Add binder to deathconfig for arm64.
[platform/kernel/linux-rpi.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/sysfs.h>
69
70 #include <linux/uaccess.h>
71 #include <asm/unistd.h>
72 #include <asm/mmu_context.h>
73
74 /*
75  * The default value should be high enough to not crash a system that randomly
76  * crashes its kernel from time to time, but low enough to at least not permit
77  * overflowing 32-bit refcounts or the ldsem writer count.
78  */
79 static unsigned int oops_limit = 10000;
80
81 #ifdef CONFIG_SYSCTL
82 static struct ctl_table kern_exit_table[] = {
83         {
84                 .procname       = "oops_limit",
85                 .data           = &oops_limit,
86                 .maxlen         = sizeof(oops_limit),
87                 .mode           = 0644,
88                 .proc_handler   = proc_douintvec,
89         },
90         { }
91 };
92
93 static __init int kernel_exit_sysctls_init(void)
94 {
95         register_sysctl_init("kernel", kern_exit_table);
96         return 0;
97 }
98 late_initcall(kernel_exit_sysctls_init);
99 #endif
100
101 static atomic_t oops_count = ATOMIC_INIT(0);
102
103 #ifdef CONFIG_SYSFS
104 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
105                                char *page)
106 {
107         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
108 }
109
110 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
111
112 static __init int kernel_exit_sysfs_init(void)
113 {
114         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
115         return 0;
116 }
117 late_initcall(kernel_exit_sysfs_init);
118 #endif
119
120 static void __unhash_process(struct task_struct *p, bool group_dead)
121 {
122         nr_threads--;
123         detach_pid(p, PIDTYPE_PID);
124         if (group_dead) {
125                 detach_pid(p, PIDTYPE_TGID);
126                 detach_pid(p, PIDTYPE_PGID);
127                 detach_pid(p, PIDTYPE_SID);
128
129                 list_del_rcu(&p->tasks);
130                 list_del_init(&p->sibling);
131                 __this_cpu_dec(process_counts);
132         }
133         list_del_rcu(&p->thread_group);
134         list_del_rcu(&p->thread_node);
135 }
136
137 /*
138  * This function expects the tasklist_lock write-locked.
139  */
140 static void __exit_signal(struct task_struct *tsk)
141 {
142         struct signal_struct *sig = tsk->signal;
143         bool group_dead = thread_group_leader(tsk);
144         struct sighand_struct *sighand;
145         struct tty_struct *tty;
146         u64 utime, stime;
147
148         sighand = rcu_dereference_check(tsk->sighand,
149                                         lockdep_tasklist_lock_is_held());
150         spin_lock(&sighand->siglock);
151
152 #ifdef CONFIG_POSIX_TIMERS
153         posix_cpu_timers_exit(tsk);
154         if (group_dead)
155                 posix_cpu_timers_exit_group(tsk);
156 #endif
157
158         if (group_dead) {
159                 tty = sig->tty;
160                 sig->tty = NULL;
161         } else {
162                 /*
163                  * If there is any task waiting for the group exit
164                  * then notify it:
165                  */
166                 if (sig->notify_count > 0 && !--sig->notify_count)
167                         wake_up_process(sig->group_exit_task);
168
169                 if (tsk == sig->curr_target)
170                         sig->curr_target = next_thread(tsk);
171         }
172
173         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
174                               sizeof(unsigned long long));
175
176         /*
177          * Accumulate here the counters for all threads as they die. We could
178          * skip the group leader because it is the last user of signal_struct,
179          * but we want to avoid the race with thread_group_cputime() which can
180          * see the empty ->thread_head list.
181          */
182         task_cputime(tsk, &utime, &stime);
183         write_seqlock(&sig->stats_lock);
184         sig->utime += utime;
185         sig->stime += stime;
186         sig->gtime += task_gtime(tsk);
187         sig->min_flt += tsk->min_flt;
188         sig->maj_flt += tsk->maj_flt;
189         sig->nvcsw += tsk->nvcsw;
190         sig->nivcsw += tsk->nivcsw;
191         sig->inblock += task_io_get_inblock(tsk);
192         sig->oublock += task_io_get_oublock(tsk);
193         task_io_accounting_add(&sig->ioac, &tsk->ioac);
194         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
195         sig->nr_threads--;
196         __unhash_process(tsk, group_dead);
197         write_sequnlock(&sig->stats_lock);
198
199         /*
200          * Do this under ->siglock, we can race with another thread
201          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
202          */
203         flush_sigqueue(&tsk->pending);
204         tsk->sighand = NULL;
205         spin_unlock(&sighand->siglock);
206
207         __cleanup_sighand(sighand);
208         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
209         if (group_dead) {
210                 flush_sigqueue(&sig->shared_pending);
211                 tty_kref_put(tty);
212         }
213 }
214
215 static void delayed_put_task_struct(struct rcu_head *rhp)
216 {
217         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
218
219         kprobe_flush_task(tsk);
220         perf_event_delayed_put(tsk);
221         trace_sched_process_free(tsk);
222
223         /* RT enabled kernels delay freeing the VMAP'ed task stack */
224         if (IS_ENABLED(CONFIG_PREEMPT_RT))
225                 put_task_stack(tsk);
226
227         put_task_struct(tsk);
228 }
229
230 void put_task_struct_rcu_user(struct task_struct *task)
231 {
232         if (refcount_dec_and_test(&task->rcu_users))
233                 call_rcu(&task->rcu, delayed_put_task_struct);
234 }
235
236 void release_task(struct task_struct *p)
237 {
238         struct task_struct *leader;
239         struct pid *thread_pid;
240         int zap_leader;
241 repeat:
242         /* don't need to get the RCU readlock here - the process is dead and
243          * can't be modifying its own credentials. But shut RCU-lockdep up */
244         rcu_read_lock();
245         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
246         rcu_read_unlock();
247
248         cgroup_release(p);
249
250         write_lock_irq(&tasklist_lock);
251         ptrace_release_task(p);
252         thread_pid = get_pid(p->thread_pid);
253         __exit_signal(p);
254
255         /*
256          * If we are the last non-leader member of the thread
257          * group, and the leader is zombie, then notify the
258          * group leader's parent process. (if it wants notification.)
259          */
260         zap_leader = 0;
261         leader = p->group_leader;
262         if (leader != p && thread_group_empty(leader)
263                         && leader->exit_state == EXIT_ZOMBIE) {
264                 /*
265                  * If we were the last child thread and the leader has
266                  * exited already, and the leader's parent ignores SIGCHLD,
267                  * then we are the one who should release the leader.
268                  */
269                 zap_leader = do_notify_parent(leader, leader->exit_signal);
270                 if (zap_leader)
271                         leader->exit_state = EXIT_DEAD;
272         }
273
274         write_unlock_irq(&tasklist_lock);
275         seccomp_filter_release(p);
276         proc_flush_pid(thread_pid);
277         put_pid(thread_pid);
278         release_thread(p);
279         put_task_struct_rcu_user(p);
280
281         p = leader;
282         if (unlikely(zap_leader))
283                 goto repeat;
284 }
285
286 int rcuwait_wake_up(struct rcuwait *w)
287 {
288         int ret = 0;
289         struct task_struct *task;
290
291         rcu_read_lock();
292
293         /*
294          * Order condition vs @task, such that everything prior to the load
295          * of @task is visible. This is the condition as to why the user called
296          * rcuwait_wake() in the first place. Pairs with set_current_state()
297          * barrier (A) in rcuwait_wait_event().
