mm: memcontrol: convert anon and file-thp to new mem_cgroup_charge() API
[platform/kernel/linux-starfive.git] / kernel / events / uprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *      Srikar Dronamraju
8  *      Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>      /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>         /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h>         /* try_to_free_swap */
23 #include <linux/ptrace.h>       /* user_enable_single_step */
24 #include <linux/kdebug.h>       /* notifier mechanism */
25 #include "../../mm/internal.h"  /* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30
31 #include <linux/uprobes.h>
32
33 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
35
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN        0
54
55 struct uprobe {
56         struct rb_node          rb_node;        /* node in the rb tree */
57         refcount_t              ref;
58         struct rw_semaphore     register_rwsem;
59         struct rw_semaphore     consumer_rwsem;
60         struct list_head        pending_list;
61         struct uprobe_consumer  *consumers;
62         struct inode            *inode;         /* Also hold a ref to inode */
63         loff_t                  offset;
64         loff_t                  ref_ctr_offset;
65         unsigned long           flags;
66
67         /*
68          * The generic code assumes that it has two members of unknown type
69          * owned by the arch-specific code:
70          *
71          *      insn -  copy_insn() saves the original instruction here for
72          *              arch_uprobe_analyze_insn().
73          *
74          *      ixol -  potentially modified instruction to execute out of
75          *              line, copied to xol_area by xol_get_insn_slot().
76          */
77         struct arch_uprobe      arch;
78 };
79
80 struct delayed_uprobe {
81         struct list_head list;
82         struct uprobe *uprobe;
83         struct mm_struct *mm;
84 };
85
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99         wait_queue_head_t               wq;             /* if all slots are busy */
100         atomic_t                        slot_count;     /* number of in-use slots */
101         unsigned long                   *bitmap;        /* 0 = free slot */
102
103         struct vm_special_mapping       xol_mapping;
104         struct page                     *pages[2];
105         /*
106          * We keep the vma's vm_start rather than a pointer to the vma
107          * itself.  The probed process or a naughty kernel module could make
108          * the vma go away, and we must handle that reasonably gracefully.
109          */
110         unsigned long                   vaddr;          /* Page(s) of instruction slots */
111 };
112
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *      - is_register: indicates if we are in register context.
118  *      - Return 1 if the specified virtual address is in an
119  *        executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125         if (is_register)
126                 flags |= VM_WRITE;
127
128         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155                                 struct page *old_page, struct page *new_page)
156 {
157         struct mm_struct *mm = vma->vm_mm;
158         struct page_vma_mapped_walk pvmw = {
159                 .page = compound_head(old_page),
160                 .vma = vma,
161                 .address = addr,
162         };
163         int err;
164         struct mmu_notifier_range range;
165
166         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
167                                 addr + PAGE_SIZE);
168
169         if (new_page) {
170                 err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL,
171                                         false);
172                 if (err)
173                         return err;
174         }
175
176         /* For try_to_free_swap() and munlock_vma_page() below */
177         lock_page(old_page);
178
179         mmu_notifier_invalidate_range_start(&range);
180         err = -EAGAIN;
181         if (!page_vma_mapped_walk(&pvmw))
182                 goto unlock;
183         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
184
185         if (new_page) {
186                 get_page(new_page);
187                 page_add_new_anon_rmap(new_page, vma, addr, false);
188                 lru_cache_add_active_or_unevictable(new_page, vma);
189         } else
190                 /* no new page, just dec_mm_counter for old_page */
191                 dec_mm_counter(mm, MM_ANONPAGES);
192
193         if (!PageAnon(old_page)) {
194                 dec_mm_counter(mm, mm_counter_file(old_page));
195                 inc_mm_counter(mm, MM_ANONPAGES);
196         }
197
198         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
199         ptep_clear_flush_notify(vma, addr, pvmw.pte);
200         if (new_page)
201                 set_pte_at_notify(mm, addr, pvmw.pte,
202                                   mk_pte(new_page, vma->vm_page_prot));
203
204         page_remove_rmap(old_page, false);
205         if (!page_mapped(old_page))
206                 try_to_free_swap(old_page);
207         page_vma_mapped_walk_done(&pvmw);
208
209         if (vma->vm_flags & VM_LOCKED)
210                 munlock_vma_page(old_page);
211         put_page(old_page);
212
213         err = 0;
214  unlock:
215         mmu_notifier_invalidate_range_end(&range);
216         unlock_page(old_page);
217         return err;
218 }
219
220 /**
221  * is_swbp_insn - check if instruction is breakpoint instruction.
222  * @insn: instruction to be checked.
223  * Default implementation of is_swbp_insn
224  * Returns true if @insn is a breakpoint instruction.
225  */
226 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
227 {
228         return *insn == UPROBE_SWBP_INSN;
229 }
230
231 /**
232  * is_trap_insn - check if instruction is breakpoint instruction.
233  * @insn: instruction to be checked.
234  * Default implementation of is_trap_insn
235  * Returns true if @insn is a breakpoint instruction.
236  *
237  * This function is needed for the case where an architecture has multiple
238  * trap instructions (like powerpc).
239  */
240 bool __weak is_trap_insn(uprobe_opcode_t *insn)
241 {
242         return is_swbp_insn(insn);
243 }
244
245 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
246 {
247         void *kaddr = kmap_atomic(page);
248         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
249         kunmap_atomic(kaddr);
250 }
251
252 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
253 {
254         void *kaddr = kmap_atomic(page);
255         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
256         kunmap_atomic(kaddr);
257 }
258
259 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
260 {
261         uprobe_opcode_t old_opcode;
262         bool is_swbp;
263
264         /*
265          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
266          * We do not check if it is any other 'trap variant' which could
267          * be conditional trap instruction such as the one powerpc supports.
268          *
269          * The logic is that we do not care if the underlying instruction
270          * is a trap variant; uprobes always wins over any other (gdb)
271          * breakpoint.
272          */
273         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
274         is_swbp = is_swbp_insn(&old_opcode);
275
276         if (is_swbp_insn(new_opcode)) {
277                 if (is_swbp)            /* register: already installed? */
278                         return 0;
279         } else {
280                 if (!is_swbp)           /* unregister: was it changed by us? */
281                         return 0;
282         }
283
284         return 1;
285 }
286
287 static struct delayed_uprobe *
288 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
289 {
290         struct delayed_uprobe *du;
291
292         list_for_each_entry(du, &delayed_uprobe_list, list)
293                 if (du->uprobe == uprobe && du->mm == mm)
294                         return du;
295         return NULL;
296 }
297
298 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
299 {
300         struct delayed_uprobe *du;
301
302         if (delayed_uprobe_check(uprobe, mm))
303                 return 0;
304
305         du  = kzalloc(sizeof(*du), GFP_KERNEL);
306         if (!du)
307                 return -ENOMEM;
308
309         du->uprobe = uprobe;
310         du->mm = mm;
311         list_add(&du->list, &delayed_uprobe_list);
312         return 0;
313 }
314
315 static void delayed_uprobe_delete(struct delayed_uprobe *du)
316 {
317         if (WARN_ON(!du))
318                 return;
319         list_del(&du->list);
320         kfree(du);
321 }
322
323 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
324 {
325         struct list_head *pos, *q;
326         struct delayed_uprobe *du;
327
328         if (!uprobe && !mm)
329                 return;
330
331         list_for_each_safe(pos, q, &delayed_uprobe_list) {
332                 du = list_entry(pos, struct delayed_uprobe, list);
333
334                 if (uprobe && du->uprobe != uprobe)
335                         continue;
336                 if (mm && du->mm != mm)
337                         continue;
338
339                 delayed_uprobe_delete(du);
340         }
341 }
342
343 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
344                               struct vm_area_struct *vma)
345 {
346         unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
347
348         return uprobe->ref_ctr_offset &&
349                 vma->vm_file &&
350                 file_inode(vma->vm_file) == uprobe->inode &&
351                 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
352                 vma->vm_start <= vaddr &&
353                 vma->vm_end > vaddr;
354 }
355
356 static struct vm_area_struct *
357 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
358 {
359         struct vm_area_struct *tmp;
360
361         for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
362                 if (valid_ref_ctr_vma(uprobe, tmp))
363                         return tmp;
364
365         return NULL;
366 }
367
368 static int
369 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
370 {
371         void *kaddr;
372         struct page *page;
373         struct vm_area_struct *vma;
374         int ret;
375         short *ptr;
376
377         if (!vaddr || !d)
378                 return -EINVAL;
379
380         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
381                         FOLL_WRITE, &page, &vma, NULL);
382         if (unlikely(ret <= 0)) {
383                 /*
384                  * We are asking for 1 page. If get_user_pages_remote() fails,
385                  * it may return 0, in that case we have to return error.
