51a7f535ff96b1edd35b0b41744b1c63eaadbdab
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>         /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h>         /* try_to_free_swap */
34 #include <linux/ptrace.h>       /* user_enable_single_step */
35 #include <linux/kdebug.h>       /* notifier mechanism */
36 #include "../../mm/internal.h"  /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39
40 #include <linux/uprobes.h>
41
42 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
43 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
44
45 static struct rb_root uprobes_tree = RB_ROOT;
46 /*
47  * allows us to skip the uprobe_mmap if there are no uprobe events active
48  * at this time.  Probably a fine grained per inode count is better?
49  */
50 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
51
52 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
53
54 #define UPROBES_HASH_SZ 13
55 /* serialize uprobe->pending_list */
56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
57 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58
59 static struct percpu_rw_semaphore dup_mmap_sem;
60
61 /* Have a copy of original instruction */
62 #define UPROBE_COPY_INSN        0
63 /* Can skip singlestep */
64 #define UPROBE_SKIP_SSTEP       1
65
66 struct uprobe {
67         struct rb_node          rb_node;        /* node in the rb tree */
68         atomic_t                ref;
69         struct rw_semaphore     register_rwsem;
70         struct rw_semaphore     consumer_rwsem;
71         struct list_head        pending_list;
72         struct uprobe_consumer  *consumers;
73         struct inode            *inode;         /* Also hold a ref to inode */
74         loff_t                  offset;
75         unsigned long           flags;
76         struct arch_uprobe      arch;
77 };
78
79 struct return_instance {
80         struct uprobe           *uprobe;
81         unsigned long           func;
82         unsigned long           orig_ret_vaddr; /* original return address */
83         bool                    chained;        /* true, if instance is nested */
84
85         struct return_instance  *next;          /* keep as stack */
86 };
87
88 /*
89  * On a breakpoint hit, thread contests for a slot.  It frees the
90  * slot after singlestep. Currently a fixed number of slots are
91  * allocated.
92  */
93 struct xol_area {
94         wait_queue_head_t       wq;             /* if all slots are busy */
95         atomic_t                slot_count;     /* number of in-use slots */
96         unsigned long           *bitmap;        /* 0 = free slot */
97         struct page             *page;
98
99         /*
100          * We keep the vma's vm_start rather than a pointer to the vma
101          * itself.  The probed process or a naughty kernel module could make
102          * the vma go away, and we must handle that reasonably gracefully.
103          */
104         unsigned long           vaddr;          /* Page(s) of instruction slots */
105 };
106
107 /*
108  * valid_vma: Verify if the specified vma is an executable vma
109  * Relax restrictions while unregistering: vm_flags might have
110  * changed after breakpoint was inserted.
111  *      - is_register: indicates if we are in register context.
112  *      - Return 1 if the specified virtual address is in an
113  *        executable vma.
114  */
115 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
116 {
117         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
118
119         if (is_register)
120                 flags |= VM_WRITE;
121
122         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
123 }
124
125 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
126 {
127         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
128 }
129
130 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
131 {
132         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
133 }
134
135 /**
136  * __replace_page - replace page in vma by new page.
137  * based on replace_page in mm/ksm.c
138  *
139  * @vma:      vma that holds the pte pointing to page
140  * @addr:     address the old @page is mapped at
141  * @page:     the cowed page we are replacing by kpage
142  * @kpage:    the modified page we replace page by
143  *
144  * Returns 0 on success, -EFAULT on failure.
145  */
146 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
147                                 struct page *page, struct page *kpage)
148 {
149         struct mm_struct *mm = vma->vm_mm;
150         spinlock_t *ptl;
151         pte_t *ptep;
152         int err;
153         /* For mmu_notifiers */
154         const unsigned long mmun_start = addr;
155         const unsigned long mmun_end   = addr + PAGE_SIZE;
156
157         /* For try_to_free_swap() and munlock_vma_page() below */
158         lock_page(page);
159
160         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
161         err = -EAGAIN;
162         ptep = page_check_address(page, mm, addr, &ptl, 0);
163         if (!ptep)
164                 goto unlock;
165
166         get_page(kpage);
167         page_add_new_anon_rmap(kpage, vma, addr);
168
169         if (!PageAnon(page)) {
170                 dec_mm_counter(mm, MM_FILEPAGES);
171                 inc_mm_counter(mm, MM_ANONPAGES);
172         }
173
174         flush_cache_page(vma, addr, pte_pfn(*ptep));
175         ptep_clear_flush(vma, addr, ptep);
176         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
177
178         page_remove_rmap(page);
179         if (!page_mapped(page))
180                 try_to_free_swap(page);
181         pte_unmap_unlock(ptep, ptl);
182
183         if (vma->vm_flags & VM_LOCKED)
184                 munlock_vma_page(page);
185         put_page(page);
186
187         err = 0;
188  unlock:
189         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
190         unlock_page(page);
191         return err;
192 }
193
194 /**
195  * is_swbp_insn - check if instruction is breakpoint instruction.
196  * @insn: instruction to be checked.
197  * Default implementation of is_swbp_insn
198  * Returns true if @insn is a breakpoint instruction.
199  */
200 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
201 {
202         return *insn == UPROBE_SWBP_INSN;
203 }
204
205 /**
206  * is_trap_insn - check if instruction is breakpoint instruction.
207  * @insn: instruction to be checked.
208  * Default implementation of is_trap_insn
209  * Returns true if @insn is a breakpoint instruction.
210  *
211  * This function is needed for the case where an architecture has multiple
212  * trap instructions (like powerpc).
213  */
214 bool __weak is_trap_insn(uprobe_opcode_t *insn)
215 {
216         return is_swbp_insn(insn);
217 }
218
219 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
220 {
221         void *kaddr = kmap_atomic(page);
222         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
223         kunmap_atomic(kaddr);
224 }
225
226 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
227 {
228         void *kaddr = kmap_atomic(page);
229         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
230         kunmap_atomic(kaddr);
231 }
232
233 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
234 {
235         uprobe_opcode_t old_opcode;
236         bool is_swbp;
237
238         /*
239          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
240          * We do not check if it is any other 'trap variant' which could
241          * be conditional trap instruction such as the one powerpc supports.
242          *
243          * The logic is that we do not care if the underlying instruction
244          * is a trap variant; uprobes always wins over any other (gdb)
245          * breakpoint.
246          */
247         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
248         is_swbp = is_swbp_insn(&old_opcode);
249
250         if (is_swbp_insn(new_opcode)) {
251                 if (is_swbp)            /* register: already installed? */
252                         return 0;
253         } else {
254                 if (!is_swbp)           /* unregister: was it changed by us? */
255                         return 0;
256         }
257
258         return 1;
259 }
260
261 /*
262  * NOTE:
263  * Expect the breakpoint instruction to be the smallest size instruction for
264  * the architecture. If an arch has variable length instruction and the
265  * breakpoint instruction is not of the smallest length instruction
266  * supported by that architecture then we need to modify is_trap_at_addr and
267  * uprobe_write_opcode accordingly. This would never be a problem for archs
268  * that have fixed length instructions.