298          *
299          *    WAIT                WAKE
300          *    [S] tsk = current   [S] cond = true
301          *        MB (A)              MB (B)
302          *    [L] cond            [L] tsk
303          */
304         smp_mb(); /* (B) */
305
306         task = rcu_dereference(w->task);
307         if (task)
308                 ret = wake_up_process(task);
309         rcu_read_unlock();
310
311         return ret;
312 }
313 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
314
315 /*
316  * Determine if a process group is "orphaned", according to the POSIX
317  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
318  * by terminal-generated stop signals.  Newly orphaned process groups are
319  * to receive a SIGHUP and a SIGCONT.
320  *
321  * "I ask you, have you ever known what it is to be an orphan?"
322  */
323 static int will_become_orphaned_pgrp(struct pid *pgrp,
324                                         struct task_struct *ignored_task)
325 {
326         struct task_struct *p;
327
328         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
329                 if ((p == ignored_task) ||
330                     (p->exit_state && thread_group_empty(p)) ||
331                     is_global_init(p->real_parent))
332                         continue;
333
334                 if (task_pgrp(p->real_parent) != pgrp &&
335                     task_session(p->real_parent) == task_session(p))
336                         return 0;
337         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
338
339         return 1;
340 }
341
342 int is_current_pgrp_orphaned(void)
343 {
344         int retval;
345
346         read_lock(&tasklist_lock);
347         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
348         read_unlock(&tasklist_lock);
349
350         return retval;
351 }
352
353 static bool has_stopped_jobs(struct pid *pgrp)
354 {
355         struct task_struct *p;
356
357         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
358                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
359                         return true;
360         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
361
362         return false;
363 }
364
365 /*
366  * Check to see if any process groups have become orphaned as
367  * a result of our exiting, and if they have any stopped jobs,
368  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
369  */
370 static void
371 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
372 {
373         struct pid *pgrp = task_pgrp(tsk);
374         struct task_struct *ignored_task = tsk;
375
376         if (!parent)
377                 /* exit: our father is in a different pgrp than
378                  * we are and we were the only connection outside.
379                  */
380                 parent = tsk->real_parent;
381         else
382                 /* reparent: our child is in a different pgrp than
383                  * we are, and it was the only connection outside.
384                  */
385                 ignored_task = NULL;
386
387         if (task_pgrp(parent) != pgrp &&
388             task_session(parent) == task_session(tsk) &&
389             will_become_orphaned_pgrp(pgrp, ignored_task) &&
390             has_stopped_jobs(pgrp)) {
391                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
392                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
393         }
394 }
395
396 #ifdef CONFIG_MEMCG
397 /*
398  * A task is exiting.   If it owned this mm, find a new owner for the mm.
399  */
400 void mm_update_next_owner(struct mm_struct *mm)
401 {
402         struct task_struct *c, *g, *p = current;
403
404 retry:
405         /*
406          * If the exiting or execing task is not the owner, it's
407          * someone else's problem.
408          */
409         if (mm->owner != p)
410                 return;
411         /*
412          * The current owner is exiting/execing and there are no other
413          * candidates.  Do not leave the mm pointing to a possibly
414          * freed task structure.
415          */
416         if (atomic_read(&mm->mm_users) <= 1) {
417                 WRITE_ONCE(mm->owner, NULL);
418                 return;
419         }
420
421         read_lock(&tasklist_lock);
422         /*
423          * Search in the children
424          */
425         list_for_each_entry(c, &p->children, sibling) {
426                 if (c->mm == mm)
427                         goto assign_new_owner;
428         }
429
430         /*
431          * Search in the siblings
432          */
433         list_for_each_entry(c, &p->real_parent->children, sibling) {
434                 if (c->mm == mm)
435                         goto assign_new_owner;
436         }
437
438         /*
439          * Search through everything else, we should not get here often.
440          */
441         for_each_process(g) {
442                 if (g->flags & PF_KTHREAD)
443                         continue;
444                 for_each_thread(g, c) {
445                         if (c->mm == mm)
446                                 goto assign_new_owner;
447                         if (c->mm)
448                                 break;
449                 }
450         }
451         read_unlock(&tasklist_lock);
452         /*
453          * We found no owner yet mm_users > 1: this implies that we are
454          * most likely racing with swapoff (try_to_unuse()) or /proc or
455          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
456          */
457         WRITE_ONCE(mm->owner, NULL);
458         return;
459
460 assign_new_owner:
461         BUG_ON(c == p);
462         get_task_struct(c);
463         /*
464          * The task_lock protects c->mm from changing.
465          * We always want mm->owner->mm == mm
466          */
467         task_lock(c);
468         /*
469          * Delay read_unlock() till we have the task_lock()
470          * to ensure that c does not slip away underneath us
471          */
472         read_unlock(&tasklist_lock);
473         if (c->mm != mm) {
474                 task_unlock(c);
475                 put_task_struct(c);
476                 goto retry;
477         }
478         WRITE_ONCE(mm->owner, c);
479         task_unlock(c);
480         put_task_struct(c);
481 }
482 #endif /* CONFIG_MEMCG */
483
484 /*
485  * Turn us into a lazy TLB process if we
486  * aren't already..
487  */
488 static void exit_mm(void)
489 {
490         struct mm_struct *mm = current->mm;
491         struct core_state *core_state;
492
493         exit_mm_release(current, mm);
494         if (!mm)
495                 return;
496         sync_mm_rss(mm);
497         /*
498          * Serialize with any possible pending coredump.
499          * We must hold mmap_lock around checking core_state
500          * and clearing tsk->mm.  The core-inducing thread
501          * will increment ->nr_threads for each thread in the
502          * group with ->mm != NULL.
503          */
504         mmap_read_lock(mm);
505         core_state = mm->core_state;
506         if (core_state) {
507                 struct core_thread self;
508
509                 mmap_read_unlock(mm);
510
511                 self.task = current;
512                 if (self.task->flags & PF_SIGNALED)
513                         self.next = xchg(&core_state->dumper.next, &self);
514                 else
515                         self.task = NULL;
516                 /*
517                  * Implies mb(), the result of xchg() must be visible
518                  * to core_state->dumper.
519                  */
520                 if (atomic_dec_and_test(&core_state->nr_threads))
521                         complete(&core_state->startup);
522
523                 for (;;) {
524                         set_current_state(TASK_UNINTERRUPTIBLE);
525                         if (!self.task) /* see coredump_finish() */
526                                 break;
527                         freezable_schedule();
528                 }
529                 __set_current_state(TASK_RUNNING);
530                 mmap_read_lock(mm);
531         }
532         mmgrab(mm);
533         BUG_ON(mm != current->active_mm);
534         /* more a memory barrier than a real lock */
535         task_lock(current);
536         /*
537          * When a thread stops operating on an address space, the loop
538          * in membarrier_private_expedited() may not observe that
539          * tsk->mm, and the loop in membarrier_global_expedited() may
540          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
541          * rq->membarrier_state, so those would not issue an IPI.
