Merge branch 'lpc32xx/dts' of git://git.antcom.de/linux-2.6 into next/dt
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>         /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h>         /* try_to_free_swap */
33 #include <linux/ptrace.h>       /* user_enable_single_step */
34 #include <linux/kdebug.h>       /* notifier mechanism */
35 #include "../../mm/internal.h"  /* munlock_vma_page */
36
37 #include <linux/uprobes.h>
38
39 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
41
42 static struct rb_root uprobes_tree = RB_ROOT;
43
44 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
45
46 #define UPROBES_HASH_SZ 13
47
48 /*
49  * We need separate register/unregister and mmap/munmap lock hashes because
50  * of mmap_sem nesting.
51  *
52  * uprobe_register() needs to install probes on (potentially) all processes
53  * and thus needs to acquire multiple mmap_sems (consequtively, not
54  * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55  * for the particular process doing the mmap.
56  *
57  * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58  * because of lock order against i_mmap_mutex. This means there's a hole in
59  * the register vma iteration where a mmap() can happen.
60  *
61  * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62  * install a probe where one is already installed.
63  */
64
65 /* serialize (un)register */
66 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67
68 #define uprobes_hash(v)         (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69
70 /* serialize uprobe->pending_list */
71 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73
74 /*
75  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76  * events active at this time.  Probably a fine grained per inode count is
77  * better?
78  */
79 static atomic_t uprobe_events = ATOMIC_INIT(0);
80
81 struct uprobe {
82         struct rb_node          rb_node;        /* node in the rb tree */
83         atomic_t                ref;
84         struct rw_semaphore     consumer_rwsem;
85         struct list_head        pending_list;
86         struct uprobe_consumer  *consumers;
87         struct inode            *inode;         /* Also hold a ref to inode */
88         loff_t                  offset;
89         int                     flags;
90         struct arch_uprobe      arch;
91 };
92
93 /*
94  * valid_vma: Verify if the specified vma is an executable vma
95  * Relax restrictions while unregistering: vm_flags might have
96  * changed after breakpoint was inserted.
97  *      - is_register: indicates if we are in register context.
98  *      - Return 1 if the specified virtual address is in an
99  *        executable vma.
100  */
101 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102 {
103         if (!vma->vm_file)
104                 return false;
105
106         if (!is_register)
107                 return true;
108
109         if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
110                                 == (VM_READ|VM_EXEC))
111                 return true;
112
113         return false;
114 }
115
116 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
117 {
118         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
119 }
120
121 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
122 {
123         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
124 }
125
126 /**
127  * __replace_page - replace page in vma by new page.
128  * based on replace_page in mm/ksm.c
129  *
130  * @vma:      vma that holds the pte pointing to page
131  * @addr:     address the old @page is mapped at
132  * @page:     the cowed page we are replacing by kpage
133  * @kpage:    the modified page we replace page by
134  *
135  * Returns 0 on success, -EFAULT on failure.
136  */
137 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
138                                 struct page *page, struct page *kpage)
139 {
140         struct mm_struct *mm = vma->vm_mm;
141         spinlock_t *ptl;
142         pte_t *ptep;
143         int err;
144
145         /* For try_to_free_swap() and munlock_vma_page() below */
146         lock_page(page);
147
148         err = -EAGAIN;
149         ptep = page_check_address(page, mm, addr, &ptl, 0);
150         if (!ptep)
151                 goto unlock;
152
153         get_page(kpage);
154         page_add_new_anon_rmap(kpage, vma, addr);
155
156         if (!PageAnon(page)) {
157                 dec_mm_counter(mm, MM_FILEPAGES);
158                 inc_mm_counter(mm, MM_ANONPAGES);
159         }
160
161         flush_cache_page(vma, addr, pte_pfn(*ptep));
162         ptep_clear_flush(vma, addr, ptep);
163         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
164
165         page_remove_rmap(page);
166         if (!page_mapped(page))
167                 try_to_free_swap(page);
168         pte_unmap_unlock(ptep, ptl);
169
170         if (vma->vm_flags & VM_LOCKED)
171                 munlock_vma_page(page);
172         put_page(page);
173
174         err = 0;
175  unlock:
176         unlock_page(page);
177         return err;
178 }
179
180 /**
181  * is_swbp_insn - check if instruction is breakpoint instruction.
182  * @insn: instruction to be checked.
183  * Default implementation of is_swbp_insn
184  * Returns true if @insn is a breakpoint instruction.
185  */
186 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
187 {
188         return *insn == UPROBE_SWBP_INSN;
189 }
190
191 /*
192  * NOTE:
193  * Expect the breakpoint instruction to be the smallest size instruction for
194  * the architecture. If an arch has variable length instruction and the
195  * breakpoint instruction is not of the smallest length instruction
196  * supported by that architecture then we need to modify read_opcode /
197  * write_opcode accordingly. This would never be a problem for archs that
198  * have fixed length instructions.
199  */
200
201 /*
202  * write_opcode - write the opcode at a given virtual address.
203  * @auprobe: arch breakpointing information.
204  * @mm: the probed process address space.
205  * @vaddr: the virtual address to store the opcode.
206  * @opcode: opcode to be written at @vaddr.
207  *
208  * Called with mm->mmap_sem held (for read and with a reference to
209  * mm).
210  *
211  * For mm @mm, write the opcode at @vaddr.
212  * Return 0 (success) or a negative errno.