269  */
270
271 /*
272  * uprobe_write_opcode - write the opcode at a given virtual address.
273  * @mm: the probed process address space.
274  * @vaddr: the virtual address to store the opcode.
275  * @opcode: opcode to be written at @vaddr.
276  *
277  * Called with mm->mmap_sem held (for read and with a reference to
278  * mm).
279  *
280  * For mm @mm, write the opcode at @vaddr.
281  * Return 0 (success) or a negative errno.
282  */
283 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
284                         uprobe_opcode_t opcode)
285 {
286         struct page *old_page, *new_page;
287         struct vm_area_struct *vma;
288         int ret;
289
290 retry:
291         /* Read the page with vaddr into memory */
292         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
293         if (ret <= 0)
294                 return ret;
295
296         ret = verify_opcode(old_page, vaddr, &opcode);
297         if (ret <= 0)
298                 goto put_old;
299
300         ret = -ENOMEM;
301         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
302         if (!new_page)
303                 goto put_old;
304
305         __SetPageUptodate(new_page);
306
307         copy_highpage(new_page, old_page);
308         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
309
310         ret = anon_vma_prepare(vma);
311         if (ret)
312                 goto put_new;
313
314         ret = __replace_page(vma, vaddr, old_page, new_page);
315
316 put_new:
317         page_cache_release(new_page);
318 put_old:
319         put_page(old_page);
320
321         if (unlikely(ret == -EAGAIN))
322                 goto retry;
323         return ret;
324 }
325
326 /**
327  * set_swbp - store breakpoint at a given address.
328  * @auprobe: arch specific probepoint information.
329  * @mm: the probed process address space.
330  * @vaddr: the virtual address to insert the opcode.
331  *
332  * For mm @mm, store the breakpoint instruction at @vaddr.
333  * Return 0 (success) or a negative errno.
334  */
335 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
336 {
337         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
338 }
339
340 /**
341  * set_orig_insn - Restore the original instruction.
342  * @mm: the probed process address space.
343  * @auprobe: arch specific probepoint information.
344  * @vaddr: the virtual address to insert the opcode.
345  *
346  * For mm @mm, restore the original opcode (opcode) at @vaddr.
347  * Return 0 (success) or a negative errno.
348  */
349 int __weak
350 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
351 {
352         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
353 }
354
355 static int match_uprobe(struct uprobe *l, struct uprobe *r)
356 {
357         if (l->inode < r->inode)
358                 return -1;
359
360         if (l->inode > r->inode)
361                 return 1;
362
363         if (l->offset < r->offset)
364                 return -1;
365
366         if (l->offset > r->offset)
367                 return 1;
368
369         return 0;
370 }
371
372 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
373 {
374         struct uprobe u = { .inode = inode, .offset = offset };
375         struct rb_node *n = uprobes_tree.rb_node;
376         struct uprobe *uprobe;
377         int match;
378
379         while (n) {
380                 uprobe = rb_entry(n, struct uprobe, rb_node);
381                 match = match_uprobe(&u, uprobe);
382                 if (!match) {
383                         atomic_inc(&uprobe->ref);
384                         return uprobe;
385                 }
386
387                 if (match < 0)
388                         n = n->rb_left;
389                 else
390                         n = n->rb_right;
391         }
392         return NULL;
393 }
394
395 /*
396  * Find a uprobe corresponding to a given inode:offset
397  * Acquires uprobes_treelock
398  */
399 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
400 {
401         struct uprobe *uprobe;
402
403         spin_lock(&uprobes_treelock);
404         uprobe = __find_uprobe(inode, offset);
405         spin_unlock(&uprobes_treelock);
406
407         return uprobe;
408 }
409
410 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
411 {
412         struct rb_node **p = &uprobes_tree.rb_node;
413         struct rb_node *parent = NULL;
414         struct uprobe *u;
415         int match;
416
417         while (*p) {
418                 parent = *p;
419                 u = rb_entry(parent, struct uprobe, rb_node);
420                 match = match_uprobe(uprobe, u);
421                 if (!match) {
422                         atomic_inc(&u->ref);
423                         return u;
424                 }
425
426                 if (match < 0)
427                         p = &parent->rb_left;
428                 else
429                         p = &parent->rb_right;
430
431         }
432
433         u = NULL;
434         rb_link_node(&uprobe->rb_node, parent, p);
435         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
436         /* get access + creation ref */
437         atomic_set(&uprobe->ref, 2);
438
439         return u;
440 }
441
442 /*
443  * Acquire uprobes_treelock.
444  * Matching uprobe already exists in rbtree;
445  *      increment (access refcount) and return the matching uprobe.
446  *
447  * No matching uprobe; insert the uprobe in rb_tree;
448  *      get a double refcount (access + creation) and return NULL.
449  */
450 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
451 {
452         struct uprobe *u;
453
454         spin_lock(&uprobes_treelock);
455         u = __insert_uprobe(uprobe);
456         spin_unlock(&uprobes_treelock);
457
458         return u;
459 }
460
461 static void put_uprobe(struct uprobe *uprobe)
462 {
463         if (atomic_dec_and_test(&uprobe->ref))
464                 kfree(uprobe);
465 }
466
467 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
468 {
469         struct uprobe *uprobe, *cur_uprobe;
470
471         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
472         if (!uprobe)
473                 return NULL;
474
475         uprobe->inode = igrab(inode);
476         uprobe->offset = offset;
477         init_rwsem(&uprobe->register_rwsem);
478         init_rwsem(&uprobe->consumer_rwsem);
479         /* For now assume that the instruction need not be single-stepped */
480         __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
481
482         /* add to uprobes_tree, sorted on inode:offset */
483         cur_uprobe = insert_uprobe(uprobe);
484
485         /* a uprobe exists for this inode:offset combination */
486         if (cur_uprobe) {
487                 kfree(uprobe);
488                 uprobe = cur_uprobe;
489                 iput(inode);
490         }
491
492         return uprobe;
493 }
494
495 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
496 {
497         down_write(&uprobe->consumer_rwsem);
498         uc->next = uprobe->consumers;
499         uprobe->consumers = uc;
500         up_write(&uprobe->consumer_rwsem);
501 }
502
503 /*
504  * For uprobe @uprobe, delete the consumer @uc.
505  * Return true if the @uc is deleted successfully
506  * or return false.
