulate in the parent's signal_struct c* fields.
1059                  *
1060                  * We don't bother to take a lock here to protect these
1061                  * p->signal fields because the whole thread group is dead
1062                  * and nobody can change them.
1063                  *
1064                  * psig->stats_lock also protects us from our sub-theads
1065                  * which can reap other children at the same time. Until
1066                  * we change k_getrusage()-like users to rely on this lock
1067                  * we have to take ->siglock as well.
1068                  *
1069                  * We use thread_group_cputime_adjusted() to get times for
1070                  * the thread group, which consolidates times for all threads
1071                  * in the group including the group leader.
1072                  */
1073                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1074                 spin_lock_irq(&current->sighand->siglock);
1075                 write_seqlock(&psig->stats_lock);
1076                 psig->cutime += tgutime + sig->cutime;
1077                 psig->cstime += tgstime + sig->cstime;
1078                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1079                 psig->cmin_flt +=
1080                         p->min_flt + sig->min_flt + sig->cmin_flt;
1081                 psig->cmaj_flt +=
1082                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1083                 psig->cnvcsw +=
1084                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1085                 psig->cnivcsw +=
1086                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1087                 psig->cinblock +=
1088                         task_io_get_inblock(p) +
1089                         sig->inblock + sig->cinblock;
1090                 psig->coublock +=
1091                         task_io_get_oublock(p) +
1092                         sig->oublock + sig->coublock;
1093                 maxrss = max(sig->maxrss, sig->cmaxrss);
1094                 if (psig->cmaxrss < maxrss)
1095                         psig->cmaxrss = maxrss;
1096                 task_io_accounting_add(&psig->ioac, &p->ioac);
1097                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1098                 write_sequnlock(&psig->stats_lock);
1099                 spin_unlock_irq(&current->sighand->siglock);
1100         }
1101
1102         if (wo->wo_rusage)
1103                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1104         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1105                 ? p->signal->group_exit_code : p->exit_code;
1106         wo->wo_stat = status;
1107
1108         if (state == EXIT_TRACE) {
1109                 write_lock_irq(&tasklist_lock);
1110                 /* We dropped tasklist, ptracer could die and untrace */
1111                 ptrace_unlink(p);
1112
1113                 /* If parent wants a zombie, don't release it now */
1114                 state = EXIT_ZOMBIE;
1115                 if (do_notify_parent(p, p->exit_signal))
1116                         state = EXIT_DEAD;
1117                 p->exit_state = state;
1118                 write_unlock_irq(&tasklist_lock);
1119         }
1120         if (state == EXIT_DEAD)
1121                 release_task(p);
1122
1123 out_info:
1124         infop = wo->wo_info;
1125         if (infop) {
1126                 if ((status & 0x7f) == 0) {
1127                         infop->cause = CLD_EXITED;
1128                         infop->status = status >> 8;
1129                 } else {
1130                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1131                         infop->status = status & 0x7f;
1132                 }
1133                 infop->pid = pid;
1134                 infop->uid = uid;
1135         }
1136
1137         return pid;
1138 }
1139
1140 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1141 {
1142         if (ptrace) {
1143                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1144                         return &p->exit_code;
1145         } else {
1146                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1147                         return &p->signal->group_exit_code;
1148         }
1149         return NULL;
1150 }
1151
1152 /**
1153  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1154  * @wo: wait options
1155  * @ptrace: is the wait for ptrace
1156  * @p: task to wait for
1157  *
1158  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1159  *
1160  * CONTEXT:
1161  * read_lock(&tasklist_lock), which is released if return value is
1162  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1163  *
1164  * RETURNS:
1165  * 0 if wait condition didn't exist and search for other wait conditions
1166  * should continue.  Non-zero return, -errno on failure and @p's pid on
1167  * success, implies that tasklist_lock is released and wait condition
1168  * search should terminate.
