ring-buffer: Fix slowpath of interrupted event
[platform/kernel/linux-rpi.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72
73 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
75 #include <asm/mmu_context.h>
76
77 /*
78  * The default value should be high enough to not crash a system that randomly
79  * crashes its kernel from time to time, but low enough to at least not permit
80  * overflowing 32-bit refcounts or the ldsem writer count.
81  */
82 static unsigned int oops_limit = 10000;
83
84 #ifdef CONFIG_SYSCTL
85 static struct ctl_table kern_exit_table[] = {
86         {
87                 .procname       = "oops_limit",
88                 .data           = &oops_limit,
89                 .maxlen         = sizeof(oops_limit),
90                 .mode           = 0644,
91                 .proc_handler   = proc_douintvec,
92         },
93         { }
94 };
95
96 static __init int kernel_exit_sysctls_init(void)
97 {
98         register_sysctl_init("kernel", kern_exit_table);
99         return 0;
100 }
101 late_initcall(kernel_exit_sysctls_init);
102 #endif
103
104 static atomic_t oops_count = ATOMIC_INIT(0);
105
106 #ifdef CONFIG_SYSFS
107 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
108                                char *page)
109 {
110         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
111 }
112
113 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
114
115 static __init int kernel_exit_sysfs_init(void)
116 {
117         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
118         return 0;
119 }
120 late_initcall(kernel_exit_sysfs_init);
121 #endif
122
123 static void __unhash_process(struct task_struct *p, bool group_dead)
124 {
125         nr_threads--;
126         detach_pid(p, PIDTYPE_PID);
127         if (group_dead) {
128                 detach_pid(p, PIDTYPE_TGID);
129                 detach_pid(p, PIDTYPE_PGID);
130                 detach_pid(p, PIDTYPE_SID);
131
132                 list_del_rcu(&p->tasks);
133                 list_del_init(&p->sibling);
134                 __this_cpu_dec(process_counts);
135         }
136         list_del_rcu(&p->thread_group);
137         list_del_rcu(&p->thread_node);
138 }
139
140 /*
141  * This function expects the tasklist_lock write-locked.
142  */
143 static void __exit_signal(struct task_struct *tsk)
144 {
145         struct signal_struct *sig = tsk->signal;
146         bool group_dead = thread_group_leader(tsk);
147         struct sighand_struct *sighand;
148         struct tty_struct *tty;
149         u64 utime, stime;
150
151         sighand = rcu_dereference_check(tsk->sighand,
152                                         lockdep_tasklist_lock_is_held());
153         spin_lock(&sighand->siglock);
154
155 #ifdef CONFIG_POSIX_TIMERS
156         posix_cpu_timers_exit(tsk);
157         if (group_dead)
158                 posix_cpu_timers_exit_group(tsk);
159 #endif
160
161         if (group_dead) {
162                 tty = sig->tty;
163                 sig->tty = NULL;
164         } else {
165                 /*
166                  * If there is any task waiting for the group exit
167                  * then notify it:
168                  */
169                 if (sig->notify_count > 0 && !--sig->notify_count)
170                         wake_up_process(sig->group_exec_task);
171
172                 if (tsk == sig->curr_target)
173                         sig->curr_target = next_thread(tsk);
174         }
175
176         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
177                               sizeof(unsigned long long));
178
179         /*
180          * Accumulate here the counters for all threads as they die. We could
181          * skip the group leader because it is the last user of signal_struct,
182          * but we want to avoid the race with thread_group_cputime() which can
183          * see the empty ->thread_head list.
184          */
185         task_cputime(tsk, &utime, &stime);
186         write_seqlock(&sig->stats_lock);
187         sig->utime += utime;
188         sig->stime += stime;
189         sig->gtime += task_gtime(tsk);
190         sig->min_flt += tsk->min_flt;
191         sig->maj_flt += tsk->maj_flt;
192         sig->nvcsw += tsk->nvcsw;
193         sig->nivcsw += tsk->nivcsw;
194         sig->inblock += task_io_get_inblock(tsk);
195         sig->oublock += task_io_get_oublock(tsk);
196         task_io_accounting_add(&sig->ioac, &tsk->ioac);
197         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
198         sig->nr_threads--;
199         __unhash_process(tsk, group_dead);
200         write_sequnlock(&sig->stats_lock);
201
202         /*
203          * Do this under ->siglock, we can race with another thread
204          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
205          */
206         flush_sigqueue(&tsk->pending);
207         tsk->sighand = NULL;
208         spin_unlock(&sighand->siglock);
209
210         __cleanup_sighand(sighand);
211         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
212         if (group_dead) {
213                 flush_sigqueue(&sig->shared_pending);
214                 tty_kref_put(tty);
215         }
216 }
217
218 static void delayed_put_task_struct(struct rcu_head *rhp)
219 {
220         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
221
222         kprobe_flush_task(tsk);
223         rethook_flush_task(tsk);
224         perf_event_delayed_put(tsk);
225         trace_sched_process_free(tsk);
226         put_task_struct(tsk);
227 }
228
229 void put_task_struct_rcu_user(struct task_struct *task)
230 {
231         if (refcount_dec_and_test(&task->rcu_users))
232                 call_rcu(&task->rcu, delayed_put_task_struct);
233 }
234
235 void __weak release_thread(struct task_struct *dead_task)
236 {
237 }
238
239 void release_task(struct task_struct *p)
240 {
241         struct task_struct *leader;
242         struct pid *thread_pid;
243         int zap_leader;
244 repeat:
245         /* don't need to get the RCU readlock here - the process is dead and
246          * can't be modifying its own credentials. But shut RCU-lockdep up */
247         rcu_read_lock();
248         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
249         rcu_read_unlock();
250
251         cgroup_release(p);
252
253         write_lock_irq(&tasklist_lock);
254         ptrace_release_task(p);
255         thread_pid = get_pid(p->thread_pid);
256         __exit_signal(p);
257
258         /*
259          * If we are the last non-leader member of the thread
260          * group, and the leader is zombie, then notify the
261          * group leader's parent process. (if it wants notification.)
262          */
263         zap_leader = 0;
264         leader = p->group_leader;
265         if (leader != p && thread_group_empty(leader)
266                         && leader->exit_state == EXIT_ZOMBIE) {
267                 /*
268                  * If we were the last child thread and the leader has
269                  * exited already, and the leader's parent ignores SIGCHLD,
270                  * then we are the one who should release the leader.
271                  */
272                 zap_leader = do_notify_parent(leader, leader->exit_signal);
273                 if (zap_leader)
274                         leader->exit_state = EXIT_DEAD;
275         }
276
277         write_unlock_irq(&tasklist_lock);
278         seccomp_filter_release(p);
279         proc_flush_pid(thread_pid);
280         put_pid(thread_pid);
281         release_thread(p);
282         put_task_struct_rcu_user(p);
283
284         p = leader;
285         if (unlikely(zap_leader))
286                 goto repeat;
287 }
288
289 int rcuwait_wake_up(struct rcuwait *w)
290 {
291         int ret = 0;
292         struct task_struct *task;
293
294         rcu_read_lock();
295
296         /*
297          * Order condition vs @task, such that everything prior to the load
298          * of @task is visible. This is the condition as to why the user called
299          * rcuwait_wake() in the first place. Pairs with set_current_state()
300          * barrier (A) in rcuwait_wait_event().
