uprobes: Introduce arch_uprobe->ixol
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>         /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h>         /* try_to_free_swap */
34 #include <linux/ptrace.h>       /* user_enable_single_step */
35 #include <linux/kdebug.h>       /* notifier mechanism */
36 #include "../../mm/internal.h"  /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39
40 #include <linux/uprobes.h>
41
42 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
43 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
44
45 static struct rb_root uprobes_tree = RB_ROOT;
46 /*
47  * allows us to skip the uprobe_mmap if there are no uprobe events active
48  * at this time.  Probably a fine grained per inode count is better?
49  */
50 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
51
52 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
53
54 #define UPROBES_HASH_SZ 13
55 /* serialize uprobe->pending_list */
56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
57 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58
59 static struct percpu_rw_semaphore dup_mmap_sem;
60
61 /* Have a copy of original instruction */
62 #define UPROBE_COPY_INSN        0
63 /* Can skip singlestep */
64 #define UPROBE_SKIP_SSTEP       1
65
66 struct uprobe {
67         struct rb_node          rb_node;        /* node in the rb tree */
68         atomic_t                ref;
69         struct rw_semaphore     register_rwsem;
70         struct rw_semaphore     consumer_rwsem;
71         struct list_head        pending_list;
72         struct uprobe_consumer  *consumers;
73         struct inode            *inode;         /* Also hold a ref to inode */
74         loff_t                  offset;
75         unsigned long           flags;
76         struct arch_uprobe      arch;
77 };
78
79 struct return_instance {
80         struct uprobe           *uprobe;
81         unsigned long           func;
82         unsigned long           orig_ret_vaddr; /* original return address */
83         bool                    chained;        /* true, if instance is nested */
84
85         struct return_instance  *next;          /* keep as stack */
86 };
87
88 /*
89  * valid_vma: Verify if the specified vma is an executable vma
90  * Relax restrictions while unregistering: vm_flags might have
91  * changed after breakpoint was inserted.
92  *      - is_register: indicates if we are in register context.
93  *      - Return 1 if the specified virtual address is in an
94  *        executable vma.
95  */
96 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
97 {
98         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
99
100         if (is_register)
101                 flags |= VM_WRITE;
102
103         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
104 }
105
106 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
107 {
108         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
109 }
110
111 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
112 {
113         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
114 }
115
116 /**
117  * __replace_page - replace page in vma by new page.
118  * based on replace_page in mm/ksm.c
119  *
120  * @vma:      vma that holds the pte pointing to page
121  * @addr:     address the old @page is mapped at
122  * @page:     the cowed page we are replacing by kpage
123  * @kpage:    the modified page we replace page by
124  *
125  * Returns 0 on success, -EFAULT on failure.
126  */
127 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
128                                 struct page *page, struct page *kpage)
129 {
130         struct mm_struct *mm = vma->vm_mm;
131         spinlock_t *ptl;
132         pte_t *ptep;
133         int err;
134         /* For mmu_notifiers */
135         const unsigned long mmun_start = addr;
136         const unsigned long mmun_end   = addr + PAGE_SIZE;
137
138         /* For try_to_free_swap() and munlock_vma_page() below */
139         lock_page(page);
140
141         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
142         err = -EAGAIN;
143         ptep = page_check_address(page, mm, addr, &ptl, 0);
144         if (!ptep)
145                 goto unlock;
146
147         get_page(kpage);
148         page_add_new_anon_rmap(kpage, vma, addr);
149
150         if (!PageAnon(page)) {
151                 dec_mm_counter(mm, MM_FILEPAGES);
152                 inc_mm_counter(mm, MM_ANONPAGES);
153         }
154
155         flush_cache_page(vma, addr, pte_pfn(*ptep));
156         ptep_clear_flush(vma, addr, ptep);
157         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
158
159         page_remove_rmap(page);
160         if (!page_mapped(page))
161                 try_to_free_swap(page);
162         pte_unmap_unlock(ptep, ptl);
163
164         if (vma->vm_flags & VM_LOCKED)
165                 munlock_vma_page(page);
166         put_page(page);
167
168         err = 0;
169  unlock:
170         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
171         unlock_page(page);
172         return err;
173 }
174
175 /**
176  * is_swbp_insn - check if instruction is breakpoint instruction.
177  * @insn: instruction to be checked.
178  * Default implementation of is_swbp_insn
179  * Returns true if @insn is a breakpoint instruction.
180  */
181 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
182 {
183         return *insn == UPROBE_SWBP_INSN;
184 }
185
186 /**
187  * is_trap_insn - check if instruction is breakpoint instruction.
188  * @insn: instruction to be checked.
189  * Default implementation of is_trap_insn
190  * Returns true if @insn is a breakpoint instruction.
191  *
192  * This function is needed for the case where an architecture has multiple
193  * trap instructions (like powerpc).
194  */
195 bool __weak is_trap_insn(uprobe_opcode_t *insn)
196 {
197         return is_swbp_insn(insn);
198 }
199
200 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
201 {
202         void *kaddr = kmap_atomic(page);
203         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
204         kunmap_atomic(kaddr);
205 }
206
207 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
208 {
209         void *kaddr = kmap_atomic(page);
210         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
211         kunmap_atomic(kaddr);
212 }
213
214 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
215 {
216         uprobe_opcode_t old_opcode;
217         bool is_swbp;
218
219         /*
220          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
221          * We do not check if it is any other 'trap variant' which could
222          * be conditional trap instruction such as the one powerpc supports.
223          *
224          * The logic is that we do not care if the underlying instruction
225          * is a trap variant; uprobes always wins over any other (gdb)
226          * breakpoint.
227          */
228         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
229         is_swbp = is_swbp_insn(&old_opcode);
230
231         if (is_swbp_insn(new_opcode)) {
232                 if (is_swbp)            /* register: already installed? */
233                         return 0;
234         } else {
235                 if (!is_swbp)           /* unregister: was it changed by us? */
236                         return 0;
237         }
238
239         return 1;
240 }
241
242 /*
243  * NOTE:
244  * Expect the breakpoint instruction to be the smallest size instruction for
245  * the architecture. If an arch has variable length instruction and the
246  * breakpoint instruction is not of the smallest length instruction
247  * supported by that architecture then we need to modify is_trap_at_addr and
248  * write_opcode accordingly. This would never be a problem for archs that
249  * have fixed length instructions.
250  */
251
252 /*
253  * write_opcode - write the opcode at a given virtual address.
254  * @mm: the probed process address space.
255  * @vaddr: the virtual address to store the opcode.
256  * @opcode: opcode to be written at @vaddr.
257  *
258  * Called with mm->mmap_sem held (for read and with a reference to
259  * mm).
