2 * User-space Probes (UProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2012
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
39 #include <linux/uprobes.h>
41 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
42 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
44 static struct rb_root uprobes_tree = RB_ROOT;
46 * allows us to skip the uprobe_mmap if there are no uprobe events active
47 * at this time. Probably a fine grained per inode count is better?
49 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
51 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
53 #define UPROBES_HASH_SZ 13
54 /* serialize uprobe->pending_list */
55 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
56 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58 static struct percpu_rw_semaphore dup_mmap_sem;
60 /* Have a copy of original instruction */
61 #define UPROBE_COPY_INSN 0
62 /* Can skip singlestep */
63 #define UPROBE_SKIP_SSTEP 1
66 struct rb_node rb_node; /* node in the rb tree */
68 struct rw_semaphore register_rwsem;
69 struct rw_semaphore consumer_rwsem;
70 struct list_head pending_list;
71 struct uprobe_consumer *consumers;
72 struct inode *inode; /* Also hold a ref to inode */
75 struct arch_uprobe arch;
79 * valid_vma: Verify if the specified vma is an executable vma
80 * Relax restrictions while unregistering: vm_flags might have
81 * changed after breakpoint was inserted.
82 * - is_register: indicates if we are in register context.
83 * - Return 1 if the specified virtual address is in an
86 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
88 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
93 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
96 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
98 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
101 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
103 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
107 * __replace_page - replace page in vma by new page.
108 * based on replace_page in mm/ksm.c
110 * @vma: vma that holds the pte pointing to page
111 * @addr: address the old @page is mapped at
112 * @page: the cowed page we are replacing by kpage
113 * @kpage: the modified page we replace page by
115 * Returns 0 on success, -EFAULT on failure.
117 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
118 struct page *page, struct page *kpage)
120 struct mm_struct *mm = vma->vm_mm;
124 /* For mmu_notifiers */
125 const unsigned long mmun_start = addr;
126 const unsigned long mmun_end = addr + PAGE_SIZE;
128 /* For try_to_free_swap() and munlock_vma_page() below */
131 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
133 ptep = page_check_address(page, mm, addr, &ptl, 0);
138 page_add_new_anon_rmap(kpage, vma, addr);
140 if (!PageAnon(page)) {
141 dec_mm_counter(mm, MM_FILEPAGES);
142 inc_mm_counter(mm, MM_ANONPAGES);
145 flush_cache_page(vma, addr, pte_pfn(*ptep));
146 ptep_clear_flush(vma, addr, ptep);
147 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
149 page_remove_rmap(page);
150 if (!page_mapped(page))
151 try_to_free_swap(page);
152 pte_unmap_unlock(ptep, ptl);
154 if (vma->vm_flags & VM_LOCKED)
155 munlock_vma_page(page);
160 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
166 * is_swbp_insn - check if instruction is breakpoint instruction.
167 * @insn: instruction to be checked.
168 * Default implementation of is_swbp_insn
169 * Returns true if @insn is a breakpoint instruction.
171 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
173 return *insn == UPROBE_SWBP_INSN;
177 * is_trap_insn - check if instruction is breakpoint instruction.
178 * @insn: instruction to be checked.
179 * Default implementation of is_trap_insn
180 * Returns true if @insn is a breakpoint instruction.
182 * This function is needed for the case where an architecture has multiple
183 * trap instructions (like powerpc).
185 bool __weak is_trap_insn(uprobe_opcode_t *insn)
187 return is_swbp_insn(insn);
190 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
192 void *kaddr = kmap_atomic(page);
193 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
194 kunmap_atomic(kaddr);
197 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
199 uprobe_opcode_t old_opcode;
203 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
204 * We do not check if it is any other 'trap variant' which could
205 * be conditional trap instruction such as the one powerpc supports.
207 * The logic is that we do not care if the underlying instruction
208 * is a trap variant; uprobes always wins over any other (gdb)
211 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
212 is_swbp = is_swbp_insn(&old_opcode);
214 if (is_swbp_insn(new_opcode)) {
215 if (is_swbp) /* register: already installed? */
218 if (!is_swbp) /* unregister: was it changed by us? */
227 * Expect the breakpoint instruction to be the smallest size instruction for
228 * the architecture. If an arch has variable length instruction and the
229 * breakpoint instruction is not of the smallest length instruction
230 * supported by that architecture then we need to modify is_trap_at_addr and
231 * write_opcode accordingly. This would never be a problem for archs that
232 * have fixed length instructions.