507  */
508 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
509 {
510         struct uprobe_consumer **con;
511         bool ret = false;
512
513         down_write(&uprobe->consumer_rwsem);
514         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
515                 if (*con == uc) {
516                         *con = uc->next;
517                         ret = true;
518                         break;
519                 }
520         }
521         up_write(&uprobe->consumer_rwsem);
522
523         return ret;
524 }
525
526 static int __copy_insn(struct address_space *mapping, struct file *filp,
527                         void *insn, int nbytes, loff_t offset)
528 {
529         struct page *page;
530
531         if (!mapping->a_ops->readpage)
532                 return -EIO;
533         /*
534          * Ensure that the page that has the original instruction is
535          * populated and in page-cache.
536          */
537         page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
538         if (IS_ERR(page))
539                 return PTR_ERR(page);
540
541         copy_from_page(page, offset, insn, nbytes);
542         page_cache_release(page);
543
544         return 0;
545 }
546
547 static int copy_insn(struct uprobe *uprobe, struct file *filp)
548 {
549         struct address_space *mapping = uprobe->inode->i_mapping;
550         loff_t offs = uprobe->offset;
551         void *insn = &uprobe->arch.insn;
552         int size = sizeof(uprobe->arch.insn);
553         int len, err = -EIO;
554
555         /* Copy only available bytes, -EIO if nothing was read */
556         do {
557                 if (offs >= i_size_read(uprobe->inode))
558                         break;
559
560                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
561                 err = __copy_insn(mapping, filp, insn, len, offs);
562                 if (err)
563                         break;
564
565                 insn += len;
566                 offs += len;
567                 size -= len;
568         } while (size);
569
570         return err;
571 }
572
573 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
574                                 struct mm_struct *mm, unsigned long vaddr)
575 {
576         int ret = 0;
577
578         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
579                 return ret;
580
581         /* TODO: move this into _register, until then we abuse this sem. */
582         down_write(&uprobe->consumer_rwsem);
583         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
584                 goto out;
585
586         ret = copy_insn(uprobe, file);
587         if (ret)
588                 goto out;
589
590         ret = -ENOTSUPP;
591         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
592                 goto out;
593
594         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
595         if (ret)
596                 goto out;
597
598         /* uprobe_write_opcode() assumes we don't cross page boundary */
599         BUG_ON((uprobe->offset & ~PAGE_MASK) +
600                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
601
602         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
603         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
604
605  out:
606         up_write(&uprobe->consumer_rwsem);
607
608         return ret;
609 }
610
611 static inline bool consumer_filter(struct uprobe_consumer *uc,
612                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
613 {
614         return !uc->filter || uc->filter(uc, ctx, mm);
615 }
616
617 static bool filter_chain(struct uprobe *uprobe,
618                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
619 {
620         struct uprobe_consumer *uc;
621         bool ret = false;
622
623         down_read(&uprobe->consumer_rwsem);
624         for (uc = uprobe->consumers; uc; uc = uc->next) {
625                 ret = consumer_filter(uc, ctx, mm);
626                 if (ret)
627                         break;
628         }
629         up_read(&uprobe->consumer_rwsem);
630
631         return ret;
632 }
633
634 static int
635 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
636                         struct vm_area_struct *vma, unsigned long vaddr)
637 {
638         bool first_uprobe;
639         int ret;
640
641         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
642         if (ret)
643                 return ret;
644
645         /*
646          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
647          * the task can hit this breakpoint right after __replace_page().
648          */
649         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
650         if (first_uprobe)
651                 set_bit(MMF_HAS_UPROBES, &mm->flags);
652
653         ret = set_swbp(&uprobe->arch, mm, vaddr);
654         if (!ret)
655                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
656         else if (first_uprobe)
657                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
658
659         return ret;
660 }
661
662 static int
663 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
664 {
665         set_bit(MMF_RECALC_UPROBES, &mm->flags);
666         return set_orig_insn(&uprobe->arch, mm, vaddr);
667 }
668
669 static inline bool uprobe_is_active(struct uprobe *uprobe)
670 {
671         return !RB_EMPTY_NODE(&uprobe->rb_node);
672 }
673 /*
674  * There could be threads that have already hit the breakpoint. They
675  * will recheck the current insn and restart if find_uprobe() fails.
676  * See find_active_uprobe().
677  */
678 static void delete_uprobe(struct uprobe *uprobe)
679 {
680         if (WARN_ON(!uprobe_is_active(uprobe)))
681                 return;
682
683         spin_lock(&uprobes_treelock);
684         rb_erase(&uprobe->rb_node, &uprobes_tree);
685         spin_unlock(&uprobes_treelock);
686         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
687         iput(uprobe->inode);
688         put_uprobe(uprobe);
689 }
690
691 struct map_info {
692         struct map_info *next;
693         struct mm_struct *mm;
694         unsigned long vaddr;
695 };
696
697 static inline struct map_info *free_map_info(struct map_info *info)
698 {
699         struct map_info *next = info->next;
700         kfree(info);
701         return next;
702 }
703
704 static struct map_info *
705 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
706 {
707         unsigned long pgoff = offset >> PAGE_SHIFT;
708         struct vm_area_struct *vma;
709         struct map_info *curr = NULL;
710         struct map_info *prev = NULL;
711         struct map_info *info;
712         int more = 0;
713
714  again:
715         mutex_lock(&mapping->i_mmap_mutex);
716         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
717                 if (!valid_vma(vma, is_register))
718                         continue;
719
720                 if (!prev && !more) {
721                         /*
722                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
723                          * reclaim. This is optimistic, no harm done if it fails.