260  *
261  * For mm @mm, write the opcode at @vaddr.
262  * Return 0 (success) or a negative errno.
263  */
264 static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
265                         uprobe_opcode_t opcode)
266 {
267         struct page *old_page, *new_page;
268         struct vm_area_struct *vma;
269         int ret;
270
271 retry:
272         /* Read the page with vaddr into memory */
273         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
274         if (ret <= 0)
275                 return ret;
276
277         ret = verify_opcode(old_page, vaddr, &opcode);
278         if (ret <= 0)
279                 goto put_old;
280
281         ret = -ENOMEM;
282         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
283         if (!new_page)
284                 goto put_old;
285
286         __SetPageUptodate(new_page);
287
288         copy_highpage(new_page, old_page);
289         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
290
291         ret = anon_vma_prepare(vma);
292         if (ret)
293                 goto put_new;
294
295         ret = __replace_page(vma, vaddr, old_page, new_page);
296
297 put_new:
298         page_cache_release(new_page);
299 put_old:
300         put_page(old_page);
301
302         if (unlikely(ret == -EAGAIN))
303                 goto retry;
304         return ret;
305 }
306
307 /**
308  * set_swbp - store breakpoint at a given address.
309  * @auprobe: arch specific probepoint information.
310  * @mm: the probed process address space.
311  * @vaddr: the virtual address to insert the opcode.
312  *
313  * For mm @mm, store the breakpoint instruction at @vaddr.
314  * Return 0 (success) or a negative errno.
315  */
316 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
317 {
318         return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
319 }
320
321 /**
322  * set_orig_insn - Restore the original instruction.
323  * @mm: the probed process address space.
324  * @auprobe: arch specific probepoint information.
325  * @vaddr: the virtual address to insert the opcode.
326  *
327  * For mm @mm, restore the original opcode (opcode) at @vaddr.
328  * Return 0 (success) or a negative errno.
329  */
330 int __weak
331 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
332 {
333         return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
334 }
335
336 static int match_uprobe(struct uprobe *l, struct uprobe *r)
337 {
338         if (l->inode < r->inode)
339                 return -1;
340
341         if (l->inode > r->inode)
342                 return 1;
343
344         if (l->offset < r->offset)
345                 return -1;
346
347         if (l->offset > r->offset)
348                 return 1;
349
350         return 0;
351 }
352
353 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
354 {
355         struct uprobe u = { .inode = inode, .offset = offset };
356         struct rb_node *n = uprobes_tree.rb_node;
357         struct uprobe *uprobe;
358         int match;
359
360         while (n) {
361                 uprobe = rb_entry(n, struct uprobe, rb_node);
362                 match = match_uprobe(&u, uprobe);
363                 if (!match) {
364                         atomic_inc(&uprobe->ref);
365                         return uprobe;
366                 }
367
368                 if (match < 0)
369                         n = n->rb_left;
370                 else
371                         n = n->rb_right;
372         }
373         return NULL;
374 }
375
376 /*
377  * Find a uprobe corresponding to a given inode:offset
378  * Acquires uprobes_treelock
379  */
380 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
381 {
382         struct uprobe *uprobe;
383
384         spin_lock(&uprobes_treelock);
385         uprobe = __find_uprobe(inode, offset);
386         spin_unlock(&uprobes_treelock);
387
388         return uprobe;
389 }
390
391 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
392 {
393         struct rb_node **p = &uprobes_tree.rb_node;
394         struct rb_node *parent = NULL;
395         struct uprobe *u;
396         int match;
397
398         while (*p) {
399                 parent = *p;
400                 u = rb_entry(parent, struct uprobe, rb_node);
401                 match = match_uprobe(uprobe, u);
402                 if (!match) {
403                         atomic_inc(&u->ref);
404                         return u;
405                 }
406
407                 if (match < 0)
408                         p = &parent->rb_left;
409                 else
410                         p = &parent->rb_right;
411
412         }
413
414         u = NULL;
415         rb_link_node(&uprobe->rb_node, parent, p);
416         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
417         /* get access + creation ref */
418         atomic_set(&uprobe->ref, 2);
419
420         return u;
421 }
422
423 /*
424  * Acquire uprobes_treelock.
425  * Matching uprobe already exists in rbtree;
426  *      increment (access refcount) and return the matching uprobe.
427  *
428  * No matching uprobe; insert the uprobe in rb_tree;
429  *      get a double refcount (access + creation) and return NULL.
430  */
431 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
432 {
433         struct uprobe *u;
434
435         spin_lock(&uprobes_treelock);
436         u = __insert_uprobe(uprobe);
437         spin_unlock(&uprobes_treelock);
438
439         return u;
440 }
441
442 static void put_uprobe(struct uprobe *uprobe)
443 {
444         if (atomic_dec_and_test(&uprobe->ref))
445                 kfree(uprobe);
446 }
447
448 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
449 {
450         struct uprobe *uprobe, *cur_uprobe;
451
452         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
453         if (!uprobe)
454                 return NULL;
455
456         uprobe->inode = igrab(inode);
457         uprobe->offset = offset;
458         init_rwsem(&uprobe->register_rwsem);
459         init_rwsem(&uprobe->consumer_rwsem);
460         /* For now assume that the instruction need not be single-stepped */
461         __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
462
463         /* add to uprobes_tree, sorted on inode:offset */
464         cur_uprobe = insert_uprobe(uprobe);
465
466         /* a uprobe exists for this inode:offset combination */
467         if (cur_uprobe) {
468                 kfree(uprobe);
469                 uprobe = cur_uprobe;
470                 iput(inode);
471         }
472
473         return uprobe;
474 }
475
476 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
477 {
478         down_write(&uprobe->consumer_rwsem);
479         uc->next = uprobe->consumers;
480         uprobe->consumers = uc;
481         up_write(&uprobe->consumer_rwsem);
482 }
483
484 /*
485  * For uprobe @uprobe, delete the consumer @uc.
486  * Return true if the @uc is deleted successfully
487  * or return false.
488  */
489 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
490 {
491         struct uprobe_consumer **con;
492         bool ret = false;
493
494         down_write(&uprobe->consumer_rwsem);
495         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
496                 if (*con == uc) {
497                         *con = uc->next;
498                         ret = true;
499                         break;
500                 }
501         }
502         up_write(&uprobe->consumer_rwsem);
503
504         return ret;
505 }
506
507 static int
508 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
509                         unsigned long nbytes, loff_t offset)
510 {
511         struct page *page;
512
513         if (!mapping->a_ops->readpage)
514                 return -EIO;
515         /*
516          * Ensure that the page that has the original instruction is
517          * populated and in page-cache.
