ceph: no need to wait for transition RDCACHE|RD -> RD
[platform/kernel/linux-rpi.git] / kernel / events / uprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *      Srikar Dronamraju
8  *      Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>      /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>         /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h>         /* try_to_free_swap */
23 #include <linux/ptrace.h>       /* user_enable_single_step */
24 #include <linux/kdebug.h>       /* notifier mechanism */
25 #include "../../mm/internal.h"  /* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30
31 #include <linux/uprobes.h>
32
33 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
35
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN        0
54
55 struct uprobe {
56         struct rb_node          rb_node;        /* node in the rb tree */
57         refcount_t              ref;
58         struct rw_semaphore     register_rwsem;
59         struct rw_semaphore     consumer_rwsem;
60         struct list_head        pending_list;
61         struct uprobe_consumer  *consumers;
62         struct inode            *inode;         /* Also hold a ref to inode */
63         loff_t                  offset;
64         loff_t                  ref_ctr_offset;
65         unsigned long           flags;
66
67         /*
68          * The generic code assumes that it has two members of unknown type
69          * owned by the arch-specific code:
70          *
71          *      insn -  copy_insn() saves the original instruction here for
72          *              arch_uprobe_analyze_insn().
73          *
74          *      ixol -  potentially modified instruction to execute out of
75          *              line, copied to xol_area by xol_get_insn_slot().
76          */
77         struct arch_uprobe      arch;
78 };
79
80 struct delayed_uprobe {
81         struct list_head list;
82         struct uprobe *uprobe;
83         struct mm_struct *mm;
84 };
85
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99         wait_queue_head_t               wq;             /* if all slots are busy */
100         atomic_t                        slot_count;     /* number of in-use slots */
101         unsigned long                   *bitmap;        /* 0 = free slot */
102
103         struct vm_special_mapping       xol_mapping;
104         struct page                     *pages[2];
105         /*
106          * We keep the vma's vm_start rather than a pointer to the vma
107          * itself.  The probed process or a naughty kernel module could make
108          * the vma go away, and we must handle that reasonably gracefully.
109          */
110         unsigned long                   vaddr;          /* Page(s) of instruction slots */
111 };
112
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *      - is_register: indicates if we are in register context.
118  *      - Return 1 if the specified virtual address is in an
119  *        executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125         if (is_register)
126                 flags |= VM_WRITE;
127
128         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155                                 struct page *old_page, struct page *new_page)
156 {
157         struct mm_struct *mm = vma->vm_mm;
158         DEFINE_FOLIO_VMA_WALK(pvmw, page_folio(old_page), vma, addr, 0);
159         int err;
160         struct mmu_notifier_range range;
161
162         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
163                                 addr + PAGE_SIZE);
164
165         if (new_page) {
166                 err = mem_cgroup_charge(page_folio(new_page), vma->vm_mm,
167                                         GFP_KERNEL);
168                 if (err)
169                         return err;
170         }
171
172         /* For try_to_free_swap() below */
173         lock_page(old_page);
174
175         mmu_notifier_invalidate_range_start(&range);
176         err = -EAGAIN;
177         if (!page_vma_mapped_walk(&pvmw))
178                 goto unlock;
179         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
180
181         if (new_page) {
182                 get_page(new_page);
183                 page_add_new_anon_rmap(new_page, vma, addr);
184                 lru_cache_add_inactive_or_unevictable(new_page, vma);
185         } else
186                 /* no new page, just dec_mm_counter for old_page */
187                 dec_mm_counter(mm, MM_ANONPAGES);
188
189         if (!PageAnon(old_page)) {
190                 dec_mm_counter(mm, mm_counter_file(old_page));
191                 inc_mm_counter(mm, MM_ANONPAGES);
192         }
193
194         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
195         ptep_clear_flush_notify(vma, addr, pvmw.pte);
196         if (new_page)
197                 set_pte_at_notify(mm, addr, pvmw.pte,
198                                   mk_pte(new_page, vma->vm_page_prot));
199
200         page_remove_rmap(old_page, vma, false);
201         if (!page_mapped(old_page))
202                 try_to_free_swap(old_page);
203         page_vma_mapped_walk_done(&pvmw);
204         put_page(old_page);
205
206         err = 0;
207  unlock:
208         mmu_notifier_invalidate_range_end(&range);
209         unlock_page(old_page);
210         return err;
211 }
212
213 /**
214  * is_swbp_insn - check if instruction is breakpoint instruction.
215  * @insn: instruction to be checked.
216  * Default implementation of is_swbp_insn
217  * Returns true if @insn is a breakpoint instruction.
218  */
219 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
220 {
221         return *insn == UPROBE_SWBP_INSN;
222 }
223
224 /**
225  * is_trap_insn - check if instruction is breakpoint instruction.
226  * @insn: instruction to be checked.
227  * Default implementation of is_trap_insn
228  * Returns true if @insn is a breakpoint instruction.
229  *
230  * This function is needed for the case where an architecture has multiple
231  * trap instructions (like powerpc).
232  */
233 bool __weak is_trap_insn(uprobe_opcode_t *insn)
234 {
235         return is_swbp_insn(insn);
236 }
237
238 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
239 {
240         void *kaddr = kmap_atomic(page);
241         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
242         kunmap_atomic(kaddr);
243 }
244
245 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
246 {
247         void *kaddr = kmap_atomic(page);
248         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
249         kunmap_atomic(kaddr);
250 }
251
252 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
253 {
254         uprobe_opcode_t old_opcode;
255         bool is_swbp;
256
257         /*
258          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
259          * We do not check if it is any other 'trap variant' which could
260          * be conditional trap instruction such as the one powerpc supports.
261          *
262          * The logic is that we do not care if the underlying instruction
263          * is a trap variant; uprobes always wins over any other (gdb)
264          * breakpoint.
265          */
266         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
267         is_swbp = is_swbp_insn(&old_opcode);
268
269         if (is_swbp_insn(new_opcode)) {
270                 if (is_swbp)            /* register: already installed? */
271                         return 0;
272         } else {
273                 if (!is_swbp)           /* unregister: was it changed by us? */
274                         return 0;
275         }
276
277         return 1;
278 }
279
280 static struct delayed_uprobe *
281 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
282 {
283         struct delayed_uprobe *du;
284
285         list_for_each_entry(du, &delayed_uprobe_list, list)
286                 if (du->uprobe == uprobe && du->mm == mm)
287                         return du;
288         return NULL;
289 }
290
291 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
292 {
293         struct delayed_uprobe *du;
294
295         if (delayed_uprobe_check(uprobe, mm))
296                 return 0;
297
298         du  = kzalloc(sizeof(*du), GFP_KERNEL);
299         if (!du)
300                 return -ENOMEM;
301
302         du->uprobe = uprobe;
303         du->mm = mm;
304         list_add(&du->list, &delayed_uprobe_list);
305         return 0;
306 }
307
308 static void delayed_uprobe_delete(struct delayed_uprobe *du)
309 {
310         if (WARN_ON(!du))
311                 return;
312         list_del(&du->list);
313         kfree(du);
314 }
315
316 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
317 {
318         struct list_head *pos, *q;
319         struct delayed_uprobe *du;
320
321         if (!uprobe && !mm)
322                 return;
323
324         list_for_each_safe(pos, q, &delayed_uprobe_list) {
325                 du = list_entry(pos, struct delayed_uprobe, list);
326
327                 if (uprobe && du->uprobe != uprobe)
328                         continue;
329                 if (mm && du->mm != mm)
330                         continue;
331
332                 delayed_uprobe_delete(du);
333         }
334 }
335
336 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
337                               struct vm_area_struct *vma)
338 {
339         unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
340
341         return uprobe->ref_ctr_offset &&
342                 vma->vm_file &&
343                 file_inode(vma->vm_file) == uprobe->inode &&
344                 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
345                 vma->vm_start <= vaddr &&
346                 vma->vm_end > vaddr;
347 }
348
349 static struct vm_area_struct *
350 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
351 {
352         struct vm_area_struct *tmp;
353
354         for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
355                 if (valid_ref_ctr_vma(uprobe, tmp))
356                         return tmp;
357
358         return NULL;
359 }
360
361 static int
362 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
363 {
364         void *kaddr;
365         struct page *page;
366         struct vm_area_struct *vma;
367         int ret;
368         short *ptr;
369
370         if (!vaddr || !d)
371                 return -EINVAL;
372
373         ret = get_user_pages_remote(mm, vaddr, 1,
374                         FOLL_WRITE, &page, &vma, NULL);
375         if (unlikely(ret <= 0)) {
376                 /*
377                  * We are asking for 1 page. If get_user_pages_remote() fails,
378                  * it may return 0, in that case we have to return error.