236 * write_opcode - write the opcode at a given virtual address.
237 * @mm: the probed process address space.
238 * @vaddr: the virtual address to store the opcode.
239 * @opcode: opcode to be written at @vaddr.
241 * Called with mm->mmap_sem held (for read and with a reference to
244 * For mm @mm, write the opcode at @vaddr.
245 * Return 0 (success) or a negative errno.
247 static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
248 uprobe_opcode_t opcode)
250 struct page *old_page, *new_page;
251 void *vaddr_old, *vaddr_new;
252 struct vm_area_struct *vma;
256 /* Read the page with vaddr into memory */
257 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
261 ret = verify_opcode(old_page, vaddr, &opcode);
266 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
270 __SetPageUptodate(new_page);
272 /* copy the page now that we've got it stable */
273 vaddr_old = kmap_atomic(old_page);
274 vaddr_new = kmap_atomic(new_page);
276 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
277 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
279 kunmap_atomic(vaddr_new);
280 kunmap_atomic(vaddr_old);
282 ret = anon_vma_prepare(vma);
286 ret = __replace_page(vma, vaddr, old_page, new_page);
289 page_cache_release(new_page);
293 if (unlikely(ret == -EAGAIN))
299 * set_swbp - store breakpoint at a given address.
300 * @auprobe: arch specific probepoint information.
301 * @mm: the probed process address space.
302 * @vaddr: the virtual address to insert the opcode.
304 * For mm @mm, store the breakpoint instruction at @vaddr.
305 * Return 0 (success) or a negative errno.
307 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
309 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
313 * set_orig_insn - Restore the original instruction.
314 * @mm: the probed process address space.
315 * @auprobe: arch specific probepoint information.
316 * @vaddr: the virtual address to insert the opcode.
318 * For mm @mm, restore the original opcode (opcode) at @vaddr.
319 * Return 0 (success) or a negative errno.
322 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
324 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
327 static int match_uprobe(struct uprobe *l, struct uprobe *r)
329 if (l->inode < r->inode)
332 if (l->inode > r->inode)
335 if (l->offset < r->offset)
338 if (l->offset > r->offset)
344 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
346 struct uprobe u = { .inode = inode, .offset = offset };
347 struct rb_node *n = uprobes_tree.rb_node;
348 struct uprobe *uprobe;
352 uprobe = rb_entry(n, struct uprobe, rb_node);
353 match = match_uprobe(&u, uprobe);
355 atomic_inc(&uprobe->ref);
368 * Find a uprobe corresponding to a given inode:offset
369 * Acquires uprobes_treelock
371 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
373 struct uprobe *uprobe;
375 spin_lock(&uprobes_treelock);
376 uprobe = __find_uprobe(inode, offset);
377 spin_unlock(&uprobes_treelock);
382 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
384 struct rb_node **p = &uprobes_tree.rb_node;
385 struct rb_node *parent = NULL;
391 u = rb_entry(parent, struct uprobe, rb_node);
392 match = match_uprobe(uprobe, u);
399 p = &parent->rb_left;
401 p = &parent->rb_right;
406 rb_link_node(&uprobe->rb_node, parent, p);
407 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
408 /* get access + creation ref */
409 atomic_set(&uprobe->ref, 2);
415 * Acquire uprobes_treelock.
416 * Matching uprobe already exists in rbtree;
417 * increment (access refcount) and return the matching uprobe.
419 * No matching uprobe; insert the uprobe in rb_tree;
420 * get a double refcount (access + creation) and return NULL.