1169  */
1170 static int wait_task_stopped(struct wait_opts *wo,
1171                                 int ptrace, struct task_struct *p)
1172 {
1173         struct waitid_info *infop;
1174         int exit_code, *p_code, why;
1175         uid_t uid = 0; /* unneeded, required by compiler */
1176         pid_t pid;
1177
1178         /*
1179          * Traditionally we see ptrace'd stopped tasks regardless of options.
1180          */
1181         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1182                 return 0;
1183
1184         if (!task_stopped_code(p, ptrace))
1185                 return 0;
1186
1187         exit_code = 0;
1188         spin_lock_irq(&p->sighand->siglock);
1189
1190         p_code = task_stopped_code(p, ptrace);
1191         if (unlikely(!p_code))
1192                 goto unlock_sig;
1193
1194         exit_code = *p_code;
1195         if (!exit_code)
1196                 goto unlock_sig;
1197
1198         if (!unlikely(wo->wo_flags & WNOWAIT))
1199                 *p_code = 0;
1200
1201         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1202 unlock_sig:
1203         spin_unlock_irq(&p->sighand->siglock);
1204         if (!exit_code)
1205                 return 0;
1206
1207         /*
1208          * Now we are pretty sure this task is interesting.
1209          * Make sure it doesn't get reaped out from under us while we
1210          * give up the lock and then examine it below.  We don't want to
1211          * keep holding onto the tasklist_lock while we call getrusage and
1212          * possibly take page faults for user memory.
1213          */
1214         get_task_struct(p);
1215         pid = task_pid_vnr(p);
1216         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1217         read_unlock(&tasklist_lock);
1218         sched_annotate_sleep();
1219         if (wo->wo_rusage)
1220                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1221         put_task_struct(p);
1222
1223         if (likely(!(wo->wo_flags & WNOWAIT)))
1224                 wo->wo_stat = (exit_code << 8) | 0x7f;
1225
1226         infop = wo->wo_info;
1227         if (infop) {
1228                 infop->cause = why;
1229                 infop->status = exit_code;
1230                 infop->pid = pid;
1231                 infop->uid = uid;
1232         }
1233         return pid;
1234 }
1235
1236 /*
1237  * Handle do_wait work for one task in a live, non-stopped state.
1238  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1239  * the lock and this task is uninteresting.  If we return nonzero, we have
1240  * released the lock and the system call should return.
1241  */
1242 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1243 {
1244         struct waitid_info *infop;
1245         pid_t pid;
1246         uid_t uid;
1247
1248         if (!unlikely(wo->wo_flags & WCONTINUED))
1249                 return 0;
1250
1251         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1252                 return 0;
1253
1254         spin_lock_irq(&p->sighand->siglock);
1255         /* Re-check with the lock held.  */
1256         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1257                 spin_unlock_irq(&p->sighand->siglock);
1258                 return 0;
1259         }
1260         if (!unlikely(wo->wo_flags & WNOWAIT))
1261                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1262         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1263         spin_unlock_irq(&p->sighand->siglock);
1264
1265         pid = task_pid_vnr(p);
1266         get_task_struct(p);
1267         read_unlock(&tasklist_lock);
1268         sched_annotate_sleep();
1269         if (wo->wo_rusage)
1270                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1271         put_task_struct(p);
1272
1273         infop = wo->wo_info;
1274         if (!infop) {
1275                 wo->wo_stat = 0xffff;
1276         } else {
1277                 infop->cause = CLD_CONTINUED;
1278                 infop->pid = pid;
1279                 infop->uid = uid;
1280                 infop->status = SIGCONT;
1281         }
1282         return pid;
1283 }
1284
1285 /*
1286  * Consider @p for a wait by @parent.
1287  *
1288  * -ECHILD should be in ->notask_error before the first call.
1289  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1290  * Returns zero if the search for a child should continue;
1291  * then ->notask_error is 0 if @p is an eligible child,
1292  * or still -ECHILD.
1293  */
1294 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1295                                 struct task_struct *p)
1296 {
1297         /*
1298          * We can race with wait_task_zombie() from another thread.
1299          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1300          * can't confuse the checks below.