379                  */
380                 return ret == 0 ? -EBUSY : ret;
381         }
382
383         kaddr = kmap_atomic(page);
384         ptr = kaddr + (vaddr & ~PAGE_MASK);
385
386         if (unlikely(*ptr + d < 0)) {
387                 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
388                         "curr val: %d, delta: %d\n", vaddr, *ptr, d);
389                 ret = -EINVAL;
390                 goto out;
391         }
392
393         *ptr += d;
394         ret = 0;
395 out:
396         kunmap_atomic(kaddr);
397         put_page(page);
398         return ret;
399 }
400
401 static void update_ref_ctr_warn(struct uprobe *uprobe,
402                                 struct mm_struct *mm, short d)
403 {
404         pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
405                 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
406                 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
407                 (unsigned long long) uprobe->offset,
408                 (unsigned long long) uprobe->ref_ctr_offset, mm);
409 }
410
411 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
412                           short d)
413 {
414         struct vm_area_struct *rc_vma;
415         unsigned long rc_vaddr;
416         int ret = 0;
417
418         rc_vma = find_ref_ctr_vma(uprobe, mm);
419
420         if (rc_vma) {
421                 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
422                 ret = __update_ref_ctr(mm, rc_vaddr, d);
423                 if (ret)
424                         update_ref_ctr_warn(uprobe, mm, d);
425
426                 if (d > 0)
427                         return ret;
428         }
429
430         mutex_lock(&delayed_uprobe_lock);
431         if (d > 0)
432                 ret = delayed_uprobe_add(uprobe, mm);
433         else
434                 delayed_uprobe_remove(uprobe, mm);
435         mutex_unlock(&delayed_uprobe_lock);
436
437         return ret;
438 }
439
440 /*
441  * NOTE:
442  * Expect the breakpoint instruction to be the smallest size instruction for
443  * the architecture. If an arch has variable length instruction and the
444  * breakpoint instruction is not of the smallest length instruction
445  * supported by that architecture then we need to modify is_trap_at_addr and
446  * uprobe_write_opcode accordingly. This would never be a problem for archs
447  * that have fixed length instructions.
448  *
449  * uprobe_write_opcode - write the opcode at a given virtual address.
450  * @auprobe: arch specific probepoint information.
451  * @mm: the probed process address space.
452  * @vaddr: the virtual address to store the opcode.
453  * @opcode: opcode to be written at @vaddr.
454  *
455  * Called with mm->mmap_lock held for write.
456  * Return 0 (success) or a negative errno.
457  */
458 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
459                         unsigned long vaddr, uprobe_opcode_t opcode)
460 {
461         struct uprobe *uprobe;
462         struct page *old_page, *new_page;
463         struct vm_area_struct *vma;
464         int ret, is_register, ref_ctr_updated = 0;
465         bool orig_page_huge = false;
466         unsigned int gup_flags = FOLL_FORCE;
467
468         is_register = is_swbp_insn(&opcode);
469         uprobe = container_of(auprobe, struct uprobe, arch);
470
471 retry:
472         if (is_register)
473                 gup_flags |= FOLL_SPLIT_PMD;
474         /* Read the page with vaddr into memory */
475         ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
476                                     &old_page, &vma, NULL);
477         if (ret <= 0)
478                 return ret;
479
480         ret = verify_opcode(old_page, vaddr, &opcode);
481         if (ret <= 0)
482                 goto put_old;
483
484         if (WARN(!is_register && PageCompound(old_page),
485                  "uprobe unregister should never work on compound page\n")) {
486                 ret = -EINVAL;
487                 goto put_old;
488         }
489
490         /* We are going to replace instruction, update ref_ctr. */
491         if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
492                 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
493                 if (ret)
494                         goto put_old;
495
496                 ref_ctr_updated = 1;
497         }
498
499         ret = 0;
500         if (!is_register && !PageAnon(old_page))
501                 goto put_old;
502
503         ret = anon_vma_prepare(vma);
504         if (ret)
505                 goto put_old;
506
507         ret = -ENOMEM;
508         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
509         if (!new_page)
510                 goto put_old;
511
512         __SetPageUptodate(new_page);
513         copy_highpage(new_page, old_page);
514         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
515
516         if (!is_register) {
517                 struct page *orig_page;
518                 pgoff_t index;
519
520                 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
521
522                 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
523                 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
524                                           index);
525
526                 if (orig_page) {
527                         if (PageUptodate(orig_page) &&
528                             pages_identical(new_page, orig_page)) {
529                                 /* let go new_page */
530                                 put_page(new_page);
531                                 new_page = NULL;
532
533                                 if (PageCompound(orig_page))
534                                         orig_page_huge = true;
535                         }
536                         put_page(orig_page);
537                 }
538         }
539
540         ret = __replace_page(vma, vaddr, old_page, new_page);
541         if (new_page)
542                 put_page(new_page);
543 put_old:
544         put_page(old_page);
545
546         if (unlikely(ret == -EAGAIN))
547                 goto retry;
548
549         /* Revert back reference counter if instruction update failed. */
550         if (ret && is_register && ref_ctr_updated)
551                 update_ref_ctr(uprobe, mm, -1);
552
553         /* try collapse pmd for compound page */
554         if (!ret && orig_page_huge)
555                 collapse_pte_mapped_thp(mm, vaddr);
556
557         return ret;
558 }
559
560 /**
561  * set_swbp - store breakpoint at a given address.
562  * @auprobe: arch specific probepoint information.
563  * @mm: the probed process address space.
564  * @vaddr: the virtual address to insert the opcode.
565  *
566  * For mm @mm, store the breakpoint instruction at @vaddr.
567  * Return 0 (success) or a negative errno.
568  */
569 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
570 {
571         return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
572 }
573
574 /**
575  * set_orig_insn - Restore the original instruction.
576  * @mm: the probed process address space.
577  * @auprobe: arch specific probepoint information.
578  * @vaddr: the virtual address to insert the opcode.
579  *
580  * For mm @mm, restore the original opcode (opcode) at @vaddr.
581  * Return 0 (success) or a negative errno.
582  */
583 int __weak
584 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
585 {
586         return uprobe_write_opcode(auprobe, mm, vaddr,
587                         *(uprobe_opcode_t *)&auprobe->insn);
588 }
589
590 static struct uprobe *get_uprobe(struct uprobe *uprobe)
591 {
592         refcount_inc(&uprobe->ref);
593         return uprobe;
594 }
595
596 static void put_uprobe(struct uprobe *uprobe)
597 {
598         if (refcount_dec_and_test(&uprobe->ref)) {
599                 /*
600                  * If application munmap(exec_vma) before uprobe_unregister()
601                  * gets called, we don't get a chance to remove uprobe from
602                  * delayed_uprobe_list from remove_breakpoint(). Do it here.