724                          */
725                         prev = kmalloc(sizeof(struct map_info),
726                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
727                         if (prev)
728                                 prev->next = NULL;
729                 }
730                 if (!prev) {
731                         more++;
732                         continue;
733                 }
734
735                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
736                         continue;
737
738                 info = prev;
739                 prev = prev->next;
740                 info->next = curr;
741                 curr = info;
742
743                 info->mm = vma->vm_mm;
744                 info->vaddr = offset_to_vaddr(vma, offset);
745         }
746         mutex_unlock(&mapping->i_mmap_mutex);
747
748         if (!more)
749                 goto out;
750
751         prev = curr;
752         while (curr) {
753                 mmput(curr->mm);
754                 curr = curr->next;
755         }
756
757         do {
758                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
759                 if (!info) {
760                         curr = ERR_PTR(-ENOMEM);
761                         goto out;
762                 }
763                 info->next = prev;
764                 prev = info;
765         } while (--more);
766
767         goto again;
768  out:
769         while (prev)
770                 prev = free_map_info(prev);
771         return curr;
772 }
773
774 static int
775 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
776 {
777         bool is_register = !!new;
778         struct map_info *info;
779         int err = 0;
780
781         percpu_down_write(&dup_mmap_sem);
782         info = build_map_info(uprobe->inode->i_mapping,
783                                         uprobe->offset, is_register);
784         if (IS_ERR(info)) {
785                 err = PTR_ERR(info);
786                 goto out;
787         }
788
789         while (info) {
790                 struct mm_struct *mm = info->mm;
791                 struct vm_area_struct *vma;
792
793                 if (err && is_register)
794                         goto free;
795
796                 down_write(&mm->mmap_sem);
797                 vma = find_vma(mm, info->vaddr);
798                 if (!vma || !valid_vma(vma, is_register) ||
799                     file_inode(vma->vm_file) != uprobe->inode)
800                         goto unlock;
801
802                 if (vma->vm_start > info->vaddr ||
803                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
804                         goto unlock;
805
806                 if (is_register) {
807                         /* consult only the "caller", new consumer. */
808                         if (consumer_filter(new,
809                                         UPROBE_FILTER_REGISTER, mm))
810                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
811                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
812                         if (!filter_chain(uprobe,
813                                         UPROBE_FILTER_UNREGISTER, mm))
814                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
815                 }
816
817  unlock:
818                 up_write(&mm->mmap_sem);
819  free:
820                 mmput(mm);
821                 info = free_map_info(info);
822         }
823  out:
824         percpu_up_write(&dup_mmap_sem);
825         return err;
826 }
827
828 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
829 {
830         consumer_add(uprobe, uc);
831         return register_for_each_vma(uprobe, uc);
832 }
833
834 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
835 {
836         int err;
837
838         if (!consumer_del(uprobe, uc))  /* WARN? */
839                 return;
840
841         err = register_for_each_vma(uprobe, NULL);
842         /* TODO : cant unregister? schedule a worker thread */
843         if (!uprobe->consumers && !err)
844                 delete_uprobe(uprobe);
845 }
846
847 /*
848  * uprobe_register - register a probe
849  * @inode: the file in which the probe has to be placed.
850  * @offset: offset from the start of the file.
851  * @uc: information on howto handle the probe..
852  *
853  * Apart from the access refcount, uprobe_register() takes a creation
854  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
855  * inserted into the rbtree (i.e first consumer for a @inode:@offset
856  * tuple).  Creation refcount stops uprobe_unregister from freeing the
857  * @uprobe even before the register operation is complete. Creation
858  * refcount is released when the last @uc for the @uprobe
859  * unregisters.
860  *
861  * Return errno if it cannot successully install probes
862  * else return 0 (success)
863  */
864 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
865 {
866         struct uprobe *uprobe;
867         int ret;
868
869         /* Uprobe must have at least one set consumer */
870         if (!uc->handler && !uc->ret_handler)
871                 return -EINVAL;
872
873         /* Racy, just to catch the obvious mistakes */
874         if (offset > i_size_read(inode))
875                 return -EINVAL;
876
877  retry:
878         uprobe = alloc_uprobe(inode, offset);
879         if (!uprobe)
880                 return -ENOMEM;
881         /*
882          * We can race with uprobe_unregister()->delete_uprobe().
883          * Check uprobe_is_active() and retry if it is false.
884          */
885         down_write(&uprobe->register_rwsem);
886         ret = -EAGAIN;
887         if (likely(uprobe_is_active(uprobe))) {
888                 ret = __uprobe_register(uprobe, uc);
889                 if (ret)
890                         __uprobe_unregister(uprobe, uc);
891         }
892         up_write(&uprobe->register_rwsem);
893         put_uprobe(uprobe);
894
895         if (unlikely(ret == -EAGAIN))
896                 goto retry;
897         return ret;
898 }
899 EXPORT_SYMBOL_GPL(uprobe_register);
900
901 /*
902  * uprobe_apply - unregister a already registered probe.
903  * @inode: the file in which the probe has to be removed.
904  * @offset: offset from the start of the file.
905  * @uc: consumer which wants to add more or remove some breakpoints
906  * @add: add or remove the breakpoints
907  */
908 int uprobe_apply(struct inode *inode, loff_t offset,
909                         struct uprobe_consumer *uc, bool add)
910 {
911         struct uprobe *uprobe;
912         struct uprobe_consumer *con;
913         int ret = -ENOENT;
914
915         uprobe = find_uprobe(inode, offset);
916         if (!uprobe)
917                 return ret;
918
919         down_write(&uprobe->register_rwsem);
920         for (con = uprobe->consumers; con && con != uc ; con = con->next)
921                 ;
922         if (con)
923                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
924         up_write(&uprobe->register_rwsem);
925         put_uprobe(uprobe);
926
927         return ret;
928 }
929
930 /*
931  * uprobe_unregister - unregister a already registered probe.
932  * @inode: the file in which the probe has to be removed.
933  * @offset: offset from the start of the file.
934  * @uc: identify which probe if multiple probes are colocated.
935  */
936 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
937 {
938         struct uprobe *uprobe;
939
940         uprobe = find_uprobe(inode, offset);
941         if (!uprobe)
942                 return;
943
944         down_write(&uprobe->register_rwsem);
945         __uprobe_unregister(uprobe, uc);
946         up_write(&uprobe->register_rwsem);
947         put_uprobe(uprobe);
948 }
949 EXPORT_SYMBOL_GPL(uprobe_unregister);
950
951 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
952 {
953         struct vm_area_struct *vma;
954         int err = 0;
955
956         down_read(&mm->mmap_sem);
957         for (vma = mm->mmap; vma; vma = vma->vm_next) {
958                 unsigned long vaddr;
959                 loff_t offset;
960
961                 if (!valid_vma(vma, false) ||
962                     file_inode(vma->vm_file) != uprobe->inode)
963                         continue;
964
965                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
966                 if (uprobe->offset <  offset ||
967                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
968                         continue;
969
970                 vaddr = offset_to_vaddr(vma, uprobe->offset);
971                 err |= remove_breakpoint(uprobe, mm, vaddr);
972         }
973         up_read(&mm->mmap_sem);
974
975         return err;
976 }
977
978 static struct rb_node *
979 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
980 {
981         struct rb_node *n = uprobes_tree.rb_node;
982
983         while (n) {
984                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
985
986                 if (inode < u->inode) {
987                         n = n->rb_left;
988                 } else if (inode > u->inode) {
989                         n = n->rb_right;
990                 } else {
991                         if (max < u->offset)
992                                 n = n->rb_left;
993                         else if (min > u->offset)
994                                 n = n->rb_right;
995                         else
996                                 break;
997                 }
998         }
999
1000         return n;
1001 }
1002
1003 /*
1004  * For a given range in vma, build a list of probes that need to be inserted.
