2 * User-space Probes (UProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2012
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
40 #include <linux/uprobes.h>
42 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
43 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
45 static struct rb_root uprobes_tree = RB_ROOT;
47 * allows us to skip the uprobe_mmap if there are no uprobe events active
48 * at this time. Probably a fine grained per inode count is better?
50 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
52 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
54 #define UPROBES_HASH_SZ 13
55 /* serialize uprobe->pending_list */
56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
57 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59 static struct percpu_rw_semaphore dup_mmap_sem;
61 /* Have a copy of original instruction */
62 #define UPROBE_COPY_INSN 0
63 /* Can skip singlestep */
64 #define UPROBE_SKIP_SSTEP 1
67 struct rb_node rb_node; /* node in the rb tree */
69 struct rw_semaphore register_rwsem;
70 struct rw_semaphore consumer_rwsem;
71 struct list_head pending_list;
72 struct uprobe_consumer *consumers;
73 struct inode *inode; /* Also hold a ref to inode */
78 * The generic code assumes that it has two members of unknown type
79 * owned by the arch-specific code:
81 * insn - copy_insn() saves the original instruction here for
82 * arch_uprobe_analyze_insn().
84 * ixol - potentially modified instruction to execute out of
85 * line, copied to xol_area by xol_get_insn_slot().
87 struct arch_uprobe arch;
90 struct return_instance {
91 struct uprobe *uprobe;
93 unsigned long orig_ret_vaddr; /* original return address */
94 bool chained; /* true, if instance is nested */
96 struct return_instance *next; /* keep as stack */
100 * Execute out of line area: anonymous executable mapping installed
101 * by the probed task to execute the copy of the original instruction
102 * mangled by set_swbp().
104 * On a breakpoint hit, thread contests for a slot. It frees the
105 * slot after singlestep. Currently a fixed number of slots are
109 wait_queue_head_t wq; /* if all slots are busy */
110 atomic_t slot_count; /* number of in-use slots */
111 unsigned long *bitmap; /* 0 = free slot */
115 * We keep the vma's vm_start rather than a pointer to the vma
116 * itself. The probed process or a naughty kernel module could make
117 * the vma go away, and we must handle that reasonably gracefully.
119 unsigned long vaddr; /* Page(s) of instruction slots */
123 * valid_vma: Verify if the specified vma is an executable vma
124 * Relax restrictions while unregistering: vm_flags might have
125 * changed after breakpoint was inserted.
126 * - is_register: indicates if we are in register context.
127 * - Return 1 if the specified virtual address is in an
130 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
132 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
137 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
140 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
142 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
145 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
147 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
151 * __replace_page - replace page in vma by new page.
152 * based on replace_page in mm/ksm.c
154 * @vma: vma that holds the pte pointing to page
155 * @addr: address the old @page is mapped at
156 * @page: the cowed page we are replacing by kpage
157 * @kpage: the modified page we replace page by
159 * Returns 0 on success, -EFAULT on failure.
161 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
162 struct page *page, struct page *kpage)
164 struct mm_struct *mm = vma->vm_mm;
168 /* For mmu_notifiers */
169 const unsigned long mmun_start = addr;
170 const unsigned long mmun_end = addr + PAGE_SIZE;
172 /* For try_to_free_swap() and munlock_vma_page() below */
175 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
177 ptep = page_check_address(page, mm, addr, &ptl, 0);
182 page_add_new_anon_rmap(kpage, vma, addr);
184 if (!PageAnon(page)) {
185 dec_mm_counter(mm, MM_FILEPAGES);
186 inc_mm_counter(mm, MM_ANONPAGES);
189 flush_cache_page(vma, addr, pte_pfn(*ptep));
190 ptep_clear_flush(vma, addr, ptep);
191 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
193 page_remove_rmap(page);
194 if (!page_mapped(page))
195 try_to_free_swap(page);
196 pte_unmap_unlock(ptep, ptl);
198 if (vma->vm_flags & VM_LOCKED)
199 munlock_vma_page(page);
204 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
210 * is_swbp_insn - check if instruction is breakpoint instruction.
211 * @insn: instruction to be checked.
212 * Default implementation of is_swbp_insn
213 * Returns true if @insn is a breakpoint instruction.
215 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
217 return *insn == UPROBE_SWBP_INSN;
221 * is_trap_insn - check if instruction is breakpoint instruction.
222 * @insn: instruction to be checked.
223 * Default implementation of is_trap_insn
224 * Returns true if @insn is a breakpoint instruction.
226 * This function is needed for the case where an architecture has multiple
227 * trap instructions (like powerpc).
229 bool __weak is_trap_insn(uprobe_opcode_t *insn)
231 return is_swbp_insn(insn);
234 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
236 void *kaddr = kmap_atomic(page);
237 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
238 kunmap_atomic(kaddr);
241 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
243 void *kaddr = kmap_atomic(page);
244 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
245 kunmap_atomic(kaddr);
248 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
250 uprobe_opcode_t old_opcode;
254 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
255 * We do not check if it is any other 'trap variant' which could
256 * be conditional trap instruction such as the one powerpc supports.
