perf: Add unlikely() to the ring-buffer code
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / events / ring_buffer.c
1 /*
2  * Performance events ring-buffer code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 #include <linux/circ_buf.h>
16
17 #include "internal.h"
18
19 static void perf_output_wakeup(struct perf_output_handle *handle)
20 {
21         atomic_set(&handle->rb->poll, POLL_IN);
22
23         handle->event->pending_wakeup = 1;
24         irq_work_queue(&handle->event->pending);
25 }
26
27 /*
28  * We need to ensure a later event_id doesn't publish a head when a former
29  * event isn't done writing. However since we need to deal with NMIs we
30  * cannot fully serialize things.
31  *
32  * We only publish the head (and generate a wakeup) when the outer-most
33  * event completes.
34  */
35 static void perf_output_get_handle(struct perf_output_handle *handle)
36 {
37         struct ring_buffer *rb = handle->rb;
38
39         preempt_disable();
40         local_inc(&rb->nest);
41         handle->wakeup = local_read(&rb->wakeup);
42 }
43
44 static void perf_output_put_handle(struct perf_output_handle *handle)
45 {
46         struct ring_buffer *rb = handle->rb;
47         unsigned long head;
48
49 again:
50         head = local_read(&rb->head);
51
52         /*
53          * IRQ/NMI can happen here, which means we can miss a head update.
54          */
55
56         if (!local_dec_and_test(&rb->nest))
57                 goto out;
58
59         /*
60          * Since the mmap() consumer (userspace) can run on a different CPU:
61          *
62          *   kernel                             user
63          *
64          *   READ ->data_tail                   READ ->data_head
65          *   smp_mb()   (A)                     smp_rmb()       (C)
66          *   WRITE $data                        READ $data
67          *   smp_wmb()  (B)                     smp_mb()        (D)
68          *   STORE ->data_head                  WRITE ->data_tail
69          *
70          * Where A pairs with D, and B pairs with C.
71          *
72          * I don't think A needs to be a full barrier because we won't in fact
73          * write data until we see the store from userspace. So we simply don't
74          * issue the data WRITE until we observe it. Be conservative for now.
75          *
76          * OTOH, D needs to be a full barrier since it separates the data READ
77          * from the tail WRITE.
78          *
79          * For B a WMB is sufficient since it separates two WRITEs, and for C
80          * an RMB is sufficient since it separates two READs.
81          *
82          * See perf_output_begin().
83          */
84         smp_wmb();
85         rb->user_page->data_head = head;
86
87         /*
88          * Now check if we missed an update, rely on the (compiler)
89          * barrier in atomic_dec_and_test() to re-read rb->head.
90          */
91         if (unlikely(head != local_read(&rb->head))) {
92                 local_inc(&rb->nest);
93                 goto again;
94         }
95
96         if (handle->wakeup != local_read(&rb->wakeup))
97                 perf_output_wakeup(handle);
98
99 out:
100         preempt_enable();
101 }
102
103 int perf_output_begin(struct perf_output_handle *handle,
104                       struct perf_event *event, unsigned int size)
105 {
106         struct ring_buffer *rb;
107         unsigned long tail, offset, head;
108         int have_lost;
109         struct perf_sample_data sample_data;
110         struct {
111                 struct perf_event_header header;
112                 u64                      id;
113                 u64                      lost;
114         } lost_event;
115
116         rcu_read_lock();
117         /*
118          * For inherited events we send all the output towards the parent.
119          */
120         if (event->parent)
121                 event = event->parent;
122
123         rb = rcu_dereference(event->rb);
124         if (unlikely(!rb))
125                 goto out;
126
127         if (unlikely(!rb->nr_pages))
128                 goto out;
129
130         handle->rb    = rb;
131         handle->event = event;
132
133         have_lost = local_read(&rb->lost);
134         if (unlikely(have_lost)) {
135                 lost_event.header.size = sizeof(lost_event);
136                 perf_event_header__init_id(&lost_event.header, &sample_data,
137                                            event);
138                 size += lost_event.header.size;
139         }
140
141         perf_output_get_handle(handle);
142
143         do {
144                 /*
145                  * Userspace could choose to issue a mb() before updating the
146                  * tail pointer. So that all reads will be completed before the
147                  * write is issued.
148                  *
149                  * See perf_output_put_handle().