422 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
426 spin_lock(&uprobes_treelock);
427 u = __insert_uprobe(uprobe);
428 spin_unlock(&uprobes_treelock);
433 static void put_uprobe(struct uprobe *uprobe)
435 if (atomic_dec_and_test(&uprobe->ref))
439 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
441 struct uprobe *uprobe, *cur_uprobe;
443 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
447 uprobe->inode = igrab(inode);
448 uprobe->offset = offset;
449 init_rwsem(&uprobe->register_rwsem);
450 init_rwsem(&uprobe->consumer_rwsem);
451 /* For now assume that the instruction need not be single-stepped */
452 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
454 /* add to uprobes_tree, sorted on inode:offset */
455 cur_uprobe = insert_uprobe(uprobe);
457 /* a uprobe exists for this inode:offset combination */
467 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
469 down_write(&uprobe->consumer_rwsem);
470 uc->next = uprobe->consumers;
471 uprobe->consumers = uc;
472 up_write(&uprobe->consumer_rwsem);
476 * For uprobe @uprobe, delete the consumer @uc.
477 * Return true if the @uc is deleted successfully
480 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
482 struct uprobe_consumer **con;
485 down_write(&uprobe->consumer_rwsem);
486 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
493 up_write(&uprobe->consumer_rwsem);
499 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
500 unsigned long nbytes, loff_t offset)
507 if (!mapping->a_ops->readpage)
510 * Ensure that the page that has the original instruction is
511 * populated and in page-cache.
513 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
515 return PTR_ERR(page);
517 copy_from_page(page, offset, insn, nbytes);
518 page_cache_release(page);
523 static int copy_insn(struct uprobe *uprobe, struct file *filp)
525 struct address_space *mapping;
526 unsigned long nbytes;
529 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
530 mapping = uprobe->inode->i_mapping;
532 /* Instruction at end of binary; copy only available bytes */
533 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
534 bytes = uprobe->inode->i_size - uprobe->offset;
536 bytes = MAX_UINSN_BYTES;
538 /* Instruction at the page-boundary; copy bytes in second page */
539 if (nbytes < bytes) {
540 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
541 bytes - nbytes, uprobe->offset + nbytes);
546 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
549 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
550 struct mm_struct *mm, unsigned long vaddr)
554 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
557 /* TODO: move this into _register, until then we abuse this sem. */
558 down_write(&uprobe->consumer_rwsem);
559 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
562 ret = copy_insn(uprobe, file);
567 if (is_trap_insn((uprobe_opcode_t *)uprobe->arch.insn))
570 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
574 /* write_opcode() assumes we don't cross page boundary */
575 BUG_ON((uprobe->offset & ~PAGE_MASK) +
576 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
578 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
579 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
582 up_write(&uprobe->consumer_rwsem);
587 static inline bool consumer_filter(struct uprobe_consumer *uc,
588 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
590 return !uc->filter || uc->filter(uc, ctx, mm);
593 static bool filter_chain(struct uprobe *uprobe,
594 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
596 struct uprobe_consumer *uc;
599 down_read(&uprobe->consumer_rwsem);
600 for (uc = uprobe->consumers; uc; uc = uc->next) {
601 ret = consumer_filter(uc, ctx, mm);
605 up_read(&uprobe->consumer_rwsem);
611 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
612 struct vm_area_struct *vma, unsigned long vaddr)
617 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
622 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
623 * the task can hit this breakpoint right after __replace_page().
625 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
627 set_bit(MMF_HAS_UPROBES, &mm->flags);
629 ret = set_swbp(&uprobe->arch, mm, vaddr);
631 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
632 else if (first_uprobe)
633 clear_bit(MMF_HAS_UPROBES, &mm->flags);
639 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
641 set_bit(MMF_RECALC_UPROBES, &mm->flags);
642 return set_orig_insn(&uprobe->arch, mm, vaddr);
645 static inline bool uprobe_is_active(struct uprobe *uprobe)
647 return !RB_EMPTY_NODE(&uprobe->rb_node);
650 * There could be threads that have already hit the breakpoint. They
651 * will recheck the current insn and restart if find_uprobe() fails.
652 * See find_active_uprobe().