1301          */
1302         int exit_state = READ_ONCE(p->exit_state);
1303         int ret;
1304
1305         if (unlikely(exit_state == EXIT_DEAD))
1306                 return 0;
1307
1308         ret = eligible_child(wo, ptrace, p);
1309         if (!ret)
1310                 return ret;
1311
1312         if (unlikely(exit_state == EXIT_TRACE)) {
1313                 /*
1314                  * ptrace == 0 means we are the natural parent. In this case
1315                  * we should clear notask_error, debugger will notify us.
1316                  */
1317                 if (likely(!ptrace))
1318                         wo->notask_error = 0;
1319                 return 0;
1320         }
1321
1322         if (likely(!ptrace) && unlikely(p->ptrace)) {
1323                 /*
1324                  * If it is traced by its real parent's group, just pretend
1325                  * the caller is ptrace_do_wait() and reap this child if it
1326                  * is zombie.
1327                  *
1328                  * This also hides group stop state from real parent; otherwise
1329                  * a single stop can be reported twice as group and ptrace stop.
1330                  * If a ptracer wants to distinguish these two events for its
1331                  * own children it should create a separate process which takes
1332                  * the role of real parent.
1333                  */
1334                 if (!ptrace_reparented(p))
1335                         ptrace = 1;
1336         }
1337
1338         /* slay zombie? */
1339         if (exit_state == EXIT_ZOMBIE) {
1340                 /* we don't reap group leaders with subthreads */
1341                 if (!delay_group_leader(p)) {
1342                         /*
1343                          * A zombie ptracee is only visible to its ptracer.
1344                          * Notification and reaping will be cascaded to the
1345                          * real parent when the ptracer detaches.
1346                          */
1347                         if (unlikely(ptrace) || likely(!p->ptrace))
1348                                 return wait_task_zombie(wo, p);
1349                 }
1350
1351                 /*
1352                  * Allow access to stopped/continued state via zombie by
1353                  * falling through.  Clearing of notask_error is complex.
1354                  *
1355                  * When !@ptrace:
1356                  *
1357                  * If WEXITED is set, notask_error should naturally be
1358                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1359                  * so, if there are live subthreads, there are events to
1360                  * wait for.  If all subthreads are dead, it's still safe
1361                  * to clear - this function will be called again in finite
1362                  * amount time once all the subthreads are released and
1363                  * will then return without clearing.
1364                  *
1365                  * When @ptrace:
1366                  *
1367                  * Stopped state is per-task and thus can't change once the
1368                  * target task dies.  Only continued and exited can happen.
1369                  * Clear notask_error if WCONTINUED | WEXITED.
1370                  */
1371                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1372                         wo->notask_error = 0;
1373         } else {
1374                 /*
1375                  * @p is alive and it's gonna stop, continue or exit, so
1376                  * there always is something to wait for.
1377                  */
1378                 wo->notask_error = 0;
1379         }
1380
1381         /*
1382          * Wait for stopped.  Depending on @ptrace, different stopped state
1383          * is used and the two don't interact with each other.
1384          */
1385         ret = wait_task_stopped(wo, ptrace, p);
1386         if (ret)
1387                 return ret;
1388
1389         /*
1390          * Wait for continued.  There's only one continued state and the
1391          * ptracer can consume it which can confuse the real parent.  Don't
1392          * use WCONTINUED from ptracer.  You don't need or want it.
1393          */
1394         return wait_task_continued(wo, p);
1395 }
1396
1397 /*
1398  * Do the work of do_wait() for one thread in the group, @tsk.
1399  *
1400  * -ECHILD should be in ->notask_error before the first call.
1401  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1402  * Returns zero if the search for a child should continue; then
1403  * ->notask_error is 0 if there were any eligible children,
1404  * or still -ECHILD.