542          * Membarrier requires a memory barrier after accessing
543          * user-space memory, before clearing tsk->mm or the
544          * rq->membarrier_state.
545          */
546         smp_mb__after_spinlock();
547         local_irq_disable();
548         current->mm = NULL;
549         membarrier_update_current_mm(NULL);
550         enter_lazy_tlb(mm, current);
551         local_irq_enable();
552         task_unlock(current);
553         mmap_read_unlock(mm);
554         mm_update_next_owner(mm);
555         mmput(mm);
556         if (test_thread_flag(TIF_MEMDIE))
557                 exit_oom_victim();
558 }
559
560 static struct task_struct *find_alive_thread(struct task_struct *p)
561 {
562         struct task_struct *t;
563
564         for_each_thread(p, t) {
565                 if (!(t->flags & PF_EXITING))
566                         return t;
567         }
568         return NULL;
569 }
570
571 static struct task_struct *find_child_reaper(struct task_struct *father,
572                                                 struct list_head *dead)
573         __releases(&tasklist_lock)
574         __acquires(&tasklist_lock)
575 {
576         struct pid_namespace *pid_ns = task_active_pid_ns(father);
577         struct task_struct *reaper = pid_ns->child_reaper;
578         struct task_struct *p, *n;
579
580         if (likely(reaper != father))
581                 return reaper;
582
583         reaper = find_alive_thread(father);
584         if (reaper) {
585                 pid_ns->child_reaper = reaper;
586                 return reaper;
587         }
588
589         write_unlock_irq(&tasklist_lock);
590
591         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
592                 list_del_init(&p->ptrace_entry);
593                 release_task(p);
594         }
595
596         zap_pid_ns_processes(pid_ns);
597         write_lock_irq(&tasklist_lock);
598
599         return father;
600 }
601
602 /*
603  * When we die, we re-parent all our children, and try to:
604  * 1. give them to another thread in our thread group, if such a member exists
605  * 2. give it to the first ancestor process which prctl'd itself as a
606  *    child_subreaper for its children (like a service manager)
607  * 3. give it to the init process (PID 1) in our pid namespace
608  */
609 static struct task_struct *find_new_reaper(struct task_struct *father,
610                                            struct task_struct *child_reaper)
611 {
612         struct task_struct *thread, *reaper;
613
614         thread = find_alive_thread(father);
615         if (thread)
616                 return thread;
617
618         if (father->signal->has_child_subreaper) {
619                 unsigned int ns_level = task_pid(father)->level;
620                 /*
621                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
622                  * We can't check reaper != child_reaper to ensure we do not
623                  * cross the namespaces, the exiting parent could be injected
624                  * by setns() + fork().
625                  * We check pid->level, this is slightly more efficient than
626                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
627                  */
628                 for (reaper = father->real_parent;
629                      task_pid(reaper)->level == ns_level;
630                      reaper = reaper->real_parent) {
631                         if (reaper == &init_task)
632                                 break;
633                         if (!reaper->signal->is_child_subreaper)
634                                 continue;
635                         thread = find_alive_thread(reaper);
636                         if (thread)
637                                 return thread;
638                 }
639         }
640
641         return child_reaper;
642 }
643
644 /*
645 * Any that need to be release_task'd are put on the @dead list.
646  */
647 static void reparent_leader(struct task_struct *father, struct task_struct *p,
648                                 struct list_head *dead)
649 {
650         if (unlikely(p->exit_state == EXIT_DEAD))
651                 return;
652
653         /* We don't want people slaying init. */
654         p->exit_signal = SIGCHLD;
655
656         /* If it has exited notify the new parent about this child's death. */
657         if (!p->ptrace &&
658             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
659                 if (do_notify_parent(p, p->exit_signal)) {
660                         p->exit_state = EXIT_DEAD;
661                         list_add(&p->ptrace_entry, dead);
662                 }
663         }
664
665         kill_orphaned_pgrp(p, father);
666 }
667
668 /*
669  * This does two things:
670  *
671  * A.  Make init inherit all the child processes
672  * B.  Check to see if any process groups have become orphaned
673  *      as a result of our exiting, and if they have any stopped
674  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
675  */
676 static void forget_original_parent(struct task_struct *father,
677                                         struct list_head *dead)
678 {
679         struct task_struct *p, *t, *reaper;
680
681         if (unlikely(!list_empty(&father->ptraced)))
682                 exit_ptrace(father, dead);
683
684         /* Can drop and reacquire tasklist_lock */
685         reaper = find_child_reaper(father, dead);
686         if (list_empty(&father->children))
687                 return;
688
689         reaper = find_new_reaper(father, reaper);
690         list_for_each_entry(p, &father->children, sibling) {
691                 for_each_thread(p, t) {
692                         RCU_INIT_POINTER(t->real_parent, reaper);
693                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
694                         if (likely(!t->ptrace))
695                                 t->parent = t->real_parent;
696                         if (t->pdeath_signal)
697                                 group_send_sig_info(t->pdeath_signal,
698                                                     SEND_SIG_NOINFO, t,
699                                                     PIDTYPE_TGID);
700                 }
701                 /*
702                  * If this is a threaded reparent there is no need to
703                  * notify anyone anything has happened.
704                  */
705                 if (!same_thread_group(reaper, father))
706                         reparent_leader(father, p, dead);
707         }
708         list_splice_tail_init(&father->children, &reaper->children);
709 }
710
711 /*
712  * Send signals to all our closest relatives so that they know
713  * to properly mourn us..
714  */
715 static void exit_notify(struct task_struct *tsk, int group_dead)
716 {
717         bool autoreap;
718         struct task_struct *p, *n;
719         LIST_HEAD(dead);
720
721         write_lock_irq(&tasklist_lock);
722         forget_original_parent(tsk, &dead);
723
724         if (group_dead)
725                 kill_orphaned_pgrp(tsk->group_leader, NULL);
726
727         tsk->exit_state = EXIT_ZOMBIE;
728         if (unlikely(tsk->ptrace)) {
729                 int sig = thread_group_leader(tsk) &&
730                                 thread_group_empty(tsk) &&
731                                 !ptrace_reparented(tsk) ?