386                  */
387                 return ret == 0 ? -EBUSY : ret;
388         }
389
390         kaddr = kmap_atomic(page);
391         ptr = kaddr + (vaddr & ~PAGE_MASK);
392
393         if (unlikely(*ptr + d < 0)) {
394                 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
395                         "curr val: %d, delta: %d\n", vaddr, *ptr, d);
396                 ret = -EINVAL;
397                 goto out;
398         }
399
400         *ptr += d;
401         ret = 0;
402 out:
403         kunmap_atomic(kaddr);
404         put_page(page);
405         return ret;
406 }
407
408 static void update_ref_ctr_warn(struct uprobe *uprobe,
409                                 struct mm_struct *mm, short d)
410 {
411         pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
412                 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
413                 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
414                 (unsigned long long) uprobe->offset,
415                 (unsigned long long) uprobe->ref_ctr_offset, mm);
416 }
417
418 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
419                           short d)
420 {
421         struct vm_area_struct *rc_vma;
422         unsigned long rc_vaddr;
423         int ret = 0;
424
425         rc_vma = find_ref_ctr_vma(uprobe, mm);
426
427         if (rc_vma) {
428                 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
429                 ret = __update_ref_ctr(mm, rc_vaddr, d);
430                 if (ret)
431                         update_ref_ctr_warn(uprobe, mm, d);
432
433                 if (d > 0)
434                         return ret;
435         }
436
437         mutex_lock(&delayed_uprobe_lock);
438         if (d > 0)
439                 ret = delayed_uprobe_add(uprobe, mm);
440         else
441                 delayed_uprobe_remove(uprobe, mm);
442         mutex_unlock(&delayed_uprobe_lock);
443
444         return ret;
445 }
446
447 /*
448  * NOTE:
449  * Expect the breakpoint instruction to be the smallest size instruction for
450  * the architecture. If an arch has variable length instruction and the
451  * breakpoint instruction is not of the smallest length instruction
452  * supported by that architecture then we need to modify is_trap_at_addr and
453  * uprobe_write_opcode accordingly. This would never be a problem for archs
454  * that have fixed length instructions.
455  *
456  * uprobe_write_opcode - write the opcode at a given virtual address.
457  * @mm: the probed process address space.
458  * @vaddr: the virtual address to store the opcode.
459  * @opcode: opcode to be written at @vaddr.
460  *
461  * Called with mm->mmap_sem held for write.
462  * Return 0 (success) or a negative errno.
463  */
464 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
465                         unsigned long vaddr, uprobe_opcode_t opcode)
466 {
467         struct uprobe *uprobe;
468         struct page *old_page, *new_page;
469         struct vm_area_struct *vma;
470         int ret, is_register, ref_ctr_updated = 0;
471         bool orig_page_huge = false;
472         unsigned int gup_flags = FOLL_FORCE;
473
474         is_register = is_swbp_insn(&opcode);
475         uprobe = container_of(auprobe, struct uprobe, arch);
476
477 retry:
478         if (is_register)
479                 gup_flags |= FOLL_SPLIT_PMD;
480         /* Read the page with vaddr into memory */
481         ret = get_user_pages_remote(NULL, mm, vaddr, 1, gup_flags,
482                                     &old_page, &vma, NULL);
483         if (ret <= 0)
484                 return ret;
485
486         ret = verify_opcode(old_page, vaddr, &opcode);
487         if (ret <= 0)
488                 goto put_old;
489
490         if (WARN(!is_register && PageCompound(old_page),
491                  "uprobe unregister should never work on compound page\n")) {
492                 ret = -EINVAL;
493                 goto put_old;
494         }
495
496         /* We are going to replace instruction, update ref_ctr. */
497         if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
498                 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
499                 if (ret)
500                         goto put_old;
501
502                 ref_ctr_updated = 1;
503         }
504
505         ret = 0;
506         if (!is_register && !PageAnon(old_page))
507                 goto put_old;
508
509         ret = anon_vma_prepare(vma);
510         if (ret)
511                 goto put_old;
512
513         ret = -ENOMEM;
514         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
515         if (!new_page)
516                 goto put_old;
517
518         __SetPageUptodate(new_page);
519         copy_highpage(new_page, old_page);
520         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
521
522         if (!is_register) {
523                 struct page *orig_page;
524                 pgoff_t index;
525
526                 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
527
528                 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
529                 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
530                                           index);
531
532                 if (orig_page) {
533                         if (PageUptodate(orig_page) &&
534                             pages_identical(new_page, orig_page)) {
535                                 /* let go new_page */
536                                 put_page(new_page);
537                                 new_page = NULL;
538
539                                 if (PageCompound(orig_page))
540                                         orig_page_huge = true;
541                         }
542                         put_page(orig_page);
543                 }
544         }
545
546         ret = __replace_page(vma, vaddr, old_page, new_page);
547         if (new_page)
548                 put_page(new_page);
549 put_old:
550         put_page(old_page);
551
552         if (unlikely(ret == -EAGAIN))
553                 goto retry;
554
555         /* Revert back reference counter if instruction update failed. */
556         if (ret && is_register && ref_ctr_updated)
557                 update_ref_ctr(uprobe, mm, -1);
558
559         /* try collapse pmd for compound page */
560         if (!ret && orig_page_huge)
561                 collapse_pte_mapped_thp(mm, vaddr);
562
563         return ret;
564 }
565
566 /**
567  * set_swbp - store breakpoint at a given address.
568  * @auprobe: arch specific probepoint information.
569  * @mm: the probed process address space.
570  * @vaddr: the virtual address to insert the opcode.
571  *
572  * For mm @mm, store the breakpoint instruction at @vaddr.
573  * Return 0 (success) or a negative errno.
574  */
575 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
576 {
577         return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
578 }
579
580 /**
581  * set_orig_insn - Restore the original instruction.
582  * @mm: the probed process address space.
583  * @auprobe: arch specific probepoint information.
584  * @vaddr: the virtual address to insert the opcode.
585  *
586  * For mm @mm, restore the original opcode (opcode) at @vaddr.
587  * Return 0 (success) or a negative errno.
588  */
589 int __weak
590 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
591 {
592         return uprobe_write_opcode(auprobe, mm, vaddr,
593                         *(uprobe_opcode_t *)&auprobe->insn);
594 }
595
596 static struct uprobe *get_uprobe(struct uprobe *uprobe)
597 {
598         refcount_inc(&uprobe->ref);
599         return uprobe;
600 }
601
602 static void put_uprobe(struct uprobe *uprobe)
603 {
604         if (refcount_dec_and_test(&uprobe->ref)) {
605                 /*
606                  * If application munmap(exec_vma) before uprobe_unregister()
607                  * gets called, we don't get a chance to remove uprobe from
608                  * delayed_uprobe_list from remove_breakpoint(). Do it here.