258 * The logic is that we do not care if the underlying instruction
259 * is a trap variant; uprobes always wins over any other (gdb)
262 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
263 is_swbp = is_swbp_insn(&old_opcode);
265 if (is_swbp_insn(new_opcode)) {
266 if (is_swbp) /* register: already installed? */
269 if (!is_swbp) /* unregister: was it changed by us? */
278 * Expect the breakpoint instruction to be the smallest size instruction for
279 * the architecture. If an arch has variable length instruction and the
280 * breakpoint instruction is not of the smallest length instruction
281 * supported by that architecture then we need to modify is_trap_at_addr and
282 * uprobe_write_opcode accordingly. This would never be a problem for archs
283 * that have fixed length instructions.
287 * uprobe_write_opcode - write the opcode at a given virtual address.
288 * @mm: the probed process address space.
289 * @vaddr: the virtual address to store the opcode.
290 * @opcode: opcode to be written at @vaddr.
292 * Called with mm->mmap_sem held (for read and with a reference to
295 * For mm @mm, write the opcode at @vaddr.
296 * Return 0 (success) or a negative errno.
298 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
299 uprobe_opcode_t opcode)
301 struct page *old_page, *new_page;
302 struct vm_area_struct *vma;
306 /* Read the page with vaddr into memory */
307 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
311 ret = verify_opcode(old_page, vaddr, &opcode);
316 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
320 __SetPageUptodate(new_page);
322 copy_highpage(new_page, old_page);
323 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
325 ret = anon_vma_prepare(vma);
329 ret = __replace_page(vma, vaddr, old_page, new_page);
332 page_cache_release(new_page);
336 if (unlikely(ret == -EAGAIN))
342 * set_swbp - store breakpoint at a given address.
343 * @auprobe: arch specific probepoint information.
344 * @mm: the probed process address space.
345 * @vaddr: the virtual address to insert the opcode.
347 * For mm @mm, store the breakpoint instruction at @vaddr.
348 * Return 0 (success) or a negative errno.
350 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
352 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
356 * set_orig_insn - Restore the original instruction.
357 * @mm: the probed process address space.
358 * @auprobe: arch specific probepoint information.
359 * @vaddr: the virtual address to insert the opcode.
361 * For mm @mm, restore the original opcode (opcode) at @vaddr.
362 * Return 0 (success) or a negative errno.
365 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
367 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
370 static int match_uprobe(struct uprobe *l, struct uprobe *r)
372 if (l->inode < r->inode)
375 if (l->inode > r->inode)
378 if (l->offset < r->offset)
381 if (l->offset > r->offset)
387 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
389 struct uprobe u = { .inode = inode, .offset = offset };
390 struct rb_node *n = uprobes_tree.rb_node;
391 struct uprobe *uprobe;
395 uprobe = rb_entry(n, struct uprobe, rb_node);
396 match = match_uprobe(&u, uprobe);
398 atomic_inc(&uprobe->ref);
411 * Find a uprobe corresponding to a given inode:offset
412 * Acquires uprobes_treelock
414 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
416 struct uprobe *uprobe;
418 spin_lock(&uprobes_treelock);
419 uprobe = __find_uprobe(inode, offset);
420 spin_unlock(&uprobes_treelock);
425 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
427 struct rb_node **p = &uprobes_tree.rb_node;
428 struct rb_node *parent = NULL;
434 u = rb_entry(parent, struct uprobe, rb_node);
435 match = match_uprobe(uprobe, u);
442 p = &parent->rb_left;
444 p = &parent->rb_right;
449 rb_link_node(&uprobe->rb_node, parent, p);
450 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
451 /* get access + creation ref */
452 atomic_set(&uprobe->ref, 2);
458 * Acquire uprobes_treelock.
459 * Matching uprobe already exists in rbtree;
460 * increment (access refcount) and return the matching uprobe.
462 * No matching uprobe; insert the uprobe in rb_tree;
463 * get a double refcount (access + creation) and return NULL.
465 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
469 spin_lock(&uprobes_treelock);
470 u = __insert_uprobe(uprobe);
471 spin_unlock(&uprobes_treelock);
476 static void put_uprobe(struct uprobe *uprobe)
478 if (atomic_dec_and_test(&uprobe->ref))
482 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
484 struct uprobe *uprobe, *cur_uprobe;
486 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
490 uprobe->inode = igrab(inode);
491 uprobe->offset = offset;
492 init_rwsem(&uprobe->register_rwsem);
493 init_rwsem(&uprobe->consumer_rwsem);
494 /* For now assume that the instruction need not be single-stepped */
495 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
497 /* add to uprobes_tree, sorted on inode:offset */
498 cur_uprobe = insert_uprobe(uprobe);
500 /* a uprobe exists for this inode:offset combination */
510 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
512 down_write(&uprobe->consumer_rwsem);
513 uc->next = uprobe->consumers;
514 uprobe->consumers = uc;
515 up_write(&uprobe->consumer_rwsem);
519 * For uprobe @uprobe, delete the consumer @uc.