1405  */
1406 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1407 {
1408         struct task_struct *p;
1409
1410         list_for_each_entry(p, &tsk->children, sibling) {
1411                 int ret = wait_consider_task(wo, 0, p);
1412
1413                 if (ret)
1414                         return ret;
1415         }
1416
1417         return 0;
1418 }
1419
1420 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1421 {
1422         struct task_struct *p;
1423
1424         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1425                 int ret = wait_consider_task(wo, 1, p);
1426
1427                 if (ret)
1428                         return ret;
1429         }
1430
1431         return 0;
1432 }
1433
1434 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1435                                 int sync, void *key)
1436 {
1437         struct wait_opts *wo = container_of(wait, struct wait_opts,
1438                                                 child_wait);
1439         struct task_struct *p = key;
1440
1441         if (!eligible_pid(wo, p))
1442                 return 0;
1443
1444         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1445                 return 0;
1446
1447         return default_wake_function(wait, mode, sync, key);
1448 }
1449
1450 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1451 {
1452         __wake_up_sync_key(&parent->signal->wait_chldexit,
1453                            TASK_INTERRUPTIBLE, p);
1454 }
1455
1456 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1457                                  struct task_struct *target)
1458 {
1459         struct task_struct *parent =
1460                 !ptrace ? target->real_parent : target->parent;
1461
1462         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1463                                      same_thread_group(current, parent));
1464 }
1465
1466 /*
1467  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1468  * and tracee lists to find the target task.
1469  */
1470 static int do_wait_pid(struct wait_opts *wo)
1471 {
1472         bool ptrace;
1473         struct task_struct *target;
1474         int retval;
1475
1476         ptrace = false;
1477         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1478         if (target && is_effectively_child(wo, ptrace, target)) {
1479                 retval = wait_consider_task(wo, ptrace, target);
1480                 if (retval)
1481                         return retval;
1482         }
1483
1484         ptrace = true;
1485         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1486         if (target && target->ptrace &&
1487             is_effectively_child(wo, ptrace, target)) {
1488                 retval = wait_consider_task(wo, ptrace, target);
1489                 if (retval)
1490                         return retval;
1491         }
1492
1493         return 0;
1494 }
1495
1496 static long do_wait(struct wait_opts *wo)
1497 {
1498         int retval;
1499
1500         trace_sched_process_wait(wo->wo_pid);
1501
1502         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1503         wo->child_wait.private = current;
1504         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1505 repeat:
1506         /*
1507          * If there is nothing that can match our criteria, just get out.
1508          * We will clear ->notask_error to zero if we see any child that
1509          * might later match our criteria, even if we are not able to reap
1510          * it yet.
1511          */
1512         wo->notask_error = -ECHILD;
1513         if ((wo->wo_type < PIDTYPE_MAX) &&
1514            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1515                 goto notask;
1516
1517         set_current_state(TASK_INTERRUPTIBLE);
1518         read_lock(&tasklist_lock);
1519
1520         if (wo->wo_type == PIDTYPE_PID) {
1521                 retval = do_wait_pid(wo);
1522                 if (retval)
1523                         goto end;
1524         } else {
1525                 struct task_struct *tsk = current;
1526
1527                 do {
1528                         retval = do_wait_thread(wo, tsk);
1529                         if (retval)
1530                                 goto end;
1531
1532                         retval = ptrace_do_wait(wo, tsk);
1533                         if (retval)
1534                                 goto end;
1535
1536                         if (wo->wo_flags & __WNOTHREAD)
1537                                 break;
1538                 } while_each_thread(current, tsk);
1539         }
1540         read_unlock(&tasklist_lock);
1541
1542 notask:
1543         retval = wo->notask_error;
1544         if (!retval && !(wo->wo_flags & WNOHANG)) {
1545                 retval = -ERESTARTSYS;
1546                 if (!signal_pending(current)) {
1547                         schedule();
1548                         goto repeat;
1549                 }
1550         }
1551 end:
1552         __set_current_state(TASK_RUNNING);
1553         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1554         return retval;
1555 }
1556
1557 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1558                           int options, struct rusage *ru)
1559 {
1560         struct wait_opts wo;
1561         struct pid *pid = NULL;
1562         enum pid_type type;
1563         long ret;
1564         unsigned int f_flags = 0;
1565
1566         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1567                         __WNOTHREAD|__WCLONE|__WALL))