213  */
214 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
215                         unsigned long vaddr, uprobe_opcode_t opcode)
216 {
217         struct page *old_page, *new_page;
218         void *vaddr_old, *vaddr_new;
219         struct vm_area_struct *vma;
220         int ret;
221
222 retry:
223         /* Read the page with vaddr into memory */
224         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
225         if (ret <= 0)
226                 return ret;
227
228         ret = -ENOMEM;
229         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
230         if (!new_page)
231                 goto put_old;
232
233         __SetPageUptodate(new_page);
234
235         /* copy the page now that we've got it stable */
236         vaddr_old = kmap_atomic(old_page);
237         vaddr_new = kmap_atomic(new_page);
238
239         memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
240         memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
241
242         kunmap_atomic(vaddr_new);
243         kunmap_atomic(vaddr_old);
244
245         ret = anon_vma_prepare(vma);
246         if (ret)
247                 goto put_new;
248
249         ret = __replace_page(vma, vaddr, old_page, new_page);
250
251 put_new:
252         page_cache_release(new_page);
253 put_old:
254         put_page(old_page);
255
256         if (unlikely(ret == -EAGAIN))
257                 goto retry;
258         return ret;
259 }
260
261 /**
262  * read_opcode - read the opcode at a given virtual address.
263  * @mm: the probed process address space.
264  * @vaddr: the virtual address to read the opcode.
265  * @opcode: location to store the read opcode.
266  *
267  * Called with mm->mmap_sem held (for read and with a reference to
268  * mm.
269  *
270  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
271  * Return 0 (success) or a negative errno.
272  */
273 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
274 {
275         struct page *page;
276         void *vaddr_new;
277         int ret;
278
279         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
280         if (ret <= 0)
281                 return ret;
282
283         lock_page(page);
284         vaddr_new = kmap_atomic(page);
285         vaddr &= ~PAGE_MASK;
286         memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
287         kunmap_atomic(vaddr_new);
288         unlock_page(page);
289
290         put_page(page);
291
292         return 0;
293 }
294
295 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
296 {
297         uprobe_opcode_t opcode;
298         int result;
299
300         if (current->mm == mm) {
301                 pagefault_disable();
302                 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
303                                                                 sizeof(opcode));
304                 pagefault_enable();
305
306                 if (likely(result == 0))
307                         goto out;
308         }
309
310         result = read_opcode(mm, vaddr, &opcode);
311         if (result)
312                 return result;
313 out:
314         if (is_swbp_insn(&opcode))
315                 return 1;
316
317         return 0;
318 }
319
320 /**
321  * set_swbp - store breakpoint at a given address.
322  * @auprobe: arch specific probepoint information.
323  * @mm: the probed process address space.
324  * @vaddr: the virtual address to insert the opcode.
325  *
326  * For mm @mm, store the breakpoint instruction at @vaddr.
327  * Return 0 (success) or a negative errno.
328  */
329 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
330 {
331         int result;
332         /*
333          * See the comment near uprobes_hash().
334          */
335         result = is_swbp_at_addr(mm, vaddr);
336         if (result == 1)
337                 return -EEXIST;
338
339         if (result)
340                 return result;
341
342         return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
343 }
344
345 /**
346  * set_orig_insn - Restore the original instruction.
347  * @mm: the probed process address space.
348  * @auprobe: arch specific probepoint information.
349  * @vaddr: the virtual address to insert the opcode.
350  * @verify: if true, verify existance of breakpoint instruction.
351  *
352  * For mm @mm, restore the original opcode (opcode) at @vaddr.
353  * Return 0 (success) or a negative errno.
354  */
355 int __weak
356 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
357 {
358         if (verify) {
359                 int result;
360
361                 result = is_swbp_at_addr(mm, vaddr);
362                 if (!result)
363                         return -EINVAL;
364
365                 if (result != 1)
366                         return result;
367         }
368         return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
369 }
370
371 static int match_uprobe(struct uprobe *l, struct uprobe *r)
372 {
373         if (l->inode < r->inode)
374                 return -1;
375
376         if (l->inode > r->inode)
377                 return 1;
378
379         if (l->offset < r->offset)
380                 return -1;
381
382         if (l->offset > r->offset)
383                 return 1;
384
385         return 0;
386 }
387
388 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
389 {
390         struct uprobe u = { .inode = inode, .offset = offset };
391         struct rb_node *n = uprobes_tree.rb_node;
392         struct uprobe *uprobe;
393         int match;
394
395         while (n) {
396                 uprobe = rb_entry(n, struct uprobe, rb_node);
397                 match = match_uprobe(&u, uprobe);
398                 if (!match) {
399                         atomic_inc(&uprobe->ref);
400                         return uprobe;
401                 }
402
403                 if (match < 0)
404                         n = n->rb_left;
405                 else
406                         n = n->rb_right;
407         }
408         return NULL;
409 }
410
411 /*
412  * Find a uprobe corresponding to a given inode:offset
413  * Acquires uprobes_treelock
414  */
415 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
416 {
417         struct uprobe *uprobe;
418         unsigned long flags;
419
420         spin_lock_irqsave(&uprobes_treelock, flags);
421         uprobe = __find_uprobe(inode, offset);
422         spin_unlock_irqrestore(&uprobes_treelock, flags);
423
424         return uprobe;
425 }
426
427 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
428 {
429         struct rb_node **p = &uprobes_tree.rb_node;
430         struct rb_node *parent = NULL;
431         struct uprobe *u;
432         int match;
433
434         while (*p) {
435                 parent = *p;
436                 u = rb_entry(parent, struct uprobe, rb_node);
437                 match = match_uprobe(uprobe, u);
438                 if (!match) {
439                         atomic_inc(&u->ref);
440                         return u;
441                 }
442
443                 if (match < 0)
444                         p = &parent->rb_left;
445                 else
446                         p = &parent->rb_right;
447
448         }
449
450         u = NULL;
451         rb_link_node(&uprobe->rb_node, parent, p);
452         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
453         /* get access + creation ref */
454         atomic_set(&uprobe->ref, 2);
455
456         return u;
457 }
458
459 /*
460  * Acquire uprobes_treelock.