520 * Return true if the @uc is deleted successfully
523 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
525 struct uprobe_consumer **con;
528 down_write(&uprobe->consumer_rwsem);
529 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
536 up_write(&uprobe->consumer_rwsem);
541 static int __copy_insn(struct address_space *mapping, struct file *filp,
542 void *insn, int nbytes, loff_t offset)
546 if (!mapping->a_ops->readpage)
549 * Ensure that the page that has the original instruction is
550 * populated and in page-cache.
552 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
554 return PTR_ERR(page);
556 copy_from_page(page, offset, insn, nbytes);
557 page_cache_release(page);
562 static int copy_insn(struct uprobe *uprobe, struct file *filp)
564 struct address_space *mapping = uprobe->inode->i_mapping;
565 loff_t offs = uprobe->offset;
566 void *insn = &uprobe->arch.insn;
567 int size = sizeof(uprobe->arch.insn);
570 /* Copy only available bytes, -EIO if nothing was read */
572 if (offs >= i_size_read(uprobe->inode))
575 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
576 err = __copy_insn(mapping, filp, insn, len, offs);
588 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
589 struct mm_struct *mm, unsigned long vaddr)
593 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
596 /* TODO: move this into _register, until then we abuse this sem. */
597 down_write(&uprobe->consumer_rwsem);
598 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
601 ret = copy_insn(uprobe, file);
606 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
609 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
613 /* uprobe_write_opcode() assumes we don't cross page boundary */
614 BUG_ON((uprobe->offset & ~PAGE_MASK) +
615 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
617 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
618 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
621 up_write(&uprobe->consumer_rwsem);
626 static inline bool consumer_filter(struct uprobe_consumer *uc,
627 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
629 return !uc->filter || uc->filter(uc, ctx, mm);
632 static bool filter_chain(struct uprobe *uprobe,
633 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
635 struct uprobe_consumer *uc;
638 down_read(&uprobe->consumer_rwsem);
639 for (uc = uprobe->consumers; uc; uc = uc->next) {
640 ret = consumer_filter(uc, ctx, mm);
644 up_read(&uprobe->consumer_rwsem);
650 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
651 struct vm_area_struct *vma, unsigned long vaddr)
656 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
661 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
662 * the task can hit this breakpoint right after __replace_page().
664 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
666 set_bit(MMF_HAS_UPROBES, &mm->flags);
668 ret = set_swbp(&uprobe->arch, mm, vaddr);
670 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
671 else if (first_uprobe)
672 clear_bit(MMF_HAS_UPROBES, &mm->flags);
678 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
680 set_bit(MMF_RECALC_UPROBES, &mm->flags);
681 return set_orig_insn(&uprobe->arch, mm, vaddr);
684 static inline bool uprobe_is_active(struct uprobe *uprobe)
686 return !RB_EMPTY_NODE(&uprobe->rb_node);
689 * There could be threads that have already hit the breakpoint. They
690 * will recheck the current insn and restart if find_uprobe() fails.
691 * See find_active_uprobe().
693 static void delete_uprobe(struct uprobe *uprobe)
695 if (WARN_ON(!uprobe_is_active(uprobe)))
698 spin_lock(&uprobes_treelock);
699 rb_erase(&uprobe->rb_node, &uprobes_tree);
700 spin_unlock(&uprobes_treelock);
701 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
707 struct map_info *next;
708 struct mm_struct *mm;
712 static inline struct map_info *free_map_info(struct map_info *info)
714 struct map_info *next = info->next;
719 static struct map_info *
720 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
722 unsigned long pgoff = offset >> PAGE_SHIFT;
723 struct vm_area_struct *vma;
724 struct map_info *curr = NULL;
725 struct map_info *prev = NULL;
726 struct map_info *info;
730 mutex_lock(&mapping->i_mmap_mutex);
731 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
732 if (!valid_vma(vma, is_register))
735 if (!prev && !more) {
737 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
738 * reclaim. This is optimistic, no harm done if it fails.