301          *
302          *    WAIT                WAKE
303          *    [S] tsk = current   [S] cond = true
304          *        MB (A)              MB (B)
305          *    [L] cond            [L] tsk
306          */
307         smp_mb(); /* (B) */
308
309         task = rcu_dereference(w->task);
310         if (task)
311                 ret = wake_up_process(task);
312         rcu_read_unlock();
313
314         return ret;
315 }
316 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
317
318 /*
319  * Determine if a process group is "orphaned", according to the POSIX
320  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
321  * by terminal-generated stop signals.  Newly orphaned process groups are
322  * to receive a SIGHUP and a SIGCONT.
323  *
324  * "I ask you, have you ever known what it is to be an orphan?"
325  */
326 static int will_become_orphaned_pgrp(struct pid *pgrp,
327                                         struct task_struct *ignored_task)
328 {
329         struct task_struct *p;
330
331         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332                 if ((p == ignored_task) ||
333                     (p->exit_state && thread_group_empty(p)) ||
334                     is_global_init(p->real_parent))
335                         continue;
336
337                 if (task_pgrp(p->real_parent) != pgrp &&
338                     task_session(p->real_parent) == task_session(p))
339                         return 0;
340         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
341
342         return 1;
343 }
344
345 int is_current_pgrp_orphaned(void)
346 {
347         int retval;
348
349         read_lock(&tasklist_lock);
350         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
351         read_unlock(&tasklist_lock);
352
353         return retval;
354 }
355
356 static bool has_stopped_jobs(struct pid *pgrp)
357 {
358         struct task_struct *p;
359
360         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
361                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
362                         return true;
363         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
364
365         return false;
366 }
367
368 /*
369  * Check to see if any process groups have become orphaned as
370  * a result of our exiting, and if they have any stopped jobs,
371  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
372  */
373 static void
374 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
375 {
376         struct pid *pgrp = task_pgrp(tsk);
377         struct task_struct *ignored_task = tsk;
378
379         if (!parent)
380                 /* exit: our father is in a different pgrp than
381                  * we are and we were the only connection outside.
382                  */
383                 parent = tsk->real_parent;
384         else
385                 /* reparent: our child is in a different pgrp than
386                  * we are, and it was the only connection outside.
387                  */
388                 ignored_task = NULL;
389
390         if (task_pgrp(parent) != pgrp &&
391             task_session(parent) == task_session(tsk) &&
392             will_become_orphaned_pgrp(pgrp, ignored_task) &&
393             has_stopped_jobs(pgrp)) {
394                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
395                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
396         }
397 }
398
399 static void coredump_task_exit(struct task_struct *tsk)
400 {
401         struct core_state *core_state;
402
403         /*
404          * Serialize with any possible pending coredump.
405          * We must hold siglock around checking core_state
406          * and setting PF_POSTCOREDUMP.  The core-inducing thread
407          * will increment ->nr_threads for each thread in the
408          * group without PF_POSTCOREDUMP set.
409          */
410         spin_lock_irq(&tsk->sighand->siglock);
411         tsk->flags |= PF_POSTCOREDUMP;
412         core_state = tsk->signal->core_state;
413         spin_unlock_irq(&tsk->sighand->siglock);
414
415         /* The vhost_worker does not particpate in coredumps */
416         if (core_state &&
417             ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
418                 struct core_thread self;
419
420                 self.task = current;
421                 if (self.task->flags & PF_SIGNALED)
422                         self.next = xchg(&core_state->dumper.next, &self);
423                 else
424                         self.task = NULL;
425                 /*
426                  * Implies mb(), the result of xchg() must be visible
427                  * to core_state->dumper.
428                  */
429                 if (atomic_dec_and_test(&core_state->nr_threads))
430                         complete(&core_state->startup);
431
432                 for (;;) {
433                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
434                         if (!self.task) /* see coredump_finish() */
435                                 break;
436                         schedule();
437                 }
438                 __set_current_state(TASK_RUNNING);
439         }
440 }
441
442 #ifdef CONFIG_MEMCG
443 /*
444  * A task is exiting.   If it owned this mm, find a new owner for the mm.
445  */
446 void mm_update_next_owner(struct mm_struct *mm)
447 {
448         struct task_struct *c, *g, *p = current;
449
450 retry:
451         /*
452          * If the exiting or execing task is not the owner, it's
453          * someone else's problem.
454          */
455         if (mm->owner != p)
456                 return;
457         /*
458          * The current owner is exiting/execing and there are no other
459          * candidates.  Do not leave the mm pointing to a possibly
460          * freed task structure.
461          */
462         if (atomic_read(&mm->mm_users) <= 1) {
463                 WRITE_ONCE(mm->owner, NULL);
464                 return;
465         }
466
467         read_lock(&tasklist_lock);
468         /*
469          * Search in the children
470          */
471         list_for_each_entry(c, &p->children, sibling) {
472                 if (c->mm == mm)
473                         goto assign_new_owner;
474         }
475
476         /*
477          * Search in the siblings
478          */
479         list_for_each_entry(c, &p->real_parent->children, sibling) {
480                 if (c->mm == mm)
481                         goto assign_new_owner;
482         }
483
484         /*
485          * Search through everything else, we should not get here often.
486          */
487         for_each_process(g) {
488                 if (g->flags & PF_KTHREAD)
489                         continue;
490                 for_each_thread(g, c) {
491                         if (c->mm == mm)
492                                 goto assign_new_owner;
493                         if (c->mm)
494                                 break;
495                 }
496         }
497         read_unlock(&tasklist_lock);
498         /*
499          * We found no owner yet mm_users > 1: this implies that we are
500          * most likely racing with swapoff (try_to_unuse()) or /proc or
501          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
502          */
503         WRITE_ONCE(mm->owner, NULL);
504         return;
505
506 assign_new_owner:
507         BUG_ON(c == p);
508         get_task_struct(c);
509         /*
510          * The task_lock protects c->mm from changing.
511          * We always want mm->owner->mm == mm
512          */
513         task_lock(c);
514         /*
515          * Delay read_unlock() till we have the task_lock()
516          * to ensure that c does not slip away underneath us
517          */
518         read_unlock(&tasklist_lock);
519         if (c->mm != mm) {
520                 task_unlock(c);
521                 put_task_struct(c);
522                 goto retry;
523         }
524         WRITE_ONCE(mm->owner, c);
525         lru_gen_migrate_mm(mm);
526         task_unlock(c);
527         put_task_struct(c);
528 }
529 #endif /* CONFIG_MEMCG */
530
531 /*
532  * Turn us into a lazy TLB process if we
533  * aren't already..
534  */
535 static void exit_mm(void)
536 {
537         struct mm_struct *mm = current->mm;
538
539         exit_mm_release(current, mm);
540         if (!mm)
541                 return;
542         sync_mm_rss(mm);
543         mmap_read_lock(mm);
544         mmgrab_lazy_tlb(mm);
545         BUG_ON(mm != current->active_mm);
546         /* more a memory barrier than a real lock */
547         task_lock(current);
548         /*
549          * When a thread stops operating on an address space, the loop
550          * in membarrier_private_expedited() may not observe that
551          * tsk->mm, and the loop in membarrier_global_expedited() may
552          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
553          * rq->membarrier_state, so those would not issue an IPI.