461  * Matching uprobe already exists in rbtree;
462  *      increment (access refcount) and return the matching uprobe.
463  *
464  * No matching uprobe; insert the uprobe in rb_tree;
465  *      get a double refcount (access + creation) and return NULL.
466  */
467 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
468 {
469         unsigned long flags;
470         struct uprobe *u;
471
472         spin_lock_irqsave(&uprobes_treelock, flags);
473         u = __insert_uprobe(uprobe);
474         spin_unlock_irqrestore(&uprobes_treelock, flags);
475
476         /* For now assume that the instruction need not be single-stepped */
477         uprobe->flags |= UPROBE_SKIP_SSTEP;
478
479         return u;
480 }
481
482 static void put_uprobe(struct uprobe *uprobe)
483 {
484         if (atomic_dec_and_test(&uprobe->ref))
485                 kfree(uprobe);
486 }
487
488 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
489 {
490         struct uprobe *uprobe, *cur_uprobe;
491
492         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
493         if (!uprobe)
494                 return NULL;
495
496         uprobe->inode = igrab(inode);
497         uprobe->offset = offset;
498         init_rwsem(&uprobe->consumer_rwsem);
499
500         /* add to uprobes_tree, sorted on inode:offset */
501         cur_uprobe = insert_uprobe(uprobe);
502
503         /* a uprobe exists for this inode:offset combination */
504         if (cur_uprobe) {
505                 kfree(uprobe);
506                 uprobe = cur_uprobe;
507                 iput(inode);
508         } else {
509                 atomic_inc(&uprobe_events);
510         }
511
512         return uprobe;
513 }
514
515 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
516 {
517         struct uprobe_consumer *uc;
518
519         if (!(uprobe->flags & UPROBE_RUN_HANDLER))
520                 return;
521
522         down_read(&uprobe->consumer_rwsem);
523         for (uc = uprobe->consumers; uc; uc = uc->next) {
524                 if (!uc->filter || uc->filter(uc, current))
525                         uc->handler(uc, regs);
526         }
527         up_read(&uprobe->consumer_rwsem);
528 }
529
530 /* Returns the previous consumer */
531 static struct uprobe_consumer *
532 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
533 {
534         down_write(&uprobe->consumer_rwsem);
535         uc->next = uprobe->consumers;
536         uprobe->consumers = uc;
537         up_write(&uprobe->consumer_rwsem);
538
539         return uc->next;
540 }
541
542 /*
543  * For uprobe @uprobe, delete the consumer @uc.
544  * Return true if the @uc is deleted successfully
545  * or return false.
546  */
547 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
548 {
549         struct uprobe_consumer **con;
550         bool ret = false;
551
552         down_write(&uprobe->consumer_rwsem);
553         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
554                 if (*con == uc) {
555                         *con = uc->next;
556                         ret = true;
557                         break;
558                 }
559         }
560         up_write(&uprobe->consumer_rwsem);
561
562         return ret;
563 }
564
565 static int
566 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
567                         unsigned long nbytes, loff_t offset)
568 {
569         struct page *page;
570         void *vaddr;
571         unsigned long off;
572         pgoff_t idx;
573
574         if (!filp)
575                 return -EINVAL;
576
577         if (!mapping->a_ops->readpage)
578                 return -EIO;
579
580         idx = offset >> PAGE_CACHE_SHIFT;
581         off = offset & ~PAGE_MASK;
582
583         /*
584          * Ensure that the page that has the original instruction is
585          * populated and in page-cache.
586          */
587         page = read_mapping_page(mapping, idx, filp);
588         if (IS_ERR(page))
589                 return PTR_ERR(page);
590
591         vaddr = kmap_atomic(page);
592         memcpy(insn, vaddr + off, nbytes);
593         kunmap_atomic(vaddr);
594         page_cache_release(page);
595
596         return 0;
597 }
598
599 static int copy_insn(struct uprobe *uprobe, struct file *filp)
600 {
601         struct address_space *mapping;
602         unsigned long nbytes;
603         int bytes;
604
605         nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
606         mapping = uprobe->inode->i_mapping;
607
608         /* Instruction at end of binary; copy only available bytes */
609         if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
610                 bytes = uprobe->inode->i_size - uprobe->offset;
611         else
612                 bytes = MAX_UINSN_BYTES;
613
614         /* Instruction at the page-boundary; copy bytes in second page */
615         if (nbytes < bytes) {
616                 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
617                                 bytes - nbytes, uprobe->offset + nbytes);
618                 if (err)
619                         return err;
620                 bytes = nbytes;
621         }
622         return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
623 }
624
625 /*
626  * How mm->uprobes_state.count gets updated
627  * uprobe_mmap() increments the count if
628  *      - it successfully adds a breakpoint.
629  *      - it cannot add a breakpoint, but sees that there is a underlying
630  *        breakpoint (via a is_swbp_at_addr()).
631  *
632  * uprobe_munmap() decrements the count if
633  *      - it sees a underlying breakpoint, (via is_swbp_at_addr)
634  *        (Subsequent uprobe_unregister wouldnt find the breakpoint
635  *        unless a uprobe_mmap kicks in, since the old vma would be
636  *        dropped just after uprobe_munmap.)
637  *
638  * uprobe_register increments the count if:
639  *      - it successfully adds a breakpoint.
640  *
641  * uprobe_unregister decrements the count if:
642  *      - it sees a underlying breakpoint and removes successfully.