654 static void delete_uprobe(struct uprobe *uprobe)
656 if (WARN_ON(!uprobe_is_active(uprobe)))
659 spin_lock(&uprobes_treelock);
660 rb_erase(&uprobe->rb_node, &uprobes_tree);
661 spin_unlock(&uprobes_treelock);
662 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
668 struct map_info *next;
669 struct mm_struct *mm;
673 static inline struct map_info *free_map_info(struct map_info *info)
675 struct map_info *next = info->next;
680 static struct map_info *
681 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
683 unsigned long pgoff = offset >> PAGE_SHIFT;
684 struct vm_area_struct *vma;
685 struct map_info *curr = NULL;
686 struct map_info *prev = NULL;
687 struct map_info *info;
691 mutex_lock(&mapping->i_mmap_mutex);
692 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
693 if (!valid_vma(vma, is_register))
696 if (!prev && !more) {
698 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
699 * reclaim. This is optimistic, no harm done if it fails.
701 prev = kmalloc(sizeof(struct map_info),
702 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
711 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
719 info->mm = vma->vm_mm;
720 info->vaddr = offset_to_vaddr(vma, offset);
722 mutex_unlock(&mapping->i_mmap_mutex);
734 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
736 curr = ERR_PTR(-ENOMEM);
746 prev = free_map_info(prev);
751 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
753 bool is_register = !!new;
754 struct map_info *info;
757 percpu_down_write(&dup_mmap_sem);
758 info = build_map_info(uprobe->inode->i_mapping,
759 uprobe->offset, is_register);
766 struct mm_struct *mm = info->mm;
767 struct vm_area_struct *vma;
769 if (err && is_register)
772 down_write(&mm->mmap_sem);
773 vma = find_vma(mm, info->vaddr);
774 if (!vma || !valid_vma(vma, is_register) ||
775 file_inode(vma->vm_file) != uprobe->inode)
778 if (vma->vm_start > info->vaddr ||
779 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
783 /* consult only the "caller", new consumer. */
784 if (consumer_filter(new,
785 UPROBE_FILTER_REGISTER, mm))
786 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
787 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
788 if (!filter_chain(uprobe,
789 UPROBE_FILTER_UNREGISTER, mm))
790 err |= remove_breakpoint(uprobe, mm, info->vaddr);
794 up_write(&mm->mmap_sem);
797 info = free_map_info(info);
800 percpu_up_write(&dup_mmap_sem);
804 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
806 consumer_add(uprobe, uc);
807 return register_for_each_vma(uprobe, uc);
810 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
814 if (!consumer_del(uprobe, uc)) /* WARN? */
817 err = register_for_each_vma(uprobe, NULL);
818 /* TODO : cant unregister? schedule a worker thread */
819 if (!uprobe->consumers && !err)
820 delete_uprobe(uprobe);
824 * uprobe_register - register a probe
825 * @inode: the file in which the probe has to be placed.
826 * @offset: offset from the start of the file.
827 * @uc: information on howto handle the probe..
829 * Apart from the access refcount, uprobe_register() takes a creation
830 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
831 * inserted into the rbtree (i.e first consumer for a @inode:@offset
832 * tuple). Creation refcount stops uprobe_unregister from freeing the
833 * @uprobe even before the register operation is complete. Creation
834 * refcount is released when the last @uc for the @uprobe
837 * Return errno if it cannot successully install probes
838 * else return 0 (success)
840 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
842 struct uprobe *uprobe;
845 /* Racy, just to catch the obvious mistakes */
846 if (offset > i_size_read(inode))
850 uprobe = alloc_uprobe(inode, offset);
854 * We can race with uprobe_unregister()->delete_uprobe().
855 * Check uprobe_is_active() and retry if it is false.
857 down_write(&uprobe->register_rwsem);
859 if (likely(uprobe_is_active(uprobe))) {
860 ret = __uprobe_register(uprobe, uc);
862 __uprobe_unregister(uprobe, uc);
864 up_write(&uprobe->register_rwsem);
867 if (unlikely(ret == -EAGAIN))
871 EXPORT_SYMBOL_GPL(uprobe_register);
874 * uprobe_apply - unregister a already registered probe.
875 * @inode: the file in which the probe has to be removed.
876 * @offset: offset from the start of the file.