554          * Membarrier requires a memory barrier after accessing
555          * user-space memory, before clearing tsk->mm or the
556          * rq->membarrier_state.
557          */
558         smp_mb__after_spinlock();
559         local_irq_disable();
560         current->mm = NULL;
561         membarrier_update_current_mm(NULL);
562         enter_lazy_tlb(mm, current);
563         local_irq_enable();
564         task_unlock(current);
565         mmap_read_unlock(mm);
566         mm_update_next_owner(mm);
567         mmput(mm);
568         if (test_thread_flag(TIF_MEMDIE))
569                 exit_oom_victim();
570 }
571
572 static struct task_struct *find_alive_thread(struct task_struct *p)
573 {
574         struct task_struct *t;
575
576         for_each_thread(p, t) {
577                 if (!(t->flags & PF_EXITING))
578                         return t;
579         }
580         return NULL;
581 }
582
583 static struct task_struct *find_child_reaper(struct task_struct *father,
584                                                 struct list_head *dead)
585         __releases(&tasklist_lock)
586         __acquires(&tasklist_lock)
587 {
588         struct pid_namespace *pid_ns = task_active_pid_ns(father);
589         struct task_struct *reaper = pid_ns->child_reaper;
590         struct task_struct *p, *n;
591
592         if (likely(reaper != father))
593                 return reaper;
594
595         reaper = find_alive_thread(father);
596         if (reaper) {
597                 pid_ns->child_reaper = reaper;
598                 return reaper;
599         }
600
601         write_unlock_irq(&tasklist_lock);
602
603         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
604                 list_del_init(&p->ptrace_entry);
605                 release_task(p);
606         }
607
608         zap_pid_ns_processes(pid_ns);
609         write_lock_irq(&tasklist_lock);
610
611         return father;
612 }
613
614 /*
615  * When we die, we re-parent all our children, and try to:
616  * 1. give them to another thread in our thread group, if such a member exists
617  * 2. give it to the first ancestor process which prctl'd itself as a
618  *    child_subreaper for its children (like a service manager)
619  * 3. give it to the init process (PID 1) in our pid namespace
620  */
621 static struct task_struct *find_new_reaper(struct task_struct *father,
622                                            struct task_struct *child_reaper)
623 {
624         struct task_struct *thread, *reaper;
625
626         thread = find_alive_thread(father);
627         if (thread)
628                 return thread;
629
630         if (father->signal->has_child_subreaper) {
631                 unsigned int ns_level = task_pid(father)->level;
632                 /*
633                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
634                  * We can't check reaper != child_reaper to ensure we do not
635                  * cross the namespaces, the exiting parent could be injected
636                  * by setns() + fork().
637                  * We check pid->level, this is slightly more efficient than
638                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
639                  */
640                 for (reaper = father->real_parent;
641                      task_pid(reaper)->level == ns_level;
642                      reaper = reaper->real_parent) {
643                         if (reaper == &init_task)
644                                 break;
645                         if (!reaper->signal->is_child_subreaper)
646                                 continue;
647                         thread = find_alive_thread(reaper);
648                         if (thread)
649                                 return thread;
650                 }
651         }
652
653         return child_reaper;
654 }
655
656 /*
657 * Any that need to be release_task'd are put on the @dead list.
658  */
659 static void reparent_leader(struct task_struct *father, struct task_struct *p,
660                                 struct list_head *dead)
661 {
662         if (unlikely(p->exit_state == EXIT_DEAD))
663                 return;
664
665         /* We don't want people slaying init. */
666         p->exit_signal = SIGCHLD;
667
668         /* If it has exited notify the new parent about this child's death. */
669         if (!p->ptrace &&
670             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
671                 if (do_notify_parent(p, p->exit_signal)) {
672                         p->exit_state = EXIT_DEAD;
673                         list_add(&p->ptrace_entry, dead);
674                 }
675         }
676
677         kill_orphaned_pgrp(p, father);
678 }
679
680 /*
681  * This does two things:
682  *
683  * A.  Make init inherit all the child processes
684  * B.  Check to see if any process groups have become orphaned
685  *      as a result of our exiting, and if they have any stopped
686  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
687  */
688 static void forget_original_parent(struct task_struct *father,
689                                         struct list_head *dead)
690 {
691         struct task_struct *p, *t, *reaper;
692
693         if (unlikely(!list_empty(&father->ptraced)))
694                 exit_ptrace(father, dead);
695
696         /* Can drop and reacquire tasklist_lock */
697         reaper = find_child_reaper(father, dead);
698         if (list_empty(&father->children))
699                 return;
700
701         reaper = find_new_reaper(father, reaper);
702         list_for_each_entry(p, &father->children, sibling) {
703                 for_each_thread(p, t) {
704                         RCU_INIT_POINTER(t->real_parent, reaper);
705                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
706                         if (likely(!t->ptrace))
707                                 t->parent = t->real_parent;
708                         if (t->pdeath_signal)
709                                 group_send_sig_info(t->pdeath_signal,
710                                                     SEND_SIG_NOINFO, t,
711                                                     PIDTYPE_TGID);
712                 }
713                 /*
714                  * If this is a threaded reparent there is no need to
715                  * notify anyone anything has happened.
716                  */
717                 if (!same_thread_group(reaper, father))
718                         reparent_leader(father, p, dead);
719         }
720         list_splice_tail_init(&father->children, &reaper->children);
721 }
722
723 /*
724  * Send signals to all our closest relatives so that they know
725  * to properly mourn us..
726  */
727 static void exit_notify(struct task_struct *tsk, int group_dead)
728 {
729         bool autoreap;
730         struct task_struct *p, *n;
731         LIST_HEAD(dead);
732
733         write_lock_irq(&tasklist_lock);
734         forget_original_parent(tsk, &dead);
735
736         if (group_dead)
737                 kill_orphaned_pgrp(tsk->group_leader, NULL);
738
739         tsk->exit_state = EXIT_ZOMBIE;
740         if (unlikely(tsk->ptrace)) {
741                 int sig = thread_group_leader(tsk) &&
742                                 thread_group_empty(tsk) &&
743                                 !ptrace_reparented(tsk) ?