643  *        (via is_swbp_at_addr)
644  *        (Subsequent uprobe_munmap wouldnt find the breakpoint
645  *        since there is no underlying breakpoint after the
646  *        breakpoint removal.)
647  */
648 static int
649 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
650                         struct vm_area_struct *vma, unsigned long vaddr)
651 {
652         int ret;
653
654         /*
655          * If probe is being deleted, unregister thread could be done with
656          * the vma-rmap-walk through. Adding a probe now can be fatal since
657          * nobody will be able to cleanup. Also we could be from fork or
658          * mremap path, where the probe might have already been inserted.
659          * Hence behave as if probe already existed.
660          */
661         if (!uprobe->consumers)
662                 return -EEXIST;
663
664         if (!(uprobe->flags & UPROBE_COPY_INSN)) {
665                 ret = copy_insn(uprobe, vma->vm_file);
666                 if (ret)
667                         return ret;
668
669                 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
670                         return -ENOTSUPP;
671
672                 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
673                 if (ret)
674                         return ret;
675
676                 /* write_opcode() assumes we don't cross page boundary */
677                 BUG_ON((uprobe->offset & ~PAGE_MASK) +
678                                 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
679
680                 uprobe->flags |= UPROBE_COPY_INSN;
681         }
682
683         /*
684          * Ideally, should be updating the probe count after the breakpoint
685          * has been successfully inserted. However a thread could hit the
686          * breakpoint we just inserted even before the probe count is
687          * incremented. If this is the first breakpoint placed, breakpoint
688          * notifier might ignore uprobes and pass the trap to the thread.
689          * Hence increment before and decrement on failure.
690          */
691         atomic_inc(&mm->uprobes_state.count);
692         ret = set_swbp(&uprobe->arch, mm, vaddr);
693         if (ret)
694                 atomic_dec(&mm->uprobes_state.count);
695
696         return ret;
697 }
698
699 static void
700 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
701 {
702         if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
703                 atomic_dec(&mm->uprobes_state.count);
704 }
705
706 /*
707  * There could be threads that have already hit the breakpoint. They
708  * will recheck the current insn and restart if find_uprobe() fails.
709  * See find_active_uprobe().
710  */
711 static void delete_uprobe(struct uprobe *uprobe)
712 {
713         unsigned long flags;
714
715         spin_lock_irqsave(&uprobes_treelock, flags);
716         rb_erase(&uprobe->rb_node, &uprobes_tree);
717         spin_unlock_irqrestore(&uprobes_treelock, flags);
718         iput(uprobe->inode);
719         put_uprobe(uprobe);
720         atomic_dec(&uprobe_events);
721 }
722
723 struct map_info {
724         struct map_info *next;
725         struct mm_struct *mm;
726         unsigned long vaddr;
727 };
728
729 static inline struct map_info *free_map_info(struct map_info *info)
730 {
731         struct map_info *next = info->next;
732         kfree(info);
733         return next;
734 }
735
736 static struct map_info *
737 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
738 {
739         unsigned long pgoff = offset >> PAGE_SHIFT;
740         struct prio_tree_iter iter;
741         struct vm_area_struct *vma;
742         struct map_info *curr = NULL;
743         struct map_info *prev = NULL;
744         struct map_info *info;
745         int more = 0;
746
747  again:
748         mutex_lock(&mapping->i_mmap_mutex);
749         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
750                 if (!valid_vma(vma, is_register))
751                         continue;
752
753                 if (!prev && !more) {
754                         /*
755                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
756                          * reclaim. This is optimistic, no harm done if it fails.
757                          */
758                         prev = kmalloc(sizeof(struct map_info),
759                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
760                         if (prev)
761                                 prev->next = NULL;
762                 }
763                 if (!prev) {
764                         more++;
765                         continue;
766                 }
767
768                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
769                         continue;
770
771                 info = prev;
772                 prev = prev->next;
773                 info->next = curr;
774                 curr = info;
775
776                 info->mm = vma->vm_mm;
777                 info->vaddr = offset_to_vaddr(vma, offset);
778         }
779         mutex_unlock(&mapping->i_mmap_mutex);
780
781         if (!more)
782                 goto out;
783
784         prev = curr;
785         while (curr) {
786                 mmput(curr->mm);
787                 curr = curr->next;
788         }
789
790         do {
791                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
792                 if (!info) {
793                         curr = ERR_PTR(-ENOMEM);
794                         goto out;
795                 }
796                 info->next = prev;
797                 prev = info;
798         } while (--more);
799
800         goto again;
801  out:
802         while (prev)
803                 prev = free_map_info(prev);
804         return curr;
805 }
806
807 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
808 {
809         struct map_info *info;
810         int err = 0;
811
812         info = build_map_info(uprobe->inode->i_mapping,
813                                         uprobe->offset, is_register);
814         if (IS_ERR(info))
815                 return PTR_ERR(info);
816
817         while (info) {
818                 struct mm_struct *mm = info->mm;
819                 struct vm_area_struct *vma;
820
821                 if (err)
822                         goto free;
823
824                 down_write(&mm->mmap_sem);
825                 vma = find_vma(mm, info->vaddr);
826                 if (!vma || !valid_vma(vma, is_register) ||
827                     vma->vm_file->f_mapping->host != uprobe->inode)
828                         goto unlock;
829
830                 if (vma->vm_start > info->vaddr ||
831                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
832                         goto unlock;
833
834                 if (is_register) {
835                         err = install_breakpoint(uprobe, mm, vma, info->vaddr);
836                         /*
837                          * We can race against uprobe_mmap(), see the
838                          * comment near uprobe_hash().