877 * @uc: consumer which wants to add more or remove some breakpoints
878 * @add: add or remove the breakpoints
880 int uprobe_apply(struct inode *inode, loff_t offset,
881 struct uprobe_consumer *uc, bool add)
883 struct uprobe *uprobe;
884 struct uprobe_consumer *con;
887 uprobe = find_uprobe(inode, offset);
891 down_write(&uprobe->register_rwsem);
892 for (con = uprobe->consumers; con && con != uc ; con = con->next)
895 ret = register_for_each_vma(uprobe, add ? uc : NULL);
896 up_write(&uprobe->register_rwsem);
903 * uprobe_unregister - unregister a already registered probe.
904 * @inode: the file in which the probe has to be removed.
905 * @offset: offset from the start of the file.
906 * @uc: identify which probe if multiple probes are colocated.
908 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
910 struct uprobe *uprobe;
912 uprobe = find_uprobe(inode, offset);
916 down_write(&uprobe->register_rwsem);
917 __uprobe_unregister(uprobe, uc);
918 up_write(&uprobe->register_rwsem);
921 EXPORT_SYMBOL_GPL(uprobe_unregister);
923 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
925 struct vm_area_struct *vma;
928 down_read(&mm->mmap_sem);
929 for (vma = mm->mmap; vma; vma = vma->vm_next) {
933 if (!valid_vma(vma, false) ||
934 file_inode(vma->vm_file) != uprobe->inode)
937 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
938 if (uprobe->offset < offset ||
939 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
942 vaddr = offset_to_vaddr(vma, uprobe->offset);
943 err |= remove_breakpoint(uprobe, mm, vaddr);
945 up_read(&mm->mmap_sem);
950 static struct rb_node *
951 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
953 struct rb_node *n = uprobes_tree.rb_node;
956 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
958 if (inode < u->inode) {
960 } else if (inode > u->inode) {
965 else if (min > u->offset)
976 * For a given range in vma, build a list of probes that need to be inserted.
978 static void build_probe_list(struct inode *inode,
979 struct vm_area_struct *vma,
980 unsigned long start, unsigned long end,
981 struct list_head *head)
984 struct rb_node *n, *t;
987 INIT_LIST_HEAD(head);
988 min = vaddr_to_offset(vma, start);
989 max = min + (end - start) - 1;
991 spin_lock(&uprobes_treelock);
992 n = find_node_in_range(inode, min, max);
994 for (t = n; t; t = rb_prev(t)) {
995 u = rb_entry(t, struct uprobe, rb_node);
996 if (u->inode != inode || u->offset < min)
998 list_add(&u->pending_list, head);
1001 for (t = n; (t = rb_next(t)); ) {
1002 u = rb_entry(t, struct uprobe, rb_node);
1003 if (u->inode != inode || u->offset > max)
1005 list_add(&u->pending_list, head);
1006 atomic_inc(&u->ref);
1009 spin_unlock(&uprobes_treelock);
1013 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1015 * Currently we ignore all errors and always return 0, the callers
1016 * can't handle the failure anyway.
1018 int uprobe_mmap(struct vm_area_struct *vma)
1020 struct list_head tmp_list;
1021 struct uprobe *uprobe, *u;
1022 struct inode *inode;
1024 if (no_uprobe_events() || !valid_vma(vma, true))
1027 inode = file_inode(vma->vm_file);
1031 mutex_lock(uprobes_mmap_hash(inode));
1032 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1034 * We can race with uprobe_unregister(), this uprobe can be already
1035 * removed. But in this case filter_chain() must return false, all
1036 * consumers have gone away.
1038 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1039 if (!fatal_signal_pending(current) &&
1040 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1041 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1042 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1046 mutex_unlock(uprobes_mmap_hash(inode));
1052 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1055 struct inode *inode;
1058 inode = file_inode(vma->vm_file);
1060 min = vaddr_to_offset(vma, start);
1061 max = min + (end - start) - 1;
1063 spin_lock(&uprobes_treelock);
1064 n = find_node_in_range(inode, min, max);
1065 spin_unlock(&uprobes_treelock);
1071 * Called in context of a munmap of a vma.