744                         tsk->exit_signal : SIGCHLD;
745                 autoreap = do_notify_parent(tsk, sig);
746         } else if (thread_group_leader(tsk)) {
747                 autoreap = thread_group_empty(tsk) &&
748                         do_notify_parent(tsk, tsk->exit_signal);
749         } else {
750                 autoreap = true;
751         }
752
753         if (autoreap) {
754                 tsk->exit_state = EXIT_DEAD;
755                 list_add(&tsk->ptrace_entry, &dead);
756         }
757
758         /* mt-exec, de_thread() is waiting for group leader */
759         if (unlikely(tsk->signal->notify_count < 0))
760                 wake_up_process(tsk->signal->group_exec_task);
761         write_unlock_irq(&tasklist_lock);
762
763         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
764                 list_del_init(&p->ptrace_entry);
765                 release_task(p);
766         }
767 }
768
769 #ifdef CONFIG_DEBUG_STACK_USAGE
770 static void check_stack_usage(void)
771 {
772         static DEFINE_SPINLOCK(low_water_lock);
773         static int lowest_to_date = THREAD_SIZE;
774         unsigned long free;
775
776         free = stack_not_used(current);
777
778         if (free >= lowest_to_date)
779                 return;
780
781         spin_lock(&low_water_lock);
782         if (free < lowest_to_date) {
783                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
784                         current->comm, task_pid_nr(current), free);
785                 lowest_to_date = free;
786         }
787         spin_unlock(&low_water_lock);
788 }
789 #else
790 static inline void check_stack_usage(void) {}
791 #endif
792
793 static void synchronize_group_exit(struct task_struct *tsk, long code)
794 {
795         struct sighand_struct *sighand = tsk->sighand;
796         struct signal_struct *signal = tsk->signal;
797
798         spin_lock_irq(&sighand->siglock);
799         signal->quick_threads--;
800         if ((signal->quick_threads == 0) &&
801             !(signal->flags & SIGNAL_GROUP_EXIT)) {
802                 signal->flags = SIGNAL_GROUP_EXIT;
803                 signal->group_exit_code = code;
804                 signal->group_stop_count = 0;
805         }
806         spin_unlock_irq(&sighand->siglock);
807 }
808
809 void __noreturn do_exit(long code)
810 {
811         struct task_struct *tsk = current;
812         int group_dead;
813
814         WARN_ON(irqs_disabled());
815
816         synchronize_group_exit(tsk, code);
817
818         WARN_ON(tsk->plug);
819
820         kcov_task_exit(tsk);
821         kmsan_task_exit(tsk);
822
823         coredump_task_exit(tsk);
824         ptrace_event(PTRACE_EVENT_EXIT, code);
825         user_events_exit(tsk);
826
827         io_uring_files_cancel();
828         exit_signals(tsk);  /* sets PF_EXITING */
829
830         /* sync mm's RSS info before statistics gathering */
831         if (tsk->mm)
832                 sync_mm_rss(tsk->mm);
833         acct_update_integrals(tsk);
834         group_dead = atomic_dec_and_test(&tsk->signal->live);
835         if (group_dead) {
836                 /*
837                  * If the last thread of global init has exited, panic
838                  * immediately to get a useable coredump.
839                  */
840                 if (unlikely(is_global_init(tsk)))
841                         panic("Attempted to kill init! exitcode=0x%08x\n",
842                                 tsk->signal->group_exit_code ?: (int)code);
843
844 #ifdef CONFIG_POSIX_TIMERS
845                 hrtimer_cancel(&tsk->signal->real_timer);
846                 exit_itimers(tsk);
847 #endif
848                 if (tsk->mm)
849                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
850         }
851         acct_collect(code, group_dead);
852         if (group_dead)
853                 tty_audit_exit();
854         audit_free(tsk);
855
856         tsk->exit_code = code;
857         taskstats_exit(tsk, group_dead);
858
859         exit_mm();
860
861         if (group_dead)
862                 acct_process();
863         trace_sched_process_exit(tsk);
864
865         exit_sem(tsk);
866         exit_shm(tsk);
867         exit_files(tsk);
868         exit_fs(tsk);
869         if (group_dead)
870                 disassociate_ctty(1);
871         exit_task_namespaces(tsk);
872         exit_task_work(tsk);
873         exit_thread(tsk);
874
875         /*
876          * Flush inherited counters to the parent - before the parent
877          * gets woken up by child-exit notifications.
878          *
879          * because of cgroup mode, must be called before cgroup_exit()
880          */
881         perf_event_exit_task(tsk);
882
883         sched_autogroup_exit_task(tsk);
884         cgroup_exit(tsk);
885
886         /*
887          * FIXME: do that only when needed, using sched_exit tracepoint
888          */
889         flush_ptrace_hw_breakpoint(tsk);
890
891         exit_tasks_rcu_start();
892         exit_notify(tsk, group_dead);
893         proc_exit_connector(tsk);
894         mpol_put_task_policy(tsk);
895 #ifdef CONFIG_FUTEX
896         if (unlikely(current->pi_state_cache))
897                 kfree(current->pi_state_cache);
898 #endif
899         /*
900          * Make sure we are holding no locks:
901          */
902         debug_check_no_locks_held();
903
904         if (tsk->io_context)
905                 exit_io_context(tsk);
906
907         if (tsk->splice_pipe)
908                 free_pipe_info(tsk->splice_pipe);
909
910         if (tsk->task_frag.page)
911                 put_page(tsk->task_frag.page);
912
913         exit_task_stack_account(tsk);
914
915         check_stack_usage();
916         preempt_disable();
917         if (tsk->nr_dirtied)
918                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
919         exit_rcu();
920         exit_tasks_rcu_finish();
921
922         lockdep_free_task(tsk);
923         do_task_dead();
924 }
925
926 void __noreturn make_task_dead(int signr)
927 {
928         /*
929          * Take the task off the cpu after something catastrophic has
930          * happened.
931          *
932          * We can get here from a kernel oops, sometimes with preemption off.
933          * Start by checking for critical errors.
934          * Then fix up important state like USER_DS and preemption.
935          * Then do everything else.
936          */
937         struct task_struct *tsk = current;
938         unsigned int limit;
939
940         if (unlikely(in_interrupt()))
941                 panic("Aiee, killing interrupt handler!");
942         if (unlikely(!tsk->pid))
943                 panic("Attempted to kill the idle task!");
944
945         if (unlikely(irqs_disabled())) {
946                 pr_info("note: %s[%d] exited with irqs disabled\n",
947                         current->comm, task_pid_nr(current));
948                 local_irq_enable();
949         }
950         if (unlikely(in_atomic())) {
951                 pr_info("note: %s[%d] exited with preempt_count %d\n",
952                         current->comm, task_pid_nr(current),
953                         preempt_count());
954                 preempt_count_set(PREEMPT_ENABLED);
955         }
956
957         /*
958          * Every time the system oopses, if the oops happens while a reference
959          * to an object was held, the reference leaks.
960          * If the oops doesn't also leak memory, repeated oopsing can cause
961          * reference counters to wrap around (if they're not using refcount_t).
962          * This means that repeated oopsing can make unexploitable-looking bugs
963          * exploitable through repeated oopsing.
964          * To make sure this can't happen, place an upper bound on how often the
965          * kernel may oops without panic().
966          */
967         limit = READ_ONCE(oops_limit);
968         if (atomic_inc_return(&oops_count) >= limit && limit)
969                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
970
971         /*
972          * We're taking recursive faults here in make_task_dead. Safest is to just
973          * leave this task alone and wait for reboot.
974          */
975         if (unlikely(tsk->flags & PF_EXITING)) {
976                 pr_alert("Fixing recursive fault but reboot is needed!\n");
977                 futex_exit_recursive(tsk);
978                 tsk->exit_state = EXIT_DEAD;
979                 refcount_inc(&tsk->rcu_users);
980                 do_task_dead();
981         }
982
983         do_exit(signr);
984 }
985
986 SYSCALL_DEFINE1(exit, int, error_code)
987 {
988         do_exit((error_code&0xff)<<8);
989 }
990
991 /*
992  * Take down every thread in the group.  This is called by fatal signals
993  * as well as by sys_exit_group (below).