740 prev = kmalloc(sizeof(struct map_info),
741 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
750 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
758 info->mm = vma->vm_mm;
759 info->vaddr = offset_to_vaddr(vma, offset);
761 mutex_unlock(&mapping->i_mmap_mutex);
773 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
775 curr = ERR_PTR(-ENOMEM);
785 prev = free_map_info(prev);
790 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
792 bool is_register = !!new;
793 struct map_info *info;
796 percpu_down_write(&dup_mmap_sem);
797 info = build_map_info(uprobe->inode->i_mapping,
798 uprobe->offset, is_register);
805 struct mm_struct *mm = info->mm;
806 struct vm_area_struct *vma;
808 if (err && is_register)
811 down_write(&mm->mmap_sem);
812 vma = find_vma(mm, info->vaddr);
813 if (!vma || !valid_vma(vma, is_register) ||
814 file_inode(vma->vm_file) != uprobe->inode)
817 if (vma->vm_start > info->vaddr ||
818 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
822 /* consult only the "caller", new consumer. */
823 if (consumer_filter(new,
824 UPROBE_FILTER_REGISTER, mm))
825 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
826 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
827 if (!filter_chain(uprobe,
828 UPROBE_FILTER_UNREGISTER, mm))
829 err |= remove_breakpoint(uprobe, mm, info->vaddr);
833 up_write(&mm->mmap_sem);
836 info = free_map_info(info);
839 percpu_up_write(&dup_mmap_sem);
843 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
845 consumer_add(uprobe, uc);
846 return register_for_each_vma(uprobe, uc);
849 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
853 if (!consumer_del(uprobe, uc)) /* WARN? */
856 err = register_for_each_vma(uprobe, NULL);
857 /* TODO : cant unregister? schedule a worker thread */
858 if (!uprobe->consumers && !err)
859 delete_uprobe(uprobe);
863 * uprobe_register - register a probe
864 * @inode: the file in which the probe has to be placed.
865 * @offset: offset from the start of the file.
866 * @uc: information on howto handle the probe..
868 * Apart from the access refcount, uprobe_register() takes a creation
869 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
870 * inserted into the rbtree (i.e first consumer for a @inode:@offset
871 * tuple). Creation refcount stops uprobe_unregister from freeing the
872 * @uprobe even before the register operation is complete. Creation
873 * refcount is released when the last @uc for the @uprobe
876 * Return errno if it cannot successully install probes
877 * else return 0 (success)
879 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
881 struct uprobe *uprobe;
884 /* Uprobe must have at least one set consumer */
885 if (!uc->handler && !uc->ret_handler)
888 /* Racy, just to catch the obvious mistakes */
889 if (offset > i_size_read(inode))
893 uprobe = alloc_uprobe(inode, offset);
897 * We can race with uprobe_unregister()->delete_uprobe().
898 * Check uprobe_is_active() and retry if it is false.
900 down_write(&uprobe->register_rwsem);
902 if (likely(uprobe_is_active(uprobe))) {
903 ret = __uprobe_register(uprobe, uc);
905 __uprobe_unregister(uprobe, uc);
907 up_write(&uprobe->register_rwsem);
910 if (unlikely(ret == -EAGAIN))
914 EXPORT_SYMBOL_GPL(uprobe_register);
917 * uprobe_apply - unregister a already registered probe.
918 * @inode: the file in which the probe has to be removed.
919 * @offset: offset from the start of the file.
920 * @uc: consumer which wants to add more or remove some breakpoints
921 * @add: add or remove the breakpoints
923 int uprobe_apply(struct inode *inode, loff_t offset,
924 struct uprobe_consumer *uc, bool add)
926 struct uprobe *uprobe;
927 struct uprobe_consumer *con;
930 uprobe = find_uprobe(inode, offset);
934 down_write(&uprobe->register_rwsem);
935 for (con = uprobe->consumers; con && con != uc ; con = con->next)
938 ret = register_for_each_vma(uprobe, add ? uc : NULL);
939 up_write(&uprobe->register_rwsem);
946 * uprobe_unregister - unregister a already registered probe.
947 * @inode: the file in which the probe has to be removed.
948 * @offset: offset from the start of the file.
949 * @uc: identify which probe if multiple probes are colocated.
951 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
953 struct uprobe *uprobe;
955 uprobe = find_uprobe(inode, offset);
959 down_write(&uprobe->register_rwsem);
960 __uprobe_unregister(uprobe, uc);
961 up_write(&uprobe->register_rwsem);
964 EXPORT_SYMBOL_GPL(uprobe_unregister);
966 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
968 struct vm_area_struct *vma;
971 down_read(&mm->mmap_sem);
972 for (vma = mm->mmap; vma; vma = vma->vm_next) {
976 if (!valid_vma(vma, false) ||
977 file_inode(vma->vm_file) != uprobe->inode)
980 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
981 if (uprobe->offset < offset ||
982 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
985 vaddr = offset_to_vaddr(vma, uprobe->offset);
986 err |= remove_breakpoint(uprobe, mm, vaddr);
988 up_read(&mm->mmap_sem);
993 static struct rb_node *
994 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
996 struct rb_node *n = uprobes_tree.rb_node;
999 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1001 if (inode < u->inode) {
1003 } else if (inode > u->inode) {
1006 if (max < u->offset)
1008 else if (min > u->offset)
1019 * For a given range in vma, build a list of probes that need to be inserted.