839                          */
840                         if (err == -EEXIST)
841                                 err = 0;
842                 } else {
843                         remove_breakpoint(uprobe, mm, info->vaddr);
844                 }
845  unlock:
846                 up_write(&mm->mmap_sem);
847  free:
848                 mmput(mm);
849                 info = free_map_info(info);
850         }
851
852         return err;
853 }
854
855 static int __uprobe_register(struct uprobe *uprobe)
856 {
857         return register_for_each_vma(uprobe, true);
858 }
859
860 static void __uprobe_unregister(struct uprobe *uprobe)
861 {
862         if (!register_for_each_vma(uprobe, false))
863                 delete_uprobe(uprobe);
864
865         /* TODO : cant unregister? schedule a worker thread */
866 }
867
868 /*
869  * uprobe_register - register a probe
870  * @inode: the file in which the probe has to be placed.
871  * @offset: offset from the start of the file.
872  * @uc: information on howto handle the probe..
873  *
874  * Apart from the access refcount, uprobe_register() takes a creation
875  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
876  * inserted into the rbtree (i.e first consumer for a @inode:@offset
877  * tuple).  Creation refcount stops uprobe_unregister from freeing the
878  * @uprobe even before the register operation is complete. Creation
879  * refcount is released when the last @uc for the @uprobe
880  * unregisters.
881  *
882  * Return errno if it cannot successully install probes
883  * else return 0 (success)
884  */
885 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
886 {
887         struct uprobe *uprobe;
888         int ret;
889
890         if (!inode || !uc || uc->next)
891                 return -EINVAL;
892
893         if (offset > i_size_read(inode))
894                 return -EINVAL;
895
896         ret = 0;
897         mutex_lock(uprobes_hash(inode));
898         uprobe = alloc_uprobe(inode, offset);
899
900         if (uprobe && !consumer_add(uprobe, uc)) {
901                 ret = __uprobe_register(uprobe);
902                 if (ret) {
903                         uprobe->consumers = NULL;
904                         __uprobe_unregister(uprobe);
905                 } else {
906                         uprobe->flags |= UPROBE_RUN_HANDLER;
907                 }
908         }
909
910         mutex_unlock(uprobes_hash(inode));
911         put_uprobe(uprobe);
912
913         return ret;
914 }
915
916 /*
917  * uprobe_unregister - unregister a already registered probe.
918  * @inode: the file in which the probe has to be removed.
919  * @offset: offset from the start of the file.
920  * @uc: identify which probe if multiple probes are colocated.
921  */
922 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
923 {
924         struct uprobe *uprobe;
925
926         if (!inode || !uc)
927                 return;
928
929         uprobe = find_uprobe(inode, offset);
930         if (!uprobe)
931                 return;
932
933         mutex_lock(uprobes_hash(inode));
934
935         if (consumer_del(uprobe, uc)) {
936                 if (!uprobe->consumers) {
937                         __uprobe_unregister(uprobe);
938                         uprobe->flags &= ~UPROBE_RUN_HANDLER;
939                 }
940         }
941
942         mutex_unlock(uprobes_hash(inode));
943         if (uprobe)
944                 put_uprobe(uprobe);
945 }
946
947 static struct rb_node *
948 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
949 {
950         struct rb_node *n = uprobes_tree.rb_node;
951
952         while (n) {
953                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
954
955                 if (inode < u->inode) {
956                         n = n->rb_left;
957                 } else if (inode > u->inode) {
958                         n = n->rb_right;
959                 } else {
960                         if (max < u->offset)
961                                 n = n->rb_left;
962                         else if (min > u->offset)
963                                 n = n->rb_right;
964                         else
965                                 break;
966                 }
967         }
968
969         return n;
970 }
971
972 /*
973  * For a given range in vma, build a list of probes that need to be inserted.
974  */
975 static void build_probe_list(struct inode *inode,
976                                 struct vm_area_struct *vma,
977                                 unsigned long start, unsigned long end,
978                                 struct list_head *head)
979 {
980         loff_t min, max;
981         unsigned long flags;
982         struct rb_node *n, *t;
983         struct uprobe *u;
984
985         INIT_LIST_HEAD(head);
986         min = vaddr_to_offset(vma, start);
987         max = min + (end - start) - 1;
988
989         spin_lock_irqsave(&uprobes_treelock, flags);
990         n = find_node_in_range(inode, min, max);
991         if (n) {
992                 for (t = n; t; t = rb_prev(t)) {
993                         u = rb_entry(t, struct uprobe, rb_node);
994                         if (u->inode != inode || u->offset < min)
995                                 break;
996                         list_add(&u->pending_list, head);
997                         atomic_inc(&u->ref);
998                 }
999                 for (t = n; (t = rb_next(t)); ) {
1000                         u = rb_entry(t, struct uprobe, rb_node);
1001                         if (u->inode != inode || u->offset > max)
1002                                 break;
1003                         list_add(&u->pending_list, head);
1004                         atomic_inc(&u->ref);
1005                 }
1006         }
1007         spin_unlock_irqrestore(&uprobes_treelock, flags);
1008 }
1009
1010 /*
1011  * Called from mmap_region.
1012  * called with mm->mmap_sem acquired.
1013  *
1014  * Return -ve no if we fail to insert probes and we cannot
1015  * bail-out.
1016  * Return 0 otherwise. i.e:
1017  *
1018  *      - successful insertion of probes
1019  *      - (or) no possible probes to be inserted.
1020  *      - (or) insertion of probes failed but we can bail-out.
1021  */
1022 int uprobe_mmap(struct vm_area_struct *vma)
1023 {
1024         struct list_head tmp_list;
1025         struct uprobe *uprobe, *u;
1026         struct inode *inode;
1027         int ret, count;
1028
1029         if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1030                 return 0;
1031
1032         inode = vma->vm_file->f_mapping->host;
1033         if (!inode)
1034                 return 0;
1035
1036         mutex_lock(uprobes_mmap_hash(inode));
1037         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1038
1039         ret = 0;
1040         count = 0;
1041
1042         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1043                 if (!ret) {
1044                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1045
1046                         ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1047                         /*
1048                          * We can race against uprobe_register(), see the
1049                          * comment near uprobe_hash().