603                  */
604                 mutex_lock(&delayed_uprobe_lock);
605                 delayed_uprobe_remove(uprobe, NULL);
606                 mutex_unlock(&delayed_uprobe_lock);
607                 kfree(uprobe);
608         }
609 }
610
611 static __always_inline
612 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
613                const struct uprobe *r)
614 {
615         if (l_inode < r->inode)
616                 return -1;
617
618         if (l_inode > r->inode)
619                 return 1;
620
621         if (l_offset < r->offset)
622                 return -1;
623
624         if (l_offset > r->offset)
625                 return 1;
626
627         return 0;
628 }
629
630 #define __node_2_uprobe(node) \
631         rb_entry((node), struct uprobe, rb_node)
632
633 struct __uprobe_key {
634         struct inode *inode;
635         loff_t offset;
636 };
637
638 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
639 {
640         const struct __uprobe_key *a = key;
641         return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
642 }
643
644 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
645 {
646         struct uprobe *u = __node_2_uprobe(a);
647         return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
648 }
649
650 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
651 {
652         struct __uprobe_key key = {
653                 .inode = inode,
654                 .offset = offset,
655         };
656         struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
657
658         if (node)
659                 return get_uprobe(__node_2_uprobe(node));
660
661         return NULL;
662 }
663
664 /*
665  * Find a uprobe corresponding to a given inode:offset
666  * Acquires uprobes_treelock
667  */
668 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
669 {
670         struct uprobe *uprobe;
671
672         spin_lock(&uprobes_treelock);
673         uprobe = __find_uprobe(inode, offset);
674         spin_unlock(&uprobes_treelock);
675
676         return uprobe;
677 }
678
679 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
680 {
681         struct rb_node *node;
682
683         node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
684         if (node)
685                 return get_uprobe(__node_2_uprobe(node));
686
687         /* get access + creation ref */
688         refcount_set(&uprobe->ref, 2);
689         return NULL;
690 }
691
692 /*
693  * Acquire uprobes_treelock.
694  * Matching uprobe already exists in rbtree;
695  *      increment (access refcount) and return the matching uprobe.
696  *
697  * No matching uprobe; insert the uprobe in rb_tree;
698  *      get a double refcount (access + creation) and return NULL.
699  */
700 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
701 {
702         struct uprobe *u;
703
704         spin_lock(&uprobes_treelock);
705         u = __insert_uprobe(uprobe);
706         spin_unlock(&uprobes_treelock);
707
708         return u;
709 }
710
711 static void
712 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
713 {
714         pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
715                 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
716                 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
717                 (unsigned long long) cur_uprobe->ref_ctr_offset,
718                 (unsigned long long) uprobe->ref_ctr_offset);
719 }
720
721 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
722                                    loff_t ref_ctr_offset)
723 {
724         struct uprobe *uprobe, *cur_uprobe;
725
726         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
727         if (!uprobe)
728                 return NULL;
729
730         uprobe->inode = inode;
731         uprobe->offset = offset;
732         uprobe->ref_ctr_offset = ref_ctr_offset;
733         init_rwsem(&uprobe->register_rwsem);
734         init_rwsem(&uprobe->consumer_rwsem);
735
736         /* add to uprobes_tree, sorted on inode:offset */
737         cur_uprobe = insert_uprobe(uprobe);
738         /* a uprobe exists for this inode:offset combination */
739         if (cur_uprobe) {
740                 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
741                         ref_ctr_mismatch_warn(cur_uprobe, uprobe);
742                         put_uprobe(cur_uprobe);
743                         kfree(uprobe);
744                         return ERR_PTR(-EINVAL);
745                 }
746                 kfree(uprobe);
747                 uprobe = cur_uprobe;
748         }
749
750         return uprobe;
751 }
752
753 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
754 {
755         down_write(&uprobe->consumer_rwsem);
756         uc->next = uprobe->consumers;
757         uprobe->consumers = uc;
758         up_write(&uprobe->consumer_rwsem);
759 }
760
761 /*
762  * For uprobe @uprobe, delete the consumer @uc.
763  * Return true if the @uc is deleted successfully
764  * or return false.
765  */
766 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
767 {
768         struct uprobe_consumer **con;
769         bool ret = false;
770
771         down_write(&uprobe->consumer_rwsem);
772         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
773                 if (*con == uc) {
774                         *con = uc->next;
775                         ret = true;
776                         break;
777                 }
778         }
779         up_write(&uprobe->consumer_rwsem);
780
781         return ret;
782 }
783
784 static int __copy_insn(struct address_space *mapping, struct file *filp,
785                         void *insn, int nbytes, loff_t offset)
786 {
787         struct page *page;
788         /*
789          * Ensure that the page that has the original instruction is populated
790          * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
791          * see uprobe_register().
792          */
793         if (mapping->a_ops->read_folio)
794                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
795         else
796                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
797         if (IS_ERR(page))
798                 return PTR_ERR(page);
799
800         copy_from_page(page, offset, insn, nbytes);
801         put_page(page);
802
803         return 0;
804 }
805
806 static int copy_insn(struct uprobe *uprobe, struct file *filp)
807 {
808         struct address_space *mapping = uprobe->inode->i_mapping;
809         loff_t offs = uprobe->offset;
810         void *insn = &uprobe->arch.insn;
811         int size = sizeof(uprobe->arch.insn);
812         int len, err = -EIO;
813
814         /* Copy only available bytes, -EIO if nothing was read */
815         do {
816                 if (offs >= i_size_read(uprobe->inode))
817                         break;
818
819                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
820                 err = __copy_insn(mapping, filp, insn, len, offs);
821                 if (err)
822                         break;
823
824                 insn += len;
825                 offs += len;
826                 size -= len;
827         } while (size);
828
829         return err;
830 }
831
832 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
833                                 struct mm_struct *mm, unsigned long vaddr)
834 {
835         int ret = 0;
836
837         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
838                 return ret;
839
840         /* TODO: move this into _register, until then we abuse this sem. */
841         down_write(&uprobe->consumer_rwsem);
842         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
843                 goto out;
844
845         ret = copy_insn(uprobe, file);
846         if (ret)
847                 goto out;
848
849         ret = -ENOTSUPP;
850         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
851                 goto out;
852
853         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
854         if (ret)
855                 goto out;
856
857         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
858         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
859
860  out:
861         up_write(&uprobe->consumer_rwsem);
862
863         return ret;
864 }
865
866 static inline bool consumer_filter(struct uprobe_consumer *uc,
867                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
868 {
869         return !uc->filter || uc->filter(uc, ctx, mm);
870 }
871
872 static bool filter_chain(struct uprobe *uprobe,
873                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
874 {
875         struct uprobe_consumer *uc;
876         bool ret = false;
877
878         down_read(&uprobe->consumer_rwsem);
879         for (uc = uprobe->consumers; uc; uc = uc->next) {
880                 ret = consumer_filter(uc, ctx, mm);
881                 if (ret)
882                         break;
883         }
884         up_read(&uprobe->consumer_rwsem);
885
886         return ret;
887 }
888
889 static int
890 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
891                         struct vm_area_struct *vma, unsigned long vaddr)
892 {
893         bool first_uprobe;
894         int ret;
895
896         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
897         if (ret)
898                 return ret;
899
900         /*
901          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
902          * the task can hit this breakpoint right after __replace_page().
903          */
904         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
905         if (first_uprobe)
906                 set_bit(MMF_HAS_UPROBES, &mm->flags);
907
908         ret = set_swbp(&uprobe->arch, mm, vaddr);
909         if (!ret)
910                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
911         else if (first_uprobe)
912                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
913
914         return ret;
915 }
916
917 static int
918 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
919 {
920         set_bit(MMF_RECALC_UPROBES, &mm->flags);
921         return set_orig_insn(&uprobe->arch, mm, vaddr);
922 }
923
924 static inline bool uprobe_is_active(struct uprobe *uprobe)
925 {
926         return !RB_EMPTY_NODE(&uprobe->rb_node);
927 }
928 /*
929  * There could be threads that have already hit the breakpoint. They
930  * will recheck the current insn and restart if find_uprobe() fails.
931  * See find_active_uprobe().