609                  */
610                 mutex_lock(&delayed_uprobe_lock);
611                 delayed_uprobe_remove(uprobe, NULL);
612                 mutex_unlock(&delayed_uprobe_lock);
613                 kfree(uprobe);
614         }
615 }
616
617 static int match_uprobe(struct uprobe *l, struct uprobe *r)
618 {
619         if (l->inode < r->inode)
620                 return -1;
621
622         if (l->inode > r->inode)
623                 return 1;
624
625         if (l->offset < r->offset)
626                 return -1;
627
628         if (l->offset > r->offset)
629                 return 1;
630
631         return 0;
632 }
633
634 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
635 {
636         struct uprobe u = { .inode = inode, .offset = offset };
637         struct rb_node *n = uprobes_tree.rb_node;
638         struct uprobe *uprobe;
639         int match;
640
641         while (n) {
642                 uprobe = rb_entry(n, struct uprobe, rb_node);
643                 match = match_uprobe(&u, uprobe);
644                 if (!match)
645                         return get_uprobe(uprobe);
646
647                 if (match < 0)
648                         n = n->rb_left;
649                 else
650                         n = n->rb_right;
651         }
652         return NULL;
653 }
654
655 /*
656  * Find a uprobe corresponding to a given inode:offset
657  * Acquires uprobes_treelock
658  */
659 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
660 {
661         struct uprobe *uprobe;
662
663         spin_lock(&uprobes_treelock);
664         uprobe = __find_uprobe(inode, offset);
665         spin_unlock(&uprobes_treelock);
666
667         return uprobe;
668 }
669
670 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
671 {
672         struct rb_node **p = &uprobes_tree.rb_node;
673         struct rb_node *parent = NULL;
674         struct uprobe *u;
675         int match;
676
677         while (*p) {
678                 parent = *p;
679                 u = rb_entry(parent, struct uprobe, rb_node);
680                 match = match_uprobe(uprobe, u);
681                 if (!match)
682                         return get_uprobe(u);
683
684                 if (match < 0)
685                         p = &parent->rb_left;
686                 else
687                         p = &parent->rb_right;
688
689         }
690
691         u = NULL;
692         rb_link_node(&uprobe->rb_node, parent, p);
693         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
694         /* get access + creation ref */
695         refcount_set(&uprobe->ref, 2);
696
697         return u;
698 }
699
700 /*
701  * Acquire uprobes_treelock.
702  * Matching uprobe already exists in rbtree;
703  *      increment (access refcount) and return the matching uprobe.
704  *
705  * No matching uprobe; insert the uprobe in rb_tree;
706  *      get a double refcount (access + creation) and return NULL.
707  */
708 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
709 {
710         struct uprobe *u;
711
712         spin_lock(&uprobes_treelock);
713         u = __insert_uprobe(uprobe);
714         spin_unlock(&uprobes_treelock);
715
716         return u;
717 }
718
719 static void
720 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
721 {
722         pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
723                 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
724                 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
725                 (unsigned long long) cur_uprobe->ref_ctr_offset,
726                 (unsigned long long) uprobe->ref_ctr_offset);
727 }
728
729 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
730                                    loff_t ref_ctr_offset)
731 {
732         struct uprobe *uprobe, *cur_uprobe;
733
734         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
735         if (!uprobe)
736                 return NULL;
737
738         uprobe->inode = inode;
739         uprobe->offset = offset;
740         uprobe->ref_ctr_offset = ref_ctr_offset;
741         init_rwsem(&uprobe->register_rwsem);
742         init_rwsem(&uprobe->consumer_rwsem);
743
744         /* add to uprobes_tree, sorted on inode:offset */
745         cur_uprobe = insert_uprobe(uprobe);
746         /* a uprobe exists for this inode:offset combination */
747         if (cur_uprobe) {
748                 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
749                         ref_ctr_mismatch_warn(cur_uprobe, uprobe);
750                         put_uprobe(cur_uprobe);
751                         kfree(uprobe);
752                         return ERR_PTR(-EINVAL);
753                 }
754                 kfree(uprobe);
755                 uprobe = cur_uprobe;
756         }
757
758         return uprobe;
759 }
760
761 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
762 {
763         down_write(&uprobe->consumer_rwsem);
764         uc->next = uprobe->consumers;
765         uprobe->consumers = uc;
766         up_write(&uprobe->consumer_rwsem);
767 }
768
769 /*
770  * For uprobe @uprobe, delete the consumer @uc.
771  * Return true if the @uc is deleted successfully
772  * or return false.
773  */
774 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
775 {
776         struct uprobe_consumer **con;
777         bool ret = false;
778
779         down_write(&uprobe->consumer_rwsem);
780         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
781                 if (*con == uc) {
782                         *con = uc->next;
783                         ret = true;
784                         break;
785                 }
786         }
787         up_write(&uprobe->consumer_rwsem);
788
789         return ret;
790 }
791
792 static int __copy_insn(struct address_space *mapping, struct file *filp,
793                         void *insn, int nbytes, loff_t offset)
794 {
795         struct page *page;
796         /*
797          * Ensure that the page that has the original instruction is populated
798          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
799          * see uprobe_register().
800          */
801         if (mapping->a_ops->readpage)
802                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
803         else
804                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
805         if (IS_ERR(page))
806                 return PTR_ERR(page);
807
808         copy_from_page(page, offset, insn, nbytes);
809         put_page(page);
810
811         return 0;
812 }
813
814 static int copy_insn(struct uprobe *uprobe, struct file *filp)
815 {
816         struct address_space *mapping = uprobe->inode->i_mapping;
817         loff_t offs = uprobe->offset;
818         void *insn = &uprobe->arch.insn;
819         int size = sizeof(uprobe->arch.insn);
820         int len, err = -EIO;
821
822         /* Copy only available bytes, -EIO if nothing was read */
823         do {
824                 if (offs >= i_size_read(uprobe->inode))
825                         break;
826
827                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
828                 err = __copy_insn(mapping, filp, insn, len, offs);
829                 if (err)
830                         break;
831
832                 insn += len;
833                 offs += len;
834                 size -= len;
835         } while (size);
836
837         return err;
838 }
839
840 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
841                                 struct mm_struct *mm, unsigned long vaddr)
842 {
843         int ret = 0;
844
845         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
846                 return ret;
847
848         /* TODO: move this into _register, until then we abuse this sem. */
849         down_write(&uprobe->consumer_rwsem);
850         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
851                 goto out;
852
853         ret = copy_insn(uprobe, file);
854         if (ret)
855                 goto out;
856
857         ret = -ENOTSUPP;
858         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
859                 goto out;
860
861         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
862         if (ret)
863                 goto out;
864
865         /* uprobe_write_opcode() assumes we don't cross page boundary */
866         BUG_ON((uprobe->offset & ~PAGE_MASK) +
867                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
868
869         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
870         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
871
872  out:
873         up_write(&uprobe->consumer_rwsem);
874
875         return ret;
876 }
877
878 static inline bool consumer_filter(struct uprobe_consumer *uc,
879                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
880 {
881         return !uc->filter || uc->filter(uc, ctx, mm);
882 }
883
884 static bool filter_chain(struct uprobe *uprobe,
885                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
886 {
887         struct uprobe_consumer *uc;
888         bool ret = false;
889
890         down_read(&uprobe->consumer_rwsem);
891         for (uc = uprobe->consumers; uc; uc = uc->next) {
892                 ret = consumer_filter(uc, ctx, mm);
893                 if (ret)
894                         break;
895         }
896         up_read(&uprobe->consumer_rwsem);
897
898         return ret;
899 }
900
901 static int
902 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
903                         struct vm_area_struct *vma, unsigned long vaddr)
904 {
905         bool first_uprobe;
906         int ret;
907
908         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
909         if (ret)
910                 return ret;
911
912         /*
913          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
914          * the task can hit this breakpoint right after __replace_page().
915          */
916         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
917         if (first_uprobe)
918                 set_bit(MMF_HAS_UPROBES, &mm->flags);
919
920         ret = set_swbp(&uprobe->arch, mm, vaddr);
921         if (!ret)
922                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
923         else if (first_uprobe)
924                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
925
926         return ret;
927 }
928
929 static int
930 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
931 {
932         set_bit(MMF_RECALC_UPROBES, &mm->flags);
933         return set_orig_insn(&uprobe->arch, mm, vaddr);
934 }
935
936 static inline bool uprobe_is_active(struct uprobe *uprobe)
937 {
938         return !RB_EMPTY_NODE(&uprobe->rb_node);
939 }
940 /*
941  * There could be threads that have already hit the breakpoint. They
942  * will recheck the current insn and restart if find_uprobe() fails.
943  * See find_active_uprobe().