518          */
519         page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
520         if (IS_ERR(page))
521                 return PTR_ERR(page);
522
523         copy_from_page(page, offset, insn, nbytes);
524         page_cache_release(page);
525
526         return 0;
527 }
528
529 static int copy_insn(struct uprobe *uprobe, struct file *filp)
530 {
531         struct address_space *mapping;
532         unsigned long nbytes;
533         int bytes;
534
535         nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
536         mapping = uprobe->inode->i_mapping;
537
538         /* Instruction at end of binary; copy only available bytes */
539         if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
540                 bytes = uprobe->inode->i_size - uprobe->offset;
541         else
542                 bytes = MAX_UINSN_BYTES;
543
544         /* Instruction at the page-boundary; copy bytes in second page */
545         if (nbytes < bytes) {
546                 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
547                                 bytes - nbytes, uprobe->offset + nbytes);
548                 if (err)
549                         return err;
550                 bytes = nbytes;
551         }
552         return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
553 }
554
555 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
556                                 struct mm_struct *mm, unsigned long vaddr)
557 {
558         int ret = 0;
559
560         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
561                 return ret;
562
563         /* TODO: move this into _register, until then we abuse this sem. */
564         down_write(&uprobe->consumer_rwsem);
565         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
566                 goto out;
567
568         ret = copy_insn(uprobe, file);
569         if (ret)
570                 goto out;
571
572         ret = -ENOTSUPP;
573         if (is_trap_insn((uprobe_opcode_t *)uprobe->arch.insn))
574                 goto out;
575
576         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
577         if (ret)
578                 goto out;
579
580         /* write_opcode() assumes we don't cross page boundary */
581         BUG_ON((uprobe->offset & ~PAGE_MASK) +
582                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
583
584         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
585         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
586
587  out:
588         up_write(&uprobe->consumer_rwsem);
589
590         return ret;
591 }
592
593 static inline bool consumer_filter(struct uprobe_consumer *uc,
594                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
595 {
596         return !uc->filter || uc->filter(uc, ctx, mm);
597 }
598
599 static bool filter_chain(struct uprobe *uprobe,
600                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
601 {
602         struct uprobe_consumer *uc;
603         bool ret = false;
604
605         down_read(&uprobe->consumer_rwsem);
606         for (uc = uprobe->consumers; uc; uc = uc->next) {
607                 ret = consumer_filter(uc, ctx, mm);
608                 if (ret)
609                         break;
610         }
611         up_read(&uprobe->consumer_rwsem);
612
613         return ret;
614 }
615
616 static int
617 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
618                         struct vm_area_struct *vma, unsigned long vaddr)
619 {
620         bool first_uprobe;
621         int ret;
622
623         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
624         if (ret)
625                 return ret;
626
627         /*
628          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
629          * the task can hit this breakpoint right after __replace_page().
630          */
631         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
632         if (first_uprobe)
633                 set_bit(MMF_HAS_UPROBES, &mm->flags);
634
635         ret = set_swbp(&uprobe->arch, mm, vaddr);
636         if (!ret)
637                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
638         else if (first_uprobe)
639                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
640
641         return ret;
642 }
643
644 static int
645 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
646 {
647         set_bit(MMF_RECALC_UPROBES, &mm->flags);
648         return set_orig_insn(&uprobe->arch, mm, vaddr);
649 }
650
651 static inline bool uprobe_is_active(struct uprobe *uprobe)
652 {
653         return !RB_EMPTY_NODE(&uprobe->rb_node);
654 }
655 /*
656  * There could be threads that have already hit the breakpoint. They
657  * will recheck the current insn and restart if find_uprobe() fails.
658  * See find_active_uprobe().
659  */
660 static void delete_uprobe(struct uprobe *uprobe)
661 {
662         if (WARN_ON(!uprobe_is_active(uprobe)))
663                 return;
664
665         spin_lock(&uprobes_treelock);
666         rb_erase(&uprobe->rb_node, &uprobes_tree);
667         spin_unlock(&uprobes_treelock);
668         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
669         iput(uprobe->inode);
670         put_uprobe(uprobe);
671 }
672
673 struct map_info {
674         struct map_info *next;
675         struct mm_struct *mm;
676         unsigned long vaddr;
677 };
678
679 static inline struct map_info *free_map_info(struct map_info *info)
680 {
681         struct map_info *next = info->next;
682         kfree(info);
683         return next;
684 }
685
686 static struct map_info *
687 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
688 {
689         unsigned long pgoff = offset >> PAGE_SHIFT;
690         struct vm_area_struct *vma;
691         struct map_info *curr = NULL;
692         struct map_info *prev = NULL;
693         struct map_info *info;
694         int more = 0;
695
696  again:
697         mutex_lock(&mapping->i_mmap_mutex);
698         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
699                 if (!valid_vma(vma, is_register))
700                         continue;
701
702                 if (!prev && !more) {
703                         /*
704                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
705                          * reclaim. This is optimistic, no harm done if it fails.
706                          */
707                         prev = kmalloc(sizeof(struct map_info),
708                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
709                         if (prev)
710                                 prev->next = NULL;
711                 }
712                 if (!prev) {
713                         more++;
714                         continue;
715                 }
716
717                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
718                         continue;
719
720                 info = prev;
721                 prev = prev->next;
722                 info->next = curr;
723                 curr = info;
724
725                 info->mm = vma->vm_mm;
726                 info->vaddr = offset_to_vaddr(vma, offset);
727         }
728         mutex_unlock(&mapping->i_mmap_mutex);
729
730         if (!more)
731                 goto out;
732
733         prev = curr;
734         while (curr) {
735                 mmput(curr->mm);
736                 curr = curr->next;
737         }
738
739         do {
740                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
741                 if (!info) {
742                         curr = ERR_PTR(-ENOMEM);
743                         goto out;
744                 }
745                 info->next = prev;
746                 prev = info;
747         } while (--more);
748
749         goto again;
750  out:
751         while (prev)
752                 prev = free_map_info(prev);
753         return curr;
754 }
755
756 static int
757 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
758 {
759         bool is_register = !!new;
760         struct map_info *info;
761         int err = 0;
762
763         percpu_down_write(&dup_mmap_sem);
764         info = build_map_info(uprobe->inode->i_mapping,
765                                         uprobe->offset, is_register);
766         if (IS_ERR(info)) {
767                 err = PTR_ERR(info);
768                 goto out;
769         }
770
771         while (info) {
772                 struct mm_struct *mm = info->mm;
773                 struct vm_area_struct *vma;
774
775                 if (err && is_register)
776                         goto free;
777
778                 down_write(&mm->mmap_sem);
779                 vma = find_vma(mm, info->vaddr);
780                 if (!vma || !valid_vma(vma, is_register) ||
781                     file_inode(vma->vm_file) != uprobe->inode)
782                         goto unlock;
783
784                 if (vma->vm_start > info->vaddr ||
785                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
786                         goto unlock;
787
788                 if (is_register) {
789                         /* consult only the "caller", new consumer. */
790                         if (consumer_filter(new,
791                                         UPROBE_FILTER_REGISTER, mm))
792                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
793                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
794                         if (!filter_chain(uprobe,
795                                         UPROBE_FILTER_UNREGISTER, mm))
796                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
797                 }
798
799  unlock:
800                 up_write(&mm->mmap_sem);
801  free:
802                 mmput(mm);
803                 info = free_map_info(info);
804         }
805  out:
806         percpu_up_write(&dup_mmap_sem);
807         return err;
808 }
809
810 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
811 {
812         consumer_add(uprobe, uc);
813         return register_for_each_vma(uprobe, uc);
814 }
815
816 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
817 {
818         int err;
819
820         if (!consumer_del(uprobe, uc))  /* WARN? */
821                 return;
822
823         err = register_for_each_vma(uprobe, NULL);
824         /* TODO : cant unregister? schedule a worker thread */
825         if (!uprobe->consumers && !err)
826                 delete_uprobe(uprobe);
827 }
828
829 /*
830  * uprobe_register - register a probe
831  * @inode: the file in which the probe has to be placed.