932  */
933 static void delete_uprobe(struct uprobe *uprobe)
934 {
935         if (WARN_ON(!uprobe_is_active(uprobe)))
936                 return;
937
938         spin_lock(&uprobes_treelock);
939         rb_erase(&uprobe->rb_node, &uprobes_tree);
940         spin_unlock(&uprobes_treelock);
941         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
942         put_uprobe(uprobe);
943 }
944
945 struct map_info {
946         struct map_info *next;
947         struct mm_struct *mm;
948         unsigned long vaddr;
949 };
950
951 static inline struct map_info *free_map_info(struct map_info *info)
952 {
953         struct map_info *next = info->next;
954         kfree(info);
955         return next;
956 }
957
958 static struct map_info *
959 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
960 {
961         unsigned long pgoff = offset >> PAGE_SHIFT;
962         struct vm_area_struct *vma;
963         struct map_info *curr = NULL;
964         struct map_info *prev = NULL;
965         struct map_info *info;
966         int more = 0;
967
968  again:
969         i_mmap_lock_read(mapping);
970         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
971                 if (!valid_vma(vma, is_register))
972                         continue;
973
974                 if (!prev && !more) {
975                         /*
976                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
977                          * reclaim. This is optimistic, no harm done if it fails.
978                          */
979                         prev = kmalloc(sizeof(struct map_info),
980                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
981                         if (prev)
982                                 prev->next = NULL;
983                 }
984                 if (!prev) {
985                         more++;
986                         continue;
987                 }
988
989                 if (!mmget_not_zero(vma->vm_mm))
990                         continue;
991
992                 info = prev;
993                 prev = prev->next;
994                 info->next = curr;
995                 curr = info;
996
997                 info->mm = vma->vm_mm;
998                 info->vaddr = offset_to_vaddr(vma, offset);
999         }
1000         i_mmap_unlock_read(mapping);
1001
1002         if (!more)
1003                 goto out;
1004
1005         prev = curr;
1006         while (curr) {
1007                 mmput(curr->mm);
1008                 curr = curr->next;
1009         }
1010
1011         do {
1012                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1013                 if (!info) {
1014                         curr = ERR_PTR(-ENOMEM);
1015                         goto out;
1016                 }
1017                 info->next = prev;
1018                 prev = info;
1019         } while (--more);
1020
1021         goto again;
1022  out:
1023         while (prev)
1024                 prev = free_map_info(prev);
1025         return curr;
1026 }
1027
1028 static int
1029 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1030 {
1031         bool is_register = !!new;
1032         struct map_info *info;
1033         int err = 0;
1034
1035         percpu_down_write(&dup_mmap_sem);
1036         info = build_map_info(uprobe->inode->i_mapping,
1037                                         uprobe->offset, is_register);
1038         if (IS_ERR(info)) {
1039                 err = PTR_ERR(info);
1040                 goto out;
1041         }
1042
1043         while (info) {
1044                 struct mm_struct *mm = info->mm;
1045                 struct vm_area_struct *vma;
1046
1047                 if (err && is_register)
1048                         goto free;
1049
1050                 mmap_write_lock(mm);
1051                 vma = find_vma(mm, info->vaddr);
1052                 if (!vma || !valid_vma(vma, is_register) ||
1053                     file_inode(vma->vm_file) != uprobe->inode)
1054                         goto unlock;
1055
1056                 if (vma->vm_start > info->vaddr ||
1057                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1058                         goto unlock;
1059
1060                 if (is_register) {
1061                         /* consult only the "caller", new consumer. */
1062                         if (consumer_filter(new,
1063                                         UPROBE_FILTER_REGISTER, mm))
1064                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1065                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1066                         if (!filter_chain(uprobe,
1067                                         UPROBE_FILTER_UNREGISTER, mm))
1068                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1069                 }
1070
1071  unlock:
1072                 mmap_write_unlock(mm);
1073  free:
1074                 mmput(mm);
1075                 info = free_map_info(info);
1076         }
1077  out:
1078         percpu_up_write(&dup_mmap_sem);
1079         return err;
1080 }
1081
1082 static void
1083 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1084 {
1085         int err;
1086
1087         if (WARN_ON(!consumer_del(uprobe, uc)))
1088                 return;
1089
1090         err = register_for_each_vma(uprobe, NULL);
1091         /* TODO : cant unregister? schedule a worker thread */
1092         if (!uprobe->consumers && !err)
1093                 delete_uprobe(uprobe);
1094 }
1095
1096 /*
1097  * uprobe_unregister - unregister an already registered probe.
1098  * @inode: the file in which the probe has to be removed.
1099  * @offset: offset from the start of the file.
1100  * @uc: identify which probe if multiple probes are colocated.
1101  */
1102 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1103 {
1104         struct uprobe *uprobe;
1105
1106         uprobe = find_uprobe(inode, offset);
1107         if (WARN_ON(!uprobe))
1108                 return;
1109
1110         down_write(&uprobe->register_rwsem);
1111         __uprobe_unregister(uprobe, uc);
1112         up_write(&uprobe->register_rwsem);
1113         put_uprobe(uprobe);
1114 }
1115 EXPORT_SYMBOL_GPL(uprobe_unregister);
1116
1117 /*
1118  * __uprobe_register - register a probe
1119  * @inode: the file in which the probe has to be placed.
1120  * @offset: offset from the start of the file.
1121  * @uc: information on howto handle the probe..
1122  *
1123  * Apart from the access refcount, __uprobe_register() takes a creation
1124  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1125  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1126  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1127  * @uprobe even before the register operation is complete. Creation
1128  * refcount is released when the last @uc for the @uprobe
1129  * unregisters. Caller of __uprobe_register() is required to keep @inode
1130  * (and the containing mount) referenced.
1131  *
1132  * Return errno if it cannot successully install probes
1133  * else return 0 (success)
1134  */
1135 static int __uprobe_register(struct inode *inode, loff_t offset,
1136                              loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1137 {
1138         struct uprobe *uprobe;
1139         int ret;
1140
1141         /* Uprobe must have at least one set consumer */
1142         if (!uc->handler && !uc->ret_handler)
1143                 return -EINVAL;
1144
1145         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1146         if (!inode->i_mapping->a_ops->read_folio &&
1147             !shmem_mapping(inode->i_mapping))
1148                 return -EIO;
1149         /* Racy, just to catch the obvious mistakes */
1150         if (offset > i_size_read(inode))
1151                 return -EINVAL;
1152
1153         /*
1154          * This ensures that copy_from_page(), copy_to_page() and
1155          * __update_ref_ctr() can't cross page boundary.
1156          */
1157         if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1158                 return -EINVAL;
1159         if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1160                 return -EINVAL;
1161
1162  retry:
1163         uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1164         if (!uprobe)
1165                 return -ENOMEM;
1166         if (IS_ERR(uprobe))
1167                 return PTR_ERR(uprobe);
1168
1169         /*
1170          * We can race with uprobe_unregister()->delete_uprobe().
1171          * Check uprobe_is_active() and retry if it is false.
1172          */
1173         down_write(&uprobe->register_rwsem);
1174         ret = -EAGAIN;
1175         if (likely(uprobe_is_active(uprobe))) {
1176                 consumer_add(uprobe, uc);
1177                 ret = register_for_each_vma(uprobe, uc);
1178                 if (ret)
1179                         __uprobe_unregister(uprobe, uc);
1180         }
1181         up_write(&uprobe->register_rwsem);
1182         put_uprobe(uprobe);
1183
1184         if (unlikely(ret == -EAGAIN))
1185                 goto retry;
1186         return ret;
1187 }
1188
1189 int uprobe_register(struct inode *inode, loff_t offset,
1190                     struct uprobe_consumer *uc)
1191 {
1192         return __uprobe_register(inode, offset, 0, uc);
1193 }
1194 EXPORT_SYMBOL_GPL(uprobe_register);
1195
1196 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1197                            loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1198 {
1199         return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1200 }
1201 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1202
1203 /*
1204  * uprobe_apply - unregister an already registered probe.
1205  * @inode: the file in which the probe has to be removed.
1206  * @offset: offset from the start of the file.