1021 static void build_probe_list(struct inode *inode,
1022 struct vm_area_struct *vma,
1023 unsigned long start, unsigned long end,
1024 struct list_head *head)
1027 struct rb_node *n, *t;
1030 INIT_LIST_HEAD(head);
1031 min = vaddr_to_offset(vma, start);
1032 max = min + (end - start) - 1;
1034 spin_lock(&uprobes_treelock);
1035 n = find_node_in_range(inode, min, max);
1037 for (t = n; t; t = rb_prev(t)) {
1038 u = rb_entry(t, struct uprobe, rb_node);
1039 if (u->inode != inode || u->offset < min)
1041 list_add(&u->pending_list, head);
1042 atomic_inc(&u->ref);
1044 for (t = n; (t = rb_next(t)); ) {
1045 u = rb_entry(t, struct uprobe, rb_node);
1046 if (u->inode != inode || u->offset > max)
1048 list_add(&u->pending_list, head);
1049 atomic_inc(&u->ref);
1052 spin_unlock(&uprobes_treelock);
1056 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1058 * Currently we ignore all errors and always return 0, the callers
1059 * can't handle the failure anyway.
1061 int uprobe_mmap(struct vm_area_struct *vma)
1063 struct list_head tmp_list;
1064 struct uprobe *uprobe, *u;
1065 struct inode *inode;
1067 if (no_uprobe_events() || !valid_vma(vma, true))
1070 inode = file_inode(vma->vm_file);
1074 mutex_lock(uprobes_mmap_hash(inode));
1075 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1077 * We can race with uprobe_unregister(), this uprobe can be already
1078 * removed. But in this case filter_chain() must return false, all
1079 * consumers have gone away.
1081 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1082 if (!fatal_signal_pending(current) &&
1083 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1084 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1085 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1089 mutex_unlock(uprobes_mmap_hash(inode));
1095 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1098 struct inode *inode;
1101 inode = file_inode(vma->vm_file);
1103 min = vaddr_to_offset(vma, start);
1104 max = min + (end - start) - 1;
1106 spin_lock(&uprobes_treelock);
1107 n = find_node_in_range(inode, min, max);
1108 spin_unlock(&uprobes_treelock);
1114 * Called in context of a munmap of a vma.
1116 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1118 if (no_uprobe_events() || !valid_vma(vma, false))
1121 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1124 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1125 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1128 if (vma_has_uprobes(vma, start, end))
1129 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1132 /* Slot allocation for XOL */
1133 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1135 int ret = -EALREADY;
1137 down_write(&mm->mmap_sem);
1138 if (mm->uprobes_state.xol_area)
1142 /* Try to map as high as possible, this is only a hint. */
1143 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1145 if (area->vaddr & ~PAGE_MASK) {
1151 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1152 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1156 smp_wmb(); /* pairs with get_xol_area() */
1157 mm->uprobes_state.xol_area = area;
1159 up_write(&mm->mmap_sem);
1164 static struct xol_area *__create_xol_area(unsigned long vaddr)
1166 struct mm_struct *mm = current->mm;
1167 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1168 struct xol_area *area;
1170 area = kmalloc(sizeof(*area), GFP_KERNEL);
1171 if (unlikely(!area))
1174 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1178 area->page = alloc_page(GFP_HIGHUSER);
1182 area->vaddr = vaddr;
1183 init_waitqueue_head(&area->wq);
1184 /* Reserve the 1st slot for get_trampoline_vaddr() */
1185 set_bit(0, area->bitmap);
1186 atomic_set(&area->slot_count, 1);
1187 copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1189 if (!xol_add_vma(mm, area))
1192 __free_page(area->page);
1194 kfree(area->bitmap);
1202 * get_xol_area - Allocate process's xol_area if necessary.
1203 * This area will be used for storing instructions for execution out of line.
1205 * Returns the allocated area or NULL.
1207 static struct xol_area *get_xol_area(void)
1209 struct mm_struct *mm = current->mm;
1210 struct xol_area *area;
1212 if (!mm->uprobes_state.xol_area)
1213 __create_xol_area(0);
1215 area = mm->uprobes_state.xol_area;
1216 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1221 * uprobe_clear_state - Free the area allocated for slots.
1223 void uprobe_clear_state(struct mm_struct *mm)
1225 struct xol_area *area = mm->uprobes_state.xol_area;
1230 put_page(area->page);
1231 kfree(area->bitmap);
1235 void uprobe_start_dup_mmap(void)
1237 percpu_down_read(&dup_mmap_sem);
1240 void uprobe_end_dup_mmap(void)
1242 percpu_up_read(&dup_mmap_sem);
1245 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1247 newmm->uprobes_state.xol_area = NULL;
1249 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1250 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1251 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1252 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1257 * - search for a free slot.