994  */
995 void __noreturn
996 do_group_exit(int exit_code)
997 {
998         struct signal_struct *sig = current->signal;
999
1000         if (sig->flags & SIGNAL_GROUP_EXIT)
1001                 exit_code = sig->group_exit_code;
1002         else if (sig->group_exec_task)
1003                 exit_code = 0;
1004         else {
1005                 struct sighand_struct *const sighand = current->sighand;
1006
1007                 spin_lock_irq(&sighand->siglock);
1008                 if (sig->flags & SIGNAL_GROUP_EXIT)
1009                         /* Another thread got here before we took the lock.  */
1010                         exit_code = sig->group_exit_code;
1011                 else if (sig->group_exec_task)
1012                         exit_code = 0;
1013                 else {
1014                         sig->group_exit_code = exit_code;
1015                         sig->flags = SIGNAL_GROUP_EXIT;
1016                         zap_other_threads(current);
1017                 }
1018                 spin_unlock_irq(&sighand->siglock);
1019         }
1020
1021         do_exit(exit_code);
1022         /* NOTREACHED */
1023 }
1024
1025 /*
1026  * this kills every thread in the thread group. Note that any externally
1027  * wait4()-ing process will get the correct exit code - even if this
1028  * thread is not the thread group leader.
1029  */
1030 SYSCALL_DEFINE1(exit_group, int, error_code)
1031 {
1032         do_group_exit((error_code & 0xff) << 8);
1033         /* NOTREACHED */
1034         return 0;
1035 }
1036
1037 struct waitid_info {
1038         pid_t pid;
1039         uid_t uid;
1040         int status;
1041         int cause;
1042 };
1043
1044 struct wait_opts {
1045         enum pid_type           wo_type;
1046         int                     wo_flags;
1047         struct pid              *wo_pid;
1048
1049         struct waitid_info      *wo_info;
1050         int                     wo_stat;
1051         struct rusage           *wo_rusage;
1052
1053         wait_queue_entry_t              child_wait;
1054         int                     notask_error;
1055 };
1056
1057 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1058 {
1059         return  wo->wo_type == PIDTYPE_MAX ||
1060                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1061 }
1062
1063 static int
1064 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1065 {
1066         if (!eligible_pid(wo, p))
1067                 return 0;
1068
1069         /*
1070          * Wait for all children (clone and not) if __WALL is set or
1071          * if it is traced by us.
1072          */
1073         if (ptrace || (wo->wo_flags & __WALL))
1074                 return 1;
1075
1076         /*
1077          * Otherwise, wait for clone children *only* if __WCLONE is set;
1078          * otherwise, wait for non-clone children *only*.
1079          *
1080          * Note: a "clone" child here is one that reports to its parent
1081          * using a signal other than SIGCHLD, or a non-leader thread which
1082          * we can only see if it is traced by us.
1083          */
1084         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1085                 return 0;
1086
1087         return 1;
1088 }
1089
1090 /*
1091  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1092  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1093  * the lock and this task is uninteresting.  If we return nonzero, we have
1094  * released the lock and the system call should return.
1095  */
1096 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1097 {
1098         int state, status;
1099         pid_t pid = task_pid_vnr(p);
1100         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1101         struct waitid_info *infop;
1102
1103         if (!likely(wo->wo_flags & WEXITED))
1104                 return 0;
1105
1106         if (unlikely(wo->wo_flags & WNOWAIT)) {
1107                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1108                         ? p->signal->group_exit_code : p->exit_code;
1109                 get_task_struct(p);
1110                 read_unlock(&tasklist_lock);
1111                 sched_annotate_sleep();
1112                 if (wo->wo_rusage)
1113                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1114                 put_task_struct(p);
1115                 goto out_info;
1116         }
1117         /*
1118          * Move the task's state to DEAD/TRACE, only one thread can do this.
1119          */
1120         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1121                 EXIT_TRACE : EXIT_DEAD;
1122         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1123                 return 0;
1124         /*
1125          * We own this thread, nobody else can reap it.
1126          */
1127         read_unlock(&tasklist_lock);
1128         sched_annotate_sleep();
1129
1130         /*
1131          * Check thread_group_leader() to exclude the traced sub-threads.
1132          */
1133         if (state == EXIT_DEAD && thread_group_leader(p)) {
1134                 struct signal_struct *sig = p->signal;
1135                 struct signal_struct *psig = current->signal;
1136                 unsigned long maxrss;
1137                 u64 tgutime, tgstime;
1138
1139                 /*
1140                  * The resource counters for the group leader are in its
1141                  * own task_struct.  Those for dead threads in the group
1142                  * are in its signal_struct, as are those for the child
1143                  * processes it has previously reaped.  All these
1144                  * accumulate in the parent's signal_struct c* fields.
1145                  *
1146                  * We don't bother to take a lock here to protect these
1147                  * p->signal fields because the whole thread group is dead
1148                  * and nobody can change them.
1149                  *
1150                  * psig->stats_lock also protects us from our sub-threads
1151                  * which can reap other children at the same time. Until
1152                  * we change k_getrusage()-like users to rely on this lock
1153                  * we have to take ->siglock as well.
1154                  *
1155                  * We use thread_group_cputime_adjusted() to get times for
1156                  * the thread group, which consolidates times for all threads
1157                  * in the group including the group leader.
1158                  */
1159                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1160                 spin_lock_irq(&current->sighand->siglock);
1161                 write_seqlock(&psig->stats_lock);
1162                 psig->cutime += tgutime + sig->cutime;
1163                 psig->cstime += tgstime + sig->cstime;
1164                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1165                 psig->cmin_flt +=
1166                         p->min_flt + sig->min_flt + sig->cmin_flt;
1167                 psig->cmaj_flt +=
1168                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1169                 psig->cnvcsw +=
1170                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1171                 psig->cnivcsw +=
1172                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1173                 psig->cinblock +=
1174                         task_io_get_inblock(p) +
1175                         sig->inblock + sig->cinblock;
1176                 psig->coublock +=
1177                         task_io_get_oublock(p) +
1178                         sig->oublock + sig->coublock;
1179                 maxrss = max(sig->maxrss, sig->cmaxrss);
1180                 if (psig->cmaxrss < maxrss)
1181                         psig->cmaxrss = maxrss;
1182                 task_io_accounting_add(&psig->ioac, &p->ioac);
1183                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1184                 write_sequnlock(&psig->stats_lock);
1185                 spin_unlock_irq(&current->sighand->siglock);
1186         }
1187
1188         if (wo->wo_rusage)
1189                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1190         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1191                 ? p->signal->group_exit_code : p->exit_code;
1192         wo->wo_stat = status;
1193
1194         if (state == EXIT_TRACE) {
1195                 write_lock_irq(&tasklist_lock);
1196                 /* We dropped tasklist, ptracer could die and untrace */
1197                 ptrace_unlink(p);
1198
1199                 /* If parent wants a zombie, don't release it now */
1200                 state = EXIT_ZOMBIE;
1201                 if (do_notify_parent(p, p->exit_signal))
1202                         state = EXIT_DEAD;
1203                 p->exit_state = state;
1204                 write_unlock_irq(&tasklist_lock);
1205         }
1206         if (state == EXIT_DEAD)
1207                 release_task(p);
1208
1209 out_info:
1210         infop = wo->wo_info;
1211         if (infop) {
1212                 if ((status & 0x7f) == 0) {
1213                         infop->cause = CLD_EXITED;
1214                         infop->status = status >> 8;
1215                 } else {
1216                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1217                         infop->status = status & 0x7f;
1218                 }
1219                 infop->pid = pid;
1220                 infop->uid = uid;
1221         }
1222
1223         return pid;
1224 }
1225
1226 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1227 {
1228         if (ptrace) {
1229                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1230                         return &p->exit_code;
1231         } else {
1232                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1233                         return &p->signal->group_exit_code;
1234         }
1235         return NULL;
1236 }
1237
1238 /**
1239  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1240  * @wo: wait options
1241  * @ptrace: is the wait for ptrace
1242  * @p: task to wait for
1243  *
1244  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1245  *
1246  * CONTEXT:
1247  * read_lock(&tasklist_lock), which is released if return value is
1248  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1249  *
1250  * RETURNS:
1251  * 0 if wait condition didn't exist and search for other wait conditions
1252  * should continue.  Non-zero return, -errno on failure and @p's pid on
1253  * success, implies that tasklist_lock is released and wait condition
1254  * search should terminate.