1207  * @uc: consumer which wants to add more or remove some breakpoints
1208  * @add: add or remove the breakpoints
1209  */
1210 int uprobe_apply(struct inode *inode, loff_t offset,
1211                         struct uprobe_consumer *uc, bool add)
1212 {
1213         struct uprobe *uprobe;
1214         struct uprobe_consumer *con;
1215         int ret = -ENOENT;
1216
1217         uprobe = find_uprobe(inode, offset);
1218         if (WARN_ON(!uprobe))
1219                 return ret;
1220
1221         down_write(&uprobe->register_rwsem);
1222         for (con = uprobe->consumers; con && con != uc ; con = con->next)
1223                 ;
1224         if (con)
1225                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1226         up_write(&uprobe->register_rwsem);
1227         put_uprobe(uprobe);
1228
1229         return ret;
1230 }
1231
1232 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1233 {
1234         struct vm_area_struct *vma;
1235         int err = 0;
1236
1237         mmap_read_lock(mm);
1238         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1239                 unsigned long vaddr;
1240                 loff_t offset;
1241
1242                 if (!valid_vma(vma, false) ||
1243                     file_inode(vma->vm_file) != uprobe->inode)
1244                         continue;
1245
1246                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1247                 if (uprobe->offset <  offset ||
1248                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1249                         continue;
1250
1251                 vaddr = offset_to_vaddr(vma, uprobe->offset);
1252                 err |= remove_breakpoint(uprobe, mm, vaddr);
1253         }
1254         mmap_read_unlock(mm);
1255
1256         return err;
1257 }
1258
1259 static struct rb_node *
1260 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1261 {
1262         struct rb_node *n = uprobes_tree.rb_node;
1263
1264         while (n) {
1265                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1266
1267                 if (inode < u->inode) {
1268                         n = n->rb_left;
1269                 } else if (inode > u->inode) {
1270                         n = n->rb_right;
1271                 } else {
1272                         if (max < u->offset)
1273                                 n = n->rb_left;
1274                         else if (min > u->offset)
1275                                 n = n->rb_right;
1276                         else
1277                                 break;
1278                 }
1279         }
1280
1281         return n;
1282 }
1283
1284 /*
1285  * For a given range in vma, build a list of probes that need to be inserted.
1286  */
1287 static void build_probe_list(struct inode *inode,
1288                                 struct vm_area_struct *vma,
1289                                 unsigned long start, unsigned long end,
1290                                 struct list_head *head)
1291 {
1292         loff_t min, max;
1293         struct rb_node *n, *t;
1294         struct uprobe *u;
1295
1296         INIT_LIST_HEAD(head);
1297         min = vaddr_to_offset(vma, start);
1298         max = min + (end - start) - 1;
1299
1300         spin_lock(&uprobes_treelock);
1301         n = find_node_in_range(inode, min, max);
1302         if (n) {
1303                 for (t = n; t; t = rb_prev(t)) {
1304                         u = rb_entry(t, struct uprobe, rb_node);
1305                         if (u->inode != inode || u->offset < min)
1306                                 break;
1307                         list_add(&u->pending_list, head);
1308                         get_uprobe(u);
1309                 }
1310                 for (t = n; (t = rb_next(t)); ) {
1311                         u = rb_entry(t, struct uprobe, rb_node);
1312                         if (u->inode != inode || u->offset > max)
1313                                 break;
1314                         list_add(&u->pending_list, head);
1315                         get_uprobe(u);
1316                 }
1317         }
1318         spin_unlock(&uprobes_treelock);
1319 }
1320
1321 /* @vma contains reference counter, not the probed instruction. */
1322 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1323 {
1324         struct list_head *pos, *q;
1325         struct delayed_uprobe *du;
1326         unsigned long vaddr;
1327         int ret = 0, err = 0;
1328
1329         mutex_lock(&delayed_uprobe_lock);
1330         list_for_each_safe(pos, q, &delayed_uprobe_list) {
1331                 du = list_entry(pos, struct delayed_uprobe, list);
1332
1333                 if (du->mm != vma->vm_mm ||
1334                     !valid_ref_ctr_vma(du->uprobe, vma))
1335                         continue;
1336
1337                 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1338                 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1339                 if (ret) {
1340                         update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1341                         if (!err)
1342                                 err = ret;
1343                 }
1344                 delayed_uprobe_delete(du);
1345         }
1346         mutex_unlock(&delayed_uprobe_lock);
1347         return err;
1348 }
1349
1350 /*
1351  * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1352  *
1353  * Currently we ignore all errors and always return 0, the callers
1354  * can't handle the failure anyway.
1355  */
1356 int uprobe_mmap(struct vm_area_struct *vma)
1357 {
1358         struct list_head tmp_list;
1359         struct uprobe *uprobe, *u;
1360         struct inode *inode;
1361
1362         if (no_uprobe_events())
1363                 return 0;
1364
1365         if (vma->vm_file &&
1366             (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1367             test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1368                 delayed_ref_ctr_inc(vma);
1369
1370         if (!valid_vma(vma, true))
1371                 return 0;
1372
1373         inode = file_inode(vma->vm_file);
1374         if (!inode)
1375                 return 0;
1376
1377         mutex_lock(uprobes_mmap_hash(inode));
1378         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1379         /*
1380          * We can race with uprobe_unregister(), this uprobe can be already
1381          * removed. But in this case filter_chain() must return false, all
1382          * consumers have gone away.
1383          */
1384         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1385                 if (!fatal_signal_pending(current) &&
1386                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1387                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1388                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1389                 }
1390                 put_uprobe(uprobe);
1391         }
1392         mutex_unlock(uprobes_mmap_hash(inode));
1393
1394         return 0;
1395 }
1396
1397 static bool
1398 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1399 {
1400         loff_t min, max;
1401         struct inode *inode;
1402         struct rb_node *n;
1403
1404         inode = file_inode(vma->vm_file);
1405
1406         min = vaddr_to_offset(vma, start);
1407         max = min + (end - start) - 1;
1408
1409         spin_lock(&uprobes_treelock);
1410         n = find_node_in_range(inode, min, max);
1411         spin_unlock(&uprobes_treelock);
1412
1413         return !!n;
1414 }
1415
1416 /*
1417  * Called in context of a munmap of a vma.
1418  */
1419 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1420 {
1421         if (no_uprobe_events() || !valid_vma(vma, false))
1422                 return;
1423
1424         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1425                 return;
1426
1427         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1428              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1429                 return;
1430
1431         if (vma_has_uprobes(vma, start, end))
1432                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1433 }
1434
1435 /* Slot allocation for XOL */
1436 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1437 {
1438         struct vm_area_struct *vma;
1439         int ret;
1440
1441         if (mmap_write_lock_killable(mm))
1442                 return -EINTR;
1443
1444         if (mm->uprobes_state.xol_area) {
1445                 ret = -EALREADY;
1446                 goto fail;
1447         }
1448
1449         if (!area->vaddr) {
1450                 /* Try to map as high as possible, this is only a hint. */
1451                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1452                                                 PAGE_SIZE, 0, 0);
1453                 if (IS_ERR_VALUE(area->vaddr)) {
1454                         ret = area->vaddr;
1455                         goto fail;
1456                 }
1457         }
1458
1459         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1460                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1461                                 &area->xol_mapping);
1462         if (IS_ERR(vma)) {
1463                 ret = PTR_ERR(vma);
1464                 goto fail;
1465         }
1466
1467         ret = 0;
1468         /* pairs with get_xol_area() */
1469         smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1470  fail:
1471         mmap_write_unlock(mm);
1472
1473         return ret;
1474 }
1475
1476 static struct xol_area *__create_xol_area(unsigned long vaddr)
1477 {
1478         struct mm_struct *mm = current->mm;
1479         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1480         struct xol_area *area;
1481
1482         area = kmalloc(sizeof(*area), GFP_KERNEL);
1483         if (unlikely(!area))
1484                 goto out;
1485
1486         area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1487                                GFP_KERNEL);
1488         if (!area->bitmap)
1489                 goto free_area;
1490
1491         area->xol_mapping.name = "[uprobes]";
1492         area->xol_mapping.fault = NULL;
1493         area->xol_mapping.pages = area->pages;
1494         area->pages[0] = alloc_page(GFP_HIGHUSER);
1495         if (!area->pages[0])
1496                 goto free_bitmap;
1497         area->pages[1] = NULL;
1498
1499         area->vaddr = vaddr;
1500         init_waitqueue_head(&area->wq);
1501         /* Reserve the 1st slot for get_trampoline_vaddr() */
1502         set_bit(0, area->bitmap);
1503         atomic_set(&area->slot_count, 1);
1504         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1505
1506         if (!xol_add_vma(mm, area))
1507                 return area;
1508
1509         __free_page(area->pages[0]);
1510  free_bitmap:
1511         kfree(area->bitmap);
1512  free_area:
1513         kfree(area);
1514  out:
1515         return NULL;
1516 }
1517
1518 /*
1519  * get_xol_area - Allocate process's xol_area if necessary.