150                  */
151                 tail = ACCESS_ONCE(rb->user_page->data_tail);
152                 smp_mb();
153                 offset = head = local_read(&rb->head);
154                 if (!rb->overwrite &&
155                     unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
156                         goto fail;
157                 head += size;
158         } while (local_cmpxchg(&rb->head, offset, head) != offset);
159
160         if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
161                 local_add(rb->watermark, &rb->wakeup);
162
163         handle->page = offset >> (PAGE_SHIFT + page_order(rb));
164         handle->page &= rb->nr_pages - 1;
165         handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
166         handle->addr = rb->data_pages[handle->page];
167         handle->addr += handle->size;
168         handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;
169
170         if (unlikely(have_lost)) {
171                 lost_event.header.type = PERF_RECORD_LOST;
172                 lost_event.header.misc = 0;
173                 lost_event.id          = event->id;
174                 lost_event.lost        = local_xchg(&rb->lost, 0);
175
176                 perf_output_put(handle, lost_event);
177                 perf_event__output_id_sample(event, handle, &sample_data);
178         }
179
180         return 0;
181
182 fail:
183         local_inc(&rb->lost);
184         perf_output_put_handle(handle);
185 out:
186         rcu_read_unlock();
187
188         return -ENOSPC;
189 }
190
191 unsigned int perf_output_copy(struct perf_output_handle *handle,
192                       const void *buf, unsigned int len)
193 {
194         return __output_copy(handle, buf, len);
195 }
196
197 unsigned int perf_output_skip(struct perf_output_handle *handle,
198                               unsigned int len)
199 {
200         return __output_skip(handle, NULL, len);
201 }
202
203 void perf_output_end(struct perf_output_handle *handle)
204 {
205         perf_output_put_handle(handle);
206         rcu_read_unlock();
207 }
208
209 static void
210 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
211 {
212         long max_size = perf_data_size(rb);
213
214         if (watermark)
215                 rb->watermark = min(max_size, watermark);
216
217         if (!rb->watermark)
218                 rb->watermark = max_size / 2;
219
220         if (flags & RING_BUFFER_WRITABLE)
221                 rb->overwrite = 0;
222         else
223                 rb->overwrite = 1;
224
225         atomic_set(&rb->refcount, 1);
226
227         INIT_LIST_HEAD(&rb->event_list);
228         spin_lock_init(&rb->event_lock);
229 }
230
231 #ifndef CONFIG_PERF_USE_VMALLOC
232
233 /*
234  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
235  */
236
237 struct page *
238 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
239 {
240         if (pgoff > rb->nr_pages)
241                 return NULL;
242
243         if (pgoff == 0)
244                 return virt_to_page(rb->user_page);
245
246         return virt_to_page(rb->data_pages[pgoff - 1]);
247 }
248
249 static void *perf_mmap_alloc_page(int cpu)
250 {
251         struct page *page;
252         int node;
253
254         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
255         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
256         if (!page)
257                 return NULL;
258
259         return page_address(page);
260 }
261
262 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
263 {
264         struct ring_buffer *rb;
265         unsigned long size;
266         int i;
267
268         size = sizeof(struct ring_buffer);
269         size += nr_pages * sizeof(void *);
270
271         rb = kzalloc(size, GFP_KERNEL);
272         if (!rb)
273                 goto fail;
274
275         rb->user_page = perf_mmap_alloc_page(cpu);
276         if (!rb->user_page)
277                 goto fail_user_page;
278
279         for (i = 0; i < nr_pages; i++) {
280                 rb->data_pages[i] = perf_mmap_alloc_page(cpu);
281                 if (!rb->data_pages[i])
282                         goto fail_data_pages;
283         }
284
285         rb->nr_pages = nr_pages;
286
287         ring_buffer_init(rb, watermark, flags);
288
289         return rb;
290
291 fail_data_pages:
292         for (i--; i >= 0; i--)
293                 free_page((unsigned long)rb->data_pages[i]);
294
295         free_page((unsigned long)rb->user_page);
296
297 fail_user_page:
298         kfree(rb);
299
300 fail:
301         return NULL;
302 }
303
304 static void perf_mmap_free_page(unsigned long addr)
305 {
306         struct page *page = virt_to_page((void *)addr);
307
308         page->mapping = NULL;
309         __free_page(page);
310 }
311
312 void rb_free(struct ring_buffer *rb)
313 {
314         int i;
315
316         perf_mmap_free_page((unsigned long)rb->user_page);
317         for (i = 0; i < rb->nr_pages; i++)
318                 perf_mmap_free_page((unsigned long)rb->data_pages[i]);
319         kfree(rb);
320 }
321
322 #else
323 static int data_page_nr(struct ring_buffer *rb)
324 {
325         return rb->nr_pages << page_order(rb);
326 }
327
328 struct page *
329 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
330 {
331         /* The '>' counts in the user page. */
332         if (pgoff > data_page_nr(rb))
333                 return NULL;
334
335         return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
336 }
337
338 static void perf_mmap_unmark_page(void *addr)
339 {
340         struct page *page = vmalloc_to_page(addr);
341
342         page->mapping = NULL;
343 }
344
345 static void rb_free_work(struct work_struct *work)
346 {
347         struct ring_buffer *rb;
348         void *base;
349         int i, nr;
350
351         rb = container_of(work, struct ring_buffer, work);
352         nr = data_page_nr(rb);
353
354         base = rb->user_page;
355         /* The '<=' counts in the user page. */
356         for (i = 0; i <= nr; i++)
357                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
358
359         vfree(base);
360         kfree(rb);
361 }
362
363 void rb_free(struct ring_buffer *rb)
364 {
365         schedule_work(&rb->work);
366 }
367
368 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
369 {
370         struct ring_buffer *rb;
371         unsigned long size;
372         void *all_buf;
373
374         size = sizeof(struct ring_buffer);
375         size += sizeof(void *);
376
377         rb = kzalloc(size, GFP_KERNEL);
378         if (!rb)
379                 goto fail;
380
381         INIT_WORK(&rb->work, rb_free_work);
382
383         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
384         if (!all_buf)
385                 goto fail_all_buf;
386
387         rb->user_page = all_buf;
388         rb->data_pages[0] = all_buf + PAGE_SIZE;
389         rb->page_order = ilog2(nr_pages);
390         rb->nr_pages = !!nr_pages;
391
392         ring_buffer_init(rb, watermark, flags);
393
394         return rb;
395
396 fail_all_buf:
397         kfree(rb);
398
399 fail:
400         return NULL;
401 }
402
403 #endif