1073 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1075 if (no_uprobe_events() || !valid_vma(vma, false))
1078 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1081 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1082 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1085 if (vma_has_uprobes(vma, start, end))
1086 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1089 /* Slot allocation for XOL */
1090 static int xol_add_vma(struct xol_area *area)
1092 struct mm_struct *mm = current->mm;
1093 int ret = -EALREADY;
1095 down_write(&mm->mmap_sem);
1096 if (mm->uprobes_state.xol_area)
1100 /* Try to map as high as possible, this is only a hint. */
1101 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1102 if (area->vaddr & ~PAGE_MASK) {
1107 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1108 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1112 smp_wmb(); /* pairs with get_xol_area() */
1113 mm->uprobes_state.xol_area = area;
1116 up_write(&mm->mmap_sem);
1122 * get_xol_area - Allocate process's xol_area if necessary.
1123 * This area will be used for storing instructions for execution out of line.
1125 * Returns the allocated area or NULL.
1127 static struct xol_area *get_xol_area(void)
1129 struct mm_struct *mm = current->mm;
1130 struct xol_area *area;
1132 area = mm->uprobes_state.xol_area;
1136 area = kzalloc(sizeof(*area), GFP_KERNEL);
1137 if (unlikely(!area))
1140 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1144 area->page = alloc_page(GFP_HIGHUSER);
1148 init_waitqueue_head(&area->wq);
1149 if (!xol_add_vma(area))
1152 __free_page(area->page);
1154 kfree(area->bitmap);
1158 area = mm->uprobes_state.xol_area;
1160 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1165 * uprobe_clear_state - Free the area allocated for slots.
1167 void uprobe_clear_state(struct mm_struct *mm)
1169 struct xol_area *area = mm->uprobes_state.xol_area;
1174 put_page(area->page);
1175 kfree(area->bitmap);
1179 void uprobe_start_dup_mmap(void)
1181 percpu_down_read(&dup_mmap_sem);
1184 void uprobe_end_dup_mmap(void)
1186 percpu_up_read(&dup_mmap_sem);
1189 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1191 newmm->uprobes_state.xol_area = NULL;
1193 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1194 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1195 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1196 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1201 * - search for a free slot.
1203 static unsigned long xol_take_insn_slot(struct xol_area *area)
1205 unsigned long slot_addr;
1209 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1210 if (slot_nr < UINSNS_PER_PAGE) {
1211 if (!test_and_set_bit(slot_nr, area->bitmap))
1214 slot_nr = UINSNS_PER_PAGE;
1217 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1218 } while (slot_nr >= UINSNS_PER_PAGE);
1220 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1221 atomic_inc(&area->slot_count);
1227 * xol_get_insn_slot - allocate a slot for xol.
1228 * Returns the allocated slot address or 0.
1230 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1232 struct xol_area *area;
1233 unsigned long offset;
1234 unsigned long xol_vaddr;
1237 area = get_xol_area();
1241 xol_vaddr = xol_take_insn_slot(area);
1242 if (unlikely(!xol_vaddr))
1245 /* Initialize the slot */
1246 offset = xol_vaddr & ~PAGE_MASK;
1247 vaddr = kmap_atomic(area->page);
1248 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1249 kunmap_atomic(vaddr);
1251 * We probably need flush_icache_user_range() but it needs vma.
1252 * This should work on supported architectures too.
1254 flush_dcache_page(area->page);
1260 * xol_free_insn_slot - If slot was earlier allocated by
1261 * @xol_get_insn_slot(), make the slot available for
1262 * subsequent requests.
1264 static void xol_free_insn_slot(struct task_struct *tsk)
1266 struct xol_area *area;
1267 unsigned long vma_end;
1268 unsigned long slot_addr;
1270 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1273 slot_addr = tsk->utask->xol_vaddr;
1274 if (unlikely(!slot_addr))
1277 area = tsk->mm->uprobes_state.xol_area;
1278 vma_end = area->vaddr + PAGE_SIZE;
1279 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1280 unsigned long offset;
1283 offset = slot_addr - area->vaddr;
1284 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1285 if (slot_nr >= UINSNS_PER_PAGE)
1288 clear_bit(slot_nr, area->bitmap);
1289 atomic_dec(&area->slot_count);
1290 if (waitqueue_active(&area->wq))
1293 tsk->utask->xol_vaddr = 0;
1298 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1299 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1301 * Return the address of the breakpoint instruction.