1520  * This area will be used for storing instructions for execution out of line.
1521  *
1522  * Returns the allocated area or NULL.
1523  */
1524 static struct xol_area *get_xol_area(void)
1525 {
1526         struct mm_struct *mm = current->mm;
1527         struct xol_area *area;
1528
1529         if (!mm->uprobes_state.xol_area)
1530                 __create_xol_area(0);
1531
1532         /* Pairs with xol_add_vma() smp_store_release() */
1533         area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1534         return area;
1535 }
1536
1537 /*
1538  * uprobe_clear_state - Free the area allocated for slots.
1539  */
1540 void uprobe_clear_state(struct mm_struct *mm)
1541 {
1542         struct xol_area *area = mm->uprobes_state.xol_area;
1543
1544         mutex_lock(&delayed_uprobe_lock);
1545         delayed_uprobe_remove(NULL, mm);
1546         mutex_unlock(&delayed_uprobe_lock);
1547
1548         if (!area)
1549                 return;
1550
1551         put_page(area->pages[0]);
1552         kfree(area->bitmap);
1553         kfree(area);
1554 }
1555
1556 void uprobe_start_dup_mmap(void)
1557 {
1558         percpu_down_read(&dup_mmap_sem);
1559 }
1560
1561 void uprobe_end_dup_mmap(void)
1562 {
1563         percpu_up_read(&dup_mmap_sem);
1564 }
1565
1566 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1567 {
1568         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1569                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1570                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1571                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1572         }
1573 }
1574
1575 /*
1576  *  - search for a free slot.
1577  */
1578 static unsigned long xol_take_insn_slot(struct xol_area *area)
1579 {
1580         unsigned long slot_addr;
1581         int slot_nr;
1582
1583         do {
1584                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1585                 if (slot_nr < UINSNS_PER_PAGE) {
1586                         if (!test_and_set_bit(slot_nr, area->bitmap))
1587                                 break;
1588
1589                         slot_nr = UINSNS_PER_PAGE;
1590                         continue;
1591                 }
1592                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1593         } while (slot_nr >= UINSNS_PER_PAGE);
1594
1595         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1596         atomic_inc(&area->slot_count);
1597
1598         return slot_addr;
1599 }
1600
1601 /*
1602  * xol_get_insn_slot - allocate a slot for xol.
1603  * Returns the allocated slot address or 0.
1604  */
1605 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1606 {
1607         struct xol_area *area;
1608         unsigned long xol_vaddr;
1609
1610         area = get_xol_area();
1611         if (!area)
1612                 return 0;
1613
1614         xol_vaddr = xol_take_insn_slot(area);
1615         if (unlikely(!xol_vaddr))
1616                 return 0;
1617
1618         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1619                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1620
1621         return xol_vaddr;
1622 }
1623
1624 /*
1625  * xol_free_insn_slot - If slot was earlier allocated by
1626  * @xol_get_insn_slot(), make the slot available for
1627  * subsequent requests.
1628  */
1629 static void xol_free_insn_slot(struct task_struct *tsk)
1630 {
1631         struct xol_area *area;
1632         unsigned long vma_end;
1633         unsigned long slot_addr;
1634
1635         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1636                 return;
1637
1638         slot_addr = tsk->utask->xol_vaddr;
1639         if (unlikely(!slot_addr))
1640                 return;
1641
1642         area = tsk->mm->uprobes_state.xol_area;
1643         vma_end = area->vaddr + PAGE_SIZE;
1644         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1645                 unsigned long offset;
1646                 int slot_nr;
1647
1648                 offset = slot_addr - area->vaddr;
1649                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1650                 if (slot_nr >= UINSNS_PER_PAGE)
1651                         return;
1652
1653                 clear_bit(slot_nr, area->bitmap);
1654                 atomic_dec(&area->slot_count);
1655                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1656                 if (waitqueue_active(&area->wq))
1657                         wake_up(&area->wq);
1658
1659                 tsk->utask->xol_vaddr = 0;
1660         }
1661 }
1662
1663 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1664                                   void *src, unsigned long len)
1665 {
1666         /* Initialize the slot */
1667         copy_to_page(page, vaddr, src, len);
1668
1669         /*
1670          * We probably need flush_icache_user_page() but it needs vma.
1671          * This should work on most of architectures by default. If
1672          * architecture needs to do something different it can define
1673          * its own version of the function.
1674          */
1675         flush_dcache_page(page);
1676 }
1677
1678 /**
1679  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1680  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1681  * instruction.
1682  * Return the address of the breakpoint instruction.
1683  */
1684 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1685 {
1686         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1687 }
1688
1689 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1690 {
1691         struct uprobe_task *utask = current->utask;
1692
1693         if (unlikely(utask && utask->active_uprobe))
1694                 return utask->vaddr;
1695
1696         return instruction_pointer(regs);
1697 }
1698
1699 static struct return_instance *free_ret_instance(struct return_instance *ri)
1700 {
1701         struct return_instance *next = ri->next;
1702         put_uprobe(ri->uprobe);
1703         kfree(ri);
1704         return next;
1705 }
1706
1707 /*
1708  * Called with no locks held.
1709  * Called in context of an exiting or an exec-ing thread.
1710  */
1711 void uprobe_free_utask(struct task_struct *t)
1712 {
1713         struct uprobe_task *utask = t->utask;
1714         struct return_instance *ri;
1715
1716         if (!utask)
1717                 return;
1718
1719         if (utask->active_uprobe)
1720                 put_uprobe(utask->active_uprobe);
1721
1722         ri = utask->return_instances;
1723         while (ri)
1724                 ri = free_ret_instance(ri);
1725
1726         xol_free_insn_slot(t);
1727         kfree(utask);
1728         t->utask = NULL;
1729 }
1730
1731 /*
1732  * Allocate a uprobe_task object for the task if necessary.
1733  * Called when the thread hits a breakpoint.
1734  *
1735  * Returns:
1736  * - pointer to new uprobe_task on success
1737  * - NULL otherwise
1738  */
1739 static struct uprobe_task *get_utask(void)
1740 {
1741         if (!current->utask)
1742                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1743         return current->utask;
1744 }
1745
1746 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1747 {
1748         struct uprobe_task *n_utask;
1749         struct return_instance **p, *o, *n;
1750
1751         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1752         if (!n_utask)
1753                 return -ENOMEM;
1754         t->utask = n_utask;
1755
1756         p = &n_utask->return_instances;
1757         for (o = o_utask->return_instances; o; o = o->next) {
1758                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1759                 if (!n)
1760                         return -ENOMEM;
1761
1762                 *n = *o;
1763                 get_uprobe(n->uprobe);
1764                 n->next = NULL;
1765
1766                 *p = n;
1767                 p = &n->next;
1768                 n_utask->depth++;
1769         }
1770
1771         return 0;
1772 }
1773
1774 static void uprobe_warn(struct task_struct *t, const char *msg)
1775 {
1776         pr_warn("uprobe: %s:%d failed to %s\n",
1777                         current->comm, current->pid, msg);
1778 }
1779
1780 static void dup_xol_work(struct callback_head *work)
1781 {
1782         if (current->flags & PF_EXITING)
1783                 return;
1784
1785         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1786                         !fatal_signal_pending(current))
1787                 uprobe_warn(current, "dup xol area");
1788 }
1789
1790 /*
1791  * Called in context of a new clone/fork from copy_process.