1568                 return -EINVAL;
1569         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1570                 return -EINVAL;
1571
1572         switch (which) {
1573         case P_ALL:
1574                 type = PIDTYPE_MAX;
1575                 break;
1576         case P_PID:
1577                 type = PIDTYPE_PID;
1578                 if (upid <= 0)
1579                         return -EINVAL;
1580
1581                 pid = find_get_pid(upid);
1582                 break;
1583         case P_PGID:
1584                 type = PIDTYPE_PGID;
1585                 if (upid < 0)
1586                         return -EINVAL;
1587
1588                 if (upid)
1589                         pid = find_get_pid(upid);
1590                 else
1591                         pid = get_task_pid(current, PIDTYPE_PGID);
1592                 break;
1593         case P_PIDFD:
1594                 type = PIDTYPE_PID;
1595                 if (upid < 0)
1596                         return -EINVAL;
1597
1598                 pid = pidfd_get_pid(upid, &f_flags);
1599                 if (IS_ERR(pid))
1600                         return PTR_ERR(pid);
1601
1602                 break;
1603         default:
1604                 return -EINVAL;
1605         }
1606
1607         wo.wo_type      = type;
1608         wo.wo_pid       = pid;
1609         wo.wo_flags     = options;
1610         wo.wo_info      = infop;
1611         wo.wo_rusage    = ru;
1612         if (f_flags & O_NONBLOCK)
1613                 wo.wo_flags |= WNOHANG;
1614
1615         ret = do_wait(&wo);
1616         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1617                 ret = -EAGAIN;
1618
1619         put_pid(pid);
1620         return ret;
1621 }
1622
1623 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1624                 infop, int, options, struct rusage __user *, ru)
1625 {
1626         struct rusage r;
1627         struct waitid_info info = {.status = 0};
1628         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1629         int signo = 0;
1630
1631         if (err > 0) {
1632                 signo = SIGCHLD;
1633                 err = 0;
1634                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1635                         return -EFAULT;
1636         }
1637         if (!infop)
1638                 return err;
1639
1640         if (!user_write_access_begin(infop, sizeof(*infop)))
1641                 return -EFAULT;
1642
1643         unsafe_put_user(signo, &infop->si_signo, Efault);
1644         unsafe_put_user(0, &infop->si_errno, Efault);
1645         unsafe_put_user(info.cause, &infop->si_code, Efault);
1646         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1647         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1648         unsafe_put_user(info.status, &infop->si_status, Efault);
1649         user_write_access_end();
1650         return err;
1651 Efault:
1652         user_write_access_end();
1653         return -EFAULT;
1654 }
1655
1656 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1657                   struct rusage *ru)
1658 {
1659         struct wait_opts wo;
1660         struct pid *pid = NULL;
1661         enum pid_type type;
1662         long ret;
1663
1664         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1665                         __WNOTHREAD|__WCLONE|__WALL))
1666                 return -EINVAL;
1667
1668         /* -INT_MIN is not defined */
1669         if (upid == INT_MIN)
1670                 return -ESRCH;
1671
1672         if (upid == -1)
1673                 type = PIDTYPE_MAX;
1674         else if (upid < 0) {
1675                 type = PIDTYPE_PGID;
1676                 pid = find_get_pid(-upid);
1677         } else if (upid == 0) {
1678                 type = PIDTYPE_PGID;
1679                 pid = get_task_pid(current, PIDTYPE_PGID);
1680         } else /* upid > 0 */ {
1681                 type = PIDTYPE_PID;
1682                 pid = find_get_pid(upid);
1683         }
1684
1685         wo.wo_type      = type;
1686         wo.wo_pid       = pid;
1687         wo.wo_flags     = options | WEXITED;
1688         wo.wo_info      = NULL;
1689         wo.wo_stat      = 0;
1690         wo.wo_rusage    = ru;
1691         ret = do_wait(&wo);
1692         put_pid(pid);
1693         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1694                 ret = -EFAULT;
1695
1696         return ret;
1697 }
1698
1699 int kernel_wait(pid_t pid, int *stat)
1700 {
1701         struct wait_opts wo = {
1702                 .wo_type        = PIDTYPE_PID,
1703                 .wo_pid         = find_get_pid(pid),
1704                 .wo_flags       = WEXITED,
1705         };
1706         int ret;
1707
1708         ret = do_wait(&wo);
1709         if (ret > 0 && wo.wo_stat)
1710                 *stat = wo.wo_stat;
1711         put_pid(wo.wo_pid);
1712         return ret;
1713 }
1714
1715 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1716                 int, options, struct rusage __user *, ru)
1717 {
1718         struct rusage r;
1719         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1720
1721         if (err > 0) {
1722                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1723                         return -EFAULT;
1724         }
1725         return err;
1726 }
1727
1728 #ifdef __ARCH_WANT_SYS_WAITPID
1729
1730 /*
1731  * sys_waitpid() remains for compatibility. waitpid() should be
1732  * implemented by calling sys_wait4() from libc.a.