732                         tsk->exit_signal : SIGCHLD;
733                 autoreap = do_notify_parent(tsk, sig);
734         } else if (thread_group_leader(tsk)) {
735                 autoreap = thread_group_empty(tsk) &&
736                         do_notify_parent(tsk, tsk->exit_signal);
737         } else {
738                 autoreap = true;
739         }
740
741         if (autoreap) {
742                 tsk->exit_state = EXIT_DEAD;
743                 list_add(&tsk->ptrace_entry, &dead);
744         }
745
746         /* mt-exec, de_thread() is waiting for group leader */
747         if (unlikely(tsk->signal->notify_count < 0))
748                 wake_up_process(tsk->signal->group_exit_task);
749         write_unlock_irq(&tasklist_lock);
750
751         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
752                 list_del_init(&p->ptrace_entry);
753                 release_task(p);
754         }
755 }
756
757 #ifdef CONFIG_DEBUG_STACK_USAGE
758 static void check_stack_usage(void)
759 {
760         static DEFINE_SPINLOCK(low_water_lock);
761         static int lowest_to_date = THREAD_SIZE;
762         unsigned long free;
763
764         free = stack_not_used(current);
765
766         if (free >= lowest_to_date)
767                 return;
768
769         spin_lock(&low_water_lock);
770         if (free < lowest_to_date) {
771                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
772                         current->comm, task_pid_nr(current), free);
773                 lowest_to_date = free;
774         }
775         spin_unlock(&low_water_lock);
776 }
777 #else
778 static inline void check_stack_usage(void) {}
779 #endif
780
781 void __noreturn do_exit(long code)
782 {
783         struct task_struct *tsk = current;
784         int group_dead;
785
786         /*
787          * We can get here from a kernel oops, sometimes with preemption off.
788          * Start by checking for critical errors.
789          * Then fix up important state like USER_DS and preemption.
790          * Then do everything else.
791          */
792
793         WARN_ON(blk_needs_flush_plug(tsk));
794
795         if (unlikely(in_interrupt()))
796                 panic("Aiee, killing interrupt handler!");
797         if (unlikely(!tsk->pid))
798                 panic("Attempted to kill the idle task!");
799
800         /*
801          * If do_exit is called because this processes oopsed, it's possible
802          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
803          * continuing. Amongst other possible reasons, this is to prevent
804          * mm_release()->clear_child_tid() from writing to a user-controlled
805          * kernel address.
806          */
807         force_uaccess_begin();
808
809         if (unlikely(in_atomic())) {
810                 pr_info("note: %s[%d] exited with preempt_count %d\n",
811                         current->comm, task_pid_nr(current),
812                         preempt_count());
813                 preempt_count_set(PREEMPT_ENABLED);
814         }
815
816         profile_task_exit(tsk);
817         kcov_task_exit(tsk);
818
819         ptrace_event(PTRACE_EVENT_EXIT, code);
820
821         validate_creds_for_do_exit(tsk);
822
823         /*
824          * We're taking recursive faults here in do_exit. Safest is to just
825          * leave this task alone and wait for reboot.
826          */
827         if (unlikely(tsk->flags & PF_EXITING)) {
828                 pr_alert("Fixing recursive fault but reboot is needed!\n");
829                 futex_exit_recursive(tsk);
830                 set_current_state(TASK_UNINTERRUPTIBLE);
831                 schedule();
832         }
833
834         io_uring_files_cancel();
835         exit_signals(tsk);  /* sets PF_EXITING */
836
837         /* sync mm's RSS info before statistics gathering */
838         if (tsk->mm)
839                 sync_mm_rss(tsk->mm);
840         acct_update_integrals(tsk);
841         group_dead = atomic_dec_and_test(&tsk->signal->live);
842         if (group_dead) {
843                 /*
844                  * If the last thread of global init has exited, panic
845                  * immediately to get a useable coredump.
846                  */
847                 if (unlikely(is_global_init(tsk)))
848                         panic("Attempted to kill init! exitcode=0x%08x\n",
849                                 tsk->signal->group_exit_code ?: (int)code);
850
851 #ifdef CONFIG_POSIX_TIMERS
852                 hrtimer_cancel(&tsk->signal->real_timer);
853                 exit_itimers(tsk);
854 #endif
855                 if (tsk->mm)
856                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
857         }
858         acct_collect(code, group_dead);
859         if (group_dead)
860                 tty_audit_exit();
861         audit_free(tsk);
862
863         tsk->exit_code = code;
864         taskstats_exit(tsk, group_dead);
865
866         exit_mm();
867
868         if (group_dead)
869                 acct_process();
870         trace_sched_process_exit(tsk);
871
872         exit_sem(tsk);
873         exit_shm(tsk);
874         exit_files(tsk);
875         exit_fs(tsk);
876         if (group_dead)
877                 disassociate_ctty(1);
878         exit_task_namespaces(tsk);
879         exit_task_work(tsk);
880         exit_thread(tsk);
881
882         /*
883          * Flush inherited counters to the parent - before the parent
884          * gets woken up by child-exit notifications.
885          *
886          * because of cgroup mode, must be called before cgroup_exit()
887          */
888         perf_event_exit_task(tsk);
889
890         sched_autogroup_exit_task(tsk);
891         cgroup_exit(tsk);
892
893         /*
894          * FIXME: do that only when needed, using sched_exit tracepoint
895          */
896         flush_ptrace_hw_breakpoint(tsk);
897
898         exit_tasks_rcu_start();
899         exit_notify(tsk, group_dead);
900         proc_exit_connector(tsk);
901         mpol_put_task_policy(tsk);
902 #ifdef CONFIG_FUTEX
903         if (unlikely(current->pi_state_cache))
904                 kfree(current->pi_state_cache);
905 #endif
906         /*
907          * Make sure we are holding no locks:
908          */
909         debug_check_no_locks_held();
910
911         if (tsk->io_context)
912                 exit_io_context(tsk);
913
914         if (tsk->splice_pipe)
915                 free_pipe_info(tsk->splice_pipe);
916
917         if (tsk->task_frag.page)
918                 put_page(tsk->task_frag.page);
919
920         validate_creds_for_do_exit(tsk);
921
922         check_stack_usage();
923         preempt_disable();
924         if (tsk->nr_dirtied)
925                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
926         exit_rcu();
927         exit_tasks_rcu_finish();
928
929         lockdep_free_task(tsk);
930         do_task_dead();
931 }
932 EXPORT_SYMBOL_GPL(do_exit);
933
934 void __noreturn make_task_dead(int signr)
935 {
936         /*
937          * Take the task off the cpu after something catastrophic has
938          * happened.
939          */
940         unsigned int limit;
941
942         /*
943          * Every time the system oopses, if the oops happens while a reference
944          * to an object was held, the reference leaks.
945          * If the oops doesn't also leak memory, repeated oopsing can cause
946          * reference counters to wrap around (if they're not using refcount_t).
947          * This means that repeated oopsing can make unexploitable-looking bugs
948          * exploitable through repeated oopsing.
949          * To make sure this can't happen, place an upper bound on how often the
950          * kernel may oops without panic().
951          */
952         limit = READ_ONCE(oops_limit);
953         if (atomic_inc_return(&oops_count) >= limit && limit)
954                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
955
956         do_exit(signr);
957 }
958
959 void complete_and_exit(struct completion *comp, long code)
960 {
961         if (comp)
962                 complete(comp);
963
964         do_exit(code);
965 }
966 EXPORT_SYMBOL(complete_and_exit);
967
968 SYSCALL_DEFINE1(exit, int, error_code)
969 {
970         do_exit((error_code&0xff)<<8);
971 }
972
973 /*
974  * Take down every thread in the group.  This is called by fatal signals
975  * as well as by sys_exit_group (below).