1259 static unsigned long xol_take_insn_slot(struct xol_area *area)
1261 unsigned long slot_addr;
1265 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1266 if (slot_nr < UINSNS_PER_PAGE) {
1267 if (!test_and_set_bit(slot_nr, area->bitmap))
1270 slot_nr = UINSNS_PER_PAGE;
1273 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1274 } while (slot_nr >= UINSNS_PER_PAGE);
1276 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1277 atomic_inc(&area->slot_count);
1283 * xol_get_insn_slot - allocate a slot for xol.
1284 * Returns the allocated slot address or 0.
1286 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1288 struct xol_area *area;
1289 unsigned long xol_vaddr;
1291 area = get_xol_area();
1295 xol_vaddr = xol_take_insn_slot(area);
1296 if (unlikely(!xol_vaddr))
1299 /* Initialize the slot */
1300 copy_to_page(area->page, xol_vaddr,
1301 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1303 * We probably need flush_icache_user_range() but it needs vma.
1304 * This should work on supported architectures too.
1306 flush_dcache_page(area->page);
1312 * xol_free_insn_slot - If slot was earlier allocated by
1313 * @xol_get_insn_slot(), make the slot available for
1314 * subsequent requests.
1316 static void xol_free_insn_slot(struct task_struct *tsk)
1318 struct xol_area *area;
1319 unsigned long vma_end;
1320 unsigned long slot_addr;
1322 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1325 slot_addr = tsk->utask->xol_vaddr;
1326 if (unlikely(!slot_addr))
1329 area = tsk->mm->uprobes_state.xol_area;
1330 vma_end = area->vaddr + PAGE_SIZE;
1331 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1332 unsigned long offset;
1335 offset = slot_addr - area->vaddr;
1336 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1337 if (slot_nr >= UINSNS_PER_PAGE)
1340 clear_bit(slot_nr, area->bitmap);
1341 atomic_dec(&area->slot_count);
1342 if (waitqueue_active(&area->wq))
1345 tsk->utask->xol_vaddr = 0;
1350 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1351 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1353 * Return the address of the breakpoint instruction.
1355 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1357 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1361 * Called with no locks held.
1362 * Called in context of a exiting or a exec-ing thread.
1364 void uprobe_free_utask(struct task_struct *t)
1366 struct uprobe_task *utask = t->utask;
1367 struct return_instance *ri, *tmp;
1372 if (utask->active_uprobe)
1373 put_uprobe(utask->active_uprobe);
1375 ri = utask->return_instances;
1380 put_uprobe(tmp->uprobe);
1384 xol_free_insn_slot(t);
1390 * Allocate a uprobe_task object for the task if if necessary.
1391 * Called when the thread hits a breakpoint.
1394 * - pointer to new uprobe_task on success
1397 static struct uprobe_task *get_utask(void)
1399 if (!current->utask)
1400 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1401 return current->utask;
1404 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1406 struct uprobe_task *n_utask;
1407 struct return_instance **p, *o, *n;
1409 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1414 p = &n_utask->return_instances;
1415 for (o = o_utask->return_instances; o; o = o->next) {
1416 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1421 atomic_inc(&n->uprobe->ref);
1432 static void uprobe_warn(struct task_struct *t, const char *msg)
1434 pr_warn("uprobe: %s:%d failed to %s\n",
1435 current->comm, current->pid, msg);
1438 static void dup_xol_work(struct callback_head *work)
1440 if (current->flags & PF_EXITING)
1443 if (!__create_xol_area(current->utask->dup_xol_addr))
1444 uprobe_warn(current, "dup xol area");
1448 * Called in context of a new clone/fork from copy_process.
1450 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1452 struct uprobe_task *utask = current->utask;
1453 struct mm_struct *mm = current->mm;
1454 struct xol_area *area;
1458 if (!utask || !utask->return_instances)
1461 if (mm == t->mm && !(flags & CLONE_VFORK))
1464 if (dup_utask(t, utask))
1465 return uprobe_warn(t, "dup ret instances");
1467 /* The task can fork() after dup_xol_work() fails */
1468 area = mm->uprobes_state.xol_area;
1470 return uprobe_warn(t, "dup xol area");
1475 t->utask->dup_xol_addr = area->vaddr;
1476 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1477 task_work_add(t, &t->utask->dup_xol_work, true);
1481 * Current area->vaddr notion assume the trampoline address is always
1482 * equal area->vaddr.
1484 * Returns -1 in case the xol_area is not allocated.
1486 static unsigned long get_trampoline_vaddr(void)
1488 struct xol_area *area;
1489 unsigned long trampoline_vaddr = -1;
1491 area = current->mm->uprobes_state.xol_area;
1492 smp_read_barrier_depends();
1494 trampoline_vaddr = area->vaddr;
1496 return trampoline_vaddr;
1499 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1501 struct return_instance *ri;
1502 struct uprobe_task *utask;
1503 unsigned long orig_ret_vaddr, trampoline_vaddr;
1504 bool chained = false;
1506 if (!get_xol_area())
1509 utask = get_utask();
1513 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1514 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1515 " nestedness limit pid/tgid=%d/%d\n",
1516 current->pid, current->tgid);
1520 ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1524 trampoline_vaddr = get_trampoline_vaddr();
1525 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1526 if (orig_ret_vaddr == -1)
1530 * We don't want to keep trampoline address in stack, rather keep the
1531 * original return address of first caller thru all the consequent
1532 * instances. This also makes breakpoint unwrapping easier.