1005  */
1006 static void build_probe_list(struct inode *inode,
1007                                 struct vm_area_struct *vma,
1008                                 unsigned long start, unsigned long end,
1009                                 struct list_head *head)
1010 {
1011         loff_t min, max;
1012         struct rb_node *n, *t;
1013         struct uprobe *u;
1014
1015         INIT_LIST_HEAD(head);
1016         min = vaddr_to_offset(vma, start);
1017         max = min + (end - start) - 1;
1018
1019         spin_lock(&uprobes_treelock);
1020         n = find_node_in_range(inode, min, max);
1021         if (n) {
1022                 for (t = n; t; t = rb_prev(t)) {
1023                         u = rb_entry(t, struct uprobe, rb_node);
1024                         if (u->inode != inode || u->offset < min)
1025                                 break;
1026                         list_add(&u->pending_list, head);
1027                         atomic_inc(&u->ref);
1028                 }
1029                 for (t = n; (t = rb_next(t)); ) {
1030                         u = rb_entry(t, struct uprobe, rb_node);
1031                         if (u->inode != inode || u->offset > max)
1032                                 break;
1033                         list_add(&u->pending_list, head);
1034                         atomic_inc(&u->ref);
1035                 }
1036         }
1037         spin_unlock(&uprobes_treelock);
1038 }
1039
1040 /*
1041  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1042  *
1043  * Currently we ignore all errors and always return 0, the callers
1044  * can't handle the failure anyway.
1045  */
1046 int uprobe_mmap(struct vm_area_struct *vma)
1047 {
1048         struct list_head tmp_list;
1049         struct uprobe *uprobe, *u;
1050         struct inode *inode;
1051
1052         if (no_uprobe_events() || !valid_vma(vma, true))
1053                 return 0;
1054
1055         inode = file_inode(vma->vm_file);
1056         if (!inode)
1057                 return 0;
1058
1059         mutex_lock(uprobes_mmap_hash(inode));
1060         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1061         /*
1062          * We can race with uprobe_unregister(), this uprobe can be already
1063          * removed. But in this case filter_chain() must return false, all
1064          * consumers have gone away.
1065          */
1066         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1067                 if (!fatal_signal_pending(current) &&
1068                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1069                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1070                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1071                 }
1072                 put_uprobe(uprobe);
1073         }
1074         mutex_unlock(uprobes_mmap_hash(inode));
1075
1076         return 0;
1077 }
1078
1079 static bool
1080 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1081 {
1082         loff_t min, max;
1083         struct inode *inode;
1084         struct rb_node *n;
1085
1086         inode = file_inode(vma->vm_file);
1087
1088         min = vaddr_to_offset(vma, start);
1089         max = min + (end - start) - 1;
1090
1091         spin_lock(&uprobes_treelock);
1092         n = find_node_in_range(inode, min, max);
1093         spin_unlock(&uprobes_treelock);
1094
1095         return !!n;
1096 }
1097
1098 /*
1099  * Called in context of a munmap of a vma.
1100  */
1101 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1102 {
1103         if (no_uprobe_events() || !valid_vma(vma, false))
1104                 return;
1105
1106         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1107                 return;
1108
1109         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1110              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1111                 return;
1112
1113         if (vma_has_uprobes(vma, start, end))
1114                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1115 }
1116
1117 /* Slot allocation for XOL */
1118 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1119 {
1120         int ret = -EALREADY;
1121
1122         down_write(&mm->mmap_sem);
1123         if (mm->uprobes_state.xol_area)
1124                 goto fail;
1125
1126         if (!area->vaddr) {
1127                 /* Try to map as high as possible, this is only a hint. */
1128                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1129                                                 PAGE_SIZE, 0, 0);
1130                 if (area->vaddr & ~PAGE_MASK) {
1131                         ret = area->vaddr;
1132                         goto fail;
1133                 }
1134         }
1135
1136         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1137                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1138         if (ret)
1139                 goto fail;
1140
1141         smp_wmb();      /* pairs with get_xol_area() */
1142         mm->uprobes_state.xol_area = area;
1143  fail:
1144         up_write(&mm->mmap_sem);
1145
1146         return ret;
1147 }
1148
1149 static struct xol_area *__create_xol_area(unsigned long vaddr)
1150 {
1151         struct mm_struct *mm = current->mm;
1152         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1153         struct xol_area *area;
1154
1155         area = kmalloc(sizeof(*area), GFP_KERNEL);
1156         if (unlikely(!area))
1157                 goto out;
1158
1159         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1160         if (!area->bitmap)
1161                 goto free_area;
1162
1163         area->page = alloc_page(GFP_HIGHUSER);
1164         if (!area->page)
1165                 goto free_bitmap;
1166
1167         area->vaddr = vaddr;
1168         init_waitqueue_head(&area->wq);
1169         /* Reserve the 1st slot for get_trampoline_vaddr() */
1170         set_bit(0, area->bitmap);
1171         atomic_set(&area->slot_count, 1);
1172         copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1173
1174         if (!xol_add_vma(mm, area))
1175                 return area;
1176
1177         __free_page(area->page);
1178  free_bitmap:
1179         kfree(area->bitmap);
1180  free_area:
1181         kfree(area);
1182  out:
1183         return NULL;
1184 }
1185
1186 /*
1187  * get_xol_area - Allocate process's xol_area if necessary.
1188  * This area will be used for storing instructions for execution out of line.
1189  *
1190  * Returns the allocated area or NULL.
1191  */
1192 static struct xol_area *get_xol_area(void)
1193 {
1194         struct mm_struct *mm = current->mm;
1195         struct xol_area *area;
1196
1197         if (!mm->uprobes_state.xol_area)
1198                 __create_xol_area(0);
1199
1200         area = mm->uprobes_state.xol_area;
1201         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1202         return area;
1203 }
1204
1205 /*
1206  * uprobe_clear_state - Free the area allocated for slots.
1207  */
1208 void uprobe_clear_state(struct mm_struct *mm)
1209 {
1210         struct xol_area *area = mm->uprobes_state.xol_area;
1211
1212         if (!area)
1213                 return;
1214
1215         put_page(area->page);
1216         kfree(area->bitmap);
1217         kfree(area);
1218 }
1219
1220 void uprobe_start_dup_mmap(void)
1221 {
1222         percpu_down_read(&dup_mmap_sem);
1223 }
1224
1225 void uprobe_end_dup_mmap(void)
1226 {
1227         percpu_up_read(&dup_mmap_sem);
1228 }
1229
1230 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1231 {
1232         newmm->uprobes_state.xol_area = NULL;
1233
1234         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1235                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1236                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1237                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1238         }
1239 }
1240
1241 /*
1242  *  - search for a free slot.