1733  */
1734 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1735 {
1736         return kernel_wait4(pid, stat_addr, options, NULL);
1737 }
1738
1739 #endif
1740
1741 #ifdef CONFIG_COMPAT
1742 COMPAT_SYSCALL_DEFINE4(wait4,
1743         compat_pid_t, pid,
1744         compat_uint_t __user *, stat_addr,
1745         int, options,
1746         struct compat_rusage __user *, ru)
1747 {
1748         struct rusage r;
1749         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1750         if (err > 0) {
1751                 if (ru && put_compat_rusage(&r, ru))
1752                         return -EFAULT;
1753         }
1754         return err;
1755 }
1756
1757 COMPAT_SYSCALL_DEFINE5(waitid,
1758                 int, which, compat_pid_t, pid,
1759                 struct compat_siginfo __user *, infop, int, options,
1760                 struct compat_rusage __user *, uru)
1761 {
1762         struct rusage ru;
1763         struct waitid_info info = {.status = 0};
1764         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1765         int signo = 0;
1766         if (err > 0) {
1767                 signo = SIGCHLD;
1768                 err = 0;
1769                 if (uru) {
1770                         /* kernel_waitid() overwrites everything in ru */
1771                         if (COMPAT_USE_64BIT_TIME)
1772                                 err = copy_to_user(uru, &ru, sizeof(ru));
1773                         else
1774                                 err = put_compat_rusage(&ru, uru);
1775                         if (err)
1776                                 return -EFAULT;
1777                 }
1778         }
1779
1780         if (!infop)
1781                 return err;
1782
1783         if (!user_write_access_begin(infop, sizeof(*infop)))
1784                 return -EFAULT;
1785
1786         unsafe_put_user(signo, &infop->si_signo, Efault);
1787         unsafe_put_user(0, &infop->si_errno, Efault);
1788         unsafe_put_user(info.cause, &infop->si_code, Efault);
1789         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1790         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1791         unsafe_put_user(info.status, &infop->si_status, Efault);
1792         user_write_access_end();
1793         return err;
1794 Efault:
1795         user_write_access_end();
1796         return -EFAULT;
1797 }
1798 #endif
1799
1800 /**
1801  * thread_group_exited - check that a thread group has exited
1802  * @pid: tgid of thread group to be checked.
1803  *
1804  * Test if the thread group represented by tgid has exited (all
1805  * threads are zombies, dead or completely gone).
1806  *
1807  * Return: true if the thread group has exited. false otherwise.
1808  */
1809 bool thread_group_exited(struct pid *pid)
1810 {
1811         struct task_struct *task;
1812         bool exited;
1813
1814         rcu_read_lock();
1815         task = pid_task(pid, PIDTYPE_PID);
1816         exited = !task ||
1817                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1818         rcu_read_unlock();
1819
1820         return exited;
1821 }
1822 EXPORT_SYMBOL(thread_group_exited);
1823
1824 __weak void abort(void)
1825 {
1826         BUG();
1827
1828         /* if that doesn't kill us, halt */
1829         panic("Oops failed to kill thread");
1830 }
1831 EXPORT_SYMBOL(abort);