1050                          */
1051                         if (ret == -EEXIST) {
1052                                 ret = 0;
1053
1054                                 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1055                                         continue;
1056
1057                                 /*
1058                                  * Unable to insert a breakpoint, but
1059                                  * breakpoint lies underneath. Increment the
1060                                  * probe count.
1061                                  */
1062                                 atomic_inc(&vma->vm_mm->uprobes_state.count);
1063                         }
1064
1065                         if (!ret)
1066                                 count++;
1067                 }
1068                 put_uprobe(uprobe);
1069         }
1070
1071         mutex_unlock(uprobes_mmap_hash(inode));
1072
1073         if (ret)
1074                 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1075
1076         return ret;
1077 }
1078
1079 /*
1080  * Called in context of a munmap of a vma.
1081  */
1082 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1083 {
1084         struct list_head tmp_list;
1085         struct uprobe *uprobe, *u;
1086         struct inode *inode;
1087
1088         if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1089                 return;
1090
1091         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1092                 return;
1093
1094         if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1095                 return;
1096
1097         inode = vma->vm_file->f_mapping->host;
1098         if (!inode)
1099                 return;
1100
1101         mutex_lock(uprobes_mmap_hash(inode));
1102         build_probe_list(inode, vma, start, end, &tmp_list);
1103
1104         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1105                 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1106                 /*
1107                  * An unregister could have removed the probe before
1108                  * unmap. So check before we decrement the count.
1109                  */
1110                 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1111                         atomic_dec(&vma->vm_mm->uprobes_state.count);
1112                 put_uprobe(uprobe);
1113         }
1114         mutex_unlock(uprobes_mmap_hash(inode));
1115 }
1116
1117 /* Slot allocation for XOL */
1118 static int xol_add_vma(struct xol_area *area)
1119 {
1120         struct mm_struct *mm;
1121         int ret;
1122
1123         area->page = alloc_page(GFP_HIGHUSER);
1124         if (!area->page)
1125                 return -ENOMEM;
1126
1127         ret = -EALREADY;
1128         mm = current->mm;
1129
1130         down_write(&mm->mmap_sem);
1131         if (mm->uprobes_state.xol_area)
1132                 goto fail;
1133
1134         ret = -ENOMEM;
1135
1136         /* Try to map as high as possible, this is only a hint. */
1137         area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1138         if (area->vaddr & ~PAGE_MASK) {
1139                 ret = area->vaddr;
1140                 goto fail;
1141         }
1142
1143         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1144                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1145         if (ret)
1146                 goto fail;
1147
1148         smp_wmb();      /* pairs with get_xol_area() */
1149         mm->uprobes_state.xol_area = area;
1150         ret = 0;
1151
1152 fail:
1153         up_write(&mm->mmap_sem);
1154         if (ret)
1155                 __free_page(area->page);
1156
1157         return ret;
1158 }
1159
1160 static struct xol_area *get_xol_area(struct mm_struct *mm)
1161 {
1162         struct xol_area *area;
1163
1164         area = mm->uprobes_state.xol_area;
1165         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1166
1167         return area;
1168 }
1169
1170 /*
1171  * xol_alloc_area - Allocate process's xol_area.
1172  * This area will be used for storing instructions for execution out of
1173  * line.
1174  *
1175  * Returns the allocated area or NULL.
1176  */
1177 static struct xol_area *xol_alloc_area(void)
1178 {
1179         struct xol_area *area;
1180
1181         area = kzalloc(sizeof(*area), GFP_KERNEL);
1182         if (unlikely(!area))
1183                 return NULL;
1184
1185         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1186
1187         if (!area->bitmap)
1188                 goto fail;
1189
1190         init_waitqueue_head(&area->wq);
1191         if (!xol_add_vma(area))
1192                 return area;
1193
1194 fail:
1195         kfree(area->bitmap);
1196         kfree(area);
1197
1198         return get_xol_area(current->mm);
1199 }
1200
1201 /*
1202  * uprobe_clear_state - Free the area allocated for slots.
1203  */
1204 void uprobe_clear_state(struct mm_struct *mm)
1205 {
1206         struct xol_area *area = mm->uprobes_state.xol_area;
1207
1208         if (!area)
1209                 return;
1210
1211         put_page(area->page);
1212         kfree(area->bitmap);
1213         kfree(area);
1214 }
1215
1216 /*
1217  * uprobe_reset_state - Free the area allocated for slots.
1218  */
1219 void uprobe_reset_state(struct mm_struct *mm)
1220 {
1221         mm->uprobes_state.xol_area = NULL;
1222         atomic_set(&mm->uprobes_state.count, 0);
1223 }
1224
1225 /*
1226  *  - search for a free slot.
1227  */
1228 static unsigned long xol_take_insn_slot(struct xol_area *area)
1229 {
1230         unsigned long slot_addr;
1231         int slot_nr;
1232
1233         do {
1234                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1235                 if (slot_nr < UINSNS_PER_PAGE) {
1236                         if (!test_and_set_bit(slot_nr, area->bitmap))
1237                                 break;
1238
1239                         slot_nr = UINSNS_PER_PAGE;
1240                         continue;
1241                 }
1242                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1243         } while (slot_nr >= UINSNS_PER_PAGE);
1244
1245         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1246         atomic_inc(&area->slot_count);
1247
1248         return slot_addr;
1249 }
1250
1251 /*
1252  * xol_get_insn_slot - If was not allocated a slot, then
1253  * allocate a slot.