832  * @offset: offset from the start of the file.
833  * @uc: information on howto handle the probe..
834  *
835  * Apart from the access refcount, uprobe_register() takes a creation
836  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
837  * inserted into the rbtree (i.e first consumer for a @inode:@offset
838  * tuple).  Creation refcount stops uprobe_unregister from freeing the
839  * @uprobe even before the register operation is complete. Creation
840  * refcount is released when the last @uc for the @uprobe
841  * unregisters.
842  *
843  * Return errno if it cannot successully install probes
844  * else return 0 (success)
845  */
846 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
847 {
848         struct uprobe *uprobe;
849         int ret;
850
851         /* Uprobe must have at least one set consumer */
852         if (!uc->handler && !uc->ret_handler)
853                 return -EINVAL;
854
855         /* Racy, just to catch the obvious mistakes */
856         if (offset > i_size_read(inode))
857                 return -EINVAL;
858
859  retry:
860         uprobe = alloc_uprobe(inode, offset);
861         if (!uprobe)
862                 return -ENOMEM;
863         /*
864          * We can race with uprobe_unregister()->delete_uprobe().
865          * Check uprobe_is_active() and retry if it is false.
866          */
867         down_write(&uprobe->register_rwsem);
868         ret = -EAGAIN;
869         if (likely(uprobe_is_active(uprobe))) {
870                 ret = __uprobe_register(uprobe, uc);
871                 if (ret)
872                         __uprobe_unregister(uprobe, uc);
873         }
874         up_write(&uprobe->register_rwsem);
875         put_uprobe(uprobe);
876
877         if (unlikely(ret == -EAGAIN))
878                 goto retry;
879         return ret;
880 }
881 EXPORT_SYMBOL_GPL(uprobe_register);
882
883 /*
884  * uprobe_apply - unregister a already registered probe.
885  * @inode: the file in which the probe has to be removed.
886  * @offset: offset from the start of the file.
887  * @uc: consumer which wants to add more or remove some breakpoints
888  * @add: add or remove the breakpoints
889  */
890 int uprobe_apply(struct inode *inode, loff_t offset,
891                         struct uprobe_consumer *uc, bool add)
892 {
893         struct uprobe *uprobe;
894         struct uprobe_consumer *con;
895         int ret = -ENOENT;
896
897         uprobe = find_uprobe(inode, offset);
898         if (!uprobe)
899                 return ret;
900
901         down_write(&uprobe->register_rwsem);
902         for (con = uprobe->consumers; con && con != uc ; con = con->next)
903                 ;
904         if (con)
905                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
906         up_write(&uprobe->register_rwsem);
907         put_uprobe(uprobe);
908
909         return ret;
910 }
911
912 /*
913  * uprobe_unregister - unregister a already registered probe.
914  * @inode: the file in which the probe has to be removed.
915  * @offset: offset from the start of the file.
916  * @uc: identify which probe if multiple probes are colocated.
917  */
918 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
919 {
920         struct uprobe *uprobe;
921
922         uprobe = find_uprobe(inode, offset);
923         if (!uprobe)
924                 return;
925
926         down_write(&uprobe->register_rwsem);
927         __uprobe_unregister(uprobe, uc);
928         up_write(&uprobe->register_rwsem);
929         put_uprobe(uprobe);
930 }
931 EXPORT_SYMBOL_GPL(uprobe_unregister);
932
933 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
934 {
935         struct vm_area_struct *vma;
936         int err = 0;
937
938         down_read(&mm->mmap_sem);
939         for (vma = mm->mmap; vma; vma = vma->vm_next) {
940                 unsigned long vaddr;
941                 loff_t offset;
942
943                 if (!valid_vma(vma, false) ||
944                     file_inode(vma->vm_file) != uprobe->inode)
945                         continue;
946
947                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
948                 if (uprobe->offset <  offset ||
949                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
950                         continue;
951
952                 vaddr = offset_to_vaddr(vma, uprobe->offset);
953                 err |= remove_breakpoint(uprobe, mm, vaddr);
954         }
955         up_read(&mm->mmap_sem);
956
957         return err;
958 }
959
960 static struct rb_node *
961 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
962 {
963         struct rb_node *n = uprobes_tree.rb_node;
964
965         while (n) {
966                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
967
968                 if (inode < u->inode) {
969                         n = n->rb_left;
970                 } else if (inode > u->inode) {
971                         n = n->rb_right;
972                 } else {
973                         if (max < u->offset)
974                                 n = n->rb_left;
975                         else if (min > u->offset)
976                                 n = n->rb_right;
977                         else
978                                 break;
979                 }
980         }
981
982         return n;
983 }
984
985 /*
986  * For a given range in vma, build a list of probes that need to be inserted.