944  */
945 static void delete_uprobe(struct uprobe *uprobe)
946 {
947         if (WARN_ON(!uprobe_is_active(uprobe)))
948                 return;
949
950         spin_lock(&uprobes_treelock);
951         rb_erase(&uprobe->rb_node, &uprobes_tree);
952         spin_unlock(&uprobes_treelock);
953         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
954         put_uprobe(uprobe);
955 }
956
957 struct map_info {
958         struct map_info *next;
959         struct mm_struct *mm;
960         unsigned long vaddr;
961 };
962
963 static inline struct map_info *free_map_info(struct map_info *info)
964 {
965         struct map_info *next = info->next;
966         kfree(info);
967         return next;
968 }
969
970 static struct map_info *
971 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
972 {
973         unsigned long pgoff = offset >> PAGE_SHIFT;
974         struct vm_area_struct *vma;
975         struct map_info *curr = NULL;
976         struct map_info *prev = NULL;
977         struct map_info *info;
978         int more = 0;
979
980  again:
981         i_mmap_lock_read(mapping);
982         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
983                 if (!valid_vma(vma, is_register))
984                         continue;
985
986                 if (!prev && !more) {
987                         /*
988                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
989                          * reclaim. This is optimistic, no harm done if it fails.
990                          */
991                         prev = kmalloc(sizeof(struct map_info),
992                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
993                         if (prev)
994                                 prev->next = NULL;
995                 }
996                 if (!prev) {
997                         more++;
998                         continue;
999                 }
1000
1001                 if (!mmget_not_zero(vma->vm_mm))
1002                         continue;
1003
1004                 info = prev;
1005                 prev = prev->next;
1006                 info->next = curr;
1007                 curr = info;
1008
1009                 info->mm = vma->vm_mm;
1010                 info->vaddr = offset_to_vaddr(vma, offset);
1011         }
1012         i_mmap_unlock_read(mapping);
1013
1014         if (!more)
1015                 goto out;
1016
1017         prev = curr;
1018         while (curr) {
1019                 mmput(curr->mm);
1020                 curr = curr->next;
1021         }
1022
1023         do {
1024                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1025                 if (!info) {
1026                         curr = ERR_PTR(-ENOMEM);
1027                         goto out;
1028                 }
1029                 info->next = prev;
1030                 prev = info;
1031         } while (--more);
1032
1033         goto again;
1034  out:
1035         while (prev)
1036                 prev = free_map_info(prev);
1037         return curr;
1038 }
1039
1040 static int
1041 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1042 {
1043         bool is_register = !!new;
1044         struct map_info *info;
1045         int err = 0;
1046
1047         percpu_down_write(&dup_mmap_sem);
1048         info = build_map_info(uprobe->inode->i_mapping,
1049                                         uprobe->offset, is_register);
1050         if (IS_ERR(info)) {
1051                 err = PTR_ERR(info);
1052                 goto out;
1053         }
1054
1055         while (info) {
1056                 struct mm_struct *mm = info->mm;
1057                 struct vm_area_struct *vma;
1058
1059                 if (err && is_register)
1060                         goto free;
1061
1062                 down_write(&mm->mmap_sem);
1063                 vma = find_vma(mm, info->vaddr);
1064                 if (!vma || !valid_vma(vma, is_register) ||
1065                     file_inode(vma->vm_file) != uprobe->inode)
1066                         goto unlock;
1067
1068                 if (vma->vm_start > info->vaddr ||
1069                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1070                         goto unlock;
1071
1072                 if (is_register) {
1073                         /* consult only the "caller", new consumer. */
1074                         if (consumer_filter(new,
1075                                         UPROBE_FILTER_REGISTER, mm))
1076                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1077                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1078                         if (!filter_chain(uprobe,
1079                                         UPROBE_FILTER_UNREGISTER, mm))
1080                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1081                 }
1082
1083  unlock:
1084                 up_write(&mm->mmap_sem);
1085  free:
1086                 mmput(mm);
1087                 info = free_map_info(info);
1088         }
1089  out:
1090         percpu_up_write(&dup_mmap_sem);
1091         return err;
1092 }
1093
1094 static void
1095 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1096 {
1097         int err;
1098
1099         if (WARN_ON(!consumer_del(uprobe, uc)))
1100                 return;
1101
1102         err = register_for_each_vma(uprobe, NULL);
1103         /* TODO : cant unregister? schedule a worker thread */
1104         if (!uprobe->consumers && !err)
1105                 delete_uprobe(uprobe);
1106 }
1107
1108 /*
1109  * uprobe_unregister - unregister an already registered probe.
1110  * @inode: the file in which the probe has to be removed.
1111  * @offset: offset from the start of the file.
1112  * @uc: identify which probe if multiple probes are colocated.
1113  */
1114 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1115 {
1116         struct uprobe *uprobe;
1117
1118         uprobe = find_uprobe(inode, offset);
1119         if (WARN_ON(!uprobe))
1120                 return;
1121
1122         down_write(&uprobe->register_rwsem);
1123         __uprobe_unregister(uprobe, uc);
1124         up_write(&uprobe->register_rwsem);
1125         put_uprobe(uprobe);
1126 }
1127 EXPORT_SYMBOL_GPL(uprobe_unregister);
1128
1129 /*
1130  * __uprobe_register - register a probe
1131  * @inode: the file in which the probe has to be placed.
1132  * @offset: offset from the start of the file.
1133  * @uc: information on howto handle the probe..
1134  *
1135  * Apart from the access refcount, __uprobe_register() takes a creation
1136  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1137  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1138  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1139  * @uprobe even before the register operation is complete. Creation
1140  * refcount is released when the last @uc for the @uprobe
1141  * unregisters. Caller of __uprobe_register() is required to keep @inode
1142  * (and the containing mount) referenced.
1143  *
1144  * Return errno if it cannot successully install probes
1145  * else return 0 (success)
1146  */
1147 static int __uprobe_register(struct inode *inode, loff_t offset,
1148                              loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1149 {
1150         struct uprobe *uprobe;
1151         int ret;
1152
1153         /* Uprobe must have at least one set consumer */
1154         if (!uc->handler && !uc->ret_handler)
1155                 return -EINVAL;
1156
1157         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1158         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1159                 return -EIO;
1160         /* Racy, just to catch the obvious mistakes */
1161         if (offset > i_size_read(inode))
1162                 return -EINVAL;
1163
1164  retry:
1165         uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1166         if (!uprobe)
1167                 return -ENOMEM;
1168         if (IS_ERR(uprobe))
1169                 return PTR_ERR(uprobe);
1170
1171         /*
1172          * We can race with uprobe_unregister()->delete_uprobe().
1173          * Check uprobe_is_active() and retry if it is false.
1174          */
1175         down_write(&uprobe->register_rwsem);
1176         ret = -EAGAIN;
1177         if (likely(uprobe_is_active(uprobe))) {
1178                 consumer_add(uprobe, uc);
1179                 ret = register_for_each_vma(uprobe, uc);
1180                 if (ret)
1181                         __uprobe_unregister(uprobe, uc);
1182         }
1183         up_write(&uprobe->register_rwsem);
1184         put_uprobe(uprobe);
1185
1186         if (unlikely(ret == -EAGAIN))
1187                 goto retry;
1188         return ret;
1189 }
1190
1191 int uprobe_register(struct inode *inode, loff_t offset,
1192                     struct uprobe_consumer *uc)
1193 {
1194         return __uprobe_register(inode, offset, 0, uc);
1195 }
1196 EXPORT_SYMBOL_GPL(uprobe_register);
1197
1198 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1199                            loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1200 {
1201         return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1202 }
1203 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1204
1205 /*
1206  * uprobe_apply - unregister an already registered probe.
1207  * @inode: the file in which the probe has to be removed.
1208  * @offset: offset from the start of the file.