1534 if (orig_ret_vaddr == trampoline_vaddr) {
1535 if (!utask->return_instances) {
1537 * This situation is not possible. Likely we have an
1538 * attack from user-space.
1540 pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1541 current->pid, current->tgid);
1546 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1549 atomic_inc(&uprobe->ref);
1550 ri->uprobe = uprobe;
1551 ri->func = instruction_pointer(regs);
1552 ri->orig_ret_vaddr = orig_ret_vaddr;
1553 ri->chained = chained;
1557 /* add instance to the stack */
1558 ri->next = utask->return_instances;
1559 utask->return_instances = ri;
1567 /* Prepare to single-step probed instruction out of line. */
1569 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1571 struct uprobe_task *utask;
1572 unsigned long xol_vaddr;
1575 utask = get_utask();
1579 xol_vaddr = xol_get_insn_slot(uprobe);
1583 utask->xol_vaddr = xol_vaddr;
1584 utask->vaddr = bp_vaddr;
1586 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1587 if (unlikely(err)) {
1588 xol_free_insn_slot(current);
1592 utask->active_uprobe = uprobe;
1593 utask->state = UTASK_SSTEP;
1598 * If we are singlestepping, then ensure this thread is not connected to
1599 * non-fatal signals until completion of singlestep. When xol insn itself
1600 * triggers the signal, restart the original insn even if the task is
1601 * already SIGKILL'ed (since coredump should report the correct ip). This
1602 * is even more important if the task has a handler for SIGSEGV/etc, The
1603 * _same_ instruction should be repeated again after return from the signal
1604 * handler, and SSTEP can never finish in this case.
1606 bool uprobe_deny_signal(void)
1608 struct task_struct *t = current;
1609 struct uprobe_task *utask = t->utask;
1611 if (likely(!utask || !utask->active_uprobe))
1614 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1616 if (signal_pending(t)) {
1617 spin_lock_irq(&t->sighand->siglock);
1618 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1619 spin_unlock_irq(&t->sighand->siglock);
1621 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1622 utask->state = UTASK_SSTEP_TRAPPED;
1623 set_tsk_thread_flag(t, TIF_UPROBE);
1624 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1632 * Avoid singlestepping the original instruction if the original instruction
1633 * is a NOP or can be emulated.
1635 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1637 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1638 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1640 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1645 static void mmf_recalc_uprobes(struct mm_struct *mm)
1647 struct vm_area_struct *vma;
1649 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1650 if (!valid_vma(vma, false))
1653 * This is not strictly accurate, we can race with
1654 * uprobe_unregister() and see the already removed
1655 * uprobe if delete_uprobe() was not yet called.
1656 * Or this uprobe can be filtered out.
1658 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1662 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1665 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1668 uprobe_opcode_t opcode;
1671 pagefault_disable();
1672 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1676 if (likely(result == 0))
1679 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1683 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1686 /* This needs to return true for any variant of the trap insn */
1687 return is_trap_insn(&opcode);
1690 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1692 struct mm_struct *mm = current->mm;
1693 struct uprobe *uprobe = NULL;
1694 struct vm_area_struct *vma;
1696 down_read(&mm->mmap_sem);
1697 vma = find_vma(mm, bp_vaddr);
1698 if (vma && vma->vm_start <= bp_vaddr) {
1699 if (valid_vma(vma, false)) {
1700 struct inode *inode = file_inode(vma->vm_file);
1701 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1703 uprobe = find_uprobe(inode, offset);
1707 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1712 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1713 mmf_recalc_uprobes(mm);
1714 up_read(&mm->mmap_sem);
1719 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1721 struct uprobe_consumer *uc;
1722 int remove = UPROBE_HANDLER_REMOVE;
1723 bool need_prep = false; /* prepare return uprobe, when needed */
1725 down_read(&uprobe->register_rwsem);
1726 for (uc = uprobe->consumers; uc; uc = uc->next) {
1730 rc = uc->handler(uc, regs);
1731 WARN(rc & ~UPROBE_HANDLER_MASK,
1732 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1735 if (uc->ret_handler)
1741 if (need_prep && !remove)
1742 prepare_uretprobe(uprobe, regs); /* put bp at return */
1744 if (remove && uprobe->consumers) {
1745 WARN_ON(!uprobe_is_active(uprobe));
1746 unapply_uprobe(uprobe, current->mm);
1748 up_read(&uprobe->register_rwsem);
1752 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1754 struct uprobe *uprobe = ri->uprobe;
1755 struct uprobe_consumer *uc;
1757 down_read(&uprobe->register_rwsem);
1758 for (uc = uprobe->consumers; uc; uc = uc->next) {
1759 if (uc->ret_handler)
1760 uc->ret_handler(uc, ri->func, regs);
1762 up_read(&uprobe->register_rwsem);
1765 static bool handle_trampoline(struct pt_regs *regs)
1767 struct uprobe_task *utask;
1768 struct return_instance *ri, *tmp;
1771 utask = current->utask;
1775 ri = utask->return_instances;
1780 * TODO: we should throw out return_instance's invalidated by
1781 * longjmp(), currently we assume that the probed function always
1784 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1787 handle_uretprobe_chain(ri, regs);
1789 chained = ri->chained;
1790 put_uprobe(ri->uprobe);
1802 utask->return_instances = ri;
1808 * Run handler and ask thread to singlestep.