1255  */
1256 static int wait_task_stopped(struct wait_opts *wo,
1257                                 int ptrace, struct task_struct *p)
1258 {
1259         struct waitid_info *infop;
1260         int exit_code, *p_code, why;
1261         uid_t uid = 0; /* unneeded, required by compiler */
1262         pid_t pid;
1263
1264         /*
1265          * Traditionally we see ptrace'd stopped tasks regardless of options.
1266          */
1267         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1268                 return 0;
1269
1270         if (!task_stopped_code(p, ptrace))
1271                 return 0;
1272
1273         exit_code = 0;
1274         spin_lock_irq(&p->sighand->siglock);
1275
1276         p_code = task_stopped_code(p, ptrace);
1277         if (unlikely(!p_code))
1278                 goto unlock_sig;
1279
1280         exit_code = *p_code;
1281         if (!exit_code)
1282                 goto unlock_sig;
1283
1284         if (!unlikely(wo->wo_flags & WNOWAIT))
1285                 *p_code = 0;
1286
1287         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1288 unlock_sig:
1289         spin_unlock_irq(&p->sighand->siglock);
1290         if (!exit_code)
1291                 return 0;
1292
1293         /*
1294          * Now we are pretty sure this task is interesting.
1295          * Make sure it doesn't get reaped out from under us while we
1296          * give up the lock and then examine it below.  We don't want to
1297          * keep holding onto the tasklist_lock while we call getrusage and
1298          * possibly take page faults for user memory.
1299          */
1300         get_task_struct(p);
1301         pid = task_pid_vnr(p);
1302         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1303         read_unlock(&tasklist_lock);
1304         sched_annotate_sleep();
1305         if (wo->wo_rusage)
1306                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1307         put_task_struct(p);
1308
1309         if (likely(!(wo->wo_flags & WNOWAIT)))
1310                 wo->wo_stat = (exit_code << 8) | 0x7f;
1311
1312         infop = wo->wo_info;
1313         if (infop) {
1314                 infop->cause = why;
1315                 infop->status = exit_code;
1316                 infop->pid = pid;
1317                 infop->uid = uid;
1318         }
1319         return pid;
1320 }
1321
1322 /*
1323  * Handle do_wait work for one task in a live, non-stopped state.
1324  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1325  * the lock and this task is uninteresting.  If we return nonzero, we have
1326  * released the lock and the system call should return.
1327  */
1328 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1329 {
1330         struct waitid_info *infop;
1331         pid_t pid;
1332         uid_t uid;
1333
1334         if (!unlikely(wo->wo_flags & WCONTINUED))
1335                 return 0;
1336
1337         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1338                 return 0;
1339
1340         spin_lock_irq(&p->sighand->siglock);
1341         /* Re-check with the lock held.  */
1342         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1343                 spin_unlock_irq(&p->sighand->siglock);
1344                 return 0;
1345         }
1346         if (!unlikely(wo->wo_flags & WNOWAIT))
1347                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1348         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1349         spin_unlock_irq(&p->sighand->siglock);
1350
1351         pid = task_pid_vnr(p);
1352         get_task_struct(p);
1353         read_unlock(&tasklist_lock);
1354         sched_annotate_sleep();
1355         if (wo->wo_rusage)
1356                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1357         put_task_struct(p);
1358
1359         infop = wo->wo_info;
1360         if (!infop) {
1361                 wo->wo_stat = 0xffff;
1362         } else {
1363                 infop->cause = CLD_CONTINUED;
1364                 infop->pid = pid;
1365                 infop->uid = uid;
1366                 infop->status = SIGCONT;
1367         }
1368         return pid;
1369 }
1370
1371 /*
1372  * Consider @p for a wait by @parent.
1373  *
1374  * -ECHILD should be in ->notask_error before the first call.
1375  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1376  * Returns zero if the search for a child should continue;
1377  * then ->notask_error is 0 if @p is an eligible child,
1378  * or still -ECHILD.
1379  */
1380 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1381                                 struct task_struct *p)
1382 {
1383         /*
1384          * We can race with wait_task_zombie() from another thread.
1385          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1386          * can't confuse the checks below.
1387          */
1388         int exit_state = READ_ONCE(p->exit_state);
1389         int ret;
1390
1391         if (unlikely(exit_state == EXIT_DEAD))
1392                 return 0;
1393
1394         ret = eligible_child(wo, ptrace, p);
1395         if (!ret)
1396                 return ret;
1397
1398         if (unlikely(exit_state == EXIT_TRACE)) {
1399                 /*
1400                  * ptrace == 0 means we are the natural parent. In this case
1401                  * we should clear notask_error, debugger will notify us.
1402                  */
1403                 if (likely(!ptrace))
1404                         wo->notask_error = 0;
1405                 return 0;
1406         }
1407
1408         if (likely(!ptrace) && unlikely(p->ptrace)) {
1409                 /*
1410                  * If it is traced by its real parent's group, just pretend
1411                  * the caller is ptrace_do_wait() and reap this child if it
1412                  * is zombie.
1413                  *
1414                  * This also hides group stop state from real parent; otherwise
1415                  * a single stop can be reported twice as group and ptrace stop.
1416                  * If a ptracer wants to distinguish these two events for its
1417                  * own children it should create a separate process which takes
1418                  * the role of real parent.
1419                  */
1420                 if (!ptrace_reparented(p))
1421                         ptrace = 1;
1422         }
1423
1424         /* slay zombie? */
1425         if (exit_state == EXIT_ZOMBIE) {
1426                 /* we don't reap group leaders with subthreads */
1427                 if (!delay_group_leader(p)) {
1428                         /*
1429                          * A zombie ptracee is only visible to its ptracer.
1430                          * Notification and reaping will be cascaded to the
1431                          * real parent when the ptracer detaches.
1432                          */
1433                         if (unlikely(ptrace) || likely(!p->ptrace))
1434                                 return wait_task_zombie(wo, p);
1435                 }
1436
1437                 /*
1438                  * Allow access to stopped/continued state via zombie by
1439                  * falling through.  Clearing of notask_error is complex.