1209  * @uc: consumer which wants to add more or remove some breakpoints
1210  * @add: add or remove the breakpoints
1211  */
1212 int uprobe_apply(struct inode *inode, loff_t offset,
1213                         struct uprobe_consumer *uc, bool add)
1214 {
1215         struct uprobe *uprobe;
1216         struct uprobe_consumer *con;
1217         int ret = -ENOENT;
1218
1219         uprobe = find_uprobe(inode, offset);
1220         if (WARN_ON(!uprobe))
1221                 return ret;
1222
1223         down_write(&uprobe->register_rwsem);
1224         for (con = uprobe->consumers; con && con != uc ; con = con->next)
1225                 ;
1226         if (con)
1227                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1228         up_write(&uprobe->register_rwsem);
1229         put_uprobe(uprobe);
1230
1231         return ret;
1232 }
1233
1234 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1235 {
1236         struct vm_area_struct *vma;
1237         int err = 0;
1238
1239         down_read(&mm->mmap_sem);
1240         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1241                 unsigned long vaddr;
1242                 loff_t offset;
1243
1244                 if (!valid_vma(vma, false) ||
1245                     file_inode(vma->vm_file) != uprobe->inode)
1246                         continue;
1247
1248                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1249                 if (uprobe->offset <  offset ||
1250                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1251                         continue;
1252
1253                 vaddr = offset_to_vaddr(vma, uprobe->offset);
1254                 err |= remove_breakpoint(uprobe, mm, vaddr);
1255         }
1256         up_read(&mm->mmap_sem);
1257
1258         return err;
1259 }
1260
1261 static struct rb_node *
1262 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1263 {
1264         struct rb_node *n = uprobes_tree.rb_node;
1265
1266         while (n) {
1267                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1268
1269                 if (inode < u->inode) {
1270                         n = n->rb_left;
1271                 } else if (inode > u->inode) {
1272                         n = n->rb_right;
1273                 } else {
1274                         if (max < u->offset)
1275                                 n = n->rb_left;
1276                         else if (min > u->offset)
1277                                 n = n->rb_right;
1278                         else
1279                                 break;
1280                 }
1281         }
1282
1283         return n;
1284 }
1285
1286 /*
1287  * For a given range in vma, build a list of probes that need to be inserted.
1288  */
1289 static void build_probe_list(struct inode *inode,
1290                                 struct vm_area_struct *vma,
1291                                 unsigned long start, unsigned long end,
1292                                 struct list_head *head)
1293 {
1294         loff_t min, max;
1295         struct rb_node *n, *t;
1296         struct uprobe *u;
1297
1298         INIT_LIST_HEAD(head);
1299         min = vaddr_to_offset(vma, start);
1300         max = min + (end - start) - 1;
1301
1302         spin_lock(&uprobes_treelock);
1303         n = find_node_in_range(inode, min, max);
1304         if (n) {
1305                 for (t = n; t; t = rb_prev(t)) {
1306                         u = rb_entry(t, struct uprobe, rb_node);
1307                         if (u->inode != inode || u->offset < min)
1308                                 break;
1309                         list_add(&u->pending_list, head);
1310                         get_uprobe(u);
1311                 }
1312                 for (t = n; (t = rb_next(t)); ) {
1313                         u = rb_entry(t, struct uprobe, rb_node);
1314                         if (u->inode != inode || u->offset > max)
1315                                 break;
1316                         list_add(&u->pending_list, head);
1317                         get_uprobe(u);
1318                 }
1319         }
1320         spin_unlock(&uprobes_treelock);
1321 }
1322
1323 /* @vma contains reference counter, not the probed instruction. */
1324 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1325 {
1326         struct list_head *pos, *q;
1327         struct delayed_uprobe *du;
1328         unsigned long vaddr;
1329         int ret = 0, err = 0;
1330
1331         mutex_lock(&delayed_uprobe_lock);
1332         list_for_each_safe(pos, q, &delayed_uprobe_list) {
1333                 du = list_entry(pos, struct delayed_uprobe, list);
1334
1335                 if (du->mm != vma->vm_mm ||
1336                     !valid_ref_ctr_vma(du->uprobe, vma))
1337                         continue;
1338
1339                 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1340                 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1341                 if (ret) {
1342                         update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1343                         if (!err)
1344                                 err = ret;
1345                 }
1346                 delayed_uprobe_delete(du);
1347         }
1348         mutex_unlock(&delayed_uprobe_lock);
1349         return err;
1350 }
1351
1352 /*
1353  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1354  *
1355  * Currently we ignore all errors and always return 0, the callers
1356  * can't handle the failure anyway.
1357  */
1358 int uprobe_mmap(struct vm_area_struct *vma)
1359 {
1360         struct list_head tmp_list;
1361         struct uprobe *uprobe, *u;
1362         struct inode *inode;
1363
1364         if (no_uprobe_events())
1365                 return 0;
1366
1367         if (vma->vm_file &&
1368             (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1369             test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1370                 delayed_ref_ctr_inc(vma);
1371
1372         if (!valid_vma(vma, true))
1373                 return 0;
1374
1375         inode = file_inode(vma->vm_file);
1376         if (!inode)
1377                 return 0;
1378
1379         mutex_lock(uprobes_mmap_hash(inode));
1380         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1381         /*
1382          * We can race with uprobe_unregister(), this uprobe can be already
1383          * removed. But in this case filter_chain() must return false, all
1384          * consumers have gone away.
1385          */
1386         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1387                 if (!fatal_signal_pending(current) &&
1388                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1389                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1390                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1391                 }
1392                 put_uprobe(uprobe);
1393         }
1394         mutex_unlock(uprobes_mmap_hash(inode));
1395
1396         return 0;
1397 }
1398
1399 static bool
1400 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1401 {
1402         loff_t min, max;
1403         struct inode *inode;
1404         struct rb_node *n;
1405
1406         inode = file_inode(vma->vm_file);
1407
1408         min = vaddr_to_offset(vma, start);
1409         max = min + (end - start) - 1;
1410
1411         spin_lock(&uprobes_treelock);
1412         n = find_node_in_range(inode, min, max);
1413         spin_unlock(&uprobes_treelock);
1414
1415         return !!n;
1416 }
1417
1418 /*
1419  * Called in context of a munmap of a vma.
1420  */
1421 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1422 {
1423         if (no_uprobe_events() || !valid_vma(vma, false))
1424                 return;
1425
1426         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1427                 return;
1428
1429         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1430              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1431                 return;
1432
1433         if (vma_has_uprobes(vma, start, end))
1434                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1435 }
1436
1437 /* Slot allocation for XOL */
1438 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1439 {
1440         struct vm_area_struct *vma;
1441         int ret;
1442
1443         if (down_write_killable(&mm->mmap_sem))
1444                 return -EINTR;
1445
1446         if (mm->uprobes_state.xol_area) {
1447                 ret = -EALREADY;
1448                 goto fail;
1449         }
1450
1451         if (!area->vaddr) {
1452                 /* Try to map as high as possible, this is only a hint. */
1453                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1454                                                 PAGE_SIZE, 0, 0);
1455                 if (IS_ERR_VALUE(area->vaddr)) {
1456                         ret = area->vaddr;
1457                         goto fail;
1458                 }
1459         }
1460
1461         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1462                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1463                                 &area->xol_mapping);
1464         if (IS_ERR(vma)) {
1465                 ret = PTR_ERR(vma);
1466                 goto fail;
1467         }
1468
1469         ret = 0;
1470         /* pairs with get_xol_area() */
1471         smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1472  fail:
1473         up_write(&mm->mmap_sem);
1474
1475         return ret;
1476 }
1477
1478 static struct xol_area *__create_xol_area(unsigned long vaddr)
1479 {
1480         struct mm_struct *mm = current->mm;
1481         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1482         struct xol_area *area;
1483
1484         area = kmalloc(sizeof(*area), GFP_KERNEL);
1485         if (unlikely(!area))
1486                 goto out;
1487
1488         area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1489                                GFP_KERNEL);
1490         if (!area->bitmap)
1491                 goto free_area;
1492
1493         area->xol_mapping.name = "[uprobes]";
1494         area->xol_mapping.fault = NULL;
1495         area->xol_mapping.pages = area->pages;
1496         area->pages[0] = alloc_page(GFP_HIGHUSER);
1497         if (!area->pages[0])
1498                 goto free_bitmap;
1499         area->pages[1] = NULL;
1500
1501         area->vaddr = vaddr;
1502         init_waitqueue_head(&area->wq);
1503         /* Reserve the 1st slot for get_trampoline_vaddr() */
1504         set_bit(0, area->bitmap);
1505         atomic_set(&area->slot_count, 1);
1506         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1507
1508         if (!xol_add_vma(mm, area))
1509                 return area;
1510
1511         __free_page(area->pages[0]);
1512  free_bitmap:
1513         kfree(area->bitmap);
1514  free_area:
1515         kfree(area);
1516  out:
1517         return NULL;
1518 }
1519
1520 /*
1521  * get_xol_area - Allocate process's xol_area if necessary.