987  */
988 static void build_probe_list(struct inode *inode,
989                                 struct vm_area_struct *vma,
990                                 unsigned long start, unsigned long end,
991                                 struct list_head *head)
992 {
993         loff_t min, max;
994         struct rb_node *n, *t;
995         struct uprobe *u;
996
997         INIT_LIST_HEAD(head);
998         min = vaddr_to_offset(vma, start);
999         max = min + (end - start) - 1;
1000
1001         spin_lock(&uprobes_treelock);
1002         n = find_node_in_range(inode, min, max);
1003         if (n) {
1004                 for (t = n; t; t = rb_prev(t)) {
1005                         u = rb_entry(t, struct uprobe, rb_node);
1006                         if (u->inode != inode || u->offset < min)
1007                                 break;
1008                         list_add(&u->pending_list, head);
1009                         atomic_inc(&u->ref);
1010                 }
1011                 for (t = n; (t = rb_next(t)); ) {
1012                         u = rb_entry(t, struct uprobe, rb_node);
1013                         if (u->inode != inode || u->offset > max)
1014                                 break;
1015                         list_add(&u->pending_list, head);
1016                         atomic_inc(&u->ref);
1017                 }
1018         }
1019         spin_unlock(&uprobes_treelock);
1020 }
1021
1022 /*
1023  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1024  *
1025  * Currently we ignore all errors and always return 0, the callers
1026  * can't handle the failure anyway.
1027  */
1028 int uprobe_mmap(struct vm_area_struct *vma)
1029 {
1030         struct list_head tmp_list;
1031         struct uprobe *uprobe, *u;
1032         struct inode *inode;
1033
1034         if (no_uprobe_events() || !valid_vma(vma, true))
1035                 return 0;
1036
1037         inode = file_inode(vma->vm_file);
1038         if (!inode)
1039                 return 0;
1040
1041         mutex_lock(uprobes_mmap_hash(inode));
1042         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1043         /*
1044          * We can race with uprobe_unregister(), this uprobe can be already
1045          * removed. But in this case filter_chain() must return false, all
1046          * consumers have gone away.
1047          */
1048         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1049                 if (!fatal_signal_pending(current) &&
1050                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1051                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1052                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1053                 }
1054                 put_uprobe(uprobe);
1055         }
1056         mutex_unlock(uprobes_mmap_hash(inode));
1057
1058         return 0;
1059 }
1060
1061 static bool
1062 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1063 {
1064         loff_t min, max;
1065         struct inode *inode;
1066         struct rb_node *n;
1067
1068         inode = file_inode(vma->vm_file);
1069
1070         min = vaddr_to_offset(vma, start);
1071         max = min + (end - start) - 1;
1072
1073         spin_lock(&uprobes_treelock);
1074         n = find_node_in_range(inode, min, max);
1075         spin_unlock(&uprobes_treelock);
1076
1077         return !!n;
1078 }
1079
1080 /*
1081  * Called in context of a munmap of a vma.
1082  */
1083 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1084 {
1085         if (no_uprobe_events() || !valid_vma(vma, false))
1086                 return;
1087
1088         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1089                 return;
1090
1091         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1092              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1093                 return;
1094
1095         if (vma_has_uprobes(vma, start, end))
1096                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1097 }
1098
1099 /* Slot allocation for XOL */
1100 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1101 {
1102         int ret = -EALREADY;
1103
1104         down_write(&mm->mmap_sem);
1105         if (mm->uprobes_state.xol_area)
1106                 goto fail;
1107
1108         if (!area->vaddr) {
1109                 /* Try to map as high as possible, this is only a hint. */
1110                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1111                                                 PAGE_SIZE, 0, 0);
1112                 if (area->vaddr & ~PAGE_MASK) {
1113                         ret = area->vaddr;
1114                         goto fail;
1115                 }
1116         }
1117
1118         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1119                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1120         if (ret)
1121                 goto fail;
1122
1123         smp_wmb();      /* pairs with get_xol_area() */
1124         mm->uprobes_state.xol_area = area;
1125  fail:
1126         up_write(&mm->mmap_sem);
1127
1128         return ret;
1129 }
1130
1131 static struct xol_area *__create_xol_area(unsigned long vaddr)
1132 {
1133         struct mm_struct *mm = current->mm;
1134         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1135         struct xol_area *area;
1136
1137         area = kmalloc(sizeof(*area), GFP_KERNEL);
1138         if (unlikely(!area))
1139                 goto out;
1140
1141         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1142         if (!area->bitmap)
1143                 goto free_area;
1144
1145         area->page = alloc_page(GFP_HIGHUSER);
1146         if (!area->page)
1147                 goto free_bitmap;
1148
1149         area->vaddr = vaddr;
1150         init_waitqueue_head(&area->wq);
1151         /* Reserve the 1st slot for get_trampoline_vaddr() */
1152         set_bit(0, area->bitmap);
1153         atomic_set(&area->slot_count, 1);
1154         copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1155
1156         if (!xol_add_vma(mm, area))
1157                 return area;
1158
1159         __free_page(area->page);
1160  free_bitmap:
1161         kfree(area->bitmap);
1162  free_area:
1163         kfree(area);
1164  out:
1165         return NULL;
1166 }
1167
1168 /*
1169  * get_xol_area - Allocate process's xol_area if necessary.
1170  * This area will be used for storing instructions for execution out of line.
1171  *
1172  * Returns the allocated area or NULL.
1173  */
1174 static struct xol_area *get_xol_area(void)
1175 {
1176         struct mm_struct *mm = current->mm;
1177         struct xol_area *area;
1178
1179         if (!mm->uprobes_state.xol_area)
1180                 __create_xol_area(0);
1181
1182         area = mm->uprobes_state.xol_area;
1183         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1184         return area;
1185 }
1186
1187 /*
1188  * uprobe_clear_state - Free the area allocated for slots.
1189  */
1190 void uprobe_clear_state(struct mm_struct *mm)
1191 {
1192         struct xol_area *area = mm->uprobes_state.xol_area;
1193
1194         if (!area)
1195                 return;
1196
1197         put_page(area->page);
1198         kfree(area->bitmap);
1199         kfree(area);
1200 }
1201
1202 void uprobe_start_dup_mmap(void)
1203 {
1204         percpu_down_read(&dup_mmap_sem);
1205 }
1206
1207 void uprobe_end_dup_mmap(void)
1208 {
1209         percpu_up_read(&dup_mmap_sem);
1210 }
1211
1212 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1213 {
1214         newmm->uprobes_state.xol_area = NULL;
1215
1216         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1217                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1218                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1219                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1220         }
1221 }
1222
1223 /*
1224  *  - search for a free slot.
1225  */
1226 static unsigned long xol_take_insn_slot(struct xol_area *area)
1227 {
1228         unsigned long slot_addr;
1229         int slot_nr;
1230
1231         do {
1232                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1233                 if (slot_nr < UINSNS_PER_PAGE) {
1234                         if (!test_and_set_bit(slot_nr, area->bitmap))
1235                                 break;
1236
1237                         slot_nr = UINSNS_PER_PAGE;
1238                         continue;
1239                 }
1240                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1241         } while (slot_nr >= UINSNS_PER_PAGE);
1242
1243         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1244         atomic_inc(&area->slot_count);
1245
1246         return slot_addr;
1247 }
1248
1249 /*
1250  * xol_get_insn_slot - allocate a slot for xol.