1303 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1305 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1309 * Called with no locks held.
1310 * Called in context of a exiting or a exec-ing thread.
1312 void uprobe_free_utask(struct task_struct *t)
1314 struct uprobe_task *utask = t->utask;
1319 if (utask->active_uprobe)
1320 put_uprobe(utask->active_uprobe);
1322 xol_free_insn_slot(t);
1328 * Called in context of a new clone/fork from copy_process.
1330 void uprobe_copy_process(struct task_struct *t)
1336 * Allocate a uprobe_task object for the task if if necessary.
1337 * Called when the thread hits a breakpoint.
1340 * - pointer to new uprobe_task on success
1343 static struct uprobe_task *get_utask(void)
1345 if (!current->utask)
1346 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1347 return current->utask;
1350 /* Prepare to single-step probed instruction out of line. */
1352 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1354 struct uprobe_task *utask;
1355 unsigned long xol_vaddr;
1358 utask = get_utask();
1362 xol_vaddr = xol_get_insn_slot(uprobe);
1366 utask->xol_vaddr = xol_vaddr;
1367 utask->vaddr = bp_vaddr;
1369 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1370 if (unlikely(err)) {
1371 xol_free_insn_slot(current);
1375 utask->active_uprobe = uprobe;
1376 utask->state = UTASK_SSTEP;
1381 * If we are singlestepping, then ensure this thread is not connected to
1382 * non-fatal signals until completion of singlestep. When xol insn itself
1383 * triggers the signal, restart the original insn even if the task is
1384 * already SIGKILL'ed (since coredump should report the correct ip). This
1385 * is even more important if the task has a handler for SIGSEGV/etc, The
1386 * _same_ instruction should be repeated again after return from the signal
1387 * handler, and SSTEP can never finish in this case.
1389 bool uprobe_deny_signal(void)
1391 struct task_struct *t = current;
1392 struct uprobe_task *utask = t->utask;
1394 if (likely(!utask || !utask->active_uprobe))
1397 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1399 if (signal_pending(t)) {
1400 spin_lock_irq(&t->sighand->siglock);
1401 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1402 spin_unlock_irq(&t->sighand->siglock);
1404 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1405 utask->state = UTASK_SSTEP_TRAPPED;
1406 set_tsk_thread_flag(t, TIF_UPROBE);
1407 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1415 * Avoid singlestepping the original instruction if the original instruction
1416 * is a NOP or can be emulated.
1418 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1420 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1421 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1423 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1428 static void mmf_recalc_uprobes(struct mm_struct *mm)
1430 struct vm_area_struct *vma;
1432 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1433 if (!valid_vma(vma, false))
1436 * This is not strictly accurate, we can race with
1437 * uprobe_unregister() and see the already removed
1438 * uprobe if delete_uprobe() was not yet called.
1439 * Or this uprobe can be filtered out.
1441 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1445 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1448 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1451 uprobe_opcode_t opcode;
1454 pagefault_disable();
1455 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1459 if (likely(result == 0))
1462 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1466 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1469 /* This needs to return true for any variant of the trap insn */
1470 return is_trap_insn(&opcode);
1473 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1475 struct mm_struct *mm = current->mm;
1476 struct uprobe *uprobe = NULL;
1477 struct vm_area_struct *vma;
1479 down_read(&mm->mmap_sem);
1480 vma = find_vma(mm, bp_vaddr);
1481 if (vma && vma->vm_start <= bp_vaddr) {
1482 if (valid_vma(vma, false)) {
1483 struct inode *inode = file_inode(vma->vm_file);
1484 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1486 uprobe = find_uprobe(inode, offset);
1490 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1495 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1496 mmf_recalc_uprobes(mm);
1497 up_read(&mm->mmap_sem);
1502 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1504 struct uprobe_consumer *uc;
1505 int remove = UPROBE_HANDLER_REMOVE;
1507 down_read(&uprobe->register_rwsem);
1508 for (uc = uprobe->consumers; uc; uc = uc->next) {
1509 int rc = uc->handler(uc, regs);
1511 WARN(rc & ~UPROBE_HANDLER_MASK,
1512 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1516 if (remove && uprobe->consumers) {
1517 WARN_ON(!uprobe_is_active(uprobe));
1518 unapply_uprobe(uprobe, current->mm);
1520 up_read(&uprobe->register_rwsem);
1524 * Run handler and ask thread to singlestep.