1522  * This area will be used for storing instructions for execution out of line.
1523  *
1524  * Returns the allocated area or NULL.
1525  */
1526 static struct xol_area *get_xol_area(void)
1527 {
1528         struct mm_struct *mm = current->mm;
1529         struct xol_area *area;
1530
1531         if (!mm->uprobes_state.xol_area)
1532                 __create_xol_area(0);
1533
1534         /* Pairs with xol_add_vma() smp_store_release() */
1535         area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1536         return area;
1537 }
1538
1539 /*
1540  * uprobe_clear_state - Free the area allocated for slots.
1541  */
1542 void uprobe_clear_state(struct mm_struct *mm)
1543 {
1544         struct xol_area *area = mm->uprobes_state.xol_area;
1545
1546         mutex_lock(&delayed_uprobe_lock);
1547         delayed_uprobe_remove(NULL, mm);
1548         mutex_unlock(&delayed_uprobe_lock);
1549
1550         if (!area)
1551                 return;
1552
1553         put_page(area->pages[0]);
1554         kfree(area->bitmap);
1555         kfree(area);
1556 }
1557
1558 void uprobe_start_dup_mmap(void)
1559 {
1560         percpu_down_read(&dup_mmap_sem);
1561 }
1562
1563 void uprobe_end_dup_mmap(void)
1564 {
1565         percpu_up_read(&dup_mmap_sem);
1566 }
1567
1568 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1569 {
1570         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1571                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1572                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1573                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1574         }
1575 }
1576
1577 /*
1578  *  - search for a free slot.
1579  */
1580 static unsigned long xol_take_insn_slot(struct xol_area *area)
1581 {
1582         unsigned long slot_addr;
1583         int slot_nr;
1584
1585         do {
1586                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1587                 if (slot_nr < UINSNS_PER_PAGE) {
1588                         if (!test_and_set_bit(slot_nr, area->bitmap))
1589                                 break;
1590
1591                         slot_nr = UINSNS_PER_PAGE;
1592                         continue;
1593                 }
1594                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1595         } while (slot_nr >= UINSNS_PER_PAGE);
1596
1597         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1598         atomic_inc(&area->slot_count);
1599
1600         return slot_addr;
1601 }
1602
1603 /*
1604  * xol_get_insn_slot - allocate a slot for xol.
1605  * Returns the allocated slot address or 0.
1606  */
1607 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1608 {
1609         struct xol_area *area;
1610         unsigned long xol_vaddr;
1611
1612         area = get_xol_area();
1613         if (!area)
1614                 return 0;
1615
1616         xol_vaddr = xol_take_insn_slot(area);
1617         if (unlikely(!xol_vaddr))
1618                 return 0;
1619
1620         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1621                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1622
1623         return xol_vaddr;
1624 }
1625
1626 /*
1627  * xol_free_insn_slot - If slot was earlier allocated by
1628  * @xol_get_insn_slot(), make the slot available for
1629  * subsequent requests.
1630  */
1631 static void xol_free_insn_slot(struct task_struct *tsk)
1632 {
1633         struct xol_area *area;
1634         unsigned long vma_end;
1635         unsigned long slot_addr;
1636
1637         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1638                 return;
1639
1640         slot_addr = tsk->utask->xol_vaddr;
1641         if (unlikely(!slot_addr))
1642                 return;
1643
1644         area = tsk->mm->uprobes_state.xol_area;
1645         vma_end = area->vaddr + PAGE_SIZE;
1646         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1647                 unsigned long offset;
1648                 int slot_nr;
1649
1650                 offset = slot_addr - area->vaddr;
1651                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1652                 if (slot_nr >= UINSNS_PER_PAGE)
1653                         return;
1654
1655                 clear_bit(slot_nr, area->bitmap);
1656                 atomic_dec(&area->slot_count);
1657                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1658                 if (waitqueue_active(&area->wq))
1659                         wake_up(&area->wq);
1660
1661                 tsk->utask->xol_vaddr = 0;
1662         }
1663 }
1664
1665 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1666                                   void *src, unsigned long len)
1667 {
1668         /* Initialize the slot */
1669         copy_to_page(page, vaddr, src, len);
1670
1671         /*
1672          * We probably need flush_icache_user_range() but it needs vma.
1673          * This should work on most of architectures by default. If
1674          * architecture needs to do something different it can define
1675          * its own version of the function.
1676          */
1677         flush_dcache_page(page);
1678 }
1679
1680 /**
1681  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1682  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1683  * instruction.
1684  * Return the address of the breakpoint instruction.
1685  */
1686 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1687 {
1688         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1689 }
1690
1691 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1692 {
1693         struct uprobe_task *utask = current->utask;
1694
1695         if (unlikely(utask && utask->active_uprobe))
1696                 return utask->vaddr;
1697
1698         return instruction_pointer(regs);
1699 }
1700
1701 static struct return_instance *free_ret_instance(struct return_instance *ri)
1702 {
1703         struct return_instance *next = ri->next;
1704         put_uprobe(ri->uprobe);
1705         kfree(ri);
1706         return next;
1707 }
1708
1709 /*
1710  * Called with no locks held.
1711  * Called in context of an exiting or an exec-ing thread.
1712  */
1713 void uprobe_free_utask(struct task_struct *t)
1714 {
1715         struct uprobe_task *utask = t->utask;
1716         struct return_instance *ri;
1717
1718         if (!utask)
1719                 return;
1720
1721         if (utask->active_uprobe)
1722                 put_uprobe(utask->active_uprobe);
1723
1724         ri = utask->return_instances;
1725         while (ri)
1726                 ri = free_ret_instance(ri);
1727
1728         xol_free_insn_slot(t);
1729         kfree(utask);
1730         t->utask = NULL;
1731 }
1732
1733 /*
1734  * Allocate a uprobe_task object for the task if if necessary.
1735  * Called when the thread hits a breakpoint.
1736  *
1737  * Returns:
1738  * - pointer to new uprobe_task on success
1739  * - NULL otherwise
1740  */
1741 static struct uprobe_task *get_utask(void)
1742 {
1743         if (!current->utask)
1744                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1745         return current->utask;
1746 }
1747
1748 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1749 {
1750         struct uprobe_task *n_utask;
1751         struct return_instance **p, *o, *n;
1752
1753         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1754         if (!n_utask)
1755                 return -ENOMEM;
1756         t->utask = n_utask;
1757
1758         p = &n_utask->return_instances;
1759         for (o = o_utask->return_instances; o; o = o->next) {
1760                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1761                 if (!n)
1762                         return -ENOMEM;
1763
1764                 *n = *o;
1765                 get_uprobe(n->uprobe);
1766                 n->next = NULL;
1767
1768                 *p = n;
1769                 p = &n->next;
1770                 n_utask->depth++;
1771         }
1772
1773         return 0;
1774 }
1775
1776 static void uprobe_warn(struct task_struct *t, const char *msg)
1777 {
1778         pr_warn("uprobe: %s:%d failed to %s\n",
1779                         current->comm, current->pid, msg);
1780 }
1781
1782 static void dup_xol_work(struct callback_head *work)
1783 {
1784         if (current->flags & PF_EXITING)
1785                 return;
1786
1787         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1788                         !fatal_signal_pending(current))
1789                 uprobe_warn(current, "dup xol area");
1790 }
1791
1792 /*
1793  * Called in context of a new clone/fork from copy_process.