1243  */
1244 static unsigned long xol_take_insn_slot(struct xol_area *area)
1245 {
1246         unsigned long slot_addr;
1247         int slot_nr;
1248
1249         do {
1250                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1251                 if (slot_nr < UINSNS_PER_PAGE) {
1252                         if (!test_and_set_bit(slot_nr, area->bitmap))
1253                                 break;
1254
1255                         slot_nr = UINSNS_PER_PAGE;
1256                         continue;
1257                 }
1258                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1259         } while (slot_nr >= UINSNS_PER_PAGE);
1260
1261         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1262         atomic_inc(&area->slot_count);
1263
1264         return slot_addr;
1265 }
1266
1267 /*
1268  * xol_get_insn_slot - allocate a slot for xol.
1269  * Returns the allocated slot address or 0.
1270  */
1271 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1272 {
1273         struct xol_area *area;
1274         unsigned long xol_vaddr;
1275
1276         area = get_xol_area();
1277         if (!area)
1278                 return 0;
1279
1280         xol_vaddr = xol_take_insn_slot(area);
1281         if (unlikely(!xol_vaddr))
1282                 return 0;
1283
1284         /* Initialize the slot */
1285         copy_to_page(area->page, xol_vaddr,
1286                         &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1287         /*
1288          * We probably need flush_icache_user_range() but it needs vma.
1289          * This should work on supported architectures too.
1290          */
1291         flush_dcache_page(area->page);
1292
1293         return xol_vaddr;
1294 }
1295
1296 /*
1297  * xol_free_insn_slot - If slot was earlier allocated by
1298  * @xol_get_insn_slot(), make the slot available for
1299  * subsequent requests.
1300  */
1301 static void xol_free_insn_slot(struct task_struct *tsk)
1302 {
1303         struct xol_area *area;
1304         unsigned long vma_end;
1305         unsigned long slot_addr;
1306
1307         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1308                 return;
1309
1310         slot_addr = tsk->utask->xol_vaddr;
1311         if (unlikely(!slot_addr))
1312                 return;
1313
1314         area = tsk->mm->uprobes_state.xol_area;
1315         vma_end = area->vaddr + PAGE_SIZE;
1316         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1317                 unsigned long offset;
1318                 int slot_nr;
1319
1320                 offset = slot_addr - area->vaddr;
1321                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1322                 if (slot_nr >= UINSNS_PER_PAGE)
1323                         return;
1324
1325                 clear_bit(slot_nr, area->bitmap);
1326                 atomic_dec(&area->slot_count);
1327                 if (waitqueue_active(&area->wq))
1328                         wake_up(&area->wq);
1329
1330                 tsk->utask->xol_vaddr = 0;
1331         }
1332 }
1333
1334 /**
1335  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1336  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1337  * instruction.
1338  * Return the address of the breakpoint instruction.
1339  */
1340 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1341 {
1342         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1343 }
1344
1345 /*
1346  * Called with no locks held.
1347  * Called in context of a exiting or a exec-ing thread.
1348  */
1349 void uprobe_free_utask(struct task_struct *t)
1350 {
1351         struct uprobe_task *utask = t->utask;
1352         struct return_instance *ri, *tmp;
1353
1354         if (!utask)
1355                 return;
1356
1357         if (utask->active_uprobe)
1358                 put_uprobe(utask->active_uprobe);
1359
1360         ri = utask->return_instances;
1361         while (ri) {
1362                 tmp = ri;
1363                 ri = ri->next;
1364
1365                 put_uprobe(tmp->uprobe);
1366                 kfree(tmp);
1367         }
1368
1369         xol_free_insn_slot(t);
1370         kfree(utask);
1371         t->utask = NULL;
1372 }
1373
1374 /*
1375  * Allocate a uprobe_task object for the task if if necessary.
1376  * Called when the thread hits a breakpoint.
1377  *
1378  * Returns:
1379  * - pointer to new uprobe_task on success
1380  * - NULL otherwise
1381  */
1382 static struct uprobe_task *get_utask(void)
1383 {
1384         if (!current->utask)
1385                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1386         return current->utask;
1387 }
1388
1389 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1390 {
1391         struct uprobe_task *n_utask;
1392         struct return_instance **p, *o, *n;
1393
1394         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1395         if (!n_utask)
1396                 return -ENOMEM;
1397         t->utask = n_utask;
1398
1399         p = &n_utask->return_instances;
1400         for (o = o_utask->return_instances; o; o = o->next) {
1401                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1402                 if (!n)
1403                         return -ENOMEM;
1404
1405                 *n = *o;
1406                 atomic_inc(&n->uprobe->ref);
1407                 n->next = NULL;
1408
1409                 *p = n;
1410                 p = &n->next;
1411                 n_utask->depth++;
1412         }
1413
1414         return 0;
1415 }
1416
1417 static void uprobe_warn(struct task_struct *t, const char *msg)
1418 {
1419         pr_warn("uprobe: %s:%d failed to %s\n",
1420                         current->comm, current->pid, msg);
1421 }
1422
1423 static void dup_xol_work(struct callback_head *work)
1424 {
1425         if (current->flags & PF_EXITING)
1426                 return;
1427
1428         if (!__create_xol_area(current->utask->dup_xol_addr))
1429                 uprobe_warn(current, "dup xol area");
1430 }
1431
1432 /*
1433  * Called in context of a new clone/fork from copy_process.
1434  */
1435 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1436 {
1437         struct uprobe_task *utask = current->utask;
1438         struct mm_struct *mm = current->mm;
1439         struct xol_area *area;
1440
1441         t->utask = NULL;
1442
1443         if (!utask || !utask->return_instances)
1444                 return;
1445
1446         if (mm == t->mm && !(flags & CLONE_VFORK))
1447                 return;
1448
1449         if (dup_utask(t, utask))
1450                 return uprobe_warn(t, "dup ret instances");
1451
1452         /* The task can fork() after dup_xol_work() fails */
1453         area = mm->uprobes_state.xol_area;
1454         if (!area)
1455                 return uprobe_warn(t, "dup xol area");
1456
1457         if (mm == t->mm)
1458                 return;
1459
1460         t->utask->dup_xol_addr = area->vaddr;
1461         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1462         task_work_add(t, &t->utask->dup_xol_work, true);
1463 }
1464
1465 /*
1466  * Current area->vaddr notion assume the trampoline address is always
1467  * equal area->vaddr.
1468  *
1469  * Returns -1 in case the xol_area is not allocated.