1440                  *
1441                  * When !@ptrace:
1442                  *
1443                  * If WEXITED is set, notask_error should naturally be
1444                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1445                  * so, if there are live subthreads, there are events to
1446                  * wait for.  If all subthreads are dead, it's still safe
1447                  * to clear - this function will be called again in finite
1448                  * amount time once all the subthreads are released and
1449                  * will then return without clearing.
1450                  *
1451                  * When @ptrace:
1452                  *
1453                  * Stopped state is per-task and thus can't change once the
1454                  * target task dies.  Only continued and exited can happen.
1455                  * Clear notask_error if WCONTINUED | WEXITED.
1456                  */
1457                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1458                         wo->notask_error = 0;
1459         } else {
1460                 /*
1461                  * @p is alive and it's gonna stop, continue or exit, so
1462                  * there always is something to wait for.
1463                  */
1464                 wo->notask_error = 0;
1465         }
1466
1467         /*
1468          * Wait for stopped.  Depending on @ptrace, different stopped state
1469          * is used and the two don't interact with each other.
1470          */
1471         ret = wait_task_stopped(wo, ptrace, p);
1472         if (ret)
1473                 return ret;
1474
1475         /*
1476          * Wait for continued.  There's only one continued state and the
1477          * ptracer can consume it which can confuse the real parent.  Don't
1478          * use WCONTINUED from ptracer.  You don't need or want it.
1479          */
1480         return wait_task_continued(wo, p);
1481 }
1482
1483 /*
1484  * Do the work of do_wait() for one thread in the group, @tsk.
1485  *
1486  * -ECHILD should be in ->notask_error before the first call.
1487  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1488  * Returns zero if the search for a child should continue; then
1489  * ->notask_error is 0 if there were any eligible children,
1490  * or still -ECHILD.
1491  */
1492 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1493 {
1494         struct task_struct *p;
1495
1496         list_for_each_entry(p, &tsk->children, sibling) {
1497                 int ret = wait_consider_task(wo, 0, p);
1498
1499                 if (ret)
1500                         return ret;
1501         }
1502
1503         return 0;
1504 }
1505
1506 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1507 {
1508         struct task_struct *p;
1509
1510         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1511                 int ret = wait_consider_task(wo, 1, p);
1512
1513                 if (ret)
1514                         return ret;
1515         }
1516
1517         return 0;
1518 }
1519
1520 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1521                                 int sync, void *key)
1522 {
1523         struct wait_opts *wo = container_of(wait, struct wait_opts,
1524                                                 child_wait);
1525         struct task_struct *p = key;
1526
1527         if (!eligible_pid(wo, p))
1528                 return 0;
1529
1530         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1531                 return 0;
1532
1533         return default_wake_function(wait, mode, sync, key);
1534 }
1535
1536 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1537 {
1538         __wake_up_sync_key(&parent->signal->wait_chldexit,
1539                            TASK_INTERRUPTIBLE, p);
1540 }
1541
1542 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1543                                  struct task_struct *target)
1544 {
1545         struct task_struct *parent =
1546                 !ptrace ? target->real_parent : target->parent;
1547
1548         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1549                                      same_thread_group(current, parent));
1550 }
1551
1552 /*
1553  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1554  * and tracee lists to find the target task.
1555  */
1556 static int do_wait_pid(struct wait_opts *wo)
1557 {
1558         bool ptrace;
1559         struct task_struct *target;
1560         int retval;
1561
1562         ptrace = false;
1563         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1564         if (target && is_effectively_child(wo, ptrace, target)) {
1565                 retval = wait_consider_task(wo, ptrace, target);
1566                 if (retval)
1567                         return retval;
1568         }
1569
1570         ptrace = true;
1571         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1572         if (target && target->ptrace &&
1573             is_effectively_child(wo, ptrace, target)) {
1574                 retval = wait_consider_task(wo, ptrace, target);
1575                 if (retval)
1576                         return retval;
1577         }
1578
1579         return 0;
1580 }
1581
1582 static long do_wait(struct wait_opts *wo)
1583 {
1584         int retval;
1585
1586         trace_sched_process_wait(wo->wo_pid);
1587
1588         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1589         wo->child_wait.private = current;
1590         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1591 repeat:
1592         /*
1593          * If there is nothing that can match our criteria, just get out.
1594          * We will clear ->notask_error to zero if we see any child that
1595          * might later match our criteria, even if we are not able to reap
1596          * it yet.
1597          */
1598         wo->notask_error = -ECHILD;
1599         if ((wo->wo_type < PIDTYPE_MAX) &&
1600            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1601                 goto notask;
1602
1603         set_current_state(TASK_INTERRUPTIBLE);
1604         read_lock(&tasklist_lock);
1605
1606         if (wo->wo_type == PIDTYPE_PID) {
1607                 retval = do_wait_pid(wo);
1608                 if (retval)
1609                         goto end;
1610         } else {
1611                 struct task_struct *tsk = current;
1612
1613                 do {
1614                         retval = do_wait_thread(wo, tsk);
1615                         if (retval)
1616                                 goto end;
1617
1618                         retval = ptrace_do_wait(wo, tsk);
1619                         if (retval)
1620                                 goto end;
1621
1622                         if (wo->wo_flags & __WNOTHREAD)
1623                                 break;
1624                 } while_each_thread(current, tsk);
1625         }
1626         read_unlock(&tasklist_lock);
1627
1628 notask:
1629         retval = wo->notask_error;
1630         if (!retval && !(wo->wo_flags & WNOHANG)) {
1631                 retval = -ERESTARTSYS;
1632                 if (!signal_pending(current)) {
1633                         schedule();
1634                         goto repeat;
1635                 }
1636         }
1637 end:
1638         __set_current_state(TASK_RUNNING);
1639         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1640         return retval;
1641 }
1642
1643 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1644                           int options, struct rusage *ru)
1645 {
1646         struct wait_opts wo;
1647         struct pid *pid = NULL;
1648         enum pid_type type;
1649         long ret;
1650         unsigned int f_flags = 0;
1651
1652         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1653                         __WNOTHREAD|__WCLONE|__WALL))
1654                 return -EINVAL;
1655         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1656                 return -EINVAL;
1657
1658         switch (which) {
1659         case P_ALL:
1660                 type = PIDTYPE_MAX;
1661                 break;
1662         case P_PID:
1663                 type = PIDTYPE_PID;
1664                 if (upid <= 0)
1665                         return -EINVAL;
1666
1667                 pid = find_get_pid(upid);
1668                 break;
1669         case P_PGID:
1670                 type = PIDTYPE_PGID;
1671                 if (upid < 0)
1672                         return -EINVAL;