1792  */
1793 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1794 {
1795         struct uprobe_task *utask = current->utask;
1796         struct mm_struct *mm = current->mm;
1797         struct xol_area *area;
1798
1799         t->utask = NULL;
1800
1801         if (!utask || !utask->return_instances)
1802                 return;
1803
1804         if (mm == t->mm && !(flags & CLONE_VFORK))
1805                 return;
1806
1807         if (dup_utask(t, utask))
1808                 return uprobe_warn(t, "dup ret instances");
1809
1810         /* The task can fork() after dup_xol_work() fails */
1811         area = mm->uprobes_state.xol_area;
1812         if (!area)
1813                 return uprobe_warn(t, "dup xol area");
1814
1815         if (mm == t->mm)
1816                 return;
1817
1818         t->utask->dup_xol_addr = area->vaddr;
1819         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1820         task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1821 }
1822
1823 /*
1824  * Current area->vaddr notion assume the trampoline address is always
1825  * equal area->vaddr.
1826  *
1827  * Returns -1 in case the xol_area is not allocated.
1828  */
1829 static unsigned long get_trampoline_vaddr(void)
1830 {
1831         struct xol_area *area;
1832         unsigned long trampoline_vaddr = -1;
1833
1834         /* Pairs with xol_add_vma() smp_store_release() */
1835         area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1836         if (area)
1837                 trampoline_vaddr = area->vaddr;
1838
1839         return trampoline_vaddr;
1840 }
1841
1842 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1843                                         struct pt_regs *regs)
1844 {
1845         struct return_instance *ri = utask->return_instances;
1846         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1847
1848         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1849                 ri = free_ret_instance(ri);
1850                 utask->depth--;
1851         }
1852         utask->return_instances = ri;
1853 }
1854
1855 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1856 {
1857         struct return_instance *ri;
1858         struct uprobe_task *utask;
1859         unsigned long orig_ret_vaddr, trampoline_vaddr;
1860         bool chained;
1861
1862         if (!get_xol_area())
1863                 return;
1864
1865         utask = get_utask();
1866         if (!utask)
1867                 return;
1868
1869         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1870                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1871                                 " nestedness limit pid/tgid=%d/%d\n",
1872                                 current->pid, current->tgid);
1873                 return;
1874         }
1875
1876         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1877         if (!ri)
1878                 return;
1879
1880         trampoline_vaddr = get_trampoline_vaddr();
1881         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1882         if (orig_ret_vaddr == -1)
1883                 goto fail;
1884
1885         /* drop the entries invalidated by longjmp() */
1886         chained = (orig_ret_vaddr == trampoline_vaddr);
1887         cleanup_return_instances(utask, chained, regs);
1888
1889         /*
1890          * We don't want to keep trampoline address in stack, rather keep the
1891          * original return address of first caller thru all the consequent
1892          * instances. This also makes breakpoint unwrapping easier.
1893          */
1894         if (chained) {
1895                 if (!utask->return_instances) {
1896                         /*
1897                          * This situation is not possible. Likely we have an
1898                          * attack from user-space.
1899                          */
1900                         uprobe_warn(current, "handle tail call");
1901                         goto fail;
1902                 }
1903                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1904         }
1905
1906         ri->uprobe = get_uprobe(uprobe);
1907         ri->func = instruction_pointer(regs);
1908         ri->stack = user_stack_pointer(regs);
1909         ri->orig_ret_vaddr = orig_ret_vaddr;
1910         ri->chained = chained;
1911
1912         utask->depth++;
1913         ri->next = utask->return_instances;
1914         utask->return_instances = ri;
1915
1916         return;
1917  fail:
1918         kfree(ri);
1919 }
1920
1921 /* Prepare to single-step probed instruction out of line. */
1922 static int
1923 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1924 {
1925         struct uprobe_task *utask;
1926         unsigned long xol_vaddr;
1927         int err;
1928
1929         utask = get_utask();
1930         if (!utask)
1931                 return -ENOMEM;
1932
1933         xol_vaddr = xol_get_insn_slot(uprobe);
1934         if (!xol_vaddr)
1935                 return -ENOMEM;
1936
1937         utask->xol_vaddr = xol_vaddr;
1938         utask->vaddr = bp_vaddr;
1939
1940         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1941         if (unlikely(err)) {
1942                 xol_free_insn_slot(current);
1943                 return err;
1944         }
1945
1946         utask->active_uprobe = uprobe;
1947         utask->state = UTASK_SSTEP;
1948         return 0;
1949 }
1950
1951 /*
1952  * If we are singlestepping, then ensure this thread is not connected to
1953  * non-fatal signals until completion of singlestep.  When xol insn itself
1954  * triggers the signal,  restart the original insn even if the task is
1955  * already SIGKILL'ed (since coredump should report the correct ip).  This
1956  * is even more important if the task has a handler for SIGSEGV/etc, The
1957  * _same_ instruction should be repeated again after return from the signal
1958  * handler, and SSTEP can never finish in this case.
1959  */
1960 bool uprobe_deny_signal(void)
1961 {
1962         struct task_struct *t = current;
1963         struct uprobe_task *utask = t->utask;
1964
1965         if (likely(!utask || !utask->active_uprobe))
1966                 return false;
1967
1968         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1969
1970         if (task_sigpending(t)) {
1971                 spin_lock_irq(&t->sighand->siglock);
1972                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1973                 spin_unlock_irq(&t->sighand->siglock);
1974
1975                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1976                         utask->state = UTASK_SSTEP_TRAPPED;
1977                         set_tsk_thread_flag(t, TIF_UPROBE);
1978                 }
1979         }
1980
1981         return true;
1982 }
1983
1984 static void mmf_recalc_uprobes(struct mm_struct *mm)
1985 {
1986         struct vm_area_struct *vma;
1987
1988         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1989                 if (!valid_vma(vma, false))
1990                         continue;
1991                 /*
1992                  * This is not strictly accurate, we can race with
1993                  * uprobe_unregister() and see the already removed
1994                  * uprobe if delete_uprobe() was not yet called.
1995                  * Or this uprobe can be filtered out.
1996                  */
1997                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1998                         return;
1999         }
2000
2001         clear_bit(MMF_HAS_UPROBES, &mm->flags);
2002 }
2003
2004 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2005 {
2006         struct page *page;
2007         uprobe_opcode_t opcode;
2008         int result;
2009
2010         if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2011                 return -EINVAL;
2012
2013         pagefault_disable();
2014         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2015         pagefault_enable();
2016
2017         if (likely(result == 0))
2018                 goto out;
2019
2020         /*
2021          * The NULL 'tsk' here ensures that any faults that occur here
2022          * will not be accounted to the task.  'mm' *is* current->mm,
2023          * but we treat this as a 'remote' access since it is
2024          * essentially a kernel access to the memory.