976  */
977 void
978 do_group_exit(int exit_code)
979 {
980         struct signal_struct *sig = current->signal;
981
982         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
983
984         if (signal_group_exit(sig))
985                 exit_code = sig->group_exit_code;
986         else if (!thread_group_empty(current)) {
987                 struct sighand_struct *const sighand = current->sighand;
988
989                 spin_lock_irq(&sighand->siglock);
990                 if (signal_group_exit(sig))
991                         /* Another thread got here before we took the lock.  */
992                         exit_code = sig->group_exit_code;
993                 else {
994                         sig->group_exit_code = exit_code;
995                         sig->flags = SIGNAL_GROUP_EXIT;
996                         zap_other_threads(current);
997                 }
998                 spin_unlock_irq(&sighand->siglock);
999         }
1000
1001         do_exit(exit_code);
1002         /* NOTREACHED */
1003 }
1004
1005 /*
1006  * this kills every thread in the thread group. Note that any externally
1007  * wait4()-ing process will get the correct exit code - even if this
1008  * thread is not the thread group leader.
1009  */
1010 SYSCALL_DEFINE1(exit_group, int, error_code)
1011 {
1012         do_group_exit((error_code & 0xff) << 8);
1013         /* NOTREACHED */
1014         return 0;
1015 }
1016
1017 struct waitid_info {
1018         pid_t pid;
1019         uid_t uid;
1020         int status;
1021         int cause;
1022 };
1023
1024 struct wait_opts {
1025         enum pid_type           wo_type;
1026         int                     wo_flags;
1027         struct pid              *wo_pid;
1028
1029         struct waitid_info      *wo_info;
1030         int                     wo_stat;
1031         struct rusage           *wo_rusage;
1032
1033         wait_queue_entry_t              child_wait;
1034         int                     notask_error;
1035 };
1036
1037 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1038 {
1039         return  wo->wo_type == PIDTYPE_MAX ||
1040                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1041 }
1042
1043 static int
1044 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1045 {
1046         if (!eligible_pid(wo, p))
1047                 return 0;
1048
1049         /*
1050          * Wait for all children (clone and not) if __WALL is set or
1051          * if it is traced by us.
1052          */
1053         if (ptrace || (wo->wo_flags & __WALL))
1054                 return 1;
1055
1056         /*
1057          * Otherwise, wait for clone children *only* if __WCLONE is set;
1058          * otherwise, wait for non-clone children *only*.
1059          *
1060          * Note: a "clone" child here is one that reports to its parent
1061          * using a signal other than SIGCHLD, or a non-leader thread which
1062          * we can only see if it is traced by us.
1063          */
1064         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1065                 return 0;
1066
1067         return 1;
1068 }
1069
1070 /*
1071  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1072  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1073  * the lock and this task is uninteresting.  If we return nonzero, we have
1074  * released the lock and the system call should return.
1075  */
1076 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1077 {
1078         int state, status;
1079         pid_t pid = task_pid_vnr(p);
1080         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1081         struct waitid_info *infop;
1082
1083         if (!likely(wo->wo_flags & WEXITED))
1084                 return 0;
1085
1086         if (unlikely(wo->wo_flags & WNOWAIT)) {
1087                 status = p->exit_code;
1088                 get_task_struct(p);
1089                 read_unlock(&tasklist_lock);
1090                 sched_annotate_sleep();
1091                 if (wo->wo_rusage)
1092                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1093                 put_task_struct(p);
1094                 goto out_info;
1095         }
1096         /*
1097          * Move the task's state to DEAD/TRACE, only one thread can do this.
1098          */
1099         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1100                 EXIT_TRACE : EXIT_DEAD;
1101         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1102                 return 0;
1103         /*
1104          * We own this thread, nobody else can reap it.
1105          */
1106         read_unlock(&tasklist_lock);
1107         sched_annotate_sleep();
1108
1109         /*
1110          * Check thread_group_leader() to exclude the traced sub-threads.
1111          */
1112         if (state == EXIT_DEAD && thread_group_leader(p)) {
1113                 struct signal_struct *sig = p->signal;
1114                 struct signal_struct *psig = current->signal;
1115                 unsigned long maxrss;
1116                 u64 tgutime, tgstime;
1117
1118                 /*
1119                  * The resource counters for the group leader are in its
1120                  * own task_struct.  Those for dead threads in the group
1121                  * are in its signal_struct, as are those for the child
1122                  * processes it has previously reaped.  All these
1123                  * accumulate in the parent's signal_struct c* fields.
1124                  *
1125                  * We don't bother to take a lock here to protect these
1126                  * p->signal fields because the whole thread group is dead
1127                  * and nobody can change them.
1128                  *
1129                  * psig->stats_lock also protects us from our sub-theads
1130                  * which can reap other children at the same time. Until
1131                  * we change k_getrusage()-like users to rely on this lock
1132                  * we have to take ->siglock as well.
1133                  *
1134                  * We use thread_group_cputime_adjusted() to get times for
1135                  * the thread group, which consolidates times for all threads
1136                  * in the group including the group leader.
1137                  */
1138                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1139                 spin_lock_irq(&current->sighand->siglock);
1140                 write_seqlock(&psig->stats_lock);
1141                 psig->cutime += tgutime + sig->cutime;
1142                 psig->cstime += tgstime + sig->cstime;
1143                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1144                 psig->cmin_flt +=
1145                         p->min_flt + sig->min_flt + sig->cmin_flt;
1146                 psig->cmaj_flt +=
1147                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1148                 psig->cnvcsw +=
1149                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1150                 psig->cnivcsw +=
1151                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1152                 psig->cinblock +=
1153                         task_io_get_inblock(p) +
1154                         sig->inblock + sig->cinblock;
1155                 psig->coublock +=
1156                         task_io_get_oublock(p) +
1157                         sig->oublock + sig->coublock;
1158                 maxrss = max(sig->maxrss, sig->cmaxrss);
1159                 if (psig->cmaxrss < maxrss)
1160                         psig->cmaxrss = maxrss;
1161                 task_io_accounting_add(&psig->ioac, &p->ioac);
1162                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1163                 write_sequnlock(&psig->stats_lock);
1164                 spin_unlock_irq(&current->sighand->siglock);
1165         }
1166
1167         if (wo->wo_rusage)
1168                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1169         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1170                 ? p->signal->group_exit_code : p->exit_code;
1171         wo->wo_stat = status;
1172
1173         if (state == EXIT_TRACE) {
1174                 write_lock_irq(&tasklist_lock);
1175                 /* We dropped tasklist, ptracer could die and untrace */
1176                 ptrace_unlink(p);
1177
1178                 /* If parent wants a zombie, don't release it now */
1179                 state = EXIT_ZOMBIE;
1180                 if (do_notify_parent(p, p->exit_signal))
1181                         state = EXIT_DEAD;
1182                 p->exit_state = state;
1183                 write_unlock_irq(&tasklist_lock);
1184         }
1185         if (state == EXIT_DEAD)
1186                 release_task(p);
1187
1188 out_info:
1189         infop = wo->wo_info;
1190         if (infop) {
1191                 if ((status & 0x7f) == 0) {
1192                         infop->cause = CLD_EXITED;
1193                         infop->status = status >> 8;
1194                 } else {
1195                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1196                         infop->status = status & 0x7f;
1197                 }
1198                 infop->pid = pid;
1199                 infop->uid = uid;
1200         }
1201
1202         return pid;
1203 }
1204
1205 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1206 {
1207         if (ptrace) {
1208                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1209                         return &p->exit_code;
1210         } else {
1211                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1212                         return &p->signal->group_exit_code;
1213         }
1214         return NULL;
1215 }
1216
1217 /**
1218  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1219  * @wo: wait options
1220  * @ptrace: is the wait for ptrace
1221  * @p: task to wait for
1222  *
1223  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1224  *
1225  * CONTEXT:
1226  * read_lock(&tasklist_lock), which is released if return value is
1227  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1228  *
1229  * RETURNS:
1230  * 0 if wait condition didn't exist and search for other wait conditions
1231  * should continue.  Non-zero return, -errno on failure and @p's pid on
1232  * success, implies that tasklist_lock is released and wait condition
1233  * search should terminate.