1251  * Returns the allocated slot address or 0.
1252  */
1253 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1254 {
1255         struct xol_area *area;
1256         unsigned long xol_vaddr;
1257
1258         area = get_xol_area();
1259         if (!area)
1260                 return 0;
1261
1262         xol_vaddr = xol_take_insn_slot(area);
1263         if (unlikely(!xol_vaddr))
1264                 return 0;
1265
1266         /* Initialize the slot */
1267         copy_to_page(area->page, xol_vaddr,
1268                         uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1269         /*
1270          * We probably need flush_icache_user_range() but it needs vma.
1271          * This should work on supported architectures too.
1272          */
1273         flush_dcache_page(area->page);
1274
1275         return xol_vaddr;
1276 }
1277
1278 /*
1279  * xol_free_insn_slot - If slot was earlier allocated by
1280  * @xol_get_insn_slot(), make the slot available for
1281  * subsequent requests.
1282  */
1283 static void xol_free_insn_slot(struct task_struct *tsk)
1284 {
1285         struct xol_area *area;
1286         unsigned long vma_end;
1287         unsigned long slot_addr;
1288
1289         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1290                 return;
1291
1292         slot_addr = tsk->utask->xol_vaddr;
1293         if (unlikely(!slot_addr))
1294                 return;
1295
1296         area = tsk->mm->uprobes_state.xol_area;
1297         vma_end = area->vaddr + PAGE_SIZE;
1298         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1299                 unsigned long offset;
1300                 int slot_nr;
1301
1302                 offset = slot_addr - area->vaddr;
1303                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1304                 if (slot_nr >= UINSNS_PER_PAGE)
1305                         return;
1306
1307                 clear_bit(slot_nr, area->bitmap);
1308                 atomic_dec(&area->slot_count);
1309                 if (waitqueue_active(&area->wq))
1310                         wake_up(&area->wq);
1311
1312                 tsk->utask->xol_vaddr = 0;
1313         }
1314 }
1315
1316 /**
1317  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1318  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1319  * instruction.
1320  * Return the address of the breakpoint instruction.
1321  */
1322 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1323 {
1324         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1325 }
1326
1327 /*
1328  * Called with no locks held.
1329  * Called in context of a exiting or a exec-ing thread.
1330  */
1331 void uprobe_free_utask(struct task_struct *t)
1332 {
1333         struct uprobe_task *utask = t->utask;
1334         struct return_instance *ri, *tmp;
1335
1336         if (!utask)
1337                 return;
1338
1339         if (utask->active_uprobe)
1340                 put_uprobe(utask->active_uprobe);
1341
1342         ri = utask->return_instances;
1343         while (ri) {
1344                 tmp = ri;
1345                 ri = ri->next;
1346
1347                 put_uprobe(tmp->uprobe);
1348                 kfree(tmp);
1349         }
1350
1351         xol_free_insn_slot(t);
1352         kfree(utask);
1353         t->utask = NULL;
1354 }
1355
1356 /*
1357  * Allocate a uprobe_task object for the task if if necessary.
1358  * Called when the thread hits a breakpoint.
1359  *
1360  * Returns:
1361  * - pointer to new uprobe_task on success
1362  * - NULL otherwise
1363  */
1364 static struct uprobe_task *get_utask(void)
1365 {
1366         if (!current->utask)
1367                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1368         return current->utask;
1369 }
1370
1371 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1372 {
1373         struct uprobe_task *n_utask;
1374         struct return_instance **p, *o, *n;
1375
1376         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1377         if (!n_utask)
1378                 return -ENOMEM;
1379         t->utask = n_utask;
1380
1381         p = &n_utask->return_instances;
1382         for (o = o_utask->return_instances; o; o = o->next) {
1383                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1384                 if (!n)
1385                         return -ENOMEM;
1386
1387                 *n = *o;
1388                 atomic_inc(&n->uprobe->ref);
1389                 n->next = NULL;
1390
1391                 *p = n;
1392                 p = &n->next;
1393                 n_utask->depth++;
1394         }
1395
1396         return 0;
1397 }
1398
1399 static void uprobe_warn(struct task_struct *t, const char *msg)
1400 {
1401         pr_warn("uprobe: %s:%d failed to %s\n",
1402                         current->comm, current->pid, msg);
1403 }
1404
1405 static void dup_xol_work(struct callback_head *work)
1406 {
1407         kfree(work);
1408
1409         if (current->flags & PF_EXITING)
1410                 return;
1411
1412         if (!__create_xol_area(current->utask->vaddr))
1413                 uprobe_warn(current, "dup xol area");
1414 }
1415
1416 /*
1417  * Called in context of a new clone/fork from copy_process.
1418  */
1419 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1420 {
1421         struct uprobe_task *utask = current->utask;
1422         struct mm_struct *mm = current->mm;
1423         struct callback_head *work;
1424         struct xol_area *area;
1425
1426         t->utask = NULL;
1427
1428         if (!utask || !utask->return_instances)
1429                 return;
1430
1431         if (mm == t->mm && !(flags & CLONE_VFORK))
1432                 return;
1433
1434         if (dup_utask(t, utask))
1435                 return uprobe_warn(t, "dup ret instances");
1436
1437         /* The task can fork() after dup_xol_work() fails */
1438         area = mm->uprobes_state.xol_area;
1439         if (!area)
1440                 return uprobe_warn(t, "dup xol area");
1441
1442         if (mm == t->mm)
1443                 return;
1444
1445         /* TODO: move it into the union in uprobe_task */
1446         work = kmalloc(sizeof(*work), GFP_KERNEL);
1447         if (!work)
1448                 return uprobe_warn(t, "dup xol area");
1449
1450         utask->vaddr = area->vaddr;
1451         init_task_work(work, dup_xol_work);
1452         task_work_add(t, work, true);
1453 }
1454
1455 /*
1456  * Current area->vaddr notion assume the trampoline address is always
1457  * equal area->vaddr.
1458  *
1459  * Returns -1 in case the xol_area is not allocated.