1809 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1811 static void handle_swbp(struct pt_regs *regs)
1813 struct uprobe *uprobe;
1814 unsigned long bp_vaddr;
1815 int uninitialized_var(is_swbp);
1817 bp_vaddr = uprobe_get_swbp_addr(regs);
1818 if (bp_vaddr == get_trampoline_vaddr()) {
1819 if (handle_trampoline(regs))
1822 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1823 current->pid, current->tgid);
1826 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1829 /* No matching uprobe; signal SIGTRAP. */
1830 send_sig(SIGTRAP, current, 0);
1833 * Either we raced with uprobe_unregister() or we can't
1834 * access this memory. The latter is only possible if
1835 * another thread plays with our ->mm. In both cases
1836 * we can simply restart. If this vma was unmapped we
1837 * can pretend this insn was not executed yet and get
1838 * the (correct) SIGSEGV after restart.
1840 instruction_pointer_set(regs, bp_vaddr);
1845 /* change it in advance for ->handler() and restart */
1846 instruction_pointer_set(regs, bp_vaddr);
1849 * TODO: move copy_insn/etc into _register and remove this hack.
1850 * After we hit the bp, _unregister + _register can install the
1851 * new and not-yet-analyzed uprobe at the same address, restart.
1853 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1854 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1857 /* Tracing handlers use ->utask to communicate with fetch methods */
1861 handler_chain(uprobe, regs);
1862 if (can_skip_sstep(uprobe, regs))
1865 if (!pre_ssout(uprobe, regs, bp_vaddr))
1868 /* can_skip_sstep() succeeded, or restart if can't singlestep */
1874 * Perform required fix-ups and disable singlestep.
1875 * Allow pending signals to take effect.
1877 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1879 struct uprobe *uprobe;
1881 uprobe = utask->active_uprobe;
1882 if (utask->state == UTASK_SSTEP_ACK)
1883 arch_uprobe_post_xol(&uprobe->arch, regs);
1884 else if (utask->state == UTASK_SSTEP_TRAPPED)
1885 arch_uprobe_abort_xol(&uprobe->arch, regs);
1890 utask->active_uprobe = NULL;
1891 utask->state = UTASK_RUNNING;
1892 xol_free_insn_slot(current);
1894 spin_lock_irq(¤t->sighand->siglock);
1895 recalc_sigpending(); /* see uprobe_deny_signal() */
1896 spin_unlock_irq(¤t->sighand->siglock);
1900 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1901 * allows the thread to return from interrupt. After that handle_swbp()
1902 * sets utask->active_uprobe.
1904 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1905 * and allows the thread to return from interrupt.
1907 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1908 * uprobe_notify_resume().
1910 void uprobe_notify_resume(struct pt_regs *regs)
1912 struct uprobe_task *utask;
1914 clear_thread_flag(TIF_UPROBE);
1916 utask = current->utask;
1917 if (utask && utask->active_uprobe)
1918 handle_singlestep(utask, regs);
1924 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1925 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1927 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1932 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
1933 (!current->utask || !current->utask->return_instances))
1936 set_thread_flag(TIF_UPROBE);
1941 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1942 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1944 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1946 struct uprobe_task *utask = current->utask;
1948 if (!current->mm || !utask || !utask->active_uprobe)
1949 /* task is currently not uprobed */
1952 utask->state = UTASK_SSTEP_ACK;
1953 set_thread_flag(TIF_UPROBE);
1957 static struct notifier_block uprobe_exception_nb = {
1958 .notifier_call = arch_uprobe_exception_notify,
1959 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1962 static int __init init_uprobes(void)
1966 for (i = 0; i < UPROBES_HASH_SZ; i++)
1967 mutex_init(&uprobes_mmap_mutex[i]);
1969 if (percpu_init_rwsem(&dup_mmap_sem))
1972 return register_die_notifier(&uprobe_exception_nb);
1974 __initcall(init_uprobes);