1234  */
1235 static int wait_task_stopped(struct wait_opts *wo,
1236                                 int ptrace, struct task_struct *p)
1237 {
1238         struct waitid_info *infop;
1239         int exit_code, *p_code, why;
1240         uid_t uid = 0; /* unneeded, required by compiler */
1241         pid_t pid;
1242
1243         /*
1244          * Traditionally we see ptrace'd stopped tasks regardless of options.
1245          */
1246         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1247                 return 0;
1248
1249         if (!task_stopped_code(p, ptrace))
1250                 return 0;
1251
1252         exit_code = 0;
1253         spin_lock_irq(&p->sighand->siglock);
1254
1255         p_code = task_stopped_code(p, ptrace);
1256         if (unlikely(!p_code))
1257                 goto unlock_sig;
1258
1259         exit_code = *p_code;
1260         if (!exit_code)
1261                 goto unlock_sig;
1262
1263         if (!unlikely(wo->wo_flags & WNOWAIT))
1264                 *p_code = 0;
1265
1266         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1267 unlock_sig:
1268         spin_unlock_irq(&p->sighand->siglock);
1269         if (!exit_code)
1270                 return 0;
1271
1272         /*
1273          * Now we are pretty sure this task is interesting.
1274          * Make sure it doesn't get reaped out from under us while we
1275          * give up the lock and then examine it below.  We don't want to
1276          * keep holding onto the tasklist_lock while we call getrusage and
1277          * possibly take page faults for user memory.
1278          */
1279         get_task_struct(p);
1280         pid = task_pid_vnr(p);
1281         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1282         read_unlock(&tasklist_lock);
1283         sched_annotate_sleep();
1284         if (wo->wo_rusage)
1285                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1286         put_task_struct(p);
1287
1288         if (likely(!(wo->wo_flags & WNOWAIT)))
1289                 wo->wo_stat = (exit_code << 8) | 0x7f;
1290
1291         infop = wo->wo_info;
1292         if (infop) {
1293                 infop->cause = why;
1294                 infop->status = exit_code;
1295                 infop->pid = pid;
1296                 infop->uid = uid;
1297         }
1298         return pid;
1299 }
1300
1301 /*
1302  * Handle do_wait work for one task in a live, non-stopped state.
1303  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1304  * the lock and this task is uninteresting.  If we return nonzero, we have
1305  * released the lock and the system call should return.
1306  */
1307 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1308 {
1309         struct waitid_info *infop;
1310         pid_t pid;
1311         uid_t uid;
1312
1313         if (!unlikely(wo->wo_flags & WCONTINUED))
1314                 return 0;
1315
1316         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1317                 return 0;
1318
1319         spin_lock_irq(&p->sighand->siglock);
1320         /* Re-check with the lock held.  */
1321         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1322                 spin_unlock_irq(&p->sighand->siglock);
1323                 return 0;
1324         }
1325         if (!unlikely(wo->wo_flags & WNOWAIT))
1326                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1327         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1328         spin_unlock_irq(&p->sighand->siglock);
1329
1330         pid = task_pid_vnr(p);
1331         get_task_struct(p);
1332         read_unlock(&tasklist_lock);
1333         sched_annotate_sleep();
1334         if (wo->wo_rusage)
1335                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1336         put_task_struct(p);
1337
1338         infop = wo->wo_info;
1339         if (!infop) {
1340                 wo->wo_stat = 0xffff;
1341         } else {
1342                 infop->cause = CLD_CONTINUED;
1343                 infop->pid = pid;
1344                 infop->uid = uid;
1345                 infop->status = SIGCONT;
1346         }
1347         return pid;
1348 }
1349
1350 /*
1351  * Consider @p for a wait by @parent.
1352  *
1353  * -ECHILD should be in ->notask_error before the first call.
1354  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1355  * Returns zero if the search for a child should continue;
1356  * then ->notask_error is 0 if @p is an eligible child,
1357  * or still -ECHILD.
1358  */
1359 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1360                                 struct task_struct *p)
1361 {
1362         /*
1363          * We can race with wait_task_zombie() from another thread.
1364          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1365          * can't confuse the checks below.
1366          */
1367         int exit_state = READ_ONCE(p->exit_state);
1368         int ret;
1369
1370         if (unlikely(exit_state == EXIT_DEAD))
1371                 return 0;
1372
1373         ret = eligible_child(wo, ptrace, p);
1374         if (!ret)
1375                 return ret;
1376
1377         if (unlikely(exit_state == EXIT_TRACE)) {
1378                 /*
1379                  * ptrace == 0 means we are the natural parent. In this case
1380                  * we should clear notask_error, debugger will notify us.
1381                  */
1382                 if (likely(!ptrace))
1383                         wo->notask_error = 0;
1384                 return 0;
1385         }
1386
1387         if (likely(!ptrace) && unlikely(p->ptrace)) {
1388                 /*
1389                  * If it is traced by its real parent's group, just pretend
1390                  * the caller is ptrace_do_wait() and reap this child if it
1391                  * is zombie.
1392                  *
1393                  * This also hides group stop state from real parent; otherwise
1394                  * a single stop can be reported twice as group and ptrace stop.
1395                  * If a ptracer wants to distinguish these two events for its
1396                  * own children it should create a separate process which takes
1397                  * the role of real parent.
1398                  */
1399                 if (!ptrace_reparented(p))
1400                         ptrace = 1;
1401         }
1402
1403         /* slay zombie? */
1404         if (exit_state == EXIT_ZOMBIE) {
1405                 /* we don't reap group leaders with subthreads */
1406                 if (!delay_group_leader(p)) {
1407                         /*
1408                          * A zombie ptracee is only visible to its ptracer.
1409                          * Notification and reaping will be cascaded to the
1410                          * real parent when the ptracer detaches.
1411                          */
1412                         if (unlikely(ptrace) || likely(!p->ptrace))
1413                                 return wait_task_zombie(wo, p);
1414                 }
1415
1416                 /*
1417                  * Allow access to stopped/continued state via zombie by
1418                  * falling through.  Clearing of notask_error is complex.