1525 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1527 static void handle_swbp(struct pt_regs *regs)
1529 struct uprobe *uprobe;
1530 unsigned long bp_vaddr;
1531 int uninitialized_var(is_swbp);
1533 bp_vaddr = uprobe_get_swbp_addr(regs);
1534 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1538 /* No matching uprobe; signal SIGTRAP. */
1539 send_sig(SIGTRAP, current, 0);
1542 * Either we raced with uprobe_unregister() or we can't
1543 * access this memory. The latter is only possible if
1544 * another thread plays with our ->mm. In both cases
1545 * we can simply restart. If this vma was unmapped we
1546 * can pretend this insn was not executed yet and get
1547 * the (correct) SIGSEGV after restart.
1549 instruction_pointer_set(regs, bp_vaddr);
1554 /* change it in advance for ->handler() and restart */
1555 instruction_pointer_set(regs, bp_vaddr);
1558 * TODO: move copy_insn/etc into _register and remove this hack.
1559 * After we hit the bp, _unregister + _register can install the
1560 * new and not-yet-analyzed uprobe at the same address, restart.
1562 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1563 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1566 handler_chain(uprobe, regs);
1567 if (can_skip_sstep(uprobe, regs))
1570 if (!pre_ssout(uprobe, regs, bp_vaddr))
1573 /* can_skip_sstep() succeeded, or restart if can't singlestep */
1579 * Perform required fix-ups and disable singlestep.
1580 * Allow pending signals to take effect.
1582 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1584 struct uprobe *uprobe;
1586 uprobe = utask->active_uprobe;
1587 if (utask->state == UTASK_SSTEP_ACK)
1588 arch_uprobe_post_xol(&uprobe->arch, regs);
1589 else if (utask->state == UTASK_SSTEP_TRAPPED)
1590 arch_uprobe_abort_xol(&uprobe->arch, regs);
1595 utask->active_uprobe = NULL;
1596 utask->state = UTASK_RUNNING;
1597 xol_free_insn_slot(current);
1599 spin_lock_irq(¤t->sighand->siglock);
1600 recalc_sigpending(); /* see uprobe_deny_signal() */
1601 spin_unlock_irq(¤t->sighand->siglock);
1605 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1606 * allows the thread to return from interrupt. After that handle_swbp()
1607 * sets utask->active_uprobe.
1609 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1610 * and allows the thread to return from interrupt.
1612 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1613 * uprobe_notify_resume().
1615 void uprobe_notify_resume(struct pt_regs *regs)
1617 struct uprobe_task *utask;
1619 clear_thread_flag(TIF_UPROBE);
1621 utask = current->utask;
1622 if (utask && utask->active_uprobe)
1623 handle_singlestep(utask, regs);
1629 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1630 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1632 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1634 if (!current->mm || !test_bit(MMF_HAS_UPROBES, ¤t->mm->flags))
1637 set_thread_flag(TIF_UPROBE);
1642 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1643 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1645 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1647 struct uprobe_task *utask = current->utask;
1649 if (!current->mm || !utask || !utask->active_uprobe)
1650 /* task is currently not uprobed */
1653 utask->state = UTASK_SSTEP_ACK;
1654 set_thread_flag(TIF_UPROBE);
1658 static struct notifier_block uprobe_exception_nb = {
1659 .notifier_call = arch_uprobe_exception_notify,
1660 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1663 static int __init init_uprobes(void)
1667 for (i = 0; i < UPROBES_HASH_SZ; i++)
1668 mutex_init(&uprobes_mmap_mutex[i]);
1670 if (percpu_init_rwsem(&dup_mmap_sem))
1673 return register_die_notifier(&uprobe_exception_nb);
1675 module_init(init_uprobes);
1677 static void __exit exit_uprobes(void)
1680 module_exit(exit_uprobes);