1460  */
1461 static unsigned long get_trampoline_vaddr(void)
1462 {
1463         struct xol_area *area;
1464         unsigned long trampoline_vaddr = -1;
1465
1466         area = current->mm->uprobes_state.xol_area;
1467         smp_read_barrier_depends();
1468         if (area)
1469                 trampoline_vaddr = area->vaddr;
1470
1471         return trampoline_vaddr;
1472 }
1473
1474 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1475 {
1476         struct return_instance *ri;
1477         struct uprobe_task *utask;
1478         unsigned long orig_ret_vaddr, trampoline_vaddr;
1479         bool chained = false;
1480
1481         if (!get_xol_area())
1482                 return;
1483
1484         utask = get_utask();
1485         if (!utask)
1486                 return;
1487
1488         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1489                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1490                                 " nestedness limit pid/tgid=%d/%d\n",
1491                                 current->pid, current->tgid);
1492                 return;
1493         }
1494
1495         ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1496         if (!ri)
1497                 goto fail;
1498
1499         trampoline_vaddr = get_trampoline_vaddr();
1500         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1501         if (orig_ret_vaddr == -1)
1502                 goto fail;
1503
1504         /*
1505          * We don't want to keep trampoline address in stack, rather keep the
1506          * original return address of first caller thru all the consequent
1507          * instances. This also makes breakpoint unwrapping easier.
1508          */
1509         if (orig_ret_vaddr == trampoline_vaddr) {
1510                 if (!utask->return_instances) {
1511                         /*
1512                          * This situation is not possible. Likely we have an
1513                          * attack from user-space.
1514                          */
1515                         pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1516                                                 current->pid, current->tgid);
1517                         goto fail;
1518                 }
1519
1520                 chained = true;
1521                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1522         }
1523
1524         atomic_inc(&uprobe->ref);
1525         ri->uprobe = uprobe;
1526         ri->func = instruction_pointer(regs);
1527         ri->orig_ret_vaddr = orig_ret_vaddr;
1528         ri->chained = chained;
1529
1530         utask->depth++;
1531
1532         /* add instance to the stack */
1533         ri->next = utask->return_instances;
1534         utask->return_instances = ri;
1535
1536         return;
1537
1538  fail:
1539         kfree(ri);
1540 }
1541
1542 /* Prepare to single-step probed instruction out of line. */
1543 static int
1544 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1545 {
1546         struct uprobe_task *utask;
1547         unsigned long xol_vaddr;
1548         int err;
1549
1550         utask = get_utask();
1551         if (!utask)
1552                 return -ENOMEM;
1553
1554         xol_vaddr = xol_get_insn_slot(uprobe);
1555         if (!xol_vaddr)
1556                 return -ENOMEM;
1557
1558         utask->xol_vaddr = xol_vaddr;
1559         utask->vaddr = bp_vaddr;
1560
1561         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1562         if (unlikely(err)) {
1563                 xol_free_insn_slot(current);
1564                 return err;
1565         }
1566
1567         utask->active_uprobe = uprobe;
1568         utask->state = UTASK_SSTEP;
1569         return 0;
1570 }
1571
1572 /*
1573  * If we are singlestepping, then ensure this thread is not connected to
1574  * non-fatal signals until completion of singlestep.  When xol insn itself
1575  * triggers the signal,  restart the original insn even if the task is
1576  * already SIGKILL'ed (since coredump should report the correct ip).  This
1577  * is even more important if the task has a handler for SIGSEGV/etc, The
1578  * _same_ instruction should be repeated again after return from the signal
1579  * handler, and SSTEP can never finish in this case.
1580  */
1581 bool uprobe_deny_signal(void)
1582 {
1583         struct task_struct *t = current;
1584         struct uprobe_task *utask = t->utask;
1585
1586         if (likely(!utask || !utask->active_uprobe))
1587                 return false;
1588
1589         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1590
1591         if (signal_pending(t)) {
1592                 spin_lock_irq(&t->sighand->siglock);
1593                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1594                 spin_unlock_irq(&t->sighand->siglock);
1595
1596                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1597                         utask->state = UTASK_SSTEP_TRAPPED;
1598                         set_tsk_thread_flag(t, TIF_UPROBE);
1599                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1600                 }
1601         }
1602
1603         return true;
1604 }
1605
1606 /*
1607  * Avoid singlestepping the original instruction if the original instruction
1608  * is a NOP or can be emulated.
1609  */
1610 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1611 {
1612         if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1613                 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1614                         return true;
1615                 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1616         }
1617         return false;
1618 }
1619
1620 static void mmf_recalc_uprobes(struct mm_struct *mm)
1621 {
1622         struct vm_area_struct *vma;
1623
1624         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1625                 if (!valid_vma(vma, false))
1626                         continue;
1627                 /*
1628                  * This is not strictly accurate, we can race with
1629                  * uprobe_unregister() and see the already removed
1630                  * uprobe if delete_uprobe() was not yet called.
1631                  * Or this uprobe can be filtered out.
1632                  */
1633                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1634                         return;
1635         }
1636
1637         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1638 }
1639
1640 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1641 {
1642         struct page *page;
1643         uprobe_opcode_t opcode;
1644         int result;
1645
1646         pagefault_disable();
1647         result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1648                                                         sizeof(opcode));
1649         pagefault_enable();
1650
1651         if (likely(result == 0))
1652                 goto out;
1653
1654         result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1655         if (result < 0)
1656                 return result;
1657
1658         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1659         put_page(page);
1660  out:
1661         /* This needs to return true for any variant of the trap insn */
1662         return is_trap_insn(&opcode);
1663 }
1664
1665 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1666 {
1667         struct mm_struct *mm = current->mm;
1668         struct uprobe *uprobe = NULL;
1669         struct vm_area_struct *vma;
1670
1671         down_read(&mm->mmap_sem);
1672         vma = find_vma(mm, bp_vaddr);
1673         if (vma && vma->vm_start <= bp_vaddr) {
1674                 if (valid_vma(vma, false)) {
1675                         struct inode *inode = file_inode(vma->vm_file);
1676                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1677
1678                         uprobe = find_uprobe(inode, offset);
1679                 }
1680
1681                 if (!uprobe)
1682                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1683         } else {
1684                 *is_swbp = -EFAULT;
1685         }
1686
1687         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1688                 mmf_recalc_uprobes(mm);
1689         up_read(&mm->mmap_sem);
1690
1691         return uprobe;
1692 }
1693
1694 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1695 {
1696         struct uprobe_consumer *uc;
1697         int remove = UPROBE_HANDLER_REMOVE;
1698         bool need_prep = false; /* prepare return uprobe, when needed */
1699
1700         down_read(&uprobe->register_rwsem);
1701         for (uc = uprobe->consumers; uc; uc = uc->next) {
1702                 int rc = 0;
1703
1704                 if (uc->handler) {
1705                         rc = uc->handler(uc, regs);
1706                         WARN(rc & ~UPROBE_HANDLER_MASK,
1707                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1708                 }
1709
1710                 if (uc->ret_handler)
1711                         need_prep = true;
1712
1713                 remove &= rc;
1714         }
1715
1716         if (need_prep && !remove)
1717                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1718
1719         if (remove && uprobe->consumers) {
1720                 WARN_ON(!uprobe_is_active(uprobe));
1721                 unapply_uprobe(uprobe, current->mm);
1722         }
1723         up_read(&uprobe->register_rwsem);
1724 }
1725
1726 static void
1727 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1728 {
1729         struct uprobe *uprobe = ri->uprobe;
1730         struct uprobe_consumer *uc;
1731
1732         down_read(&uprobe->register_rwsem);
1733         for (uc = uprobe->consumers; uc; uc = uc->next) {
1734                 if (uc->ret_handler)
1735                         uc->ret_handler(uc, ri->func, regs);
1736         }
1737         up_read(&uprobe->register_rwsem);
1738 }
1739
1740 static bool handle_trampoline(struct pt_regs *regs)
1741 {
1742         struct uprobe_task *utask;
1743         struct return_instance *ri, *tmp;
1744         bool chained;
1745
1746         utask = current->utask;
1747         if (!utask)
1748                 return false;
1749
1750         ri = utask->return_instances;
1751         if (!ri)
1752                 return false;
1753
1754         /*
1755          * TODO: we should throw out return_instance's invalidated by
1756          * longjmp(), currently we assume that the probed function always
1757          * returns.