1470  */
1471 static unsigned long get_trampoline_vaddr(void)
1472 {
1473         struct xol_area *area;
1474         unsigned long trampoline_vaddr = -1;
1475
1476         area = current->mm->uprobes_state.xol_area;
1477         smp_read_barrier_depends();
1478         if (area)
1479                 trampoline_vaddr = area->vaddr;
1480
1481         return trampoline_vaddr;
1482 }
1483
1484 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1485 {
1486         struct return_instance *ri;
1487         struct uprobe_task *utask;
1488         unsigned long orig_ret_vaddr, trampoline_vaddr;
1489         bool chained = false;
1490
1491         if (!get_xol_area())
1492                 return;
1493
1494         utask = get_utask();
1495         if (!utask)
1496                 return;
1497
1498         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1499                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1500                                 " nestedness limit pid/tgid=%d/%d\n",
1501                                 current->pid, current->tgid);
1502                 return;
1503         }
1504
1505         ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1506         if (!ri)
1507                 goto fail;
1508
1509         trampoline_vaddr = get_trampoline_vaddr();
1510         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1511         if (orig_ret_vaddr == -1)
1512                 goto fail;
1513
1514         /*
1515          * We don't want to keep trampoline address in stack, rather keep the
1516          * original return address of first caller thru all the consequent
1517          * instances. This also makes breakpoint unwrapping easier.
1518          */
1519         if (orig_ret_vaddr == trampoline_vaddr) {
1520                 if (!utask->return_instances) {
1521                         /*
1522                          * This situation is not possible. Likely we have an
1523                          * attack from user-space.
1524                          */
1525                         pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1526                                                 current->pid, current->tgid);
1527                         goto fail;
1528                 }
1529
1530                 chained = true;
1531                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1532         }
1533
1534         atomic_inc(&uprobe->ref);
1535         ri->uprobe = uprobe;
1536         ri->func = instruction_pointer(regs);
1537         ri->orig_ret_vaddr = orig_ret_vaddr;
1538         ri->chained = chained;
1539
1540         utask->depth++;
1541
1542         /* add instance to the stack */
1543         ri->next = utask->return_instances;
1544         utask->return_instances = ri;
1545
1546         return;
1547
1548  fail:
1549         kfree(ri);
1550 }
1551
1552 /* Prepare to single-step probed instruction out of line. */
1553 static int
1554 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1555 {
1556         struct uprobe_task *utask;
1557         unsigned long xol_vaddr;
1558         int err;
1559
1560         utask = get_utask();
1561         if (!utask)
1562                 return -ENOMEM;
1563
1564         xol_vaddr = xol_get_insn_slot(uprobe);
1565         if (!xol_vaddr)
1566                 return -ENOMEM;
1567
1568         utask->xol_vaddr = xol_vaddr;
1569         utask->vaddr = bp_vaddr;
1570
1571         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1572         if (unlikely(err)) {
1573                 xol_free_insn_slot(current);
1574                 return err;
1575         }
1576
1577         utask->active_uprobe = uprobe;
1578         utask->state = UTASK_SSTEP;
1579         return 0;
1580 }
1581
1582 /*
1583  * If we are singlestepping, then ensure this thread is not connected to
1584  * non-fatal signals until completion of singlestep.  When xol insn itself
1585  * triggers the signal,  restart the original insn even if the task is
1586  * already SIGKILL'ed (since coredump should report the correct ip).  This
1587  * is even more important if the task has a handler for SIGSEGV/etc, The
1588  * _same_ instruction should be repeated again after return from the signal
1589  * handler, and SSTEP can never finish in this case.
1590  */
1591 bool uprobe_deny_signal(void)
1592 {
1593         struct task_struct *t = current;
1594         struct uprobe_task *utask = t->utask;
1595
1596         if (likely(!utask || !utask->active_uprobe))
1597                 return false;
1598
1599         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1600
1601         if (signal_pending(t)) {
1602                 spin_lock_irq(&t->sighand->siglock);
1603                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1604                 spin_unlock_irq(&t->sighand->siglock);
1605
1606                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1607                         utask->state = UTASK_SSTEP_TRAPPED;
1608                         set_tsk_thread_flag(t, TIF_UPROBE);
1609                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1610                 }
1611         }
1612
1613         return true;
1614 }
1615
1616 /*
1617  * Avoid singlestepping the original instruction if the original instruction
1618  * is a NOP or can be emulated.
1619  */
1620 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1621 {
1622         if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1623                 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1624                         return true;
1625                 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1626         }
1627         return false;
1628 }
1629
1630 static void mmf_recalc_uprobes(struct mm_struct *mm)
1631 {
1632         struct vm_area_struct *vma;
1633
1634         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1635                 if (!valid_vma(vma, false))
1636                         continue;
1637                 /*
1638                  * This is not strictly accurate, we can race with
1639                  * uprobe_unregister() and see the already removed
1640                  * uprobe if delete_uprobe() was not yet called.
1641                  * Or this uprobe can be filtered out.
1642                  */
1643                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1644                         return;
1645         }
1646
1647         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1648 }
1649
1650 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1651 {
1652         struct page *page;
1653         uprobe_opcode_t opcode;
1654         int result;
1655
1656         pagefault_disable();
1657         result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1658                                                         sizeof(opcode));
1659         pagefault_enable();
1660
1661         if (likely(result == 0))
1662                 goto out;
1663
1664         result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1665         if (result < 0)
1666                 return result;
1667
1668         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1669         put_page(page);
1670  out:
1671         /* This needs to return true for any variant of the trap insn */
1672         return is_trap_insn(&opcode);
1673 }
1674
1675 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1676 {
1677         struct mm_struct *mm = current->mm;
1678         struct uprobe *uprobe = NULL;
1679         struct vm_area_struct *vma;
1680
1681         down_read(&mm->mmap_sem);
1682         vma = find_vma(mm, bp_vaddr);
1683         if (vma && vma->vm_start <= bp_vaddr) {
1684                 if (valid_vma(vma, false)) {
1685                         struct inode *inode = file_inode(vma->vm_file);
1686                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1687
1688                         uprobe = find_uprobe(inode, offset);
1689                 }
1690
1691                 if (!uprobe)
1692                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1693         } else {
1694                 *is_swbp = -EFAULT;
1695         }
1696
1697         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1698                 mmf_recalc_uprobes(mm);
1699         up_read(&mm->mmap_sem);
1700
1701         return uprobe;
1702 }
1703
1704 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1705 {
1706         struct uprobe_consumer *uc;
1707         int remove = UPROBE_HANDLER_REMOVE;
1708         bool need_prep = false; /* prepare return uprobe, when needed */
1709
1710         down_read(&uprobe->register_rwsem);
1711         for (uc = uprobe->consumers; uc; uc = uc->next) {
1712                 int rc = 0;
1713
1714                 if (uc->handler) {
1715                         rc = uc->handler(uc, regs);
1716                         WARN(rc & ~UPROBE_HANDLER_MASK,
1717                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1718                 }
1719
1720                 if (uc->ret_handler)
1721                         need_prep = true;
1722
1723                 remove &= rc;
1724         }
1725
1726         if (need_prep && !remove)
1727                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1728
1729         if (remove && uprobe->consumers) {
1730                 WARN_ON(!uprobe_is_active(uprobe));
1731                 unapply_uprobe(uprobe, current->mm);
1732         }
1733         up_read(&uprobe->register_rwsem);
1734 }
1735
1736 static void
1737 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1738 {
1739         struct uprobe *uprobe = ri->uprobe;
1740         struct uprobe_consumer *uc;
1741
1742         down_read(&uprobe->register_rwsem);
1743         for (uc = uprobe->consumers; uc; uc = uc->next) {
1744                 if (uc->ret_handler)
1745                         uc->ret_handler(uc, ri->func, regs);
1746         }
1747         up_read(&uprobe->register_rwsem);
1748 }
1749
1750 static bool handle_trampoline(struct pt_regs *regs)
1751 {
1752         struct uprobe_task *utask;
1753         struct return_instance *ri, *tmp;
1754         bool chained;
1755
1756         utask = current->utask;
1757         if (!utask)
1758                 return false;
1759
1760         ri = utask->return_instances;
1761         if (!ri)
1762                 return false;
1763
1764         /*
1765          * TODO: we should throw out return_instance's invalidated by
1766          * longjmp(), currently we assume that the probed function always
1767          * returns.