1794  */
1795 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1796 {
1797         struct uprobe_task *utask = current->utask;
1798         struct mm_struct *mm = current->mm;
1799         struct xol_area *area;
1800
1801         t->utask = NULL;
1802
1803         if (!utask || !utask->return_instances)
1804                 return;
1805
1806         if (mm == t->mm && !(flags & CLONE_VFORK))
1807                 return;
1808
1809         if (dup_utask(t, utask))
1810                 return uprobe_warn(t, "dup ret instances");
1811
1812         /* The task can fork() after dup_xol_work() fails */
1813         area = mm->uprobes_state.xol_area;
1814         if (!area)
1815                 return uprobe_warn(t, "dup xol area");
1816
1817         if (mm == t->mm)
1818                 return;
1819
1820         t->utask->dup_xol_addr = area->vaddr;
1821         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1822         task_work_add(t, &t->utask->dup_xol_work, true);
1823 }
1824
1825 /*
1826  * Current area->vaddr notion assume the trampoline address is always
1827  * equal area->vaddr.
1828  *
1829  * Returns -1 in case the xol_area is not allocated.
1830  */
1831 static unsigned long get_trampoline_vaddr(void)
1832 {
1833         struct xol_area *area;
1834         unsigned long trampoline_vaddr = -1;
1835
1836         /* Pairs with xol_add_vma() smp_store_release() */
1837         area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1838         if (area)
1839                 trampoline_vaddr = area->vaddr;
1840
1841         return trampoline_vaddr;
1842 }
1843
1844 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1845                                         struct pt_regs *regs)
1846 {
1847         struct return_instance *ri = utask->return_instances;
1848         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1849
1850         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1851                 ri = free_ret_instance(ri);
1852                 utask->depth--;
1853         }
1854         utask->return_instances = ri;
1855 }
1856
1857 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1858 {
1859         struct return_instance *ri;
1860         struct uprobe_task *utask;
1861         unsigned long orig_ret_vaddr, trampoline_vaddr;
1862         bool chained;
1863
1864         if (!get_xol_area())
1865                 return;
1866
1867         utask = get_utask();
1868         if (!utask)
1869                 return;
1870
1871         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1872                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1873                                 " nestedness limit pid/tgid=%d/%d\n",
1874                                 current->pid, current->tgid);
1875                 return;
1876         }
1877
1878         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1879         if (!ri)
1880                 return;
1881
1882         trampoline_vaddr = get_trampoline_vaddr();
1883         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1884         if (orig_ret_vaddr == -1)
1885                 goto fail;
1886
1887         /* drop the entries invalidated by longjmp() */
1888         chained = (orig_ret_vaddr == trampoline_vaddr);
1889         cleanup_return_instances(utask, chained, regs);
1890
1891         /*
1892          * We don't want to keep trampoline address in stack, rather keep the
1893          * original return address of first caller thru all the consequent
1894          * instances. This also makes breakpoint unwrapping easier.
1895          */
1896         if (chained) {
1897                 if (!utask->return_instances) {
1898                         /*
1899                          * This situation is not possible. Likely we have an
1900                          * attack from user-space.
1901                          */
1902                         uprobe_warn(current, "handle tail call");
1903                         goto fail;
1904                 }
1905                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1906         }
1907
1908         ri->uprobe = get_uprobe(uprobe);
1909         ri->func = instruction_pointer(regs);
1910         ri->stack = user_stack_pointer(regs);
1911         ri->orig_ret_vaddr = orig_ret_vaddr;
1912         ri->chained = chained;
1913
1914         utask->depth++;
1915         ri->next = utask->return_instances;
1916         utask->return_instances = ri;
1917
1918         return;
1919  fail:
1920         kfree(ri);
1921 }
1922
1923 /* Prepare to single-step probed instruction out of line. */
1924 static int
1925 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1926 {
1927         struct uprobe_task *utask;
1928         unsigned long xol_vaddr;
1929         int err;
1930
1931         utask = get_utask();
1932         if (!utask)
1933                 return -ENOMEM;
1934
1935         xol_vaddr = xol_get_insn_slot(uprobe);
1936         if (!xol_vaddr)
1937                 return -ENOMEM;
1938
1939         utask->xol_vaddr = xol_vaddr;
1940         utask->vaddr = bp_vaddr;
1941
1942         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1943         if (unlikely(err)) {
1944                 xol_free_insn_slot(current);
1945                 return err;
1946         }
1947
1948         utask->active_uprobe = uprobe;
1949         utask->state = UTASK_SSTEP;
1950         return 0;
1951 }
1952
1953 /*
1954  * If we are singlestepping, then ensure this thread is not connected to
1955  * non-fatal signals until completion of singlestep.  When xol insn itself
1956  * triggers the signal,  restart the original insn even if the task is
1957  * already SIGKILL'ed (since coredump should report the correct ip).  This
1958  * is even more important if the task has a handler for SIGSEGV/etc, The
1959  * _same_ instruction should be repeated again after return from the signal
1960  * handler, and SSTEP can never finish in this case.
1961  */
1962 bool uprobe_deny_signal(void)
1963 {
1964         struct task_struct *t = current;
1965         struct uprobe_task *utask = t->utask;
1966
1967         if (likely(!utask || !utask->active_uprobe))
1968                 return false;
1969
1970         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1971
1972         if (signal_pending(t)) {
1973                 spin_lock_irq(&t->sighand->siglock);
1974                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1975                 spin_unlock_irq(&t->sighand->siglock);
1976
1977                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1978                         utask->state = UTASK_SSTEP_TRAPPED;
1979                         set_tsk_thread_flag(t, TIF_UPROBE);
1980                 }
1981         }
1982
1983         return true;
1984 }
1985
1986 static void mmf_recalc_uprobes(struct mm_struct *mm)
1987 {
1988         struct vm_area_struct *vma;
1989
1990         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1991                 if (!valid_vma(vma, false))
1992                         continue;
1993                 /*
1994                  * This is not strictly accurate, we can race with
1995                  * uprobe_unregister() and see the already removed
1996                  * uprobe if delete_uprobe() was not yet called.
1997                  * Or this uprobe can be filtered out.
1998                  */
1999                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2000                         return;
2001         }
2002
2003         clear_bit(MMF_HAS_UPROBES, &mm->flags);
2004 }
2005
2006 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2007 {
2008         struct page *page;
2009         uprobe_opcode_t opcode;
2010         int result;
2011
2012         pagefault_disable();
2013         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2014         pagefault_enable();
2015
2016         if (likely(result == 0))
2017                 goto out;
2018
2019         /*
2020          * The NULL 'tsk' here ensures that any faults that occur here
2021          * will not be accounted to the task.  'mm' *is* current->mm,
2022          * but we treat this as a 'remote' access since it is
2023          * essentially a kernel access to the memory.