1758          */
1759         instruction_pointer_set(regs, ri->orig_ret_vaddr);
1760
1761         for (;;) {
1762                 handle_uretprobe_chain(ri, regs);
1763
1764                 chained = ri->chained;
1765                 put_uprobe(ri->uprobe);
1766
1767                 tmp = ri;
1768                 ri = ri->next;
1769                 kfree(tmp);
1770                 utask->depth--;
1771
1772                 if (!chained)
1773                         break;
1774                 BUG_ON(!ri);
1775         }
1776
1777         utask->return_instances = ri;
1778
1779         return true;
1780 }
1781
1782 /*
1783  * Run handler and ask thread to singlestep.
1784  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1785  */
1786 static void handle_swbp(struct pt_regs *regs)
1787 {
1788         struct uprobe *uprobe;
1789         unsigned long bp_vaddr;
1790         int uninitialized_var(is_swbp);
1791
1792         bp_vaddr = uprobe_get_swbp_addr(regs);
1793         if (bp_vaddr == get_trampoline_vaddr()) {
1794                 if (handle_trampoline(regs))
1795                         return;
1796
1797                 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1798                                                 current->pid, current->tgid);
1799         }
1800
1801         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1802         if (!uprobe) {
1803                 if (is_swbp > 0) {
1804                         /* No matching uprobe; signal SIGTRAP. */
1805                         send_sig(SIGTRAP, current, 0);
1806                 } else {
1807                         /*
1808                          * Either we raced with uprobe_unregister() or we can't
1809                          * access this memory. The latter is only possible if
1810                          * another thread plays with our ->mm. In both cases
1811                          * we can simply restart. If this vma was unmapped we
1812                          * can pretend this insn was not executed yet and get
1813                          * the (correct) SIGSEGV after restart.
1814                          */
1815                         instruction_pointer_set(regs, bp_vaddr);
1816                 }
1817                 return;
1818         }
1819
1820         /* change it in advance for ->handler() and restart */
1821         instruction_pointer_set(regs, bp_vaddr);
1822
1823         /*
1824          * TODO: move copy_insn/etc into _register and remove this hack.
1825          * After we hit the bp, _unregister + _register can install the
1826          * new and not-yet-analyzed uprobe at the same address, restart.
1827          */
1828         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1829         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1830                 goto out;
1831
1832         handler_chain(uprobe, regs);
1833         if (can_skip_sstep(uprobe, regs))
1834                 goto out;
1835
1836         if (!pre_ssout(uprobe, regs, bp_vaddr))
1837                 return;
1838
1839         /* can_skip_sstep() succeeded, or restart if can't singlestep */
1840 out:
1841         put_uprobe(uprobe);
1842 }
1843
1844 /*
1845  * Perform required fix-ups and disable singlestep.
1846  * Allow pending signals to take effect.
1847  */
1848 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1849 {
1850         struct uprobe *uprobe;
1851
1852         uprobe = utask->active_uprobe;
1853         if (utask->state == UTASK_SSTEP_ACK)
1854                 arch_uprobe_post_xol(&uprobe->arch, regs);
1855         else if (utask->state == UTASK_SSTEP_TRAPPED)
1856                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1857         else
1858                 WARN_ON_ONCE(1);
1859
1860         put_uprobe(uprobe);
1861         utask->active_uprobe = NULL;
1862         utask->state = UTASK_RUNNING;
1863         xol_free_insn_slot(current);
1864
1865         spin_lock_irq(&current->sighand->siglock);
1866         recalc_sigpending(); /* see uprobe_deny_signal() */
1867         spin_unlock_irq(&current->sighand->siglock);
1868 }
1869
1870 /*
1871  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1872  * allows the thread to return from interrupt. After that handle_swbp()
1873  * sets utask->active_uprobe.
1874  *
1875  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1876  * and allows the thread to return from interrupt.
1877  *
1878  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1879  * uprobe_notify_resume().
1880  */
1881 void uprobe_notify_resume(struct pt_regs *regs)
1882 {
1883         struct uprobe_task *utask;
1884
1885         clear_thread_flag(TIF_UPROBE);
1886
1887         utask = current->utask;
1888         if (utask && utask->active_uprobe)
1889                 handle_singlestep(utask, regs);
1890         else
1891                 handle_swbp(regs);
1892 }
1893
1894 /*
1895  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1896  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1897  */
1898 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1899 {
1900         if (!current->mm)
1901                 return 0;
1902
1903         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1904             (!current->utask || !current->utask->return_instances))
1905                 return 0;
1906
1907         set_thread_flag(TIF_UPROBE);
1908         return 1;
1909 }
1910
1911 /*
1912  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1913  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1914  */
1915 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1916 {
1917         struct uprobe_task *utask = current->utask;
1918
1919         if (!current->mm || !utask || !utask->active_uprobe)
1920                 /* task is currently not uprobed */
1921                 return 0;
1922
1923         utask->state = UTASK_SSTEP_ACK;
1924         set_thread_flag(TIF_UPROBE);
1925         return 1;
1926 }
1927
1928 static struct notifier_block uprobe_exception_nb = {
1929         .notifier_call          = arch_uprobe_exception_notify,
1930         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1931 };
1932
1933 static int __init init_uprobes(void)
1934 {
1935         int i;
1936
1937         for (i = 0; i < UPROBES_HASH_SZ; i++)
1938                 mutex_init(&uprobes_mmap_mutex[i]);
1939
1940         if (percpu_init_rwsem(&dup_mmap_sem))
1941                 return -ENOMEM;
1942
1943         return register_die_notifier(&uprobe_exception_nb);
1944 }
1945 __initcall(init_uprobes);