1254  * Returns the allocated slot address or 0.
1255  */
1256 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1257 {
1258         struct xol_area *area;
1259         unsigned long offset;
1260         void *vaddr;
1261
1262         area = get_xol_area(current->mm);
1263         if (!area) {
1264                 area = xol_alloc_area();
1265                 if (!area)
1266                         return 0;
1267         }
1268         current->utask->xol_vaddr = xol_take_insn_slot(area);
1269
1270         /*
1271          * Initialize the slot if xol_vaddr points to valid
1272          * instruction slot.
1273          */
1274         if (unlikely(!current->utask->xol_vaddr))
1275                 return 0;
1276
1277         current->utask->vaddr = slot_addr;
1278         offset = current->utask->xol_vaddr & ~PAGE_MASK;
1279         vaddr = kmap_atomic(area->page);
1280         memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1281         kunmap_atomic(vaddr);
1282
1283         return current->utask->xol_vaddr;
1284 }
1285
1286 /*
1287  * xol_free_insn_slot - If slot was earlier allocated by
1288  * @xol_get_insn_slot(), make the slot available for
1289  * subsequent requests.
1290  */
1291 static void xol_free_insn_slot(struct task_struct *tsk)
1292 {
1293         struct xol_area *area;
1294         unsigned long vma_end;
1295         unsigned long slot_addr;
1296
1297         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1298                 return;
1299
1300         slot_addr = tsk->utask->xol_vaddr;
1301
1302         if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1303                 return;
1304
1305         area = tsk->mm->uprobes_state.xol_area;
1306         vma_end = area->vaddr + PAGE_SIZE;
1307         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1308                 unsigned long offset;
1309                 int slot_nr;
1310
1311                 offset = slot_addr - area->vaddr;
1312                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1313                 if (slot_nr >= UINSNS_PER_PAGE)
1314                         return;
1315
1316                 clear_bit(slot_nr, area->bitmap);
1317                 atomic_dec(&area->slot_count);
1318                 if (waitqueue_active(&area->wq))
1319                         wake_up(&area->wq);
1320
1321                 tsk->utask->xol_vaddr = 0;
1322         }
1323 }
1324
1325 /**
1326  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1327  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1328  * instruction.
1329  * Return the address of the breakpoint instruction.
1330  */
1331 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1332 {
1333         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1334 }
1335
1336 /*
1337  * Called with no locks held.
1338  * Called in context of a exiting or a exec-ing thread.
1339  */
1340 void uprobe_free_utask(struct task_struct *t)
1341 {
1342         struct uprobe_task *utask = t->utask;
1343
1344         if (!utask)
1345                 return;
1346
1347         if (utask->active_uprobe)
1348                 put_uprobe(utask->active_uprobe);
1349
1350         xol_free_insn_slot(t);
1351         kfree(utask);
1352         t->utask = NULL;
1353 }
1354
1355 /*
1356  * Called in context of a new clone/fork from copy_process.
1357  */
1358 void uprobe_copy_process(struct task_struct *t)
1359 {
1360         t->utask = NULL;
1361 }
1362
1363 /*
1364  * Allocate a uprobe_task object for the task.
1365  * Called when the thread hits a breakpoint for the first time.
1366  *
1367  * Returns:
1368  * - pointer to new uprobe_task on success
1369  * - NULL otherwise
1370  */
1371 static struct uprobe_task *add_utask(void)
1372 {
1373         struct uprobe_task *utask;
1374
1375         utask = kzalloc(sizeof *utask, GFP_KERNEL);
1376         if (unlikely(!utask))
1377                 return NULL;
1378
1379         current->utask = utask;
1380         return utask;
1381 }
1382
1383 /* Prepare to single-step probed instruction out of line. */
1384 static int
1385 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1386 {
1387         if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1388                 return 0;
1389
1390         return -EFAULT;
1391 }
1392
1393 /*
1394  * If we are singlestepping, then ensure this thread is not connected to
1395  * non-fatal signals until completion of singlestep.  When xol insn itself
1396  * triggers the signal,  restart the original insn even if the task is
1397  * already SIGKILL'ed (since coredump should report the correct ip).  This
1398  * is even more important if the task has a handler for SIGSEGV/etc, The
1399  * _same_ instruction should be repeated again after return from the signal
1400  * handler, and SSTEP can never finish in this case.
1401  */
1402 bool uprobe_deny_signal(void)
1403 {
1404         struct task_struct *t = current;
1405         struct uprobe_task *utask = t->utask;
1406
1407         if (likely(!utask || !utask->active_uprobe))
1408                 return false;
1409
1410         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1411
1412         if (signal_pending(t)) {
1413                 spin_lock_irq(&t->sighand->siglock);
1414                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1415                 spin_unlock_irq(&t->sighand->siglock);
1416
1417                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1418                         utask->state = UTASK_SSTEP_TRAPPED;
1419                         set_tsk_thread_flag(t, TIF_UPROBE);
1420                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1421                 }
1422         }
1423
1424         return true;
1425 }
1426
1427 /*
1428  * Avoid singlestepping the original instruction if the original instruction
1429  * is a NOP or can be emulated.