2024          */
2025         result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
2026                         NULL, NULL);
2027         if (result < 0)
2028                 return result;
2029
2030         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2031         put_page(page);
2032  out:
2033         /* This needs to return true for any variant of the trap insn */
2034         return is_trap_insn(&opcode);
2035 }
2036
2037 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2038 {
2039         struct mm_struct *mm = current->mm;
2040         struct uprobe *uprobe = NULL;
2041         struct vm_area_struct *vma;
2042
2043         down_read(&mm->mmap_sem);
2044         vma = find_vma(mm, bp_vaddr);
2045         if (vma && vma->vm_start <= bp_vaddr) {
2046                 if (valid_vma(vma, false)) {
2047                         struct inode *inode = file_inode(vma->vm_file);
2048                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2049
2050                         uprobe = find_uprobe(inode, offset);
2051                 }
2052
2053                 if (!uprobe)
2054                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2055         } else {
2056                 *is_swbp = -EFAULT;
2057         }
2058
2059         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2060                 mmf_recalc_uprobes(mm);
2061         up_read(&mm->mmap_sem);
2062
2063         return uprobe;
2064 }
2065
2066 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2067 {
2068         struct uprobe_consumer *uc;
2069         int remove = UPROBE_HANDLER_REMOVE;
2070         bool need_prep = false; /* prepare return uprobe, when needed */
2071
2072         down_read(&uprobe->register_rwsem);
2073         for (uc = uprobe->consumers; uc; uc = uc->next) {
2074                 int rc = 0;
2075
2076                 if (uc->handler) {
2077                         rc = uc->handler(uc, regs);
2078                         WARN(rc & ~UPROBE_HANDLER_MASK,
2079                                 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2080                 }
2081
2082                 if (uc->ret_handler)
2083                         need_prep = true;
2084
2085                 remove &= rc;
2086         }
2087
2088         if (need_prep && !remove)
2089                 prepare_uretprobe(uprobe, regs); /* put bp at return */
2090
2091         if (remove && uprobe->consumers) {
2092                 WARN_ON(!uprobe_is_active(uprobe));
2093                 unapply_uprobe(uprobe, current->mm);
2094         }
2095         up_read(&uprobe->register_rwsem);
2096 }
2097
2098 static void
2099 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2100 {
2101         struct uprobe *uprobe = ri->uprobe;
2102         struct uprobe_consumer *uc;
2103
2104         down_read(&uprobe->register_rwsem);
2105         for (uc = uprobe->consumers; uc; uc = uc->next) {
2106                 if (uc->ret_handler)
2107                         uc->ret_handler(uc, ri->func, regs);
2108         }
2109         up_read(&uprobe->register_rwsem);
2110 }
2111
2112 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2113 {
2114         bool chained;
2115
2116         do {
2117                 chained = ri->chained;
2118                 ri = ri->next;  /* can't be NULL if chained */
2119         } while (chained);
2120
2121         return ri;
2122 }
2123
2124 static void handle_trampoline(struct pt_regs *regs)
2125 {
2126         struct uprobe_task *utask;
2127         struct return_instance *ri, *next;
2128         bool valid;
2129
2130         utask = current->utask;
2131         if (!utask)
2132                 goto sigill;
2133
2134         ri = utask->return_instances;
2135         if (!ri)
2136                 goto sigill;
2137
2138         do {
2139                 /*
2140                  * We should throw out the frames invalidated by longjmp().
2141                  * If this chain is valid, then the next one should be alive
2142                  * or NULL; the latter case means that nobody but ri->func
2143                  * could hit this trampoline on return. TODO: sigaltstack().
2144                  */
2145                 next = find_next_ret_chain(ri);
2146                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2147
2148                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2149                 do {
2150                         if (valid)
2151                                 handle_uretprobe_chain(ri, regs);
2152                         ri = free_ret_instance(ri);
2153                         utask->depth--;
2154                 } while (ri != next);
2155         } while (!valid);
2156
2157         utask->return_instances = ri;
2158         return;
2159
2160  sigill:
2161         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2162         force_sig(SIGILL);
2163
2164 }
2165
2166 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2167 {
2168         return false;
2169 }
2170
2171 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2172                                         struct pt_regs *regs)
2173 {
2174         return true;
2175 }
2176
2177 /*
2178  * Run handler and ask thread to singlestep.
2179  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2180  */
2181 static void handle_swbp(struct pt_regs *regs)
2182 {
2183         struct uprobe *uprobe;
2184         unsigned long bp_vaddr;
2185         int uninitialized_var(is_swbp);
2186
2187         bp_vaddr = uprobe_get_swbp_addr(regs);
2188         if (bp_vaddr == get_trampoline_vaddr())
2189                 return handle_trampoline(regs);
2190
2191         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2192         if (!uprobe) {
2193                 if (is_swbp > 0) {
2194                         /* No matching uprobe; signal SIGTRAP. */
2195                         send_sig(SIGTRAP, current, 0);
2196                 } else {
2197                         /*
2198                          * Either we raced with uprobe_unregister() or we can't
2199                          * access this memory. The latter is only possible if
2200                          * another thread plays with our ->mm. In both cases
2201                          * we can simply restart. If this vma was unmapped we
2202                          * can pretend this insn was not executed yet and get
2203                          * the (correct) SIGSEGV after restart.
2204                          */
2205                         instruction_pointer_set(regs, bp_vaddr);
2206                 }
2207                 return;
2208         }
2209
2210         /* change it in advance for ->handler() and restart */
2211         instruction_pointer_set(regs, bp_vaddr);
2212
2213         /*
2214          * TODO: move copy_insn/etc into _register and remove this hack.
2215          * After we hit the bp, _unregister + _register can install the
2216          * new and not-yet-analyzed uprobe at the same address, restart.
2217          */
2218         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2219                 goto out;
2220
2221         /*
2222          * Pairs with the smp_wmb() in prepare_uprobe().
2223          *
2224          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2225          * we must also see the stores to &uprobe->arch performed by the
2226          * prepare_uprobe() call.
2227          */
2228         smp_rmb();
2229
2230         /* Tracing handlers use ->utask to communicate with fetch methods */
2231         if (!get_utask())
2232                 goto out;
2233
2234         if (arch_uprobe_ignore(&uprobe->arch, regs))
2235                 goto out;
2236
2237         handler_chain(uprobe, regs);
2238
2239         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2240                 goto out;
2241
2242         if (!pre_ssout(uprobe, regs, bp_vaddr))
2243                 return;
2244
2245         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2246 out:
2247         put_uprobe(uprobe);
2248 }
2249
2250 /*
2251  * Perform required fix-ups and disable singlestep.
2252  * Allow pending signals to take effect.
2253  */
2254 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2255 {
2256         struct uprobe *uprobe;
2257         int err = 0;
2258
2259         uprobe = utask->active_uprobe;
2260         if (utask->state == UTASK_SSTEP_ACK)
2261                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2262         else if (utask->state == UTASK_SSTEP_TRAPPED)
2263                 arch_uprobe_abort_xol(&uprobe->arch, regs);
2264         else
2265                 WARN_ON_ONCE(1);
2266
2267         put_uprobe(uprobe);
2268         utask->active_uprobe = NULL;
2269         utask->state = UTASK_RUNNING;
2270         xol_free_insn_slot(current);
2271
2272         spin_lock_irq(&current->sighand->siglock);
2273         recalc_sigpending(); /* see uprobe_deny_signal() */
2274         spin_unlock_irq(&current->sighand->siglock);
2275
2276         if (unlikely(err)) {
2277                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2278                 force_sig(SIGILL);
2279         }
2280 }
2281
2282 /*
2283  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2284  * allows the thread to return from interrupt. After that handle_swbp()
2285  * sets utask->active_uprobe.
2286  *
2287  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2288  * and allows the thread to return from interrupt.
2289  *
2290  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2291  * uprobe_notify_resume().
2292  */
2293 void uprobe_notify_resume(struct pt_regs *regs)
2294 {
2295         struct uprobe_task *utask;
2296
2297         clear_thread_flag(TIF_UPROBE);
2298
2299         utask = current->utask;
2300         if (utask && utask->active_uprobe)
2301                 handle_singlestep(utask, regs);
2302         else
2303                 handle_swbp(regs);
2304 }
2305
2306 /*
2307  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2308  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2309  */
2310 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2311 {
2312         if (!current->mm)
2313                 return 0;
2314
2315         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2316             (!current->utask || !current->utask->return_instances))
2317                 return 0;
2318
2319         set_thread_flag(TIF_UPROBE);
2320         return 1;
2321 }
2322
2323 /*
2324  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2325  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2326  */
2327 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2328 {
2329         struct uprobe_task *utask = current->utask;
2330
2331         if (!current->mm || !utask || !utask->active_uprobe)
2332                 /* task is currently not uprobed */
2333                 return 0;
2334
2335         utask->state = UTASK_SSTEP_ACK;
2336         set_thread_flag(TIF_UPROBE);
2337         return 1;
2338 }
2339
2340 static struct notifier_block uprobe_exception_nb = {
2341         .notifier_call          = arch_uprobe_exception_notify,
2342         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2343 };
2344
2345 void __init uprobes_init(void)
2346 {
2347         int i;
2348
2349         for (i = 0; i < UPROBES_HASH_SZ; i++)
2350                 mutex_init(&uprobes_mmap_mutex[i]);
2351
2352         BUG_ON(register_die_notifier(&uprobe_exception_nb));
2353 }