1419                  *
1420                  * When !@ptrace:
1421                  *
1422                  * If WEXITED is set, notask_error should naturally be
1423                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1424                  * so, if there are live subthreads, there are events to
1425                  * wait for.  If all subthreads are dead, it's still safe
1426                  * to clear - this function will be called again in finite
1427                  * amount time once all the subthreads are released and
1428                  * will then return without clearing.
1429                  *
1430                  * When @ptrace:
1431                  *
1432                  * Stopped state is per-task and thus can't change once the
1433                  * target task dies.  Only continued and exited can happen.
1434                  * Clear notask_error if WCONTINUED | WEXITED.
1435                  */
1436                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1437                         wo->notask_error = 0;
1438         } else {
1439                 /*
1440                  * @p is alive and it's gonna stop, continue or exit, so
1441                  * there always is something to wait for.
1442                  */
1443                 wo->notask_error = 0;
1444         }
1445
1446         /*
1447          * Wait for stopped.  Depending on @ptrace, different stopped state
1448          * is used and the two don't interact with each other.
1449          */
1450         ret = wait_task_stopped(wo, ptrace, p);
1451         if (ret)
1452                 return ret;
1453
1454         /*
1455          * Wait for continued.  There's only one continued state and the
1456          * ptracer can consume it which can confuse the real parent.  Don't
1457          * use WCONTINUED from ptracer.  You don't need or want it.
1458          */
1459         return wait_task_continued(wo, p);
1460 }
1461
1462 /*
1463  * Do the work of do_wait() for one thread in the group, @tsk.
1464  *
1465  * -ECHILD should be in ->notask_error before the first call.
1466  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1467  * Returns zero if the search for a child should continue; then
1468  * ->notask_error is 0 if there were any eligible children,
1469  * or still -ECHILD.
1470  */
1471 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1472 {
1473         struct task_struct *p;
1474
1475         list_for_each_entry(p, &tsk->children, sibling) {
1476                 int ret = wait_consider_task(wo, 0, p);
1477
1478                 if (ret)
1479                         return ret;
1480         }
1481
1482         return 0;
1483 }
1484
1485 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1486 {
1487         struct task_struct *p;
1488
1489         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1490                 int ret = wait_consider_task(wo, 1, p);
1491
1492                 if (ret)
1493                         return ret;
1494         }
1495
1496         return 0;
1497 }
1498
1499 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1500                                 int sync, void *key)
1501 {
1502         struct wait_opts *wo = container_of(wait, struct wait_opts,
1503                                                 child_wait);
1504         struct task_struct *p = key;
1505
1506         if (!eligible_pid(wo, p))
1507                 return 0;
1508
1509         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1510                 return 0;
1511
1512         return default_wake_function(wait, mode, sync, key);
1513 }
1514
1515 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1516 {
1517         __wake_up_sync_key(&parent->signal->wait_chldexit,
1518                            TASK_INTERRUPTIBLE, p);
1519 }
1520
1521 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1522                                  struct task_struct *target)
1523 {
1524         struct task_struct *parent =
1525                 !ptrace ? target->real_parent : target->parent;
1526
1527         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1528                                      same_thread_group(current, parent));
1529 }
1530
1531 /*
1532  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1533  * and tracee lists to find the target task.
1534  */
1535 static int do_wait_pid(struct wait_opts *wo)
1536 {
1537         bool ptrace;
1538         struct task_struct *target;
1539         int retval;
1540
1541         ptrace = false;
1542         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1543         if (target && is_effectively_child(wo, ptrace, target)) {
1544                 retval = wait_consider_task(wo, ptrace, target);
1545                 if (retval)
1546                         return retval;
1547         }
1548
1549         ptrace = true;
1550         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1551         if (target && target->ptrace &&
1552             is_effectively_child(wo, ptrace, target)) {
1553                 retval = wait_consider_task(wo, ptrace, target);
1554                 if (retval)
1555                         return retval;
1556         }
1557
1558         return 0;
1559 }
1560
1561 static long do_wait(struct wait_opts *wo)
1562 {
1563         int retval;
1564
1565         trace_sched_process_wait(wo->wo_pid);
1566
1567         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1568         wo->child_wait.private = current;
1569         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1570 repeat:
1571         /*
1572          * If there is nothing that can match our criteria, just get out.
1573          * We will clear ->notask_error to zero if we see any child that
1574          * might later match our criteria, even if we are not able to reap
1575          * it yet.
1576          */
1577         wo->notask_error = -ECHILD;
1578         if ((wo->wo_type < PIDTYPE_MAX) &&
1579            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1580                 goto notask;
1581
1582         set_current_state(TASK_INTERRUPTIBLE);
1583         read_lock(&tasklist_lock);
1584
1585         if (wo->wo_type == PIDTYPE_PID) {
1586                 retval = do_wait_pid(wo);
1587                 if (retval)
1588                         goto end;
1589         } else {
1590                 struct task_struct *tsk = current;
1591
1592                 do {
1593                         retval = do_wait_thread(wo, tsk);
1594                         if (retval)
1595                                 goto end;
1596
1597                         retval = ptrace_do_wait(wo, tsk);
1598                         if (retval)
1599                                 goto end;
1600
1601                         if (wo->wo_flags & __WNOTHREAD)
1602                                 break;
1603                 } while_each_thread(current, tsk);
1604         }
1605         read_unlock(&tasklist_lock);
1606
1607 notask:
1608         retval = wo->notask_error;
1609         if (!retval && !(wo->wo_flags & WNOHANG)) {
1610                 retval = -ERESTARTSYS;
1611                 if (!signal_pending(current)) {
1612                         schedule();
1613                         goto repeat;
1614                 }
1615         }
1616 end:
1617         __set_current_state(TASK_RUNNING);
1618         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1619         return retval;
1620 }
1621
1622 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1623                           int options, struct rusage *ru)
1624 {
1625         struct wait_opts wo;
1626         struct pid *pid = NULL;
1627         enum pid_type type;
1628         long ret;
1629         unsigned int f_flags = 0;
1630
1631         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1632                         __WNOTHREAD|__WCLONE|__WALL))
1633                 return -EINVAL;
1634         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1635                 return -EINVAL;
1636
1637         switch (which) {
1638         case P_ALL:
1639                 type = PIDTYPE_MAX;
1640                 break;
1641         case P_PID:
1642                 type = PIDTYPE_PID;
1643                 if (upid <= 0)
1644                         return -EINVAL;
1645
1646                 pid = find_get_pid(upid);
1647                 break;