2025          */
2026         result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2027                         NULL, NULL);
2028         if (result < 0)
2029                 return result;
2030
2031         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2032         put_page(page);
2033  out:
2034         /* This needs to return true for any variant of the trap insn */
2035         return is_trap_insn(&opcode);
2036 }
2037
2038 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2039 {
2040         struct mm_struct *mm = current->mm;
2041         struct uprobe *uprobe = NULL;
2042         struct vm_area_struct *vma;
2043
2044         mmap_read_lock(mm);
2045         vma = vma_lookup(mm, bp_vaddr);
2046         if (vma) {
2047                 if (valid_vma(vma, false)) {
2048                         struct inode *inode = file_inode(vma->vm_file);
2049                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2050
2051                         uprobe = find_uprobe(inode, offset);
2052                 }
2053
2054                 if (!uprobe)
2055                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2056         } else {
2057                 *is_swbp = -EFAULT;
2058         }
2059
2060         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2061                 mmf_recalc_uprobes(mm);
2062         mmap_read_unlock(mm);
2063
2064         return uprobe;
2065 }
2066
2067 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2068 {
2069         struct uprobe_consumer *uc;
2070         int remove = UPROBE_HANDLER_REMOVE;
2071         bool need_prep = false; /* prepare return uprobe, when needed */
2072
2073         down_read(&uprobe->register_rwsem);
2074         for (uc = uprobe->consumers; uc; uc = uc->next) {
2075                 int rc = 0;
2076
2077                 if (uc->handler) {
2078                         rc = uc->handler(uc, regs);
2079                         WARN(rc & ~UPROBE_HANDLER_MASK,
2080                                 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2081                 }
2082
2083                 if (uc->ret_handler)
2084                         need_prep = true;
2085
2086                 remove &= rc;
2087         }
2088
2089         if (need_prep && !remove)
2090                 prepare_uretprobe(uprobe, regs); /* put bp at return */
2091
2092         if (remove && uprobe->consumers) {
2093                 WARN_ON(!uprobe_is_active(uprobe));
2094                 unapply_uprobe(uprobe, current->mm);
2095         }
2096         up_read(&uprobe->register_rwsem);
2097 }
2098
2099 static void
2100 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2101 {
2102         struct uprobe *uprobe = ri->uprobe;
2103         struct uprobe_consumer *uc;
2104
2105         down_read(&uprobe->register_rwsem);
2106         for (uc = uprobe->consumers; uc; uc = uc->next) {
2107                 if (uc->ret_handler)
2108                         uc->ret_handler(uc, ri->func, regs);
2109         }
2110         up_read(&uprobe->register_rwsem);
2111 }
2112
2113 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2114 {
2115         bool chained;
2116
2117         do {
2118                 chained = ri->chained;
2119                 ri = ri->next;  /* can't be NULL if chained */
2120         } while (chained);
2121
2122         return ri;
2123 }
2124
2125 static void handle_trampoline(struct pt_regs *regs)
2126 {
2127         struct uprobe_task *utask;
2128         struct return_instance *ri, *next;
2129         bool valid;
2130
2131         utask = current->utask;
2132         if (!utask)
2133                 goto sigill;
2134
2135         ri = utask->return_instances;
2136         if (!ri)
2137                 goto sigill;
2138
2139         do {
2140                 /*
2141                  * We should throw out the frames invalidated by longjmp().
2142                  * If this chain is valid, then the next one should be alive
2143                  * or NULL; the latter case means that nobody but ri->func
2144                  * could hit this trampoline on return. TODO: sigaltstack().
2145                  */
2146                 next = find_next_ret_chain(ri);
2147                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2148
2149                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2150                 do {
2151                         if (valid)
2152                                 handle_uretprobe_chain(ri, regs);
2153                         ri = free_ret_instance(ri);
2154                         utask->depth--;
2155                 } while (ri != next);
2156         } while (!valid);
2157
2158         utask->return_instances = ri;
2159         return;
2160
2161  sigill:
2162         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2163         force_sig(SIGILL);
2164
2165 }
2166
2167 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2168 {
2169         return false;
2170 }
2171
2172 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2173                                         struct pt_regs *regs)
2174 {
2175         return true;
2176 }
2177
2178 /*
2179  * Run handler and ask thread to singlestep.
2180  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2181  */
2182 static void handle_swbp(struct pt_regs *regs)
2183 {
2184         struct uprobe *uprobe;
2185         unsigned long bp_vaddr;
2186         int is_swbp;
2187
2188         bp_vaddr = uprobe_get_swbp_addr(regs);
2189         if (bp_vaddr == get_trampoline_vaddr())
2190                 return handle_trampoline(regs);
2191
2192         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2193         if (!uprobe) {
2194                 if (is_swbp > 0) {
2195                         /* No matching uprobe; signal SIGTRAP. */
2196                         force_sig(SIGTRAP);
2197                 } else {
2198                         /*
2199                          * Either we raced with uprobe_unregister() or we can't
2200                          * access this memory. The latter is only possible if
2201                          * another thread plays with our ->mm. In both cases
2202                          * we can simply restart. If this vma was unmapped we
2203                          * can pretend this insn was not executed yet and get
2204                          * the (correct) SIGSEGV after restart.
2205                          */
2206                         instruction_pointer_set(regs, bp_vaddr);
2207                 }
2208                 return;
2209         }
2210
2211         /* change it in advance for ->handler() and restart */
2212         instruction_pointer_set(regs, bp_vaddr);
2213
2214         /*
2215          * TODO: move copy_insn/etc into _register and remove this hack.
2216          * After we hit the bp, _unregister + _register can install the
2217          * new and not-yet-analyzed uprobe at the same address, restart.
2218          */
2219         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2220                 goto out;
2221
2222         /*
2223          * Pairs with the smp_wmb() in prepare_uprobe().
2224          *
2225          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2226          * we must also see the stores to &uprobe->arch performed by the
2227          * prepare_uprobe() call.
2228          */
2229         smp_rmb();
2230
2231         /* Tracing handlers use ->utask to communicate with fetch methods */
2232         if (!get_utask())
2233                 goto out;
2234
2235         if (arch_uprobe_ignore(&uprobe->arch, regs))
2236                 goto out;
2237
2238         handler_chain(uprobe, regs);
2239
2240         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2241                 goto out;
2242
2243         if (!pre_ssout(uprobe, regs, bp_vaddr))
2244                 return;
2245
2246         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2247 out:
2248         put_uprobe(uprobe);
2249 }
2250
2251 /*
2252  * Perform required fix-ups and disable singlestep.
2253  * Allow pending signals to take effect.
2254  */
2255 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2256 {
2257         struct uprobe *uprobe;
2258         int err = 0;
2259
2260         uprobe = utask->active_uprobe;
2261         if (utask->state == UTASK_SSTEP_ACK)
2262                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2263         else if (utask->state == UTASK_SSTEP_TRAPPED)
2264                 arch_uprobe_abort_xol(&uprobe->arch, regs);
2265         else
2266                 WARN_ON_ONCE(1);
2267
2268         put_uprobe(uprobe);
2269         utask->active_uprobe = NULL;
2270         utask->state = UTASK_RUNNING;
2271         xol_free_insn_slot(current);
2272
2273         spin_lock_irq(&current->sighand->siglock);
2274         recalc_sigpending(); /* see uprobe_deny_signal() */
2275         spin_unlock_irq(&current->sighand->siglock);
2276
2277         if (unlikely(err)) {
2278                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2279                 force_sig(SIGILL);
2280         }
2281 }
2282
2283 /*
2284  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2285  * allows the thread to return from interrupt. After that handle_swbp()
2286  * sets utask->active_uprobe.
2287  *
2288  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2289  * and allows the thread to return from interrupt.
2290  *
2291  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2292  * uprobe_notify_resume().
2293  */
2294 void uprobe_notify_resume(struct pt_regs *regs)
2295 {
2296         struct uprobe_task *utask;
2297
2298         clear_thread_flag(TIF_UPROBE);
2299
2300         utask = current->utask;
2301         if (utask && utask->active_uprobe)
2302                 handle_singlestep(utask, regs);
2303         else
2304                 handle_swbp(regs);
2305 }
2306
2307 /*
2308  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2309  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2310  */
2311 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2312 {
2313         if (!current->mm)
2314                 return 0;
2315
2316         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2317             (!current->utask || !current->utask->return_instances))
2318                 return 0;
2319
2320         set_thread_flag(TIF_UPROBE);
2321         return 1;
2322 }
2323
2324 /*
2325  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2326  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2327  */
2328 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2329 {
2330         struct uprobe_task *utask = current->utask;
2331
2332         if (!current->mm || !utask || !utask->active_uprobe)
2333                 /* task is currently not uprobed */
2334                 return 0;
2335
2336         utask->state = UTASK_SSTEP_ACK;
2337         set_thread_flag(TIF_UPROBE);
2338         return 1;
2339 }
2340
2341 static struct notifier_block uprobe_exception_nb = {
2342         .notifier_call          = arch_uprobe_exception_notify,
2343         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2344 };
2345
2346 void __init uprobes_init(void)
2347 {
2348         int i;
2349
2350         for (i = 0; i < UPROBES_HASH_SZ; i++)
2351                 mutex_init(&uprobes_mmap_mutex[i]);
2352
2353         BUG_ON(register_die_notifier(&uprobe_exception_nb));
2354 }