1430  */
1431 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1432 {
1433         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1434                 return true;
1435
1436         uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1437         return false;
1438 }
1439
1440 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1441 {
1442         struct mm_struct *mm = current->mm;
1443         struct uprobe *uprobe = NULL;
1444         struct vm_area_struct *vma;
1445
1446         down_read(&mm->mmap_sem);
1447         vma = find_vma(mm, bp_vaddr);
1448         if (vma && vma->vm_start <= bp_vaddr) {
1449                 if (valid_vma(vma, false)) {
1450                         struct inode *inode = vma->vm_file->f_mapping->host;
1451                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1452
1453                         uprobe = find_uprobe(inode, offset);
1454                 }
1455
1456                 if (!uprobe)
1457                         *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1458         } else {
1459                 *is_swbp = -EFAULT;
1460         }
1461         up_read(&mm->mmap_sem);
1462
1463         return uprobe;
1464 }
1465
1466 /*
1467  * Run handler and ask thread to singlestep.
1468  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1469  */
1470 static void handle_swbp(struct pt_regs *regs)
1471 {
1472         struct uprobe_task *utask;
1473         struct uprobe *uprobe;
1474         unsigned long bp_vaddr;
1475         int uninitialized_var(is_swbp);
1476
1477         bp_vaddr = uprobe_get_swbp_addr(regs);
1478         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1479
1480         if (!uprobe) {
1481                 if (is_swbp > 0) {
1482                         /* No matching uprobe; signal SIGTRAP. */
1483                         send_sig(SIGTRAP, current, 0);
1484                 } else {
1485                         /*
1486                          * Either we raced with uprobe_unregister() or we can't
1487                          * access this memory. The latter is only possible if
1488                          * another thread plays with our ->mm. In both cases
1489                          * we can simply restart. If this vma was unmapped we
1490                          * can pretend this insn was not executed yet and get
1491                          * the (correct) SIGSEGV after restart.
1492                          */
1493                         instruction_pointer_set(regs, bp_vaddr);
1494                 }
1495                 return;
1496         }
1497
1498         utask = current->utask;
1499         if (!utask) {
1500                 utask = add_utask();
1501                 /* Cannot allocate; re-execute the instruction. */
1502                 if (!utask)
1503                         goto cleanup_ret;
1504         }
1505         utask->active_uprobe = uprobe;
1506         handler_chain(uprobe, regs);
1507         if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1508                 goto cleanup_ret;
1509
1510         utask->state = UTASK_SSTEP;
1511         if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1512                 user_enable_single_step(current);
1513                 return;
1514         }
1515
1516 cleanup_ret:
1517         if (utask) {
1518                 utask->active_uprobe = NULL;
1519                 utask->state = UTASK_RUNNING;
1520         }
1521         if (uprobe) {
1522                 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1523
1524                         /*
1525                          * cannot singlestep; cannot skip instruction;
1526                          * re-execute the instruction.
1527                          */
1528                         instruction_pointer_set(regs, bp_vaddr);
1529
1530                 put_uprobe(uprobe);
1531         }
1532 }
1533
1534 /*
1535  * Perform required fix-ups and disable singlestep.
1536  * Allow pending signals to take effect.
1537  */
1538 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1539 {
1540         struct uprobe *uprobe;
1541
1542         uprobe = utask->active_uprobe;
1543         if (utask->state == UTASK_SSTEP_ACK)
1544                 arch_uprobe_post_xol(&uprobe->arch, regs);
1545         else if (utask->state == UTASK_SSTEP_TRAPPED)
1546                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1547         else
1548                 WARN_ON_ONCE(1);
1549
1550         put_uprobe(uprobe);
1551         utask->active_uprobe = NULL;
1552         utask->state = UTASK_RUNNING;
1553         user_disable_single_step(current);
1554         xol_free_insn_slot(current);
1555
1556         spin_lock_irq(&current->sighand->siglock);
1557         recalc_sigpending(); /* see uprobe_deny_signal() */
1558         spin_unlock_irq(&current->sighand->siglock);
1559 }
1560
1561 /*
1562  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1563  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1564  * allows the thread to return from interrupt.
1565  *
1566  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1567  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1568  * interrupt.
1569  *
1570  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1571  * uprobe_notify_resume().
1572  */
1573 void uprobe_notify_resume(struct pt_regs *regs)
1574 {
1575         struct uprobe_task *utask;
1576
1577         utask = current->utask;
1578         if (!utask || utask->state == UTASK_BP_HIT)
1579                 handle_swbp(regs);
1580         else
1581                 handle_singlestep(utask, regs);
1582 }
1583
1584 /*
1585  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1586  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1587  */
1588 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1589 {
1590         struct uprobe_task *utask;
1591
1592         if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1593                 /* task is currently not uprobed */
1594                 return 0;
1595
1596         utask = current->utask;
1597         if (utask)
1598                 utask->state = UTASK_BP_HIT;
1599
1600         set_thread_flag(TIF_UPROBE);
1601
1602         return 1;
1603 }
1604
1605 /*
1606  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1607  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1608  */
1609 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1610 {
1611         struct uprobe_task *utask = current->utask;
1612
1613         if (!current->mm || !utask || !utask->active_uprobe)
1614                 /* task is currently not uprobed */
1615                 return 0;
1616
1617         utask->state = UTASK_SSTEP_ACK;
1618         set_thread_flag(TIF_UPROBE);
1619         return 1;
1620 }
1621
1622 static struct notifier_block uprobe_exception_nb = {
1623         .notifier_call          = arch_uprobe_exception_notify,
1624         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1625 };
1626
1627 static int __init init_uprobes(void)
1628 {
1629         int i;
1630
1631         for (i = 0; i < UPROBES_HASH_SZ; i++) {
1632                 mutex_init(&uprobes_mutex[i]);
1633                 mutex_init(&uprobes_mmap_mutex[i]);
1634         }
1635
1636         return register_die_notifier(&uprobe_exception_nb);
1637 }
1638 module_init(init_uprobes);
1639
1640 static void __exit exit_uprobes(void)
1641 {
1642 }
1643 module_exit(exit_uprobes);