1673
1674                 if (upid)
1675                         pid = find_get_pid(upid);
1676                 else
1677                         pid = get_task_pid(current, PIDTYPE_PGID);
1678                 break;
1679         case P_PIDFD:
1680                 type = PIDTYPE_PID;
1681                 if (upid < 0)
1682                         return -EINVAL;
1683
1684                 pid = pidfd_get_pid(upid, &f_flags);
1685                 if (IS_ERR(pid))
1686                         return PTR_ERR(pid);
1687
1688                 break;
1689         default:
1690                 return -EINVAL;
1691         }
1692
1693         wo.wo_type      = type;
1694         wo.wo_pid       = pid;
1695         wo.wo_flags     = options;
1696         wo.wo_info      = infop;
1697         wo.wo_rusage    = ru;
1698         if (f_flags & O_NONBLOCK)
1699                 wo.wo_flags |= WNOHANG;
1700
1701         ret = do_wait(&wo);
1702         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1703                 ret = -EAGAIN;
1704
1705         put_pid(pid);
1706         return ret;
1707 }
1708
1709 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1710                 infop, int, options, struct rusage __user *, ru)
1711 {
1712         struct rusage r;
1713         struct waitid_info info = {.status = 0};
1714         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1715         int signo = 0;
1716
1717         if (err > 0) {
1718                 signo = SIGCHLD;
1719                 err = 0;
1720                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1721                         return -EFAULT;
1722         }
1723         if (!infop)
1724                 return err;
1725
1726         if (!user_write_access_begin(infop, sizeof(*infop)))
1727                 return -EFAULT;
1728
1729         unsafe_put_user(signo, &infop->si_signo, Efault);
1730         unsafe_put_user(0, &infop->si_errno, Efault);
1731         unsafe_put_user(info.cause, &infop->si_code, Efault);
1732         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1733         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1734         unsafe_put_user(info.status, &infop->si_status, Efault);
1735         user_write_access_end();
1736         return err;
1737 Efault:
1738         user_write_access_end();
1739         return -EFAULT;
1740 }
1741
1742 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1743                   struct rusage *ru)
1744 {
1745         struct wait_opts wo;
1746         struct pid *pid = NULL;
1747         enum pid_type type;
1748         long ret;
1749
1750         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1751                         __WNOTHREAD|__WCLONE|__WALL))
1752                 return -EINVAL;
1753
1754         /* -INT_MIN is not defined */
1755         if (upid == INT_MIN)
1756                 return -ESRCH;
1757
1758         if (upid == -1)
1759                 type = PIDTYPE_MAX;
1760         else if (upid < 0) {
1761                 type = PIDTYPE_PGID;
1762                 pid = find_get_pid(-upid);
1763         } else if (upid == 0) {
1764                 type = PIDTYPE_PGID;
1765                 pid = get_task_pid(current, PIDTYPE_PGID);
1766         } else /* upid > 0 */ {
1767                 type = PIDTYPE_PID;
1768                 pid = find_get_pid(upid);
1769         }
1770
1771         wo.wo_type      = type;
1772         wo.wo_pid       = pid;
1773         wo.wo_flags     = options | WEXITED;
1774         wo.wo_info      = NULL;
1775         wo.wo_stat      = 0;
1776         wo.wo_rusage    = ru;
1777         ret = do_wait(&wo);
1778         put_pid(pid);
1779         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1780                 ret = -EFAULT;
1781
1782         return ret;
1783 }
1784
1785 int kernel_wait(pid_t pid, int *stat)
1786 {
1787         struct wait_opts wo = {
1788                 .wo_type        = PIDTYPE_PID,
1789                 .wo_pid         = find_get_pid(pid),
1790                 .wo_flags       = WEXITED,
1791         };
1792         int ret;
1793
1794         ret = do_wait(&wo);
1795         if (ret > 0 && wo.wo_stat)
1796                 *stat = wo.wo_stat;
1797         put_pid(wo.wo_pid);
1798         return ret;
1799 }
1800
1801 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1802                 int, options, struct rusage __user *, ru)
1803 {
1804         struct rusage r;
1805         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1806
1807         if (err > 0) {
1808                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1809                         return -EFAULT;
1810         }
1811         return err;
1812 }
1813
1814 #ifdef __ARCH_WANT_SYS_WAITPID
1815
1816 /*
1817  * sys_waitpid() remains for compatibility. waitpid() should be
1818  * implemented by calling sys_wait4() from libc.a.
1819  */
1820 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1821 {
1822         return kernel_wait4(pid, stat_addr, options, NULL);
1823 }
1824
1825 #endif
1826
1827 #ifdef CONFIG_COMPAT
1828 COMPAT_SYSCALL_DEFINE4(wait4,
1829         compat_pid_t, pid,
1830         compat_uint_t __user *, stat_addr,
1831         int, options,
1832         struct compat_rusage __user *, ru)
1833 {
1834         struct rusage r;
1835         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1836         if (err > 0) {
1837                 if (ru && put_compat_rusage(&r, ru))
1838                         return -EFAULT;
1839         }
1840         return err;
1841 }
1842
1843 COMPAT_SYSCALL_DEFINE5(waitid,
1844                 int, which, compat_pid_t, pid,
1845                 struct compat_siginfo __user *, infop, int, options,
1846                 struct compat_rusage __user *, uru)
1847 {
1848         struct rusage ru;
1849         struct waitid_info info = {.status = 0};
1850         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1851         int signo = 0;
1852         if (err > 0) {
1853                 signo = SIGCHLD;
1854                 err = 0;
1855                 if (uru) {
1856                         /* kernel_waitid() overwrites everything in ru */
1857                         if (COMPAT_USE_64BIT_TIME)
1858                                 err = copy_to_user(uru, &ru, sizeof(ru));
1859                         else
1860                                 err = put_compat_rusage(&ru, uru);
1861                         if (err)
1862                                 return -EFAULT;
1863                 }
1864         }
1865
1866         if (!infop)
1867                 return err;
1868
1869         if (!user_write_access_begin(infop, sizeof(*infop)))
1870                 return -EFAULT;
1871
1872         unsafe_put_user(signo, &infop->si_signo, Efault);
1873         unsafe_put_user(0, &infop->si_errno, Efault);
1874         unsafe_put_user(info.cause, &infop->si_code, Efault);
1875         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1876         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1877         unsafe_put_user(info.status, &infop->si_status, Efault);
1878         user_write_access_end();
1879         return err;
1880 Efault:
1881         user_write_access_end();
1882         return -EFAULT;
1883 }
1884 #endif
1885
1886 /**
1887  * thread_group_exited - check that a thread group has exited
1888  * @pid: tgid of thread group to be checked.
1889  *
1890  * Test if the thread group represented by tgid has exited (all
1891  * threads are zombies, dead or completely gone).
1892  *
1893  * Return: true if the thread group has exited. false otherwise.
1894  */
1895 bool thread_group_exited(struct pid *pid)
1896 {
1897         struct task_struct *task;
1898         bool exited;
1899
1900         rcu_read_lock();
1901         task = pid_task(pid, PIDTYPE_PID);
1902         exited = !task ||
1903                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1904         rcu_read_unlock();
1905
1906         return exited;
1907 }
1908 EXPORT_SYMBOL(thread_group_exited);
1909
1910 /*
1911  * This needs to be __function_aligned as GCC implicitly makes any
1912  * implementation of abort() cold and drops alignment specified by
1913  * -falign-functions=N.
1914  *
1915  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1916  */
1917 __weak __function_aligned void abort(void)
1918 {
1919         BUG();
1920
1921         /* if that doesn't kill us, halt */
1922         panic("Oops failed to kill thread");
1923 }
1924 EXPORT_SYMBOL(abort);