1768          */
1769         instruction_pointer_set(regs, ri->orig_ret_vaddr);
1770
1771         for (;;) {
1772                 handle_uretprobe_chain(ri, regs);
1773
1774                 chained = ri->chained;
1775                 put_uprobe(ri->uprobe);
1776
1777                 tmp = ri;
1778                 ri = ri->next;
1779                 kfree(tmp);
1780                 utask->depth--;
1781
1782                 if (!chained)
1783                         break;
1784                 BUG_ON(!ri);
1785         }
1786
1787         utask->return_instances = ri;
1788
1789         return true;
1790 }
1791
1792 /*
1793  * Run handler and ask thread to singlestep.
1794  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1795  */
1796 static void handle_swbp(struct pt_regs *regs)
1797 {
1798         struct uprobe *uprobe;
1799         unsigned long bp_vaddr;
1800         int uninitialized_var(is_swbp);
1801
1802         bp_vaddr = uprobe_get_swbp_addr(regs);
1803         if (bp_vaddr == get_trampoline_vaddr()) {
1804                 if (handle_trampoline(regs))
1805                         return;
1806
1807                 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1808                                                 current->pid, current->tgid);
1809         }
1810
1811         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1812         if (!uprobe) {
1813                 if (is_swbp > 0) {
1814                         /* No matching uprobe; signal SIGTRAP. */
1815                         send_sig(SIGTRAP, current, 0);
1816                 } else {
1817                         /*
1818                          * Either we raced with uprobe_unregister() or we can't
1819                          * access this memory. The latter is only possible if
1820                          * another thread plays with our ->mm. In both cases
1821                          * we can simply restart. If this vma was unmapped we
1822                          * can pretend this insn was not executed yet and get
1823                          * the (correct) SIGSEGV after restart.
1824                          */
1825                         instruction_pointer_set(regs, bp_vaddr);
1826                 }
1827                 return;
1828         }
1829
1830         /* change it in advance for ->handler() and restart */
1831         instruction_pointer_set(regs, bp_vaddr);
1832
1833         /*
1834          * TODO: move copy_insn/etc into _register and remove this hack.
1835          * After we hit the bp, _unregister + _register can install the
1836          * new and not-yet-analyzed uprobe at the same address, restart.
1837          */
1838         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1839         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1840                 goto out;
1841
1842         handler_chain(uprobe, regs);
1843         if (can_skip_sstep(uprobe, regs))
1844                 goto out;
1845
1846         if (!pre_ssout(uprobe, regs, bp_vaddr))
1847                 return;
1848
1849         /* can_skip_sstep() succeeded, or restart if can't singlestep */
1850 out:
1851         put_uprobe(uprobe);
1852 }
1853
1854 /*
1855  * Perform required fix-ups and disable singlestep.
1856  * Allow pending signals to take effect.
1857  */
1858 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1859 {
1860         struct uprobe *uprobe;
1861
1862         uprobe = utask->active_uprobe;
1863         if (utask->state == UTASK_SSTEP_ACK)
1864                 arch_uprobe_post_xol(&uprobe->arch, regs);
1865         else if (utask->state == UTASK_SSTEP_TRAPPED)
1866                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1867         else
1868                 WARN_ON_ONCE(1);
1869
1870         put_uprobe(uprobe);
1871         utask->active_uprobe = NULL;
1872         utask->state = UTASK_RUNNING;
1873         xol_free_insn_slot(current);
1874
1875         spin_lock_irq(&current->sighand->siglock);
1876         recalc_sigpending(); /* see uprobe_deny_signal() */
1877         spin_unlock_irq(&current->sighand->siglock);
1878 }
1879
1880 /*
1881  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1882  * allows the thread to return from interrupt. After that handle_swbp()
1883  * sets utask->active_uprobe.
1884  *
1885  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1886  * and allows the thread to return from interrupt.
1887  *
1888  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1889  * uprobe_notify_resume().
1890  */
1891 void uprobe_notify_resume(struct pt_regs *regs)
1892 {
1893         struct uprobe_task *utask;
1894
1895         clear_thread_flag(TIF_UPROBE);
1896
1897         utask = current->utask;
1898         if (utask && utask->active_uprobe)
1899                 handle_singlestep(utask, regs);
1900         else
1901                 handle_swbp(regs);
1902 }
1903
1904 /*
1905  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1906  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1907  */
1908 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1909 {
1910         if (!current->mm)
1911                 return 0;
1912
1913         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1914             (!current->utask || !current->utask->return_instances))
1915                 return 0;
1916
1917         set_thread_flag(TIF_UPROBE);
1918         return 1;
1919 }
1920
1921 /*
1922  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1923  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1924  */
1925 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1926 {
1927         struct uprobe_task *utask = current->utask;
1928
1929         if (!current->mm || !utask || !utask->active_uprobe)
1930                 /* task is currently not uprobed */
1931                 return 0;
1932
1933         utask->state = UTASK_SSTEP_ACK;
1934         set_thread_flag(TIF_UPROBE);
1935         return 1;
1936 }
1937
1938 static struct notifier_block uprobe_exception_nb = {
1939         .notifier_call          = arch_uprobe_exception_notify,
1940         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1941 };
1942
1943 static int __init init_uprobes(void)
1944 {
1945         int i;
1946
1947         for (i = 0; i < UPROBES_HASH_SZ; i++)
1948                 mutex_init(&uprobes_mmap_mutex[i]);
1949
1950         if (percpu_init_rwsem(&dup_mmap_sem))
1951                 return -ENOMEM;
1952
1953         return register_die_notifier(&uprobe_exception_nb);
1954 }
1955 __initcall(init_uprobes);