1648         case P_PGID:
1649                 type = PIDTYPE_PGID;
1650                 if (upid < 0)
1651                         return -EINVAL;
1652
1653                 if (upid)
1654                         pid = find_get_pid(upid);
1655                 else
1656                         pid = get_task_pid(current, PIDTYPE_PGID);
1657                 break;
1658         case P_PIDFD:
1659                 type = PIDTYPE_PID;
1660                 if (upid < 0)
1661                         return -EINVAL;
1662
1663                 pid = pidfd_get_pid(upid, &f_flags);
1664                 if (IS_ERR(pid))
1665                         return PTR_ERR(pid);
1666
1667                 break;
1668         default:
1669                 return -EINVAL;
1670         }
1671
1672         wo.wo_type      = type;
1673         wo.wo_pid       = pid;
1674         wo.wo_flags     = options;
1675         wo.wo_info      = infop;
1676         wo.wo_rusage    = ru;
1677         if (f_flags & O_NONBLOCK)
1678                 wo.wo_flags |= WNOHANG;
1679
1680         ret = do_wait(&wo);
1681         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1682                 ret = -EAGAIN;
1683
1684         put_pid(pid);
1685         return ret;
1686 }
1687
1688 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1689                 infop, int, options, struct rusage __user *, ru)
1690 {
1691         struct rusage r;
1692         struct waitid_info info = {.status = 0};
1693         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1694         int signo = 0;
1695
1696         if (err > 0) {
1697                 signo = SIGCHLD;
1698                 err = 0;
1699                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1700                         return -EFAULT;
1701         }
1702         if (!infop)
1703                 return err;
1704
1705         if (!user_write_access_begin(infop, sizeof(*infop)))
1706                 return -EFAULT;
1707
1708         unsafe_put_user(signo, &infop->si_signo, Efault);
1709         unsafe_put_user(0, &infop->si_errno, Efault);
1710         unsafe_put_user(info.cause, &infop->si_code, Efault);
1711         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1712         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1713         unsafe_put_user(info.status, &infop->si_status, Efault);
1714         user_write_access_end();
1715         return err;
1716 Efault:
1717         user_write_access_end();
1718         return -EFAULT;
1719 }
1720
1721 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1722                   struct rusage *ru)
1723 {
1724         struct wait_opts wo;
1725         struct pid *pid = NULL;
1726         enum pid_type type;
1727         long ret;
1728
1729         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1730                         __WNOTHREAD|__WCLONE|__WALL))
1731                 return -EINVAL;
1732
1733         /* -INT_MIN is not defined */
1734         if (upid == INT_MIN)
1735                 return -ESRCH;
1736
1737         if (upid == -1)
1738                 type = PIDTYPE_MAX;
1739         else if (upid < 0) {
1740                 type = PIDTYPE_PGID;
1741                 pid = find_get_pid(-upid);
1742         } else if (upid == 0) {
1743                 type = PIDTYPE_PGID;
1744                 pid = get_task_pid(current, PIDTYPE_PGID);
1745         } else /* upid > 0 */ {
1746                 type = PIDTYPE_PID;
1747                 pid = find_get_pid(upid);
1748         }
1749
1750         wo.wo_type      = type;
1751         wo.wo_pid       = pid;
1752         wo.wo_flags     = options | WEXITED;
1753         wo.wo_info      = NULL;
1754         wo.wo_stat      = 0;
1755         wo.wo_rusage    = ru;
1756         ret = do_wait(&wo);
1757         put_pid(pid);
1758         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1759                 ret = -EFAULT;
1760
1761         return ret;
1762 }
1763
1764 int kernel_wait(pid_t pid, int *stat)
1765 {
1766         struct wait_opts wo = {
1767                 .wo_type        = PIDTYPE_PID,
1768                 .wo_pid         = find_get_pid(pid),
1769                 .wo_flags       = WEXITED,
1770         };
1771         int ret;
1772
1773         ret = do_wait(&wo);
1774         if (ret > 0 && wo.wo_stat)
1775                 *stat = wo.wo_stat;
1776         put_pid(wo.wo_pid);
1777         return ret;
1778 }
1779
1780 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1781                 int, options, struct rusage __user *, ru)
1782 {
1783         struct rusage r;
1784         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1785
1786         if (err > 0) {
1787                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1788                         return -EFAULT;
1789         }
1790         return err;
1791 }
1792
1793 #ifdef __ARCH_WANT_SYS_WAITPID
1794
1795 /*
1796  * sys_waitpid() remains for compatibility. waitpid() should be
1797  * implemented by calling sys_wait4() from libc.a.
1798  */
1799 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1800 {
1801         return kernel_wait4(pid, stat_addr, options, NULL);
1802 }
1803
1804 #endif
1805
1806 #ifdef CONFIG_COMPAT
1807 COMPAT_SYSCALL_DEFINE4(wait4,
1808         compat_pid_t, pid,
1809         compat_uint_t __user *, stat_addr,
1810         int, options,
1811         struct compat_rusage __user *, ru)
1812 {
1813         struct rusage r;
1814         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1815         if (err > 0) {
1816                 if (ru && put_compat_rusage(&r, ru))
1817                         return -EFAULT;
1818         }
1819         return err;
1820 }
1821
1822 COMPAT_SYSCALL_DEFINE5(waitid,
1823                 int, which, compat_pid_t, pid,
1824                 struct compat_siginfo __user *, infop, int, options,
1825                 struct compat_rusage __user *, uru)
1826 {
1827         struct rusage ru;
1828         struct waitid_info info = {.status = 0};
1829         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1830         int signo = 0;
1831         if (err > 0) {
1832                 signo = SIGCHLD;
1833                 err = 0;
1834                 if (uru) {
1835                         /* kernel_waitid() overwrites everything in ru */
1836                         if (COMPAT_USE_64BIT_TIME)
1837                                 err = copy_to_user(uru, &ru, sizeof(ru));
1838                         else
1839                                 err = put_compat_rusage(&ru, uru);
1840                         if (err)
1841                                 return -EFAULT;
1842                 }
1843         }
1844
1845         if (!infop)
1846                 return err;
1847
1848         if (!user_write_access_begin(infop, sizeof(*infop)))
1849                 return -EFAULT;
1850
1851         unsafe_put_user(signo, &infop->si_signo, Efault);
1852         unsafe_put_user(0, &infop->si_errno, Efault);
1853         unsafe_put_user(info.cause, &infop->si_code, Efault);
1854         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1855         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1856         unsafe_put_user(info.status, &infop->si_status, Efault);
1857         user_write_access_end();
1858         return err;
1859 Efault:
1860         user_write_access_end();
1861         return -EFAULT;
1862 }
1863 #endif
1864
1865 /**
1866  * thread_group_exited - check that a thread group has exited
1867  * @pid: tgid of thread group to be checked.
1868  *
1869  * Test if the thread group represented by tgid has exited (all
1870  * threads are zombies, dead or completely gone).
1871  *
1872  * Return: true if the thread group has exited. false otherwise.
1873  */
1874 bool thread_group_exited(struct pid *pid)
1875 {
1876         struct task_struct *task;
1877         bool exited;
1878
1879         rcu_read_lock();
1880         task = pid_task(pid, PIDTYPE_PID);
1881         exited = !task ||
1882                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1883         rcu_read_unlock();
1884
1885         return exited;
1886 }
1887 EXPORT_SYMBOL(thread_group_exited);
1888
1889 __weak void abort(void)
1890 {
1891         BUG();
1892
1893         /* if that doesn't kill us, halt */
1894         panic("Oops failed to kill thread");
1895 }
1896 EXPORT_SYMBOL(abort);